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ON A MULTIPLE-SCALES ANALYSIS OF MULTILATERAL
PHENOMENA IN SEMICONDUCTOR LASERS∗
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Abstract. A mathematical model describing the coupling of electrical and optical effects in the
active region of a realistic semiconductor laser medium is introduced. The weakly nonlinear analysis
which follows gives rise to a leading-order problem describing three lateral modes. At the next order,
the secularity conditions exhibit competition for photons and modal interaction. By making further
assumptions, a partially lumped model is deduced which has no counterpart in the existing literature;
this simplified system consists of one parabolic and six first-order hyperbolic partial differential
equations. Predictions of this partially lumped model are compared with experimental observations.
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1. Introduction. Two different approaches are followed by the laser community
when modeling multimode effects in semiconductor lasers. The first approach de-
scribes M longitudinal modes by M rate equations (see, for example, [1], [2], and [11]).
However, rate equations for the lateral modes have not been determined despite being
required to model broad-area lasers. The second approach attempts to incorporate
all possible effects (including sophisticated quantum mechanical models) into large
numerical codes using the Maxwell–Bloch equations (see, for example, [7] and [10]).
In this article, an alternative approach is proposed to determine simplified models
based on a systematic asymptotic analysis of Maxwell’s equations. Moreover, we de-
rive traveling-wave rate equations for the lateral modes in a broad-area semiconductor
laser.

A schematic cross-section of a typical semiconductor laser is shown in Figure 1.
The current, assumed unidirectional in this paper, passes between the metal contact
on the substrate and the heat sink. Electrons are injected into the active layer where
they recombine with holes through both radiative and nonradiative mechanisms. Dur-
ing radiative recombination the energy released by an electron-hole pair appears in
the form of a photon. This can happen through spontaneous emission, in which the
photons are emitted in random directions, or stimulated emission, in which recom-
bination is initiated by an existing photon. In the latter case the emitted photon
matches the original photon in wavelength, phase, and direction. As long as the end
faces of the semiconductor possess a suitable reflectivity and the current exceeds a
given threshold value, the semiconductor is excited through stimulated emission into
laser operation.

The purpose of this paper is to investigate the multilateral effects in semiconductor
lasers by extending the weakly nonlinear analysis presented in [12]. The semiconductor
laser is split into two regions—the active layer, in which the electrical-optical effects
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Fig. 1. Typical layered structure of a double-heterostructure semiconductor laser. The lateral
direction is denoted by x, the transverse direction by y, and the longitudinal (or axial) direction by
z. The battery potential is applied in the transverse direction, with mirrors located at z = 0 and
z = L.

take place and lasing occurs, and the surrounding material. This work is concerned
with the first of these regions. The analysis in [12], which assumes one dominant lateral
mode, is extended to the case of three such modes. As multilateral mode operation
is generally undesirable, we also investigate a bifurcation condition to quantify the
onset of multilateral behavior.

We take Maxwell’s equations as the starting point and add models for the po-
larization and current density. We assume that the whole device is maintained at
a constant ambient temperature and that the gain takes place at a single frequency
associated with the band gap of the active region. Each of the modes must satisfy
the periodicity condition λr = 2nL/qr, where n and qr are positive integers, λr is
the wavelength of the rth lateral mode, and L is the longitudinal cavity length. We
assume that each lasing mode is confined to the active layer, noting that in certain
devices, such as quantum well lasers, this is true of only a tenth of the lasing mode—
the analysis in this paper will not be valid in such circumstances. We are primarily
concerned with the steady-state behavior which is insensitive to spontaneous emis-
sion. Hence the contribution due to this process is omitted in the derivation of the
models below.

Based on the above assumptions, the mathematical model is summarized in sec-
tion 2. The problem is nondimensionalized in section 3, where the key small parame-
ters are identified. Section 4 deals with a multiple-scale asymptotic analysis, whereby
the governing equations are reduced to one parabolic partial differential equation and
twelve first-order wave equations. In section 5, further simplifications lead to a time-
dependent partially lumped model whose bifurcations are investigated. Numerical
solutions to the steady-state system are presented in section 6. We split the results
into two cases, prescribing a different lateral current density profile in each case, and
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compare the physical effects predicted by the model with experimental observations.
The final section briefly draws some conclusions.

2. Theoretical background. The model formulation in the active region will
now be outlined. We write down Maxwell’s equations for a semiconductor medium in
the form

∇·D = ρ,(1)

∇× E = −∂B

∂t
,(2)

∇·B = 0,(3)

∇× H =
∂D

∂t
+ J ,(4)

where E is the electric field, D is the electric displacement, H is the magnetic field,
B is the magnetic induction, J is the current density, ρ is the charge density, t is
time, and the differential operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z), where x, y, and z are
indicated in Figure 1. The constitutive equations are given by D = ε0E + P and
B = μ0H, where ε0 is the permittivity of free space, P is the polarization, and
μ0 is the permeability of free space. The speed of light in a vacuum is given by
c0 = 1/

√
ε0μ0.

We write the polarization as a sum,

(5) P = (ε− ε0)E + P (R),

where the permittivity ε is assumed to be independent of changes in the carrier con-
centration (and self-focusing is neglected as a result). The time-periodic component

P (R) represents resonant coupling, which occurs when the frequency of the electric
field closely matches a natural frequency of the semiconductor. As in [12] we adopt a
simple model for this resonant interaction,

(6)
∂2P (R)

∂t2
= − ∂

∂t
(εa(min(n, p) − nt)E),

where n and p are the electron and hole concentrations, respectively, εant represents
the absorption of photons, −εamin(n, p) is the stimulated gain, a is the linear gain
rate, and nt is the electron density at transparency (that is, the electron concentration
at which the stimulated gain and absorption balance). Equation (6) is consistent
with the corresponding constitutive equations adopted elsewhere (see [1]) and can be
regarded as an approximation to the more sophisticated theories of polarization (see,
for example, [3] and [10]).

The charge density and current density are split up as follows:

(7) ρ = e(N + p− n), J = Jn + Jp,

where e is the charge on an electron, N is the net impurity density in the active
region, and Jn and Jp are the components of the current density carried by electrons
and holes, respectively. If we let Dn and Dp represent the active region diffusivities
of electrons and holes, respectively, and use μn and μp to represent their respective
mobilities, then the components of the current density are written in the form (see [12])

(8) Jn = e (Dn∇n + μnnE), Jp = e (−Dp∇p + μppE).
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Defining k to be Boltzmann’s constant and T to be the temperature of the device
(assumed constant here), the Einstein relations between the diffusivities and mobilities
are Dn = UTμn and Dp = UTμp, where the thermal voltage is given by UT = kT/e.
The continuity equations for electrons and holes are derived by taking the divergence
of (4) and can be written in the form

(9) e
∂n

∂t
= e(G−R) + ∇·Jn, e

∂p

∂t
= e(G−R) −∇·Jp.

The net recombination rate of electron-hole pairs, R−G, is given by

R−G =
(np− n2

i )

Ap(n + ni) + An(p + ni)
+ B(np− n2

i )(10)

+ (Cnn + Cpp)(np− n2
i ) −

1

Eg
E · ∂P (R)

∂t
.

The terms on the right-hand side of (10) correspond respectively to Shockley–Read–
Hall recombination (with reciprocal rate constants An and Ap), radiative recombina-
tion (with rate constant B), Auger recombination (with rate constants Cn and Cp),
and recombination due to stimulated emission. We denote the intrinsic carrier density
by ni, while the constant Eg corresponds to the band-gap energy in the active region.
We assume that the laser operates at a single angular frequency ω = 2πEg/h, where
h represents Planck’s constant.

Equations (1)–(4) can be simplified by the introduction of scalar and vector po-
tentials. We satisfy (2) and (3) by writing E = −∇φ − ∂A/∂t and B = ∇× A in
which φ is the scalar potential and A is the vector potential. We specify A uniquely
via the gauge condition (see [14])

(11) ∇·A + μ0ε
∂φ

∂t
= 0

so that φ and A satisfy

∇2φ− μ0ε
∂2φ

∂t2
=

1

ε

(
∇·P (R) − e(N + p− n)

)
,(12)

∇2A − μ0ε
∂2A

∂t2
= −μ0

∂P (R)

∂t
− μ0J .

The mathematical model comprises (6), (9), and (11)–(12) along with appropriate
boundary conditions (see [12]).

3. The dimensionless mathematical model. In the nondimensionalization
which follows, the quantities φe and Ae (defined in [12]) represent typical magnitudes
of the scalar and vector potentials, respectively. We define ne to be a representative
value of the electron concentration (defined in [12]). Let w be the lateral width
of the active region, d be the transverse width of the active region, λ be a typical
wavelength of the lasing radiation, and τe = λ/c0 be the time-scale. We transform

to dimensionless variables via n = nen̂, p = nep̂, φ = φeφ̂, A = AeÂ, P (R) =

neλeδνP̂
(R)

, x = wx̂, y = dŷ, z = λẑ, and t = τet̂, where the dimensionless constants
δ and ν are defined in Table 1.

The model consists of continuity equations for the electron and hole densities n̂
and p̂, two second-order wave equations modeling the electric field components φ̂ and
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Table 1

Dimensionless parameters for a typical GaAs laser diode (note that some values are reliable,
while others are best estimates).

Symbol Definition Typical value

δ λ/L 4 × 10−3

ν L
√
εμ0/An 2 × 10−4

Ax λ/w 0.1
Ay λ/d 2

δ−1ν−1An An/τe 3 × 106

δ−1ν−1Ap Ap/τe 3 × 106

δνB Bneτe 6 × 10−7

δνCn Cnn2
eτe 4 × 10−7

δνCp Cpn2
eτe 4 × 10−7

δνDn Dnτe/λ2 3 × 10−8

δνDp Dpτe/λ2 2 × 10−9

εR 10
F Aeeλ/τeEg 2
νG ε0φe/eλ2ne 6 × 10−5

δνH aε0Ae/eλ 3 × 10−7

ν−1L neμ0eλ3/Aeτe 2 × 104

N ni/ne 3 × 10−11

n∗ nt/ne 0.4
N∗ N/ne 1 × 10−2

δνVn μnAe/λ 2 × 10−6

δνVp μpAe/λ 2 × 10−7

R(1), R(2) 0.3

Â, the gauge condition, and an equation for the polarization component P̂
(R)

:

∂n̂

∂t̂
= − δν(n̂p̂−N 2)

Ap(n̂ + N ) + An(p̂ + N )
− δνB(n̂p̂−N 2) − δν(Cnn̂ + Cpp̂)(n̂p̂−N 2)

− δνF ∂P̂
(R)

∂t̂
·
(
∇̂φ̂ +

∂Â

∂t̂

)
+ δν∇̂ ·

(
Dn∇̂n̂− n̂Vn

{
∇̂φ̂ +

∂Â

∂t̂

})
,

(13)

∂p̂

∂t̂
= − δν(n̂p̂−N 2)

Ap(n̂ + N ) + An(p̂ + N )
− δνB(n̂p̂−N 2) − δν(Cnn̂ + Cpp̂)(n̂p̂−N 2)

− δνF ∂P̂
(R)

∂t̂
·
(
∇̂φ̂ +

∂Â

∂t̂

)
+ δν∇̂ ·

(
Dp∇̂p̂ + p̂Vp

{
∇̂φ̂ +

∂Â

∂t̂

})
,

(14)

νεRG
(
∇̂2

φ̂− εR
∂2φ̂

∂t̂2

)
= δν∇̂·P̂ (R) − (N∗ + p̂− n̂),(15)

∇̂2
Â − εR

∂2Â

∂t̂2
= −δL

(
∂P̂

(R)

∂t̂
+ Dn∇̂n̂−Dp∇̂p̂− Vnn̂∇̂φ̂− Vpp̂∇̂φ̂

− Vnn̂
∂Â

∂t̂
− Vpp̂

∂Â

∂t̂

)
,

(16)

∇̂·Â + εR
∂φ̂

∂t̂
= 0,(17)

∂2P̂
(R)

∂t̂2
=

∂

∂t̂

(
εRĝ(n̂, p̂)

(
∇̂φ̂ +

∂Â

∂t̂

))
,(18)
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where the linear gain term in (18) is given by ĝ(n̂, p̂) = H(min(n̂, p̂) − n∗). We de-
fine Ax = λ/w and Ay = λ/d whereby ∇̂ = (Ax∂/∂x̂, Ay∂/∂ŷ, ∂/∂ẑ). The relative
permittivity, approximated by a constant in this weakly nonlinear analysis, is typi-
cally of O(1) and εR = ε/ε0 (see Table 1). The dimensionless constants δ−1ν−1An,
δ−1ν−1Ap, δνB, δνCn, δνCp, δνDn, δνDp, δνVn, δνVp, F , νG, δνH, ν−1L, N , n∗,
and N∗ are defined in Table 1; the constraints ν � δ � 1, N � 1, and N∗ � 1
typically hold in practice. The problem is regularly perturbed in N and N∗, and
thus the terms that are multiplied by these are henceforth neglected. The former is
the ratio of the intrinsic carrier density to a typical free carrier concentration. The
latter represents the (low) doping concentration in the active region relative to the
free carrier concentration. The problem is singularly perturbed in δ and ν. The first
of these, δ, corresponds to the ratio of wavelength to cavity length; the second, ν, is
the ratio of L/c to the time-scale on which the electron concentration varies (c is the
speed of an electromagnetic wave in the active region medium). In the next section
we will pursue a multiple-scale asymptotic analysis based around these key small pa-
rameters. Further discussion of the physical mechanisms and details that appear in
the derivation of (13)–(18) may be found in [12].

We now outline the boundary conditions that accompany equations (13)–(18). In
the following n̂ denotes the unit normal to the boundary of the lasing region. The
normal components of the electron and hole current densities are assumed to be zero
at the lateral boundaries, in which case

(19)

(
Dn∇̂n̂− Vnn̂

(
∇̂φ̂ +

∂Â

∂t̂

))
· n̂ = 0 at x̂ = 0, 1,

together with a similar expression for holes. We prescribe the normal components of
the electron and hole current densities at the transverse boundaries, that is,

(20)

(
Dn∇̂n̂− Vnn̂

(
∇̂φ̂ +

∂Â

∂t̂

))
· n̂ =

{
G1(x̂, ẑ, t̂) at ŷ = 0,

G2(x̂, ẑ, t̂) at ŷ = 1,

together with a similar expression for holes. At each mirror the normal fluxes of
electrons and holes, denoted by ∂n̂/∂ẑ and ∂p̂/∂ẑ, respectively, are assumed to be
zero. The tangential component of the electric field and the normal component of
the magnetic induction are assumed to be zero at the interfaces between lasing and
nonlasing regions, and so

n̂ ×
(
−∇̂φ̂− ∂Â

∂t̂

)
= 0 at x̂ = 0, 1 and at ŷ = 0, 1,(21)

(∇̂× Â) · n̂ = 0 at x̂ = 0, 1 and at ŷ = 0, 1.(22)

In the models derived below it is possible to employ boundary conditions at the mirrors
which approximate the reflected wave as a fraction of the incident wave (see (37)–(38));
this avoids the additional complication of modeling the transmitted electromagnetic
wave.

4. Asymptotic analysis.

4.1. Periodicity. We require an important assumption concerning the multilat-
eral mode case. The conjecture is that there exists an integer number of round trips
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on which the system is periodic (see section 1). Thus, when three lateral modes are
operating within the laser’s active region, we have

q1

(
2π

k̂1

)
= q2

(
2π

k̂2

)
= q3

(
2π

k̂3

)
,

where q1, q2, and q3 are positive integers, while k̂1, k̂2, and k̂3 are the dimensionless
wave numbers associated with the three modes. The corresponding dimensionless
wavelengths are given by λ̂r = 2π/k̂r, where λ̂r = λr/λ. We will use r to differentiate
between these lateral modes throughout the remainder of the paper.

4.2. Multiple scales. A multiple-scale asymptotic expansion is appropriate
since there are two relevant longitudinal length-scales in the laser. These are wave-
length (λ ∼ 10−6m) and cavity length (L ∼ 250 × 10−6m). There are three physical
time-scales to identify: the time-scale for carrier variations (∼ 10−8s), that for an
electromagnetic wave to traverse the longitudinal cavity length (∼ 10−12s), and the
reciprocal of the frequency (∼ 10−15s). We shall employ a total of seven indepen-
dent variables. Four of these describe space: the lateral length-scale x̂, the transverse
length-scale ŷ, the smaller axial length-scale ẑ, and the longer axial length-scale Z,
where Z = δẑ; the third variable corresponds to wavelength and the fourth to cavity
length. The other three variables describe time: the shortest time-scale t̂ = O(1),
corresponding to the time-scale for a wave to travel a wavelength; the intermediate
time-scale T = δt̂ = O(1), the time-scale for traversing the cavity; and the longest
time-scale τ = δνt̂ = O(1), that for carrier variations. At leading order the solution
will be periodic in t̂ with period 2π/ω̂ (ω̂ = ωτe is the (known) dimensionless angu-

lar frequency) and in T with period 2q2q3k̂1/ω̂. We note from Table 1 that ν � δ,
and so we introduce expansions of the form n̂ ∼ n0 + δn1 + νn2 + δ2n3 + δνn4,

p̂ ∼ p0 + δp1, Â ∼ A0 + δA1, P̂
(R) ∼ P0, and φ̂ ∼ φ0 + δφ1 as δ, ν → 0. We seek

solutions of the form φ0 = φ0(x̂, ŷ, ẑ, Z, τ) and φ1 = φ1(x̂, ŷ, ẑ, Z, T, τ) and consider
only the y-component of the lasing mode to be nonzero at leading order, the domi-
nance of the transverse electric mode being observed experimentally [16]. Hence we

write A0 = (0, A
(2)
0 , 0) and A1 = (0, A

(2)
1 , 0).

Evaluating (13)–(14) at O(1) and O(δ) implies that n0 = n0(x̂, ŷ, ẑ, Z, τ) and
p0 = p0(x̂, ŷ, ẑ, Z, τ) with n0 = p0 given, at leading order, by (15). Since periodicity
in t̂ requires ∫ 2π/ω̂

t̂=0

∂n4

∂t̂
dt̂ = 0,

from (13) we have

∂n0

∂τ
+

∂n2

∂T
= − n0

An + Ap
− Bn2

0 − (Cn + Cp)n3
0 + Dn∇̂

2
n0 − Vn∇̂·(n0∇̂φ0)

− εRFg(n0)
ω̂

2π

∫ 2π/ω̂

t̂=0

(
∂A

(2)
0

∂t̂

)2

dt̂,

where g(n0) = H(n0 − n∗) and we have assumed that ∂P0/∂t̂ is time-harmonic [12].
Periodicity in T demands that

∫ 2q2q3k̂1/ω̂

T=0

∂n2

∂T
dT = 0,
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and so we obtain

∂n0

∂τ
= − n0

An + Ap
− Bn2

0 − (Cn + Cp)n3
0 + Dn∇̂

2
n0 − Vn∇̂·(n0∇̂φ0)

− εRFg(n0)
ω̂2

4πq2q3k̂1

∫ 2q2q3k̂1/ω̂

T=0

∫ 2π/ω̂

t̂=0

(
∂A

(2)
0

∂t̂

)2

dt̂ dT.

(23)

A similar equation for ∂p0/∂τ is derived from (14). Subtracting this from (23) yields

∇̂·(n0∇̂φ0) =

(
Dn −Dp

Vn + Vp

)
∇̂2

n0,

which allows us to eliminate φ0 from (23):

∂n0

∂τ
= − n0

An + Ap
− Bn2

0 − (Cn + Cp)n3
0 +

DnVp + DpVn

Vn + Vp
∇̂2

n0

− εRFg(n0)
ω̂2

4πq2q3k̂1

∫ 2q2q3k̂1/ω̂

T=0

∫ 2π/ω̂

t̂=0

(
∂A

(2)
0

∂t̂

)2

dt̂ dT.

(24)

The first, second, third, and fifth terms on the right-hand side of (24) correspond to
the electron-hole recombination mechanisms described in (10). The local reduction of
electrons and holes due to spatial-hole burning (the integral term on the right-hand
side of (24)) thus competes with the smoothing action of diffusion (fourth term on the
right-hand side of (24)). The latter is the source of the current density term which
will be introduced in section 5.

The following leading-order problem for the electric field is posed by (16)–(17):

(25) �A
(2)
0 = 0,

where the d’Alembertian operator is defined by

� = εR
∂2

∂t̂2
−A2

x

∂2

∂x̂2
− ∂2

∂ẑ2
.

It follows from (21) that

(26) A
(2)
0 = 0 on x̂ = 0, 1.

We apply the method of separation of variables to (25)–(26). The solution is expressed
in the form of an infinite sum in which each term corresponds to a lateral mode
contained by the waveguide. For the remainder of this paper we consider three such
modes which are distinguished using r = 1, 2, 3; their respective lateral profiles are
sin(πx̂), sin(2πx̂), and sin(3πx̂). In this case

A
(2)
0 =

3∑
r=1

(
A+

r cos(ω̂t̂− k̂r ẑ) + B+
r sin(ω̂t̂− k̂r ẑ)

+ A−
r cos(ω̂t̂ + k̂r ẑ) + B−

r sin(ω̂t̂ + k̂r ẑ)

)
sin(rπx̂).

(27)
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The dispersion relation associated with (25) takes the form k̂2
r = ω̂2εR − (rπAx)2.

Evaluating (16)–(17) at O(δ) implies

�A
(2)
1 = 2

∂2A
(2)
0

∂ẑ∂Z
− 2εR

∂2A
(2)
0

∂t̂∂T
+ εRLg(n0)

∂A
(2)
0

∂t̂

+ L
(

(Dn −Dp)Ay
∂n0

∂ŷ
− (Vn + Vp)n0Ay

∂φ0

∂ŷ
− (Vn + Vp)n0

∂A
(2)
0

∂t̂

)
,

(28)

from which we deduce twelve secularity conditions governing the twelve unknown
amplitude envelopes A±

r (Z, T, τ) and B±
r (Z, T, τ). Each condition takes the form of

a first-order wave equation and can been verified using two different approaches. The
first technique involves applying the Fredholm alternative to (28), and the second
makes use of several trigonometric substitutions in order to directly eliminate the
secular terms. We present the equations for A+

1 , A+
2 , and A+

3 below; the equations
for B+

1 , B+
2 , and B+

3 are given in Appendix A. By symmetry in the direction of
propagation, the equations for A−

1 , A−
2 , A−

3 , B−
1 , B−

2 , and B−
3 may be derived from

(29)–(31) and (48)–(50) by replacing the quantities k̂r, A
+
r , B+

r , A−
r , and B−

r with

−k̂r, A
−
r , B−

r , A+
r , and B+

r , respectively. We have

2πq1

k̂1

(
εRω̂

∂A+
1

∂T
+ k̂1

∂A+
1

∂Z

)
= A+

1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
dẑ

+ B−
1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
sin

(
2k̂1ẑ

)
dẑ + A−

1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
cos

(
2k̂1ẑ

)
dẑ

+ B+
3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 − k̂3)ẑ

)
dẑ + A+

3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 − k̂3)ẑ

)
dẑ

+ B−
3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 + k̂3)ẑ

)
dẑ + A−

3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 + k̂3)ẑ

)
dẑ,

(29)

2πq2

k̂2

(
εRω̂

∂A+
2

∂T
+ k̂2

∂A+
2

∂Z

)
= A+

2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
dẑ

+ B−
2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
sin

(
2k̂2ẑ

)
dẑ + A−

2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
cos

(
2k̂2ẑ

)
dẑ,

(30)

2πq3

k̂3

(
εRω̂

∂A+
3

∂T
+ k̂3

∂A+
3

∂Z

)
= A+

3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
dẑ

+ B−
3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
sin

(
2k̂3ẑ

)
dẑ + A−

3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
cos

(
2k̂3ẑ

)
dẑ

−B+
1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 − k̂3)ẑ

)
dẑ + A+

1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 − k̂3)ẑ

)
dẑ

+ B−
1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 + k̂3)ẑ

)
dẑ + A−

1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 + k̂3)ẑ

)
dẑ,

(31)

where the integral coefficients are defined by
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α1 =

∫ 1

x̂=0

ω̂εRLg(n0) sin2(πx̂) dx̂, α2 =

∫ 1

x̂=0

ω̂L(Vn + Vp)n0 sin2(πx̂) dx̂,(32a)

β1 =

∫ 1

x̂=0

ω̂εRLg(n0) sin(πx̂) sin(3πx̂) dx̂, β2 =

∫ 1

x̂=0

ω̂L(Vn + Vp)n0 sin(πx̂) sin(3πx̂) dx̂,

(32b)

γ1 =

∫ 1

x̂=0

ω̂εRLg(n0) sin2(2πx̂) dx̂, γ2 =

∫ 1

x̂=0

ω̂L(Vn + Vp)n0 sin2(2πx̂) dx̂,(32c)

δ1 =

∫ 1

x̂=0

ω̂εRLg(n0) sin2(3πx̂) dx̂, δ2 =

∫ 1

x̂=0

ω̂L(Vn + Vp)n0 sin2(3πx̂) dx̂.(32d)

The emergence of terms coupling sin(πx̂) and sin(3πx̂) profiles provides evidence of
modal interaction. It has also been noted that no cross-coupling terms exist involv-
ing the sin(2πx̂) profile. This trend has been generalized to demonstrate that direct
interaction is limited to any pair of sin(roddπx̂) modes, these related by their sym-
metry about x̂ = 0.5, and any pair of sin(revenπx̂) modes, the latter related by their
antisymmetry about x̂ = 0.5. For each lateral mode, those waves traveling along Oẑ
in opposite directions also interact, this feature being described by the sin(2k̂r ẑ) and

cos(2k̂r ẑ) integral terms above. The integrals α1, β1, γ1, and δ1 are associated with
gain and absorption, while the integrals α2, β2, γ2, and δ2 describe the interaction be-
tween the electric field and charge carriers. We substitute (27) into (24) and evaluate
the integral in t̂ to obtain the second-order diffusion equation

∂n0

∂τ
= − n0

An + Ap
− Bn2

0 − (Cn + Cp)n3
0 +

DnVp + DpVn

Vn + Vp
∇̂2

n0

− εRFg(n0)
ω̂3

4q2q3k̂1

∫ 2q2q3k̂1/ω̂

T=0

(
3∑

i=1

3∑
j=1

Γij sin(iπx̂) sin(jπx̂)

)
dT,

(33)

where we have

Γij = cos
(
(k̂i − k̂j)ẑ

)(
A+

i A
+
j + B+

i B+
j + A−

i A
−
j + B−

i B−
j

)
+ cos

(
(k̂i + k̂j)ẑ

)(
A+

i A
−
j + B+

i B−
j + A−

i A
+
j + B−

i B+
j

)
+ sin

(
(k̂i − k̂j)ẑ

)(
A+

i B
+
j −B+

i A+
j −A−

i B
−
j + B−

i A−
j

)
+ sin

(
(k̂i + k̂j)ẑ

)(
A+

i B
−
j −B+

i A−
j −A−

i B
+
j + B−

i A+
j

)
.

Before examining a partially lumped model, we present the boundary conditions
and periodicity conditions that accompany (33) and the twelve secularity conditions
represented by (29)–(31) and (48)–(50). Using (19) we obtain

(34)
∂n0

∂x̂
(0, ŷ, ẑ, Z, τ) =

∂n0

∂x̂
(1, ŷ, ẑ, Z, τ) = 0.

The supply of current through the boundary of the lasing region is prescribed, where,
making use of (20), we have

(35)
∂n0

∂ŷ
=

{
g1(x̂, ẑ, Z, τ) at ŷ = 0,

g2(x̂, ẑ, Z, τ) at ŷ = 1.
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The x̂ dependence of functions g1 and g2 defines a lateral current density profile which
is illustrated in section 6 for two different cases. The assumption of zero normal fluxes
of electrons and holes at the mirrors gives

(36)
∂n0

∂ẑ
(x̂, ŷ, ẑ, 0, τ) =

∂n0

∂ẑ
(x̂, ŷ, ẑ, 1, τ) = 0.

As indicated in section 3, we shall approximate the imperfect mirrors in terms of the
reflectivities R(1) at Z = 0 and R(2) at Z = 1. The boundary conditions for the
amplitude envelopes are then given by(

A+
r (0, T, τ)

)2
= R(1)

(
A−

r (0, T, τ)
)2

,
(
B+

r (0, T, τ)
)2

= R(1)
(
B−

r (0, T, τ)
)2

,(37) (
A−

r (1, T, τ)
)2

= R(2)
(
A+

r (1, T, τ)
)2

,
(
B−

r (1, T, τ)
)2

= R(2)
(
B+

r (1, T, τ)
)2

.(38)

In addition to this the amplitude envelopes must be periodic in T such that
(39)

A±
r (Z, T, τ) = A±

r (Z, T + 2q2q3k̂1/ω̂, τ), B±
r (Z, T, τ) = B±

r (Z, T + 2q2q3k̂1/ω̂, τ).

In conclusion, the asymptotic analysis with three lateral modes has led to a system
of thirteen unknowns, comprising twelve amplitude envelopes together with the carrier
density.

5. Partially lumped model. Unlike the preceeding analysis, the partially
lumped model which follows requires ad hoc averaging procedures; nevertheless, it
retains lateral spatial-hole burning effects and the lateral diffusion of carriers and
provides a mathematical interpretation of some of the multilateral effects that are
observed in experiments.

5.1. Time-dependent equations. We take (33) and integrate with respect to
ŷ and ẑ, giving

Ĵy =
k̂1

2πq1

∫ 1

ŷ=0

∫ 2πq1/k̂1

ẑ=0

(
∂n0

∂τ
+

n0

An + Ap
+ Bn2

0 + (Cn + Cp)n3
0

−A2
x

DnVp + DpVn

Vn + Vp

∂2n0

∂x̂2

+
εRF ω̂3

4q2q3k̂1

∫ 2q2q3k̂1/ω̂

T=0

(
g(n0)

3∑
i=1

3∑
j=1

Γij sin(iπx̂) sin(jπx̂)

)
dT

)
dẑ dŷ.

(40)

The (known) current flowing through the transverse boundaries is represented by

Ĵy =
k̂1

2πq1

∫ 2πq1/k̂1

ẑ=0

[
A2

y

DnVp + DpVn

Vn + Vp

∂n0

∂ŷ

]ŷ=1

ŷ=0

dẑ

=
k̂1

2πq1

∫ 2πq1/k̂1

ẑ=0

A2
y

DnVp + DpVn

Vn + Vp

(
g2 − g1

)
dẑ

when we apply (35). We now expand n0 in a Fourier expansion for the physically
significant modes dependent on x̂, ŷ, and ẑ as follows:

n0 = N0(x̂, Z, τ) + N1(x̂, Z, τ) cos(k̂1ẑ) + N2(x̂, Z, τ) sin(k̂1ẑ) + N3(x̂, Z, τ) cos(k̂2ẑ)

+ N4(x̂, Z, τ) sin(k̂2ẑ) + N5(x̂, Z, τ) cos(k̂3ẑ) + N6(x̂, Z, τ) sin(k̂3ẑ) + . . . ,
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terms in ŷ not being listed here. We will satisfy the equations in an averaged sense,
effectively making the simplifying assumption that the electron concentration is in-
dependent of ŷ and ẑ. To achieve this aim, we truncate the Fourier series after one
term. Writing n0 = N0(x̂, Z, τ), we automatically satisfy condition (36) and obtain
the electron concentration rate equation,

∂N0

∂τ
= Ĵy −

N0

An + Ap
− BN2

0 − (Cn + Cp)N3
0 + A2

x

DnVp + DpVn

Vn + Vp

∂2N0

∂x̂2

− εRF ω̂H(N0 − n∗)

q2q3k̂1

∫ 2q2q3k̂1/ω̂

T=0

3∑
r=1

(
Î+
r + Î−r

)
sin2(rπx̂) dT,

(41)

where we define the forward (+) and backward (−) intensities of the lasing modes to
be

Î±r =
ω̂2

4

((
A±

r

)2
+
(
B±

r

)2)
.

The superscript + (−) denotes those waves traveling in the direction of increasing
(decreasing) ẑ. We introduce the definition of optical intensity in order to secure
unique solutions: conditions (37) and (38) do not permit us to calculate a unique
phase shift associated with the amplitude envelopes. Taking the secularity conditions,
we obtain the photon concentration rate equations

(42) εRω̂
∂Î±r
∂T

± k̂r
∂Î±r
∂Z

= 2Qr(Z, τ)Î±r ,

in which

Qr(Z, τ) = ω̂L(εRH− Vn − Vp)

∫ 1

x̂=0

N0(x̂, Z, τ) sin2(rπx̂) dx̂− 1

2
ω̂LεRHn∗.

The boundary conditions are ∂N0/∂x̂ = 0 at x̂ = 0 and x̂ = 1 along with Î+
r (0, T, τ) =

R(1)Î−r (0, T, τ) and Î−r (1, T, τ) = R(2)Î+
r (1, T, τ). The intensities must also satisfy

Î±r (Z, T, τ) = Î±r (Z, T + 2q2q3k̂1/ω̂, τ). The model has thus been simplified such
that N0 and Î±r are solutions to one partial differential equation and six first-order
wave equations. A dimensional form of this system, generalized for M lateral modes,
is presented in Appendix B. This partially lumped model is the generalization of
the traveling-wave rate equations [15] to incorporate the multilateral mode effects
in Maxwell’s equations. In the next subsection, we study the bifurcations associated
with (41)–(42) and use these to predict the onset of multilateral mode laser operation.

5.2. Bifurcation conditions. At steady state, (42) forms a system of six first-
order separable differential equations. These are solved subject to the boundary
conditions Î+

r (0) = R(1)Î−r (0) and Î−r (1) = R(2)Î+
r (1). As a consequence, we obtain

three integral conditions that correspond to each of the three lateral modes,

1

4
k̂r ln

(
R(1)R(2)

)
(43)

=
1

2
ω̂LεRHn∗ − ω̂L(εRH− Vn − Vp)

∫ 1

0

∫ 1

0

N0(x̂, Z) sin2(rπx̂) dx̂ dZ.
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Substituting the solutions for the forward and backward intensities into the steady-
state problem from (41) leaves us with the following nonlinear ordinary differential
equation to be solved numerically:

A2
x

DnVp + DpVn

Vn + Vp

∂2N0

∂x̂2
− N0

An + Ap
− BN2

0 − (Cn + Cp)N3
0 + Ĵy

=
1

2
εRω̂

2FH(N0 − n∗)
3∑

r=1

sin2(rπx̂)fr(Z),

(44)

in which the functions fr(Z) = 4
(
Î+
r (Z) + Î−r (Z)

)/
ω̂2 are written in the form

Cr

(
exp

{
2ω̂L(εRH− Vn − Vp)

k̂r

∫ Z

Z′=0

G(Z
′
) dZ

′ − ω̂LεRHn∗Z

k̂r

}

+

√
R(2)

R(1)
exp

{
2ω̂L(εRH− Vn − Vp)

k̂r

∫ 1

Z′=Z

G(Z
′
) dZ

′
+

ω̂LεRHn∗(Z − 1)

k̂r

})
,

where

G(Z
′
) =

∫ 1

x̂=0

N0(x̂, Z
′
) sin2(rπx̂) dx̂.

From (34) we have the no flux boundary conditions

(45)
∂N0

∂x̂
= 0 at x̂ = 0, 1.

The additional unknowns, Cr, are constants of integration that emerge when calculat-
ing the intensities and are determinable through solving the electrical-optical problem
(43)–(45) with prescribed current density Ĵy.

Experiments suggest that the fundamental mode reaches threshold first, since it
couples most effectively to the injected carrier distribution. The current is then in-
creased until the gain distribution begins to couple effectively to the next mode. At
such a threshold current the next mode begins to share power with the fundamen-
tal mode [6]. A series of bifurcation conditions arising from (43)–(45) describe this
phenomenon, allowing us to calculate the threshold current density at which each
mode begins lasing (note that the corresponding current is given by the integral of
the current density, Ĵy, over the area 0 ≤ Z ≤ 1, 0 ≤ x̂ ≤ 1):

(i) First threshold. For both forms of Ĵy considered below, we ascertain numer-
ically that the r = 1 lateral mode is activated first. At a current equal to the first
threshold there is zero leading-order intensity, that is, C1 = C2 = C3 = 0. The
unknown threshold current density Ĵy and threshold electron concentration N0 sat-
isfy (43) with r = 1 and (44)–(45). This constitutes the first bifurcation condition and
determines the threshold current at which the dominant (sin(πx̂)) mode is switched
on.

(ii) Next threshold. As the sin(πx̂) mode is already activated, we take C2 = C3 = 0
and include the unknown C1 in (44). Either the sin(2πx̂) mode or the sin(3πx̂) mode
may be switched on next, depending on which of the criteria below results in the
lowest threshold current:

(a) sin(2πx̂). The unknown threshold current density Ĵy, the threshold electron
concentration N0, and C1 satisfy (43) with r = 1 and r = 2 and (44)–(45).
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(b) sin(3πx̂). The unknown threshold current density Ĵy, the threshold electron
concentration N0, and C1 satisfy (43) with r = 1 and r = 3 and (44)–(45).

System (a) or (b) constitutes the second bifurcation condition. We thus have a
physical criterion for the onset of multilateral mode operation, a dimensional form
of which is presented in Appendix C. A final bifurcation condition, of the same ilk
as the two described above, determines the threshold current density at which the
remaining lateral mode begins lasing.

One consequence of this multimode formulation is a changing near-field lateral
intensity envelope. Experiments demonstrate that this evolution varies depending
on the form of the semiconductor laser and in particular on the lateral width of the
active region. For narrow lateral widths, the single peak that exists at the center of the
interval becomes far more pronounced with increased current [1, p. 66]. The 10–20μm
stripe lasers measured in [13, p. 377] have an associated near-field distribution which
broadens and then splits into two individual peaks as a new mode is activated. This
particular observation compares closely to the results obtained in the following section.
In broad-area semiconductor lasers a rippled profile has been observed, this being
interpreted as the superposition of several lateral mode profiles [9]. As the pumped
current increases, the near-field patterns exhibit a greater number of lobes, suggesting
that more and more lateral modes are being activated. This model, albeit dealing
with a relatively simple case, predicts this effect, enabling us to calculate the current
density at which each lateral mode becomes operational.

6. Numerical results.

6.1. Introduction. Solutions to the steady-state electrical-optical problem
(43)–(45) are split into two cases. The current density varies on the lateral length-
scale and is expressed in the form Ĵy = JAMPF (x̂) for 0 ≤ Z ≤ 1, where JAMP

and F (x̂) specify the current density amplitude and profile, respectively. We consider
applications A and B which deal with two different current density distributions (see
Figure 2), labeled FA(x̂) and FB(x̂), respectively. The latter case deals with a com-
paratively broader distribution. Varying F (x̂) is found to impact the order in which
the three lateral modes are activated. The closed problem (43)–(45) is solved using a
finite-difference scheme. All of the results presented below are based on the parameter
values given in Table 1.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 0.2 0.4 0.6 0.8 1
x̂

^
F

F = F

F = F

A

B

Fig. 2. Graph displaying the two current density distributions used with F (x̂) = FA(x̂) and
F (x̂) = FB(x̂) explored in cases A and B, respectively.

6.2. Case study A: F = FA(x̂). In this first case, the sin(rπx̂) lateral modes
are activated in the order r = 1, 2, 3 as the pumped current increases. The corre-
sponding threshold values of JAMP are t1 ∼ 26, t2 ∼ 34, and t3 ∼ 36, respectively.
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6.2.1. Stable and unstable steady states. In this section, a measure of the
power, Pr, attributed to each lateral mode is found by averaging the backward inten-
sity over the longitudinal length,

(46) Pr =

∫ 1

Z=0

Î−r (Z) dZ.

Time-independent numerical simulations determine a number of steady-state solu-
tions, not all of which are stable. To demonstrate this, we analyze the power-current
graphs belonging to the r = 1 and r = 2 lateral modes. In particular, there are tran-
scritical bifurcations at those JAMP values at which each lateral mode is switched
on (see Figure 3). Prior to the first current threshold, the stable steady state has
zero power (see branches A and D for 0 ≤ JAMP < t1 in Figure 3). At the first
threshold, a continuation of zero power remains a valid solution of the equations.
However, this solution is unstable following the activation of the sin(πx̂) mode. Thus,
for t1 < JAMP < t2, branches B and D represent the stable solution. An identical
situation arises when the second threshold current is encountered. Here the sin(2πx̂)
mode becomes operational. Beyond this point it is possible for the solution to continue
along branches B and D; however, at the second threshold this solution too becomes
unstable. A new stable solution exists due to the presence of the second lateral mode
(see branches C and E for JAMP > t2 in Figure 3). The drop in gradient about
JAMP = t2 in the top graph in Figure 3 symbolizes a reduction in the efficiency of
the sin(πx̂) mode due to the onset of competition for photons (see subsection 6.2.2).
These trends continue as the third, sin(3πx̂), mode is activated.

>

^

0

0.05

0.10

0.15

0.20

0.25

0.30

10 20 30 40

A

B

C

t t

P

JAMP

1

1 2
| |

>

^

0

0.02

0.04

0.06

0.08

10 20 30 40

D

E

t t

P

J

2

AMP

1 2
| |

Fig. 3. Power-current graphs for the r = 1 (top) and r = 2 (bottom) lateral modes. Solid and
dashed lines indicate the stable and unstable steady states, respectively. The displayed quantities are
dimensionless.

6.2.2. Competition for photons. Hence, using (46) we are able to track the
power associated with each of the three modes as the current density amplitude rises
beyond each calculated threshold (see Figure 4). At the second and third threshold
currents (corresponding to the broken vertical lines) there is a drop in gradient asso-
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Fig. 4. Graph showing the relationship between power and current with r = 1, 2, 3 representing
the sin(πx̂), sin(2πx̂), and sin(3πx̂) modes, respectively. The values plotted are dimensionless.

ciated with those modes already operating. This reduction in efficiency is caused by
the competition for photons and the subsequent sharing of the available gain.

6.2.3. Lateral spatial-hole burning and changing near-field patterns.
The lateral near-field intensity profile evolves following the activation of each mode,
due to the superposition of the three sin(rπx̂) curves. The former is defined by

(47) L2(x̂) =

(
3∑

r=1

√(
Î+
r (0) + Î−r (0)

)
sin(rπx̂)

)2

and has been plotted in Figure 5 for case A. As the current increases, there is a
shift in the peak of the optical distribution to one side, an effect observed in some
of the stripe lasers studied in [13, p. 377]. This case does not generate a multilobed
lateral near-field profile. Instead, the onset of the third (sin(3πx̂)) mode creates a
single ripple (top curve in Figure 5), this feature also appearing within the near-
field scans in [1, p. 66]. The lateral intensity of the sin(πx̂) mode produces the high
local rate of stimulated recombination at the center of the active region (bottom
curve in Figure 5). After a sufficient increase in current, this causes the curvature at
the peak of the carrier distribution to become inverted, forming a dip in the profile
[13, p. 380]. This is seen in Figure 6, where we have plotted the lateral variation
of N0 at Z = 0.5. Note that the evolution of the lateral carrier profile at higher
currents reflects a pattern of optical modes [8, p. 585], which is further illustrated
in case B. The phenomenon described here is known as spatial-hole burning and
takes place in the lateral direction in this particular problem. Note that longitudinal
spatial-hole burning properties have been neglected due to the omission from N0 of ẑ
dependence.

6.3. Case study B: F = FB(x̂). In this second case, the sequence of acti-
vation of the sin(rπx̂) modes is given by r = 1, 3, 2; the respective threshold current
density amplitudes are given by JAMP ∼ 9.5, 12.6, and 13.1. It follows that the
physical behavior differs as a result of this revised sequence (or lateral mode hop). In
particular, the near-field profile (L2(x̂)) develops a lobed effect that is similar to that
presented in [13, p. 377]. The distribution of light gradually focuses around two par-
ticular points along the active layer’s lateral length (see Figure 7). The spatial-hole
burning mechanism affects the lateral carrier profile quite dramatically, as indicated
in Figure 8, where N0 is plotted for Z = 0.5. At higher currents, a series of peaks
and troughs like that in Figure 8 is typical of broad-area semiconductor lasers (see,
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Fig. 5. Tracing the near-field lateral intensity profile with increasing current in case A. The
labels correspond to the values of JAMP taken in each computation. All values used are nondimen-
sional.
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density amplitude JAMP .
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Fig. 7. Tracing the near-field lateral intensity profile with increasing current in case B. Again
the labels correspond to the increasing JAMP . All values used are nondimensional.

for example, [13, pp. 380–381]). Note that the increased levels of stimulated gain,
which occur at the peaks in Figure 7, coincide with a local reduction in the electron
concentration. As the sin(3πx̂) lateral mode is activated, the electron concentration
can be seen to exhibit a cos(6πx̂) mode.

7. Conclusions. The models discussed in this paper have been employed to
simulate electrical-optical effects in the active region of a multilateral mode semicon-
ductor laser. The starting point was a system based on Maxwell’s equations together
with models for the polarization, charge density, and current density (which represent
a realistic semiconductor medium). A multiple-scale asymptotic expansion resulted
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Fig. 8. Lateral variation of the electron density at Z = 0.5 when one (JAMP ∼ 10), two
(JAMP ∼ 12.7), and then three (JAMP ∼ 13.2) modes are operating in case B.

in a leading-order problem in which the linear equations for the lasing mode can be
viewed as representing a waveguide. The infinite number of possible lateral mode
shapes in the waveguide has been truncated to the three most commonly observed in
experiments. At the next order, a set of twelve nonlinear secularity conditions model
the lasing mode envelopes. The original system has been reduced to twelve first-order
wave equations for the envelope of the lasing mode and one second-order diffusion
equation for the electron concentration.

Averaging over the transverse and short longitudinal length-scales led to the par-
tially lumped model, which consists of six first-order wave equations and one non-
linear (lateral) diffusion equation for the electron concentration. The traveling-wave
rate equations form a counterpart to the single lateral mode version of this partially
lumped model. However, in the existing literature, there are no counterparts to the
multilateral partially lumped model or criterion for the onset of multimode operation,
these representing the most important aspects of the current paper.

We conclude by noting that the simplified models provide a basis for the study
of broad-area lasers. Ongoing research incorporates a pair of two-dimensional heat
equations into the partially lumped model in order to simulate thermal hot-spots in
high-power lasers (see, for example, [4] and [5]).

Appendix A. Secularity conditions for amplitude envelopes B+
r (Z, T, τ ).

The first-order wave equations associated with B+
1 , B+

2 , and B+
3 are presented with

the integral terms α1, α2, β1, β2, γ1, γ2, δ1, and δ2 as defined in (32a)–(32d):

2πq1

k̂1

(
εRω̂

∂B+
1

∂T
+ k̂1

∂B+
1

∂Z

)
= B+

1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
dẑ

−A−
1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
sin

(
2k̂1ẑ

)
dẑ + B−

1

∫ 2πq1/k̂1

ẑ=0

(
α1 − α2

)
cos

(
2k̂1ẑ

)
dẑ

−A+
3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 − k̂3)ẑ

)
dẑ + B+

3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 − k̂3)ẑ

)
dẑ

−A−
3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 + k̂3)ẑ

)
dẑ + B−

3

∫ 2πq1/k̂1

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 + k̂3)ẑ

)
dẑ,

(48)
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2πq2

k̂2

(
εRω̂

∂B+
2

∂T
+ k̂2

∂B+
2

∂Z

)
= B+

2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
dẑ

−A−
2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
sin

(
2k̂2ẑ

)
dẑ + B−

2

∫ 2πq2/k̂2

ẑ=0

(
γ1 − γ2

)
cos

(
2k̂2ẑ

)
dẑ,

(49)

2πq3

k̂3

(
εRω̂

∂B+
3

∂T
+ k̂3

∂B+
3

∂Z

)
= B+

3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
dẑ

−A−
3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
sin

(
2k̂3ẑ

)
dẑ + B−

3

∫ 2πq3/k̂3

ẑ=0

(
δ1 − δ2

)
cos

(
2k̂3ẑ

)
dẑ

+ A+
1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 − k̂3)ẑ

)
dẑ + B+

1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 − k̂3)ẑ

)
dẑ

−A−
1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
sin

(
(k̂1 + k̂3)ẑ

)
dẑ + B−

1

∫ 2πq3/k̂3

ẑ=0

(
β1 − β2

)
cos

(
(k̂1 + k̂3)ẑ

)
dẑ.

(50)

Appendix B. Dimensional traveling-wave rate equations for multilat-
eral mode lasers. This appendix presents the traveling-wave rate equations for a
broad-area semiconductor laser with M lateral modes. Letting kr represent the di-
mensional wave number associated with the sin(rπx/w) lateral mode, the dimensional
dispersion relation is given by k2

r = ω2εμ0 − (rπ/w)2. The current density profile is
denoted by J(x) below. After transforming to dimensional variables in (41)–(42), we
arrive at the following diffusion equation for the electron concentration n(x, z, t):

∂n

∂t
=

J(x)

ed
− n

An + Ap
−Bn2 − (Cn + Cp)n

3 +

(
Dnμp + Dpμn

μn + μp

)
∂2n

∂x2

− 2a(n− nt)

M∑
r=1

(
I+
r + I−r

)
sin2

(rπx
w

)
.

(51)

We deduce that the optical intensities, I±r (z, t), satisfy

(52) εω
∂I±r
∂t

± kr
μ0

∂I±r
∂z

=

(
2ωe

w

(
εa

e
− μn − μp

)∫ w

0

n sin2
(rπx

w

)
dx− ωεant

)
I±r ,

where r = 1, 2, . . . ,M . The boundary conditions are I+
r (0, t) = R(1)I−r (0, t) and

I−r (L, t) = R(2)I+
r (L, t) along with ∂n/∂x = 0 at x = 0 and x = w.

Appendix C. A dimensional criterion for multimode operation. This
appendix presents a dimensional criterion that corresponds to the onset of multi-
mode laser operation. The fundamental mode, characterized by the lateral profile
sin(πx/w), is activated at the first threshold current. At the second threshold current
density amplitude, JP , the sin(pπx/w) lateral mode is switched on and multimode
lasing is established. Note that the particular mode to be activated next (where p ≥ 2)
depends upon the lateral current density profile, F̄ (x), and the bifurcation condition,
as seen in section 6. The bifurcation condition thus consists of (53)–(54) and (55) for
r = 1 and r = p, where we solve for the threshold electron concentration n(x, z), the
constant of integration C̄1 (this corresponding to the dominant mode), and JP . The
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dimensional ordinary differential equation for the threshold carrier density takes the
form

Dnμp + Dpμn

μn + μp

∂2n

∂x2
+ JP F̄ (x) =

n

An + Ap
+ Bn2 + (Cn + Cp)n

3

+ 2a(n− nt) sin2
(πx
w

)
f̄1(z),

(53)

where the sum of the forward and backward intensities of the sin(πx/w) lateral mode
is represented by

f̄1(z) = C̄1

(
exp

{
2ωμ0e

wk1

(
εa

e
− μn − μp

)∫ z

z′=0

Ḡ(z
′
) dz

′ − ωμ0εant

k1
z

}

+

√
R(2)

R(1)
exp

{
2ωμ0e

wk1

(
εa

e
− μn − μp

)∫ L

z′=z

Ḡ(z
′
) dz

′ − ωμ0εant

k1
(L− z)

})
,

in which

Ḡ(z
′
) =

∫ w

x=0

n(x, z
′
) sin2

(πx
w

)
dx.

We apply the no flux condition

(54)
∂n

∂x
= 0 at x = 0, w.

The criterion is completed by the following integral condition:

1

4
kr ln

(
R(1)R(2)

)

=
1

2
ωμ0εantL− ωμ0e

w

(
εa

e
− μn − μp

)∫ L

0

∫ w

0

n sin2
(rπx

w

)
dx dz.

(55)
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MULTIFREQUENCY TRANS-ADMITTANCE SCANNER:
MATHEMATICAL FRAMEWORK AND FEASIBILITY∗
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Abstract. A trans-admittance scanner (TAS) is a device for breast cancer diagnosis based on
numerous experimental findings that complex conductivities of breast tumors significantly differ
from those of surrounding normal tissues. In TAS, we apply a sinusoidal voltage between a hand-
held electrode and a scanning probe placed on the breast skin to make current travel through the
breast. The scanning probe has an array of electrodes at zero voltage. We measure exit currents
(Neumann data) through the electrodes that provide a map of trans-admittance data over the breast
surface. The inverse problem of TAS is to detect a suspicious abnormality underneath the breast skin
from the measured Neumann data. Previous anomaly detection methods used the difference between
the measured Neumann data and a reference Neumann data obtained beforehand in the absence of
anomaly. However, in practice, the reference data is not available and its computation is not possible
since the inhomogeneous complex conductivity of the normal breast is unknown. To deal with this
problem, we propose a frequency-difference TAS (fdTAS), in which a weighted frequency difference
of the trans-admittance data measured at a certain moment is used for anomaly detection. This
paper provides a mathematical framework and the feasibility of fdTAS by showing the relationship
between the anomaly information and the weighted frequency difference of the Neumann data.

Key words. breast cancer detection, electrical conductivity, T-Scan, anomaly estimation algo-
rithm

AMS subject classifications. 35R30, 34A45, 65N21, 78A30, 78A70

DOI. 10.1137/070683593

1. Introduction. A trans-admittance scanner (TAS) is a device for breast can-
cer diagnosis that is based on the consensus that complex conductivity values of breast
tumors significantly differ from those of surrounding normal tissues [4, 18, 22, 35, 37].
For example, T-Scan is a commercially available TAS system that has been suggested
for adjunctive clinical uses with X-ray mammography to decrease equivocal findings
and thereby reduce unnecessary biopsies [4]. In TAS, a patient holds a reference elec-
trode with one hand through which a sinusoidal voltage V0 sinωt is applied, while a
scanning probe at the ground potential is placed on the surface of the breast. The
voltage difference V0 sinωt produces electric current flowing through the breast re-
gion. See Figure 1. The resulting electric potential at a position x = (x1, x2, x3) and
time t can be expressed as the real part of u(x)eiωt, where the complex potential
u(x) is governed by the equation ∇ · ((σ + iωε)∇u(x)) = 0 in the subject, where σ
and ε denote the conductivity and permittivity, respectively. The scanning probe is
equipped with a planar array of electrodes, and we measure exit currents (Neumann
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(a) (b) (c)

Fig. 1. TAS setup. (a) Voltage is applied between the hand-held electrode and the planar array
of electrodes in the scan probe. Exit currents through the scan probe are measured to provide trans-
admittance data. (b) Picture of a scan probe and (c) its electrode array.

data) g = −(σ + iωε) ∂u
∂n which reflect electrical properties of tissues under the scan

probe. Here, ∂u
∂n is the normal derivative of u.

The inverse problem of TAS is to detect a suspicious abnormality in a breast
region underneath the probe from measured Neumann data g. All previous anomaly
detection methods utilize a difference g − g∗, where g∗ is a reference Neumann data
measured beforehand without any anomaly inside the breast region [1, 34]. This dif-
ference g − g∗ can be viewed as a kind of background subtraction so that it makes
the anomaly apparently visible. However, in practice, it is not available in most cases,
and calculating g∗ is not possible since the inhomogeneous complex conductivity of a
specific normal breast is unknown. In order for TAS to be more practical, we should
avoid using this background difference data g−g∗. Therefore, we propose a frequency
difference TAS method which uses a frequency difference of trans-admittance data
measured at a certain moment.

To be precise, let the human body occupy a three-dimensional domain Ω with
a smooth boundary ∂Ω. Let Γ and γ be portions of ∂Ω, denoting the probe plane
placed on the breast and the surface of the metallic reference electrode, respectively.
Through γ, we apply a sinusoidal voltage of V0 sinωt with its frequency f = ω/2π
in a range of 50 Hz to 500 kHz. Then the corresponding complex potential uω at ω
satisfies the following mixed boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · ((σ + iωε)∇uω(x)) = 0 in Ω,

uω(x) = 0, x ∈ Γ,

uω(x) = V0, x ∈ γ,

(σ + iωε)∇uω(x) · n(x) = 0, x ∈ ∂Ω \ (Γ ∪ γ),

(1)

where n is the unit outward normal vector to the boundary ∂Ω. Note that both
σ = σ(x, ω) and ε = ε(x, ω) depend on ω. The scan probe Γ consists of a planar array
of electrodes E1, . . . , Em, and we measure exit current gω(j) through each electrode Ej :

gω(j) := −
∫
Ej

(σ + iωε) ∇uω · n ds (j = 1, . . . ,m),

where ds is the area element.
In the frequency-difference TAS (fdTAS), we apply voltage with two different

frequencies f1 = ω1/2π and f2 = ω2/2π with 50 Hz ≤ f1 < f2 ≤ 500 kHz and
measure two sets of corresponding Neumann data gω1 and gω2 through Γ at the same
time. We assume that there exists a region of breast tumor D beneath the probe Γ so
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that σ + iωε changes abruptly across ∂D. (See Remark 2.1.) The inverse problem of
fdTAS is to detect the anomaly D beneath Γ from a difference between gω1 and gω2 .

In order for any detection algorithm to be practical, we must take into account
the following limitations:

(a) Since Ω differs for each subject, the algorithm should be robust against any
change in the geometry of Ω and also any change in the complex conductivity
distribution outside the breast region.

(b) The Neumann data gω is available only on a small surface Γ instead of the
whole surface ∂Ω.

(c) Since the inhomogeneous complex conductivity of the normal breast without
D is unknown, it is difficult to obtain the reference Neumann data g∗ω in the
absence of D.

These limitations are indispensable to a TAS model in practical situations, and these
are the reasons why we try to improve the previous techniques [1, 2, 3, 6, 7, 8, 9, 10,
11, 13, 17, 21, 24, 25, 26, 27, 28, 31, 34] by using frequency difference.

In the fdTAS model, we use a weighted frequency difference of Neumann data

gω2 −αgω1 instead of gω2 − gω1 . The weight constant α is approximately α ≈
∫
Γ
gω2ds∫

Γ
gω1ds

,

and the weight is a crucial factor in the anomaly detection. We should note that the
simple difference gω2 − gω1 may fail to extract the anomaly due to the complicated
structure of the solution of the complex conductivity equation. See Remark 3.3. In
Theorem 3.2, we explain how gω2 − αgω1

reflects a contrast in complex conductivity
values between the anomaly D and surrounding normal tissues. The approximate
representation formula is given in Remark 3.4.

Recently, we published a preliminary experimental validation study of fdTAS
in [32]. However, this previous work lacks a mathematical analysis of the method.
We therefore describe a rigorous mathematical framework of the fdTAS method in
this paper.

2. Mathematical model and the feasibility of fdTAS. We assume that σ
and ε are isotropic, positive, and piecewise smooth functions in Ω. Let uω be the
H1(Ω)-solution of (1). Denoting the real and imaginary parts of uω by vω = �uω and
hω = �uω, the mixed boundary value problem (1) can be expressed as the following
coupled system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ · (σ∇vω) −∇ · (ωε∇hω) = 0 in Ω,

∇ · (ωε∇vω) + ∇ · (σ∇hω) = 0 in Ω,

vω = 0 and hω = 0 on Γ,

vω = V0 and hω = 0 on γ,

n · ∇vω = 0 and n · ∇hω = 0 on∂Ω \ (Γ ∪ γ).

(2)

The measured Neumann data gω can be decomposed into

gω(x) := n · (−σ∇vω(x) + ωε∇hω(x))︸ ︷︷ ︸
real part

+ i n · (−σ∇hω(x) − ωε∇vω(x))︸ ︷︷ ︸
imaginary part

, x ∈ Γ.

The solution of the coupled system (2) is a kind of saddle point [5, 12], and we have
the following relations:

V0

∫
Γ

�(gω)ds = min
v∈Hre

max
h∈Him

∫
Ω

[
σ|∇v|2 − 2ωε∇v · ∇h− σ|∇h|2

]
dx(3)
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Fig. 2. (a) Simplified model of the breast region with a cancerous lesion D under the scan probe.
(b) Schematic of the scan probe in the (x1, x2)-plane.

and

V0

∫
Γ

�(gω)ds = min
v∈Hre

max
h∈Him

∫
Ω

[
ωε|∇v|2 + 2σ∇v · ∇h− ωε|∇h|2

]
dx,(4)

where Hre := {v ∈ H1(Ω) : v|Γ = 0, v|γ = V0,
∂v
∂n |∂Ω\(Γ∪γ) = 0} and Him := {h ∈

H1(Ω) : h|Γ∪γ = 0, ∂h
∂n |∂Ω\(Γ∪γ) = 0}.

In order to detect a lesion D underneath the scan probe Γ, we define a local region
of interest under the probe plane Γ as shown in Figure 2. For simplicity, we let x3 be
the axis normal to Γ and let the center of Γ be the origin. Hence, the probe region Γ
can be approximated as a two-dimensional region Γ = {(x1, x2, 0) :

√
x2

1 + x2
2 < L},

where L is the radius of the scan probe. We set the region of interest inside the breast
as a half ball ΩL = Ω∩BL shown in Figure 2, where BL is a ball with a radius L and
its center at the origin.

Remark 2.1. We summarize conductivity and permittivity values of normal and
tumor tissues in the breast. Both σ and ωε have a unit of S/m and σ + iωε = σ +
i2πfε0εr, where ε0 ≈ 8.854 × 10−12 [F/m] is the permittivity of the free space and
εr is a relative permittivity. Note that ωεn

σn
≤ 1

50 for a frequency f = ω/2π ≥50 kHz
[37].

f = ω/2π, [Hz] σn, [S/m] σc, [S/m] ωεn, [S/m] ωεc, [S/m]
≤ 500 0.03 0.2 � σn � σc

50×103 0.03 0.2 5.6 × 10−4 1.7 × 10−2

100×103 0.03 0.2 2.8 × 10−4 2.2 × 10−2

500×103 0.03 0.2 1.1 × 10−3 5.6 × 10−2

For a successful anomaly detection, we should carefully choose two frequencies ω1

and ω2. In our TAS system, we choose f1 = ω1/2π and f2 = ω2/2π such that

50 Hz ≤ f1 ≤ 500 Hz and 50 kHz ≤ f2 ≤ 500 kHz.(5)

We denote by u1 = v1 + ih1 and u2 = v2 + ih2 the complex potentials satisfying (2)
at ω1 and ω2, respectively, and let g1 = gω1

and g2 = gω2
. The fdTAS aims to detect

D from a weighted difference between g1 and g2.
Now, let us investigate the connection between u1 and u2 and whether the

frequency-difference Neumann data g2 − αg1 has any information of D. Since both
σ and ε depend on ω and x, σ(x, ω1) �= σ(x, ω2) and ε(x, ω1) �= ε(x, ω2). For simplicity,
we denote

σj(x) = σ(x, ωj) and εj(x) = ε(x, ωj), j = 1, 2.

There is a cancerous lesion D inside ΩL, and the complex conductivity σj + iωjεj
changes abruptly across ∂D as in the table in Remark 2.1. To distinguish them,
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we denote

σj =

{
σj,n in ΩL \D,

σj,c in D,
and εj =

{
εj,n in ΩL \D,

εj,c in D.
(6)

With the use of this notation, u1 and u2 satisfy⎧⎪⎨
⎪⎩

∇ · ((σ1 + iω1ε1)∇u1) = 0 in Ω,

u1|Γ = 0, u1|γ = V0,

(σ1 + iω1ε1)
∂u1

∂n |∂Ω\(Γ∪γ) = 0,

and

⎧⎪⎨
⎪⎩

∇ · ((σ2 + iω2ε2)∇u2) = 0 in Ω,

u2|Γ = 0, u2|γ = V0,

(σ2 + iω2ε2)
∂u2

∂n |∂Ω\(Γ∪γ) = 0.

(7)

Remark 2.2. Due to the complicated structure of (3) and (4) for the solution uω, it
is quite difficult to analyze the interrelation between the complex conductivity contrast
∇(σ + iωε) and the Neumann data gω. In [1], the authors briefly mentioned that the
multifrequency TAS method can be regarded as a straightforward extension of their
single-frequency TAS algorithm (Remark 2.3 in [1]). However, the simple frequency-
difference data g2 − g1 on Γ may fail to extract the anomaly for more general cases
of complex conductivity distributions in Ω due to the complicated structure of the
solution of (2). To be precise, the use of the weighted difference is essential when the
background comprises biological materials with nonnegligible frequency-dependent
complex conductivity values. To explain it clearly, consider a homogeneous complex
conductivity distribution in Ω where σ(x, ω)+iωε(x, ω) depends only on ω. Due to the
frequency dependency, the simple difference g2 − g1 is not zero, while g2 − αg1 = 0.
Hence, any reconstruction method using g2 − g1 always produces artifacts because
g2 − g1 does not eliminate modeling errors. See (26) for an approximation of g2 − g1

in the presence of an anomaly D.
Remark 2.3. In this work, we do not consider effects of contact impedances along

electrode-skin interfaces. For details about the contact impedance, please see [20,
36] and other publications cited therein. In TAS, we may adopt a skin preparation
procedure and electrode gels to reduce contact impedances. Since we cannot expect
complete removal of contact impedances, however, we need to investigate how exit
currents are affected by contact impedances of a planner array of electrodes that
are kept at the grounded potential. The contact impedance of each electrode leads
to a voltage drop across it, and therefore the voltage underneath the electrode-skin
interface layer would be slightly different than zero. In other words, when contact
impedances are not negligible, the surface area in contact with Γ cannot be regarded as
an equipotential surface anymore, and this will result in some changes in exit currents.
Future studies are needed to estimate how the contact impedance affects the weighted
difference of the Neumann data. We should also investigate experimental techniques,
including choice of frequencies, to minimize their effects.

The next observation explains why we should use a weighted difference g2 − αg1

instead of g2 − g1.
Observation 2.4. Denoting η := σ2+iω2ε2

σ1+iω1ε1
, it follows from a direct computation

that u2 − u1 satisfies⎧⎪⎨
⎪⎩

∇ · ((σ1 + iω1ε1)∇(u2 − u1)) = −(σ1 + iω1ε1)∇ log η · ∇u2 in Ω,

(u2 − u1)|Γ∪γ = 0,

(σ1 + iω1ε1)
∂(u2−u1)

∂n |∂Ω\(Γ∪γ) = 0.

(8)

For the detection of D, we use the following weighted difference:

g2 − αg1 = η (σ1 + iω1ε1) n · ∇(u2 − u1) on Γ,
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where α = η|Γ. If ∇ log η = 0 in (8), u1 = u2 in Ω and g2 − αg1 = 0 on Γ. In other
words, if ∇ log η = 0 in ΩL, it is impossible to detect D from g2 − αg1 = 0 regardless
of contrasts in σ and ε across ∂D. Any useful information on D could be found from
nonzero g2 − αg1 on Γ when |∇ log η| is large along ∂D.

For chosen frequencies ω1 and ω2, we can assume that σ and ε are approximately
constant in the normal breast region ΩL \ D and also in the cancerous region D.
Hence, if η changes abruptly across ∂D, we roughly have

∇ log η ≈ 0 in ΩL \ D̄ and |∇ log η| = ∞ on ∂D,

and therefore the term (σ1 + iω1ε1)∇ log η · ∇u2 in (8) is supported on ∂D in the
breast region ΩL. This explains that the difference g2 − αg1 on Γ can provide the
information of ∂D. Take note that the inner product ∇ log η ·∇u2 is to be interpreted
in a suitable distributional sense if the coefficients jump at ∂D.

3. Mathematical analysis for fdTAS.

3.1. Representation formula. Observation 2.4 in the previous section roughly
explains how D is related to g2 −αg1. In this section, the observation will be justified
rigorously in a simplified model. We assume that σj,n, σj,c, εj,n, and εj,c are constants.
According to the table in Remark 2.1, the change of the conductivity due to the change
of frequency is small, so we assume that

σ1,n = σ2,n := σn and σ1,c = σ2,c := σc.(9)

Since the breast region of interest is relatively small compared with the entire body Ω,
we may assume that Ω is the lower half space Ω = R

3
− := {x = (x1, x2, x3) | x3 < 0}

and γ = ∞.
Suppose that vj and hj are H1-solutions of the following coupled system for j =1

and 2: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · (σ∇vj) −∇ · (ωjεj∇hj) = 0 in Ω = R
3
−,

∇ · (ωjεj∇vj) + ∇ · (σ∇hj) = 0 in Ω = R
3
−,

vj = 1 and hj = 0 on Γ,

n · ∇vj = 0 and n · ∇hj = 0 on ∂Ω \ Γ.

(10)

Let uj = vj + ihj . Then V0(1 − uj) can be viewed as a solution of (7) with Ω = R
3
−

and γ = ∞.
Let us introduce a key representation formula explaining the relationship between

D and the weighted difference g2 − αg1. For each x ∈ R
3\Γ, we define

Ψ(x, y) = Φ(x, y) + Φ(x, y+) + ϕ(x, y),

where y+ = (y1, y2,−y3) is the reflection point of y with respect to the plane {y3 = 0}
and ϕ(x, ·) is the H1(R3\Γ)-solution of the following PDE:⎧⎪⎨

⎪⎩
Δyϕ(x, y) = 0, y ∈ R

3 \ Γ,

ϕ(x, y) = 1
2π|x−y| , y ∈ Γ,

ϕ(x, y) = 0 as |y| → ∞.

The following theorem explains an explicit relation between D and �(g2 − αg1).
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Theorem 3.1. The imaginary part of the weighted difference g2 − αg1 satisfies
the following formula:

1

2σn
�(g2 − αg1)(x) =

∫
D

∇y
∂Φ(x, y)

∂x3
· Θ(y)dy(11)

+
∂

∂x3

∫
∂Ω\Γ

∂Φ(x, y)

∂y3

[∫
D

∇zΨ(y, z) · Θ(z)dz

]
ds, x ∈ Γ,

where

Θ(y) =
σn − σc

σn
∇(h2 − h1)(y) +

ω2(ε2,n − ε2,c)

σn
∇(v2 − v1)(y) −�(β∇u1(y))

and

β =
i

1 + i
ω1ε1,n
σn

·
[
ω2ε2,n
σn

( ε2,c
ε2,n

− σc

σn

)
− ω1ε1,n

σn

( ε1,c
ε1,n

− σc

σn

)
− i

ω1ω2ε1,nε2,n
σ2
n

( ε1,c
ε1,n

− ε2,c
ε2,n

)]
.

Proof. Due to Green’s identity, (σn+ iω2ε2,n)(u2−u1) has integral representation:
for each x ∈ Ω,

(σn + iω2ε2,n)(u2 − u1)(x)

= (σn + iω2ε2,n)

∫
∂Ω\Γ

∂Φ(x, y)

∂n
(u2 − u1)(y)ds +

∫
Γ

Φ(x, y)(g2 − αg1)(y) ds(12)

+

∫
∂D

Φ(x, y)(σn + iω2ε2,n)

(
∂(u2 − u1)

∂n
|+ − ∂(u2 − u1)

∂n
|−
)

(y) ds.

Here, we denote
∂uj

∂n |± = n · ∇u±
j |∂D, where u+

j = uj |Ω\D̄ and u−
j = uj |D. From the

transmission condition,

(σn + iωjεj,n)
∂uj

∂n
|+ = (σc + iωjεj,c)

∂uj

∂n
|−, j = 1, 2 on ∂D.

It follows that

σn + iω2ε2,n
σn

∂(u2 − u1)

∂n
|+ =

σc + iω2ε2,c
σn

∂(u2 − u1)

∂n
|− + β

∂u1

∂n
|− on ∂D.(13)

Putting (13) into (12) and then applying − ∂
∂x3

to both sides of (12) yield for each
x ∈ Γ

1

2σn
�(g2 − αg1)(x) =

∫
D

∇y
∂Φ(x, y)

∂x3
·
[
σn − σc

σn
∇(h2 − h1)(14)

+
ω2(ε2,n − ε2,c)

σn
∇(v2 − v1) −�(β∇u1)

]
dy + Ξ(x),

where

Ξ(x) = − ∂

∂x3

∫
∂Ω\Γ

∂Φ(x, y)

∂y3

(
(h2 − h1)(y) +

ω2ε2,n
σn

(v2 − v1)(y)

)
ds.
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From the definition of Ψ(x, y), it is easy to see that Ψ(x, y) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�xΨ(x, y) = δ(x− y), x, y ∈ R
3
−,

Ψ(x, y) = 0, x ∈ Γ, y ∈ R
3
−,

∂Ψ(x,y)
∂x3

= 0, x ∈ ∂Ω \ Γ, y ∈ R
3
−,

Ψ(x, y) = 0 as |x− y| → ∞.

In order to relate Ξ(x) with D, we repeat the argument in (12) with Φ replaced by Ψ:

(h2 − h1)(y) +
ω2ε2,n
σn

(v2 − v1)(y) =
1

σn
�{(σn + iω2ε2,n)(u2 − u1)(y)}

= �
{∫

∂D

Ψ(y, z)
σn + iω2ε2,n

σn

(
∂(u2 − u1)

∂n
|+ − ∂(u2 − u1)

∂n
|−
)

(z) ds

}
, y ∈ ∂Ω \ Γ.

The above identity and the jump condition (13) lead to

(h2 − h1)(y) +
ω2ε2,n
σn

(v2 − v1)(y) = −
∫
D

∇zΨ(y, z) · Θ(z)dz, y ∈ ∂Ω \ Γ.

This completes the proof.
Now, let us derive a constructive formula extracting D from the representation

formula (11) under some reasonable assumptions. We assume that

D̄ ⊂ ΩL/2, D = Bδ(ξ), and δ ≤ dist(D,Γ) ≤ C1δ,(15)

where C1 is a positive constant, Bδ is a ball with the radius δ and the center ξ, and
δ
L ≤ 1

10 . Suppose we choose ω1

2π ≈ 50 Hz and ω2

2π ≈ 100 kHz. Then the experimental
data in Remark 2.1 shows

ω2ε2,n
σn

≈ 1
100 and

ω1ε1,n
σn

≤ 1
10000 . Hence, in practice,

we can view

ω1ε1,n
σn

≈ 0, (δ/L)3 ≈ 0,

(
ω2ε2,n
σn

)2

≈ 0.(16)

Based on the experimental data in Remark 2.1, we assume that

max

{
εj,n
εj,c

,
σn

σc

}
≤ κ1,

ω2ε2,n
σn

≤ κ2
σn

σc
,

σc

σn
≤ κ3,(17)

where κ1 and κ2 are positive constants less than 1
2 and κ3 is a positive constant less

than 10. Taking advantage of these, we can simplify the representation formula (11).
Theorem 3.2. Under the assumptions (15) and (17), the imaginary part of the

weighted frequency difference g2 − αg1 can be expressed as

1

2σn
� (g2 − αg1) (x) =

∫
D

∂

∂x3

(x− y) · Θ̃(y)

4π|x− y|3 dy + Error(x), x ∈ ΓL/2,(18)

where

Θ̃ =
σn − σc

σn
∇h2 −

ω2ε2,n
σn

( ε2,c
ε2,n

− σc

σn

)
∇v1
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and the error term Error(x) is estimated by

|Error(x)| ≤
[
ω2ε2,n
σn

P1

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣) δ3

L3

+

(
ω1ε1,n
σn

P1

(∣∣∣ ε1,c
ε1,n

− σc

σn

∣∣∣) +
(ω2ε2,n

σn

)2

P2

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣)) δ3

|x− ξ|3

]
.

Here, Pn(λ) is a polynomial function of order n such that Pn(0) = 0 and its coefficients
depend only on κj , j = 1, 2, 3.

Proof. From the transmission conditions of uω across ∂D, we have

∂hω

∂n

∣∣∣
+
− σc

σn

∂hω

∂n

∣∣∣
−

=
ωεn
σn

1 + (ωεn
σn

)2

( εc
εn

− σc

σn

)∂vω
∂n

∣∣∣
−

+
(ωεn

σn
)2

1 + (ωεn
σn

)2

( εc
εn

− σc

σn

)∂hω

∂n

∣∣∣
−
.

Since hω satisfies the mixed boundary condition with hω|Γ = 0 and ∂hω

∂n |∂Ω\Γ = 0, we
have the following estimate:∫

Ω

(
χΩ\D̄ +

σc

σn
χD

)
|∇hω|2 ≤ ωεn

σn

∣∣∣ εc
εn

− σc

σn

∣∣∣‖∇vω‖L2(D)‖∇hω‖L2(D)(19)

+
(ωεn
σn

)2∣∣∣ εc
εn

− σc

σn

∣∣∣‖∇hω‖2
L2(D).

This gives

‖∇hω‖L2(D) ≤
(
σc

σn
−
(ωεn
σn

)2∣∣∣ εc
εn

− σc

σn

∣∣∣)−1 (ωεn
σn

)∣∣∣ εc
εn

− σc

σn

∣∣∣‖∇vω‖L2(D).(20)

Since ‖∇vω‖L2(D) ≤ C
√
|D|, where C depends only on κ3, we obtain

‖∇hω‖L2(D) ≤
(ωεn
σn

)
P1

(∣∣∣ εc
εn

− σc

σn

∣∣∣)√|D|.(21)

We also use the jump condition for vω:

∂vω
∂n

∣∣∣
+
− σc

σn

∂vω
∂n

∣∣∣
−

=
(ωεn

σn
)2

1 + (ωεn
σn

)2

( εc
εn

− σc

σn

)∂vω
∂n

∣∣∣
−

+
ωεn
σn

1 + (ωεn
σn

)2

( σc

σn
− εc

εn

)∂hω

∂n

∣∣∣
−
.

Applying the same process as in (19), we obtain

‖∇vω −∇u0‖L2(D) ≤
(
ωεn
σn

)2

P2

(∣∣∣ εc
εn

− σc

σn

∣∣∣)√|D|,(22)

where u0 = uω with ω = 0. From (22), we get

‖∇v2 −∇v1‖L2(D) ≤ ‖∇v2 −∇u0‖L2(D) + ‖∇v1 −∇u0‖L2(D)

≤
((ω2ε2,n

σn

)2

P2

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣) +
(ω1ε1,n

σn

)2

P2

(∣∣∣ ε1,c
ε1,n

− σc

σn

∣∣∣))√
|D|.(23)

Hence, it follows from (20) and (23) that

‖Θ − Θ̃‖L2(D) ≤
(
ω1ε1,n
σn

P1

(∣∣∣ ε1,c
ε1,n

− σc

σn

∣∣∣) +
(ω2ε2,n

σn

)2

P2

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣))√
|D|.
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From the Schwarz inequality,∣∣∣∣
∫
D

∂

∂x3

(x− y)

4π|x− y|4 ·
(
Θ(y) − Θ̃(y)

)
dy

∣∣∣∣ ≤ C
√
|D|

|x− ξ|3 ‖Θ − Θ̃‖L2(D)

≤
(
ω1ε1,n
σn

P1

(∣∣∣ ε1,c
ε1,n

− σc

σn

∣∣∣) +
(ω2ε2,n

σn

)2

P2

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣)) δ3

|x− ξ|3 .

Now, it remains to study the last term in (11). Using the Schwarz inequality, it is easy
to see that ∣∣∣∣∣ ∂

∂x3

∫
∂Ω\Γ

∂Φ(x, y)

∂y3

∫
D

∇zΨ(y, z) · Θ(z)dz

∣∣∣∣∣ ≤ δ
3
2

L3
‖Θ‖L2(D).(24)

This completes the proof.
Remark 3.3. According to Theorem 3.2, (21), and (23),

1

2σn
� (g2 − αg1) = 0 when

∣∣∣ εj,c
εj,n

− σc

σn

∣∣∣ = 0, j = 1, 2.

Hence, even if ε2,c and ε1,c are quite different, we cannot extract any information of
D when | εj,cεj,n

− σc

σn
| = 0, j = 1, 2. On the other hand, even if ε2,c = ε1,c, we can extract

the information of D whenever | εj,cεj,n
− σc

σn
| �= 0, j = 1, 2.

Remark 3.4. Based on (18), we can derive the following simple approximate for-
mula for the reconstruction of D:

1

2σn
� (g2 − αg1) (x) ≈ ω2ε2,n

σn

(3σn)2

(2σn + σc)2

(
ε2,c
ε2,n

− σc

σn

)
∂x3U(ξ)(25)

×|D|2ξ
2
3 − (x1 − ξ1)

2 − (x2 − ξ2)
2

4π|x− ξ|5 , x ∈ ΓL/2,

where U is the solution of (10) in the absence of anomaly at ω = 0. Note that the
difference g2 − g1 can be approximated by

1

2σn
(g2 − g1) (x) ≈ i

ω2ε2,n
2σ2

n

g1(x) + i
ω2ε2,n
σn

(3σn)2

(2σn + σc)2

(
ε2,c
ε2,n

− σc

σn

)
∂x3U(ξ)(26)

× |D|2ξ
2
3 − (x1 − ξ1)

2 − (x2 − ξ2)
2

4π|x− ξ|5 , x ∈ ΓL/2,

and therefore any detection algorithm using the above approximation will be disturbed
by the term

ω2ε2,n
2σ2

n
g1.

We will prove the approximation (25) roughly. From [1], we have∣∣∣∇U(y) − ∂x3U(ξ)e3

∣∣∣ ≤ C
δ

L

√
|D|, y ∈ D,(27)

where e3 = (0, 0, 1). Now let V be the H1-solution of the following PDE:⎧⎪⎨
⎪⎩

ΔV = 0 in Ω \ ∂D,
σn

σc

∂V
∂n |+ − ∂V

∂n |− = −n · e3 on ∂D,

V |Γ = 0 and ∂V
∂n |∂Ω\Γ = 0.

(28)
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Using the same process as in (19) and (27), we obtain∥∥∥∇u0 −∇U(y) − ∂x3
U(ξ)

(σn

σc
− 1

)
∇V

∥∥∥
L2(D)

≤ C
δ

L

√
|D|,(29)

where C depends only on κ3. From (22), (27), and (29), we have∥∥∥∇vω − ∂x3U(ξ)
(
e3 +

(σn

σc
− 1

)
∇V

)∥∥∥
L2(D)

(30)

≤
((ωεn

σn

)2

P2

(∣∣∣ εc
εn

− σc

σn

∣∣∣) + C
δ

L

)√
|D|.

Applying the same process as in (19) and the identities (20) and (29), we obtain∥∥∥∇h2 −
ω2ε2,n
σn

σn

σc

( σc

σn
− ε2,c

ε2,n

)
∂x3

U(ξ)
(
1 +

(σn

σc
− 1

)
∂x3V (ξ)

)
∇V

∥∥∥
L2(D)

≤
(ω2ε2,n

σn

)
P1

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣)∥∥∥∇v2 − ∂x3
U(ξ)

(
e3 +

(σn

σc
− 1

)
∂x3

V (ξ)e3

)∥∥∥
L2(D)

.

From (30), we get∥∥∥∇h2 −
ω2ε2,n
σn

σn

σc

( σc

σn
− ε2,c

ε2,n

)
∂x3U(ξ)

(
e3 +

(σn

σc
− 1

)
∇V (ξ)

)
∇V

∥∥∥
L2(D)

(31)

≤
((ω2ε2,n

σn

)3

P3

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣) +
ω2ε2,n
σn

P1

(∣∣∣ ε2,c
ε2,n

− σc

σn

∣∣∣) δ

L

)√
|D|.

From [1], ∇V in D is approximated by

∇V |D ≈ σc

2σn + σc

(
1 − r3

16π|ξ3|3
)
e3 ≈ σc

2σn + σc
e3.(32)

The approximation (25) follows immediately from Theorem 3.2, (30), (31), and (32).
Remark 3.5. Our reconstruction algorithm is based on the approximation formula

(25). In practice, we may not have a priori knowledge of the background conductivities.
In that case, α is unknown. But α can be evaluated approximately by the ratio of the
measured Neumann data as follows:

α =

∫
Γ
gω2

ds∫
Γ
gω1ds

+

∫
D

((1 − α)σc + i(ω2ε2,c − αω1ε1,c))∇u2 · ∇u1dx∫
Ω
(σ + iω1ε1)|∇u1|2dx

.(33)

Hence, we may choose α ≈
∫
Γ
gω2

ds∫
Γ
gω1ds

.

We can prove the identity (33) for a bounded domain Ω. Using u1|γ = u2|γ = V0,
we have∫

Γ
(g2 − αg1)ds = −

∫
γ
(g2 − αg1) ds = − 1

V0

∫
γ
(g2u1 − αg1u1)ds

= − 1
V0

∫
∂Ω

(g2 − αg1)u1ds

= 1
V0

∫
Ω

((σ + iω1ε2)∇u2 − α(σ + iω1ε1)∇u1) · ∇u1dx

= 1
V0

∫
Ω

[
α(σ + iω1ε1) (∇u2 −∇u1) · ∇u1

+ ((1 − α)σ + i(ω2ε2 − αω1ε1))∇u2 · ∇u1

]
dx

= 1
V0

∫
D

((1 − α)σc + i(ω2ε2,c − αω1ε1,c))∇u2 · ∇u1dx.
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Fig. 3. Frequency-difference trans-admittance map: Real and imaginary parts of g2 − αg1 with
three different values of ω2ε2,c such that μ is (a) positive, (b) zero, and (c) negative. All the plots
are shown in the region [ 0.04, 0.08 ] × [ 0.04, 0.08 ] m3 by using the same scale of 10−4.

The identity (33) follows from the fact that

V0

∫
Γ

gω1ds =

∫
Ω

(σ + iω1ε1)|∇u1|2dx.

3.2. Numerical simulations. In fdTAS [32], we use a weighted frequency dif-
ference of Neumann data g2−αg1 instead of the simple difference g2−g1. Theorems 3.1
and 3.2 show that the weight α and the difference (

ε2,c
ε2,n

− σc

σn
) are important factors

in detecting anomaly D.
In order to test the observations in Theorem 3.2 and Remark 3.3, we consider

a cubic model Ω := [ 0, 0.12 ] × [ 0, 0.12 ] × [ 0, 0.12 ] m3 with the probe region Γ :=

{(x, y, 0.12) :
√
x2 + y2 < 0.03} and the reference electrode γ := {(x, y, z) ∈ Ω :

z = 0}. We assume that Ω \D and D are homogeneous with frequency-independent
conductivity values σn = 0.03 S/m and σc = 0.2 S/m. For permittivity values, we set
ω1ε1,n = ω1ε1,c = 0 and ω2ε2,n = 3× 10−4 S/m. Numerical simulations are performed
for a cube-shaped anomaly D centered at (0.06, 0.06, 0.12 − 0.009) in meters with its
side length of 0.006 m.

Figure 3 shows the images of g2 − αg1 with three different values of ω2ε2,c that
are chosen so that the corresponding μ = (

ε2,c
ε2,n

− σc

σn
) is positive, zero, or negative,

respectively. This setup allows us to observe that g2 − αg1 is influenced by μ and
there is an interesting relation between them. As we discussed in Remark 3.3, μ = 0
implies g2 − αg1 providing no information on D even if εc changes a lot with respect
to frequency. On the other hand, even if the permittivities εn and εc do not change
with frequency, we can extract information on the anomaly from g2 − αg1 as far as
μ �= 0.

Figure 4 shows the vector fields of complex potential ∇u2 corresponding to three
different values of ω2ε2,c as before. In the plots, solid lines are equipotential lines of
u2, and arrows indicate the direction and magnitude of electric field −∇u2. Figure 4
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Fig. 4. Equipotential lines and electric field streamlines in the slice {(0.06, y, z) : 0.04 < y <
0.08, 0.08 < z < 0.12}: Real and imaginary parts of the complex potential u2 with three different
values of ω2ε2,c as above. Imaginary part plots are individually scaled as (a) 10−5, (b) 10−9, (c) 10−5

and real part plots are shown by using the same scale.

illustrates that the electric field direction of the imaginary part changes as the sign
of μ changes. We believe that the nonzero vector field is due to computational errors
when μ = 0.
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[6] M. Brühl and M. Hanke, Numerical implementation of two non-iterative methods for locating

inclusions by impedance tomography, Inverse Problems, 16 (2000), pp. 1029–1042.
[7] K. Bryan, Numerical recovery of certain discontinuous electrical conductivities, Inverse Prob-

lems, 7 (1991), pp. 827–840.
[8] D. J. Cedio-Fengya, S. Moskow, and M. Vogelius, Identification of conductivity imperfec-

tions of small parameter by boundary measurements. Continuous dependence and compu-
tational reconstruction, Inverse Problems, 14 (1998), pp. 553–595.

[9] M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev.,
41 (1999), pp. 85–101.

[10] V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, Y. Kultiasov, M. Ochap-

kin, O. Trochanova, and J. Meister, Three-dimensional EIT imaging of breast tissues:
System design and clinical testing, IEEE Trans. Med. Imag., 21 (2002), pp. 662–667.

[11] V. Cherepenin, A. Karpov, A. Korjenevsky, V. Kornienko, A. Mazaletskaya, D. Ma-

zourov, and J. Meister, A 3D electrical impedance tomography (EIT) system for breast
cancer detection, Physiol. Meas., 22 (2001), pp. 9–18.



TAS 35

[12] A. V. Cherkaev and L. V. Gibiansky, Variational principles for complex conductivity, vis-
coelasticity, and similar problems in media with complex moduli, J. Math. Phys., 35 (1994),
pp. 127–145.

[13] M. H. Choi, T. J. Kao, D. Isaacson, G. J. Saulnier, and J. C. Newell, Simplified model of
a mammography geometry for breast cancer imaging with electrical impedance tomography,
in Proceedings of the 26th IEEE-EMBS Conference, San Francisco, CA, 2004, pp. 1310–
1313.

[14] R. D. Cook, G. J. Saulnier, D. G. Gisser, J. G. Goble, J. C. Newell, and D. Isaacson,
ACT3: A high-speed, high-precision electrical impedance tomography, IEEE Trans. Biomed.
Eng., 41 (1994), pp. 713–722.

[15] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press,
Princeton, NJ, 1976.

[16] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd ed.,
McGraw-Hill, New York, 2002.

[17] A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductiv-
ity by boundary measurements: A theorem on continuous dependence, Arch. Ration. Mech.
Anal., 105 (1989), pp. 299–326.

[18] A. Hartov, N. Soni, and R. Halter, Breast cancer screening with electrical impedance
tomography, in Electrical Impedance Tomography: Methods, History and Applications,
D. S. Holder, ed., IOP Publishing, Bristol, UK, 2005, pp. 167–185.

[19] R. P. Henderson and J. G. Webster, An impedance camera for spatially specific measure-
ments of the thorax, IEEE Trans. Biomed. Eng., 25 (1978), pp. 250–254.

[20] N. Hyvönen, Complete electrode model of electric impedance tomography: Approxima-
tion properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004),
pp. 902–931.

[21] M. Ikehata, On reconstruction in the inverse conductivity problem with one measurement,
Inverse Problems, 16 (2000), pp. 785–793.

[22] J. Jossinet and M. Schmitt, A review of parameters for the bioelectrical characterization of
breast tissue, in Electrical Bioimpedance Methods, Ann. New York Acad. Sci. 873, New
York Academy of the Sciences, New York, 1999, pp. 30–41.

[23] H. Kang and J. K. Seo, Layer potential technique for the inverse conductivity problem, Inverse
Problems, 12 (1996), pp. 267–278.

[24] T. Kao, J. C. Newell, G. J. Saulinier, and D. Isaacson, Distinguishability of inhomo-
geneities using planar electrode arrays and different patterns of applied excitation, Physiol.
Meas., 24 (2003), pp. 403–411.

[25] T. E. Kerner, K. D. Paulsen, A. Hartov, S. K. Soho, and S. P. Poplack, Electrical
impedance spectroscopy of the breast: Clinical imaging results in 26 subjects, IEEE Trans.
Med. Imag., 21 (2002), pp. 638–645.

[26] O. Kwon and J. K. Seo, Total size estimation and identification of multiple anomalies in the
inverse conductivity problem, Inverse Problems, 17 (2001), pp. 59–75.

[27] O. Kwon, J. K. Seo, and J. R. Yoon, A real-time algorithm for the location search of dis-
continuous conductivites with one measurement, Comm. Pure Appl. Math., 55 (2002),
pp. 1–29.

[28] O. Kwon, J. R. Yoon, J. K. Seo, E. J. Woo, and Y. G. Cho, Estimation of anomaly
location and size using electrical impedance tomography, IEEE Trans. Biomed. Eng., 50
(2003), pp. 89–96.

[29] J. L. Larson-Wiseman, Early Breast Cancer Detection Utilizing Clustered Electrode Arrays
in Impedance Imaging, Ph.D. Thesis, RPI, Troy, NY, 1998.

[30] N. Liu, G. J. Saulnier, J. C. Newell, D. Isaacson, and T. J. Kao, ACT4: A high-precision,
multi-frequency electrical impedance tomography, in Proceedings of the Conference on
Biomedical Applications of Electrical Impedance Tomography, University College London,
London, 2005.

[31] J. L. Mueller, D. Isaacson, and J. C. Newell, A reconstruction algorithm for electrical
impedance tomography data collected on rectangular electrode arrays, IEEE Trans. Biomed.
Eng., 46 (1999), pp. 1379–1386.

[32] T. I. Oh, J. Lee, J. K. Seo, S. W. Kim, and E. J. Woo, Feasibility of breast cancer le-
sion detection using multi-frequency trans-admittance scanner (TAS) with 10Hz to 500kHz
bandwidth, Physiol. Meas., 28 (2007), pp. S71–S84.

[33] B. Scholz, Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-
admittance data, IEEE Trans. Med. Imag., 21 (2002), pp. 588–595.



36 S. KIM, J. LEE, J. K. SEO, E. J. WOO, AND H. ZRIBI

[34] J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, Mathematical framework and anomaly esti-
mation algorithm for breast cancer detection: Electrical impedance technique using TS2000
configuration, IEEE Trans. Biomed. Eng., 51 (2004), pp. 1898–1906.

[35] J. E. Silva, J. P. Marques, and J. Jossinet, Classification of breast tissue by electrical
impedance spectroscopy, Med. Biol. Eng. Comput., 38 (2000), pp. 26–30.

[36] E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode models
for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), pp. 1023–1040.

[37] A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, Dielectric properties of breast
carcinoma and the surrounding tissues, IEEE Trans. Biomed. Eng., 35 (1988), pp. 257–263.

[38] A. J. Wilson, P. Milnes, A. R. Waterworth, R. H. Smallwood, and B. H. Brown, Mk3.5:
A modular, multi-frequency successor to the Mk3a EIS/EIT system, Physiol. Meas., 22
(2001), pp. 49–54.



SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 69, No. 1, pp. 37–63

ASYMPTOTIC AND NUMERICAL TECHNIQUES FOR
RESONANCES OF THIN PHOTONIC STRUCTURES∗

J. GOPALAKRISHNAN† , S. MOSKOW‡ , AND F. SANTOSA§

Abstract. We consider the problem of calculating resonance frequencies and radiative losses of
an optical resonator. The optical resonator is in the form of a thin membrane with variable dielectric
properties. This work provides two very different approaches for doing such calculations. The first is
an asymptotic method which exploits the small thickness and high index of the membrane. We derive
a limiting resonance problem as the thickness goes to zero, and for the case of a simple resonance,
find a first order correction. The limiting problem and the correction are in one less space dimension,
which can make the approach very efficient. Convergence estimates are proved for the asymptotics.
The second approach, based on the finite element method with a truncated perfectly matched layer, is
not restricted to thin structures. We demonstrate the use of these methods in numerical calculations
which further illustrate their differences. The asymptotic method finds resonance by solving a dense,
but small, nonlinear eigenvalue problem, whereas the finite element method yields a large but linear
and sparse generalized eigenvalue problem. Both methods reproduce a localized defect mode found
previously by finite difference time domain methods.

Key words. photonic band gap structure, time harmonic wave equation, thin membrane struc-
ture, resonance phenomena, nonlinear eigenvalue, asymptotic analysis, finite element method, FEM,
perfectly matched layer, PML, Lippman–Schwinger equation

AMS subject classifications. 65R20, 34E10, 78M10, 78M35

DOI. 10.1137/070701388

1. Introduction. This paper deals with the calculation of resonances of thin
high contrast dielectric structures. Specifically, we are motivated by recent devel-
opments in photonic band gap (PBG) devices. PBG materials are artificially created
structures having a refraction index which is spatially periodic, often on the nanoscale.
As the name suggests, electromagnetic waves of frequencies in a “band gap” cannot
propagate within PBG materials. These materials thus offer interesting possibilities
for radical manipulation of light through introduction of defects, hence the increasing
interest in them.

While the existence of band gaps has been definitively demonstrated for certain
infinite periodic structures, practical PBG devices are of finite extent. When a band
gap exists in a medium of infinite extent, it is possible to create a so-called defect mode,
which is a standing wave of frequency in the band gap, by introducing a localized
defect into the medium [6]. Such a mode corresponds to an eigenfunction of the
partial differential equation governing the system. However, when the medium is of
finite extent, such an eigenvalue no longer exists, but instead we may have a localized
resonance mode.
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A particularly interesting class of PBG structures are high index thin film devices
where light is confined to the film by total internal reflection, and the PBG effect
is achieved by drilling an array of air holes. Examples of such thin film devices can
be found in [5, 19, 20]. The present work is aimed at calculating resonances for such
structures. The dielectric properties of these structures are the restrictions of a peri-
odic function to a bounded thin region in R

3. Additionally they have a local “defect,”
i.e., a break in the periodic pattern. We want to identify resonance modes that are
localized near the defect region, if any.

To model such structures, we consider the simplest equation for time harmonic
wave propagation, namely, the Helmholtz equation

(1.1) Δu + k2ε(x)u = 0, x ∈ R
n,

where n = 2 or 3, and u and ε are functions of x in R
n. By an abuse in terminology

we will call ε(x) the dielectric constant. The geometry is captured by the variable
coefficient ε(x) which is set to unity in the background (air). The function ε(x) − 1
is assumed to have compact support. To find resonances, we must find a nontrivial
“radiating” mode u and a complex number λ ≡ k2 such that

(1.2) −Δu = λε(x)u in R
n.

When k is real, a mathematically precise form of the condition that u is “radiat-
ing” (or “outgoing”) is the well-known Sommerfeld radiation condition at infinity.
Writing (1.2) together with the Sommerfeld condition as Au = λBu, the resolvent
(A − λB)−1 is well defined for λ in the positive real axis, because the Sommerfeld
condition gives uniqueness of Helmholtz solutions. When k (or λ) is complex, one way
to make the “outgoing” condition precise is by analytic continuation from the posi-
tive real axis. For instance, for a slightly different scattering problem studied in [13],
the resolvent was proved to be a meromorphic function of λ and resonances were
characterized as its poles occurring in the lower half of the complex plane.

The resonance modes u satisfying equations like (1.2) are sometimes also known
as quasi-normal modes [12]. They are nonphysical and grow exponentially when k is
in the fourth quadrant. To give a physical interpretation of resonance, we must go to
the time domain and consider

ΔU − ε(x)Utt = 0, x ∈ R
n.

Resonance in this context is a time-dependent solution of the equation that resembles
a standing wave except for the amplitude decay. Such a solution, especially when
the decay is slow, is well captured by a superposition of quasi-normal modes with
eikt modulation [12]. Generally these slowly decaying resonance modes are computed
by using finite difference time domain (FDTD) methods, which are computationally
intensive. In this work we propose two other ways to calculate resonances.

For thin devices, we propose a direct approach based on the Lippman–Schwinger
reformulation. We assume a structure which fits into the following high contrast model,
namely, the dielectric occupies the region Ω× (−h/2, h/2). In three dimensions, Ω is a
bounded planar domain, while in two space dimensions, Ω is bounded domain on the
real line. Thus, in either case, Ω is of one space dimension less than n. Let x = (x, z)
for x ∈ R

2 and z ∈ R. We assume that

(1.3) ε(x, z) =

⎧⎨
⎩

ε0(x)

h
if |z| < h/2 and x ∈ Ω,

1 otherwise.
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Note that whenever we have a membrane whose dielectric properties vary negligibly
across its thickness h, we can satisfy this assumption by setting ε0 to hε. In [14],
we studied scattering by this type of structure and found a limiting (i.e., effective)
problem as h → 0, with a correction term that improved the approximation. In this
paper, we study the related resonance problem.

We define the resonant frequency k as a number in the complex plane for which
there is a nontrivial resonance mode u satisfying

(1.4) u(x, z) = λ

∫
Ω

∫ h/2

−h/2

(
1 − ε0(x

′)

h

)
Gλ(x, z, x′, z′)u(x′, z′) dz′dx′.

Here λ ≡ k2 (which we will call the resonance value) and G is the Helmholtz funda-
mental solution (in two or three dimensions). One can show by variational arguments
that such a λ must necessarily be in the lower half plane, and hence k must be in
the fourth quadrant. This integral equation is arrived at from (1.1) by the same stan-
dard manipulations used in deriving the Lippman–Schwinger equation for scattering
problems (see Theorem 8.3 of [4]). However, since λ has negative imaginary part, the
solutions to (1.4) are exponentially growing at infinity, and such manipulations are
only formal. Nevertheless this suggests that the definition of resonances using (1.4) is
equivalent to (1.2). As another way to see why this is the case [8], consider the operator

(Δ + k2ε)

for real k. One can then write the outgoing Green’s function to characterize the inverse
of this operator with Sommerfeld radiation conditions,

R(k) = (Δ + k2ε)−1.

If one continues this operator to negative complex k, the classical definition of reso-
nance is its poles. Now we can rewrite this operator as

R(k) = (Δ + k2 + k2(ε− 1))−1

=
[
(Δ + k2)(I + (Δ + k2)−1k2(ε− 1))

]−1

=
[
I + (Δ + k2)−1k2(ε− 1)

]−1
(Δ + k2)−1.

Since the term (Δ + k2)−1 is characterized by the free space Green’s function, it has
no poles. So, the poles of R(k) are exactly where

I + (Δ + k2)−1k2(ε− 1)

has a null space, i.e., where (1.4) has a solution. Note that our theoretical analysis
neither refers to nor deals with this equivalence. Indeed, our analysis takes (1.4) as
the definition of resonances and proceeds to examine how such resonance values vary
with h. Since G depends on λ, (1.4) is a nonlinear eigenvalue problem.

Another approach for numerical approximation of resonances is to directly ap-
proximate the eigenvalue problem in (1.1) with an outgoing boundary condition. A
standard technique to handle outgoing boundary conditions at infinity is by introduc-
ing a perfectly matched layer (PML) [1] away from all inhomogeneities and eventually
truncating the layer to obtain a finite computational domain. This suggests the use of
PML for computing resonances by solving a linear eigenvalue problem in a truncated
domain. We investigate this approach numerically, comparing the results with an exact
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solution as well as with approximations from the asymptotic approach. For the case
of thin structures we can use both approaches to validate one another. A significant
finding of this paper is that with both the asymptotic method and the PML calcula-
tions we can reproduce the high quality factor (low loss) resonance mode found in [5]
by FDTD methods.

The next section contains a derivation and analysis of an asymptotic approxima-
tion to resonance solutions of (1.4) with respect to the thickness parameter h. Within
this section, we prove convergence of the related operators, prove convergence of the
resonance values, and then finally derive a correction term for the resonances utilizing
an eigenvalue approximation theorem of Osborn [16]. Section 3 contains a numeri-
cal study of both asymptotic/nonlinear eigenvalue and PML approaches to find the
resonance solutions. In section 3.1, we find exact solutions for the resonances of a
disk and use them to analyze the convergence of PML solutions. In section 3.2 we
return to a thin, high contrast structure. We compute resonances with both PML and
asymptotics for the same problem and compare the results. In section 3.3 we study a
thin periodic structure with a defect from [5], which was previously found to exhibit
a localized low loss mode. The concluding section summarizes our results.

2. An asymptotic limit. In this section we develop an asymptotic approach to
the resonance approximation for these thin, high contrast structures. The resonance
problem is then formulated in terms of operator equations, and we prove operator con-
vergence, that is, we show that the operators depend continuously on the thickness
and frequency parameters. In the subsections that follow, we show that the reso-
nance values converge and prove an error estimate. In the case of a simple resonance
value, we introduce a correction term that increases the accuracy of the asymptotic
approximation.

Assume that we have a dielectric with geometry defined by (1.3). A resonance
value λh is a complex number for which there is a nontrivial function uh satisfying

(2.1) uh(x, z) = λh

∫
Ω

∫ h/2

−h/2

(
1 − ε0(x

′)

h

)
Gλh

(x, z, x′, z′)uh(x′, z′)dz′dx′,

where ε0 is assumed to be piecewise continuous and G is the Helmholtz fundamental
solution (in two or three dimensions) with complex λh = k2. That is, when n = 3,

Gλ(x, z, x′, z′) = − 1

4π

ei
√
λ
√

|x−x′|2+|z−z′|2√
|x− x′|2 + |z − z′|2

,

and when n = 2,

Gλ(x, z, x′, z′) = − i

4
H

(1)
0 (

√
λ
√

|x− x′|2 + |z − z′|2),

where H
(1)
0 is a Hankel function of the first kind. We note that we are taking the

branch of the square root in the complex plane for which the cut is on the negative
real axis, and hence there is analyticity away from this cut. With the scaling in the z
direction, z = hζ, let

ũh(x, ζ) = uh(x, z)

to obtain

(2.2) ũh(x, ζ) = λh

∫
Ω

∫ 1/2

−1/2

(h− ε0(x
′))Gλh

(x, hζ, x′, hζ ′)ũh(x′, ζ ′)dζ ′dx′.
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Now, if we let h → 0, this leads us to guess the limiting resonance problem: Find
nontrivial solutions (u0, λ0) to

(2.3) u0(x) = −λ0

∫
Ω

ε0(x
′)Gλ0

(x, 0, x′, 0)u0(x
′)dx′.

Although still a nonlinear eigenvalue problem, this has one dimension less than we
started with.

In order to analyze the validity of this asymptotic limit, it is useful to express
these problems in operator form. Let S be the scaled, fixed domain

S = Ω × [−1/2, 1/2].

Consider, for v ∈ L2(S), the operators Th(λ) and T0(λ), with complex parameter λ,
are defined by

Th(λ)v =

∫ 1/2

−1/2

∫
Ω

(h− ε0(x
′))Gλ(x, hζ, x′, hζ ′)v(x′, ζ ′)dx′dζ ′

and

T0(λ)v = −
∫ 1/2

−1/2

∫
Ω

ε0(x
′)Gλ(x, 0, x′, 0)v(x′, ζ ′)dx′dζ ′.

The operators Th(λ) and T0(λ) are both compact from L2(S) to L2(S) by the proof
of [14, Lemma 2]. (Unlike in that lemma, since here λ is not necessarily real, we are
not ensured the invertibility of (I − λTh(λ)) or (I − λT0(λ)), hence the presence of
resonance values.) We say that λh is a resonance value of Th if there exists nontrivial
uh ∈ L2(S) such that

uh = λhTh(λh)uh.

Similarly, λ0 is a resonance value of T0 if there exists nontrivial u0 such that

u0 = λ0T0(λ0)u0.

The operators Th, T0 are compact on C0(S) as well as L2(S), but here we will use
L2(S) for its Hilbert space structure. We use 〈, 〉 to denote the standard L2(S) inner
product over C:

〈u, v〉 :=

∫
S

uv,

where v is the complex conjugate of v.

2.1. Operator convergence. We first prove a lemma showing convergence of
the fundamental solutions when n = 3. The same result also holds for n = 2. This is
an extension of [14, Lemma 1] to complex λ. Here we also give the explicit dependence
of the constant on λ. Recall the definition of the scaled domain

S = Ω × (−1/2, 1/2).

Lemma 2.1. There exists a constant C independent of h, ζ ′, and λ, such that

sup
(x,ζ)∈S

∫
Ω

|Gλ(x, 0, x′, 0) −Gλ(x, hζ, x′, hζ ′)|dx′ ≤ Ch(1 + |
√
λ|)e|Im

√
λ|diam(Ωh).
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Proof. The difference of these fundamental solutions can be written as

G(x, hζ, x′, hζ ′) −G(x, 0, x′, 0)

=
1

4π

ei
√
λ|x−x′|

|x− x′| − 1

4π

ei
√
λ
√

|x−x′|2+h2|ζ−ζ′|2√
|x− x′|2 + h2|ζ − ζ ′|2

=
1

4π
ei

√
λ|x−x′|

[
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

]

+
1

4π

1√
|x− x′|2 + h2|ζ − ζ ′|2

[
ei

√
λ|x−x′| − ei

√
λ
√

|x−x′|2+h2|ζ−ζ′|2
]
.(2.4)

We first work on the second term on the right-hand side of (2.4). By a standard Taylor
expansion,

ei
√
λ
√

|x−x′|2+h2|ζ−ζ′|2 = ei
√
λ|x−x′| + i

√
λ
(√

|x− x′|2 + h2|ζ − ζ ′|2 − |x− x′|
)
ei

√
λξ

for some ξ between |x − x′| and
√
|x− x′|2 + h2|ζ − ζ ′|2. Since we know that for

(x, ζ) ∈ S, √
|x− x′|2 + h2|ζ − ζ ′|2 − |x− x′| ≤ h,

we obtain ∣∣∣ei√λ|x−x′| − ei
√
λ
√

|x−x′|2+h2|ζ−ζ′|2
∣∣∣ ≤ |

√
λ|he|Im

√
λ|ξ

≤ |
√
λ|he|Im

√
λ|diam(Ωh).(2.5)

Also,

1√
|x− x′|2 + h2|ζ − ζ ′|2

≤ 1

|x− x′| ,

which is integrable with respect to x′ on Ω, and we have that∫
Ω

dx′√
|x− x′|2 + h2|ζ − ζ ′|2

is bounded independently of h, ζ ′, λ, and (x, z) ∈ S. This along with (2.5) gives that
we can choose C independent of h, ζ ′ and (x, ζ) ∈ S such that

(2.6)

∫
Ω

1

4π

|ei
√
λ|x−x′| − ei

√
λ
√

|x−x′|2+h2|ζ−ζ′|2 |√
|x− x′|2 + h2|ζ − ζ ′|2

dx′ ≤ Ch|
√
λ|e|Im

√
λ|diam(Ωh).

The integral of the first term on the right-hand side of (2.4) can be bounded,

∫
Ω

∣∣∣∣∣ 1

4π
ei

√
λ|x−x′|

[
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

]∣∣∣∣∣ dx′

≤ 1

4π
e|Im

√
λ|diam(Ωh)

∫
Ω

∣∣∣∣∣ 1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

∣∣∣∣∣ dx′

=
1

4π
e|Im

√
λ|diam(Ωh)

∫
Ω

(
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

)
dx′,
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since the integrand is nonnegative. Now choose R large enough so that if BR(x) is the
ball of radius R centered at x in R

2,

Ω ⊂ BR(x)

for all x ∈ Ω. Then the integral over Ω above is bounded by

≤
∫
BR(x)

(
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

)
dx′.

Change to polar coordinates centered at x with

r = |x− x′|.

The integral transforms to

= 2π

∫ R

0

(
1

r
− 1√

r2 + h2|ζ − ζ ′|2

)

= 2π
[
R−

√
R2 + h2|ζ − ζ ′|2 + h|ζ − ζ ′|

]
by direct calculation. One can see clearly that this quantity is then O(h), where the
constant is independent of (x, ζ) ∈ S, λ, and ζ ′ ∈ (−1/2, 1/2). This, combined with
(2.4) and the estimate (2.6), proves the lemma.

Next we show that the operators depend continuously on the parameters h and λ.
Proposition 2.1. Assume we have a sequence of pairs {hj , λj}, where hj ∈ R,

the λj are in the complex plane with the negative real axis and the origin removed,
i.e., λj ∈ C \ {R

− ∪ {0}}, and for which λj → λ0 for some λ0 ∈ C \ {R
− ∪ {0}}, and

hj → 0 as j → ∞. Then

Thj (λj) → T0(λ0)

in the operator norm on L2(S) as j → ∞. Furthermore, for j large enough there
exists C independent of j such that

‖Thj (λj) − T0(λ0)‖ ≤ C (hj + |λj − λ0|) .

Proof. Consider, for v ∈ L2(S),(
Thj

(λj) − T0(λ0)
)
v =

(
Thj

(λj) − T0(λj)
)
v + (T0(λj) − T0(λ0)) v.

We will expand out the second term on the right-hand side:

(T0(λj) − T0(λ0)) v =

∫ 1/2

−1/2

∫
Ω

ε0(x
′)(Gλ0(x, 0, x

′, 0) −Gλj (x, 0, x
′, 0))v(x′, ζ ′)dx′dζ ′.

We can use the mean value theorem; for |x− x′| = 0,

Gλj (x, 0, x
′, 0) −Gλ0(x, 0, x

′, 0) =
1

4π

ei
√
λ0|x−x′|

|x− x′| − 1

4π

ei
√

λj |x−x′|

|x− x′|

= (λ0 − λj)
i

8π
√
η
ei

√
η|x−x′|
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for some η on the line in C joining λ0 and λj . So, since λ0 is bounded away from the
negative real axis, for large enough j we have

‖Gλ0
(x, 0, x′, 0) −Gλj

(x, 0, x′, 0)‖∞ ≤ C|λ0 − λj |

for some C independent of j. From this we easily obtain

(2.7) ‖ (T0(λj) − T0(λ0)) v‖L2(S) ≤ C|λ0 − λj |‖v‖L2(S).

Now, for the other term,

(2.8) (Thj
(λj) − T0(λj))v = hj

∫
S

Gλj
(x, hjζ, x

′, hjζ
′)v(x′, ζ ′)dx′dζ ′

−
∫
S

ε0(x
′)
[
Gλj (x, hjζ, x

′, hjζ
′) −Gλj (x, 0, x

′, 0)
]
v(x′ζ ′)dx′dζ ′.

Now, since Gλj is a kernel which is bounded in L1 independently of h, it follows from
the generalized Young inequality [7] that the function

w(x, ζ) =

∫
S

Gλj
(x, hjζ, x

′, hjζ
′)v(x′, ζ ′)dx′dζ ′

satisfies

‖w‖L2(S) ≤ C‖v‖L2(S),

which shows that the first term in (2.8) is O(hj). For the second term, we appeal to
Lemma 2.1, which tells us that the kernel difference can be bounded:

‖Gλj
(x, hjζ, x

′, hjζ
′) −Gλj (x, 0, x

′, 0)‖L1(S) ≤ Chj ,

where C is independent of j. Since ε0 is bounded in L∞, again using the generalized
Young and triangle inequalities in (2.8), we obtain

‖(Thj (λj) − T0(λj))v‖L2(S) ≤ Chj‖v‖L2(S).

Combining this with (2.7), the result follows.

2.2. Convergence of the resonance values. Define the modified resolvent
type operator-valued functions on C

Rh(λ) = (I − λTh(λ))−1

and

R0(λ) = (I − λT0(λ))−1.

An important note is that if Rh(λ) does not exist as a bounded linear operator from
L2(S) to itself, then λ is a resonance value of Th. This is because if Rh(λ) does not
exist, then 1/λ is in the spectrum of the compact operator Th(λ). Hence 1/λ must
be an eigenvalue, and (I −λTh(λ)) must have a nontrivial and finite-dimensional null
space. The same holds for the limiting operator R0(λ).

In the following theorem, we show that, with an assumption of nonzero residue,
the resonance values converge.
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Theorem 2.2. Assume that λ0 is a resonance value of T0, and that R0 and Rh

are meromorphic in some region of C containing λ0. Assume also that R0 has nonzero
residue at λ0. Then for any ball B around λ0, there exists h0 > 0 such that Th has a
resonance in B for all h < h0. Conversely, if {λh} is a sequence of resonance values
of Th that converges as h → 0, the limit is a resonance value of T0.

Proof. We first note that we know from [14] that λ0 /∈ R. So, we can choose B, a
ball around λ0 which does not intersect the negative real axis R

−, and such that T0

has no other resonance values in B.
We will also use a well-known result about the inverses of perturbed operators

(see, for example, [10, p. 31]): If S − T = A and T−1 exists, then for ‖A‖ < 1
‖T−1‖ ,

S−1 exists and

(2.9) ‖S−1 − T−1‖ ≤ ‖A‖‖T−1‖2

1 − ‖A‖‖T−1‖ .

Apply this, with

S = I − λTh(λ),

T = I − λT0(λ),

to get

‖Rh(λ) −R0(λ)‖ ≤ ‖λ(T0(λ) − Th(λ))‖‖R0(λ)‖2

1 − ‖λ(T0(λ) − Th(λ))‖‖R0(λ)‖ ,

which, from Proposition 2.1, yields

(2.10) ‖Rh(λ) −R0(λ)‖ ≤ Ch‖R0(λ)‖2

1 − Ch‖R0(λ)‖

for C independent of h, for h small enough. The constant C does in general depend
on λ, but for λ on a compact subset of C bounded away from the real line, C can be
chosen independent of λ.

Let Γ = ∂B, positively oriented. By the choice of B, Γ does not intersect with
R

−, and λ0 is the only pole of R0 in the closed disk. Then R0(λ) is continuous with
respect to λ on Γ, and hence ‖R0(λ)‖ is uniformly bounded for λ on Γ. Using (2.10),
we have that

Rh(λ) → R0(λ)

in norm as h → 0, uniformly for λ ∈ Γ. This implies that the operator-valued integral

1

2πi

∫
Γ

Rh(λ)dλ → 1

2πi

∫
Γ

R0(λ)dλ

in norm as h → 0. From the residue theorem, the integral

1

2πi

∫
Γ

R0(λ)dλ

gives us the coefficient of the (λ − λ0)
−1 term in the Laurent series expansion for

R0(λ), which by assumption is nonzero. Hence the integrals must all be nonzero for
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h small enough. This means that all Rh must have at least one pole in B for h small
enough. That is, for h small enough, all Th have a resonance value in B. This proves
the first part of the statement of the proposition. For the converse, if λ0 is not a
resonance value of T0, then R0(λ) exists in some neighborhood of λ0. The formula
(2.10) implies that Rh(λ) also exists in that neighborhood for h small enough. Hence
the resonance values of Th are bounded away from λ0 for h small enough.

Some remarks about the assumptions in this theorem:
• The operator functions I − λTh(λ) and I − λT0(λ) are analytic with respect

to λ away from the negative real axis. This, combined with the fact that the
T ’s are compact, means that the inverses are meromorphic.

• If λ0 is a resonance of T0, then the classical resolvent of T0(λ0), given by
(zI − T0(λ0))

−1, automatically has nonzero residue at z = 1
λ0

; its residue is
the projection onto the generalized eigenspace [10]. It is not clear how the
residue of R0 relates to the nonlinear eigenspace. However, if λ0 is a simple
pole, this is a special case of nonzero residue.

• We do not need the assumption about nonzero residue for the converse.

2.3. A higher order correction. Once we know that we have a convergent
sequence of resonance values as h → 0, we can use standard eigenvalue perturbation
theorems. In the resonance value expansion, we employ a result of Osborn [16] which
is valid for nonself-adjoint operators and also yields a correction term. The actual
result in [16] is more general, but we state it here for the case of norm convergence
on a Hilbert space.

Suppose X is a Hilbert space and Tn : X → X is a sequence of compact linear
operators such that Tn → T in norm. It then follows that the adjoint operators also
converge in norm. Let μ be a nonzero eigenvalue of T of algebraic multiplicity m.
It is well known that for n large enough there exist m eigenvalues of Tn, μn

1 , . . . , μ
n
m

(counted according to algebraic multiplicity) such that μn
j → μ as n → ∞ for each

1 ≤ j ≤ m.
Let E be the spectral projection onto the generalized eigenspace of T correspond-

ing to eigenvalue μ. The space X can be decomposed in terms of the range and null
space of E: X = R(E) ⊕N(E).

Theorem 2.3 (Osborn). Let φ1, φ2, . . . , φm be a normalized basis for R(E). Then
there exists a constant C such that∣∣∣∣∣∣μ− 1

m

m∑
j=1

μn
j − 1

m

m∑
j=1

〈(T − Tn)φj , φj〉

∣∣∣∣∣∣ ≤ C‖(T − Tn)|R(E)‖ · ‖(T ∗ − T ∗
n)|R(E∗)‖.

To simplify the statement of the following theorem, we define the lower-dimen-
sional operator DT0(λ) by

(2.11) DT0(λ)v = −
∫

Ω

ε0(x
′)
∂G

∂λ
(x, 0, x′, 0)v(x′)dx′,

and we leave off the subscripts j for the sequence {hj} of values of h going to zero.
Theorem 2.4. Assume we have a sequence {λh} ∈ C of resonance values of Th

for which λh → λ0 as h → 0, where λ0 ∈ C is a simple resonance value of T0 with
normalized resonance function u0 satisfying λ0T0(λ0)u0 = u0. Assume also that

(2.12) λ2
0〈DT0(λ0)u0, u0〉 = −1.
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Then there exists C independent of h such that

|λh − λ0| ≤ Ch,

and furthermore

(2.13) λh = λ0 + λ2
0

〈(T0(λ0) − Th(λ0))u0, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+ O(h2).

Proof. Note that

λhTh(λh)uh = uh

and

λ0T0(λ0)u0 = u0;

that is, 1
λh

is an eigenvalue of Th(λh) and 1
λ0

is an eigenvalue of T0(λ0). Also, from
Proposition 2.1, we know that

Th(λh) → T0(λ0)

in the operator norm. So, what we have are the eigenvalues of a convergent sequence
of compact operators. These operators, {Th(λh), T0(λ0)}, are not self-adjoint, but it
follows from the norm convergence that the adjoints also converge:

T ∗
h (λh) → T ∗

0 (λ0)

in the operator norm, with the same norm error. Since we assume that 1
λ0

is a simple
eigenvalue of T0(λ0), Theorem 2.3 yields∣∣∣∣ 1

λ0
− 1

λh
− 〈(T0(λ0) − Th(λh))u0, u0〉

∣∣∣∣
≤ ‖(T0(λ0) − Th(λh))u0‖ · ‖(T ∗

0 (λ0) − T ∗
h (λh))u0‖.(2.14)

Since

‖T ∗
0 (λ0) − T ∗

h (λh)‖ = ‖T0(λ0) − Th(λh)‖,

we have from Proposition 2.1∣∣∣∣ 1

λ0
− 1

λh
− 〈(T0(λ0) − Th(λh))u0, u0〉

∣∣∣∣ ≤ C (h + |λ0 − λh|)2 .

If we multiply everything by λ0λh,

|λh − λ0 − λ0λh〈(T0(λ0) − Th(λh))u0, u0〉| ≤ C (h + |λ0 − λh|)2 ,

which we manipulate to get

λh = λ0 + λ2
0〈(T0(λ0) − Th(λh))u0, u0〉

+ λ0(λh − λ0)〈(T0(λ0) − Th(λh))u0, u0〉 + O
(
(h + |λh − λ0|)2

)
.
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Again using Proposition 2.1,

(2.15) λh = λ0 + λ2
0〈(T0(λ0) − Th(λh))u0, u0〉 + O

(
(h + |λh − λ0|)2

)
.

Now, since the correction term above depends on λh, we need to expand the term
further. We can write

(2.16) T0(λ0) − Th(λh) = (T0(λ0) − Th(λ0)) + (Th(λ0) − Th(λh))

and compute

(Th(λ0) − Th(λh)) =

∫
S

(h− ε0(x
′))(Gλ0 −Gλh

)(x, hζ, x′, hζ ′)u0(x
′)dζ ′dx′.

Note that since the range of T0 contains only functions that are independent of ζ, u0

must be independent of ζ. Since we are bounded away from the negative real axis, G
is analytic with respect to λ, and so by standard Taylor expansion we obtain

(Th(λ0) − Th(λh)) =

∫
S

(h− ε0(x
′))(λ0 − λh)

∂G

∂λ

∣∣∣
λ=λ0

(x, hζ, x′, hζ ′)u0(x
′)dx′dζ ′

+ O(|λ0 − λh|2).

Note that the integrand is now continuous. This yields, after expanding the exponen-
tial or Hankel function about h = 0,

(Th(λ0) − Th(λh)) =

∫
S

ε0(x
′)(λh − λ0)

∂G

∂λ

∣∣∣
λ=λ0

(x, 0, x′, 0)u0(x
′)dx′dζ ′(2.17)

+ O
(
(h + |λ0 − λh|)2

)
.

Note the above integrand is independent of ζ ′. Combining (2.17), (2.16), and (2.15),

λh = λ0+λ2
0〈(T0(λ0)−Th(λ0))u0, u0〉−λ2

0(λh−λ0)〈DT0(λ0)u0, u0〉+O
(
(h + |λ0 − λh|)2

)
,

where DT0 is defined by (2.11). We now collect terms for (λh − λ0) to get

(λh−λ0)
(
1 + λ2

0〈DT0(λ0)u0, u0〉
)

= λ2
0〈(T0(λ0)−Th(λ0))u0, u0〉+O

(
(h + |λ0 − λh|)2

)
.

At this point we need to use the assumption (2.12) to obtain

λh = λ0 +
λ2

0〈(T0(λ0) − Th(λ0))u0, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+ O

(
(h + |λ0 − λh|)2

)
.

Recall that by the proof of Proposition 2.1,

‖T0(λ0) − Th(λ0)‖ = O(h)

in the operator norm, and so we have

λh − λ0 = O(h) + O
(
(h + |λ0 − λh|)2

)
.

Since we assume that λh − λ0 → 0, this can only hold if

λh − λ0 = O(h).

This completes the proof.
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Remark 2.1. It is possible that the hypothesis (2.12) is related to the residue of the
generalized resolvent R0(λ). In particular, we conjecture that for a simple resonance
value, (2.12) holds if and only if the residue is nonzero, i.e., the requirement for
convergence in Theorem 2.2.

The correction term above is not difficult to compute since it involves only apply-
ing integral operators to the limiting resonance function u0. However, one may want
to have an expression of the form

λh ≈ λ0 + hλ(1)

in which λ(1) is independent of h. We had studied the numerator of the correction
exactly in [14] for the case when λ0 was real. By that same analysis,

(2.18) (T0(λ0) − Th(λ0))u0 = −h

∫
Ω

∫ 1/2

−1/2

Gλ0
(x, hζ, x′, hζ ′)u0dζ

′dx′

+

∫
Ω

∫ 1/2

−1/2

ε0(x
′)(Gλ0

(x, hζ, x′, hζ ′) −Gλ0
(x, 0, x′, 0))u0(x

′)dζ ′dx′

= −h

∫
Ω

Gλ0
(x, 0, x′, 0)u0(x

′)dx′

+ h
ε0(x)u0(x)

2

(
ζ2 +

1

4

)
+ o(h).

This yields the following corollary.
Corollary 2.5. Assume the hypotheses as in Theorem 2.4. Then

λh = λ0 + hλ2
0

〈g, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
+ o(h),

where

g(x) = −
∫

Ω

Gλ0(x, 0, x
′, 0)u0(x

′)dx′ +
ε0(x)u0(x)

2

(
ζ2 +

1

4

)
.

Note, however, that here the error is no longer guaranteed to be O(h2).

3. Numerical techniques. In this section, we investigate two numerical ap-
proaches for the computation of resonances of thin membranes. The first is via
Berenger’s perfectly matched layer (PML) [1]. The second is a collocation discretiza-
tion of the integral equation formulation combined with the asymptotics developed
in the previous section. The numerical analyses of both of these approaches for res-
onance computation are presently open. Nonetheless, considerable insight into these
computational approaches can be gained by comparing them with each other.

First, we will exhibit an example with a disk where we can compute resonances
exactly. We will compute the approximations to these exact resonances using the
PML approach and compare. Since no error analysis is known for the PML eigenvalue
approximations, this will serve as validation of our first approach. Note that although
PML has been increasingly used for computation of open resonances [9, 11, 17], we
have not been able to locate a comparison of approximate and exact resonances in
the literature—another reason for including such a comparison here.

Next, we will examine thin, high contrast homogeneous structures. Here will inves-
tigate the asymptotic integral equation approach along with PML. While the PML
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approach reduces to a large sparse generalized eigenvalue computation, the second
approach yields a small dense nonlinear eigenvalue problem. We will establish that
the asymptotics are sound by testing the results against the ones obtained from PML.

Finally, we will use both the PML approach and asymptotics to compute a reso-
nance mode found in [5] for a periodic structure with a defect. The mode is localized
near the defect; that is, it exhibits photonic band gap–type behavior. Also, it has a
high quality factor, indicating that in the time domain its decay is slow. In [5] the
mode was computed using an FDTD (finite difference time domain) method, as is
typically the case.

3.1. A disk: Exact resonances and PML validation. We will now calculate
the first few resonance modes of a circular homogeneous dielectric disk of radius a
having (constant) permittivity εd placed in an infinite vacuum. If the mode is written
in the form

U(x, t) = e−iktu(x) =

{
e−iktu+(x), |x| > a,

e−iktu−(x), |x| ≤ a,

the governing equations are

Δu+ + k2u+ = 0, when r > a (in a vacuum),(3.1)

Δu− + k2εdu
− = 0, when r ≤ a (in the dielectric),(3.2)

(u+ − u−)
∣∣
r=a

=
∂

∂r
(u+ − u−)

∣∣∣∣
r=a

= 0 (compatibility conditions).(3.3)

In addition, u+ must be an outgoing wave at infinity. We use separation of variables.
Substituting u = R(r)Θ(θ) above and proceeding in the standard way, we conclude
that

u+ = H
(1)
ñ (kr)(Ãeiñθ + B̃e−iñθ) in a vacuum,(3.4)

u− = Jn(k
√
εdr)(Aeinθ + Be−inθ)n in the dielectric(3.5)

for some integers n, ñ = 0, 1, 2, . . . . Here we have picked solutions that are outgoing
in the vacuum region and bounded inside the dielectric.

Now, the first transmission condition of (3.3) implies n = ñ,

(3.6) Ã = A
Jn(k

√
εda)

H
(1)
n (ka)

, and B̃ = B
Jn(k

√
εda)

H
(1)
n (ka)

,

and the second condition of (3.3) further yields

(R−)′(a)Θ−(θ) = (R+)′(a)Θ+(θ),

where the − and + signify the interior and exterior of the disk, respectively. This
implies that for each n, the values of k must satisfy

√
εd J

′
n(k

√
εda)H

(1)
n (ka) = (H(1)

n )′(ka) Jn(k
√
εda).(3.7)

We have not been able to analytically solve this equation for k. However, we can obtain
numerical approximations to high precision by finding the roots of the function

(3.8) fn = k

(√
εd J

′
n(k

√
εda)H

(1)
n (ka) − (H(1)

n )′(ka) Jn(k
√
εda)

)
,

where we have multiplied by k to remove a singularity.
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Table 1

A few exact resonance values kn,m.

kn,m n = 0 n = 1 n = 2 n = 3
m = 1 0.436676 − 0.303945i 1.115540 − 0.239628i 1.756263 − 0.174352i 2.384047 − 0.121696i
m = 2 1.977701 − 0.279097i 2.716779 − 0.266504i 3.404368 − 0.245056i 4.064044 − 0.220085i
m = 3 3.542742 − 0.276273i 4.298557 − 0.271174i 5.013898 − 0.260996i 5.702569 − 0.248231i

We enumerate the exact resonance values of this problem as kn,m, as for each n,
we have a sequence of roots for (3.8), indexed by m. A few exact resonance values
obtained for the case

a = 1 and εd = 4

are displayed in Table 1. Note that for n > 0, each resonance value kn,m is of mul-
tiplicity two (both A and B in (3.5) are degrees of freedom), while for n = 0 the
resonance values k0,m are simple.

Now we report on some discrete approximations to these exact resonances for the
disk. These approximations are computed using finite elements and PMLs. The exact
problem can be cast as the eigenvalue problem of finding complex numbers λ ≡ k2

and nontrivial eigenfunctions u satisfying

−Δu = λ ε(x)u on R
2, where ε(x) =

{
4 if |x| ≤ 1,

1 if |x| > 1,

with the additional condition that u is an outgoing wave at infinity. (Note that the
dielectric parameters are the same as that used to obtain Table 1.) We will use PML
as an absorbing layer to exponentially damp the solution outside a fixed radius r1,
and then truncate the computational domain for some r3r1. In the truncated finite
domain, we use the finite elements as the discretization method. This is a well-known
technique used for source problems [1, 2, 3] with outgoing solutions, although its
applicability to eigenvalue problems is less studied.

We first briefly describe the truncated PML and its finite element approximation.
Our PML parameters are closer to [2, 3] than the original ones of Berenger [1]. In the
region r < 1, we set the actual coefficients given by our ε. The artificial coefficients
forming PML are set outside radius r = r1 ≥ 1. In the region r1 < r < r2 we have
a transitional variable coefficient, and in the region r2 < r < r3 we have a constant
artificial coefficient. Define

(3.9) σ̃(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if r < r1,

s(r)

s(r2)
if r1 < r < r2,

1 if r > r2,

σ(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if r < r1,

d

dr
(rσ̃(r)) if r1 < r < r2,

1 if r > r2,

where

s(r) =

∫ r

r1

(t− r1)
2(t− r2)

2 dt.

Set γ = 1 + iσ and γ̃ = 1 + iσ̃. Then, with the coefficient matrices set to

A(x) =
1

r2

(
γx2 + γ̃y2 xy(γ − γ̃)
xy(γ − γ̃) γy2 + γ̃x2

)
, B(x) = ε(x)γγ̃

(
1 0
0 1

)
,
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(a) The case r3 = 3. (b) The case r3 = 20.

Fig. 1. Finite element meshes (the dielectric is in darker shade).

the weak formulation of the truncated PML resonance problem is to find eigenvalues
λ ≡ k2 satisfying

(3.10) 〈A∇u,∇v〉 = λ〈Bu, v〉 for all v ∈ H1
0 (Br3)

for some nontrivial eigenfunction u in H1
0 (Br3). Here Br3 = {x ∈ R

2 : |x| < r3}, and
〈·, ·〉 denotes the L2(Br3) inner product. To discretize (3.10), we used Lagrange finite
elements of degree one on the meshes shown in Figure 1(a) and 1(b). The two meshes
correspond to the two values of r3 that we will investigate.

The discretization results in a large sparse generalized eigenvalue problem

(3.11) Ax = λBx,

where Aij = 〈A∇φj ,∇φj〉, Bij = 〈Bφj , φi〉, and φi’s are the usual nodal finite element
basis. Note that this is a standard linear eigenvalue problem, because we have used
PML coefficients that do not depend on frequency (unlike the ones in the original
paper of Berenger [1]). We shall see that in the asymptotic integral equation approach
in the next subsection, we will get a nonlinear eigenproblem. Now, recall the exact
resonant k values calculated in Table 1. We compare the square roots of the eigenvalues
computed by (3.11) with the exact values of Table 1.

The square root of the full spectrum of (3.11) in the case of the mesh in Figure 1(a)
(the r3 = 3 case), together with the first few exact resonance values, is shown in
Figure 2. As marked in the figure, a number of points in the computed spectrum lie
far away from the exact resonances and must clearly be considered spurious.

Next, we systematically investigate the convergence of the first ten nonspurious
resonance values to the exact value with respect to the discretization meshsize. Start-
ing with the mesh in Figure 1(a), we perform a series of successive refinements. The
mesh at refinement level J is obtained by joining the midpoint of the edges of each
triangle of the previous level J − 1. At each refinement, the coordinates of the newly
created vertices on the dielectric-air interface are adjusted so that they lie exactly on
the unit circle. Let us denote by kJ� the �th resonance value computed at refinement
level J , where the ordering in � is with respect to increasing real part, considering
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Fig. 2. Computed resonances for the case r3 = 3.

only the nonspurious values. The results are tabulated in Table 2. The definitions of
mean orders of convergence in the table are as follows:

apparent mean order of convergence for �th resonance :=
1

3

4∑
J=2

log2

(
|kJ� − kJ−1

� |
|kJ� − kJ+1

� |

)
;

actual mean order of convergence for �th resonance :=
1

3

4∑
J=2

log2

(
eJ�

eJ+1
�

)
,

where for each �, the true error eJ� is defined by eJ� = |kJ� − kn,m| for the n,m values
indicated in the first column of the table (under the title “Compare with kn,m”). The
“apparent” rate quantifies the order of difference of approximations from successive
refinements and is a standard way to measure convergence rate in cases where we
have no knowledge of the exact solution.

It is important to note the difference between the apparent and actual rates of
convergence in the case of some resonance values (see rows with � = 1, 2, 3 in Table 2).
These suggest that although the computed resonances appear to converge at a second
order rate, they converge to the wrong limit. We conjecture that this is due to the
spectral changes caused by the truncation of PML at radius r3. Consider the results in
Table 3, where we report the resonance values obtained using the mesh in Figure 1(b),
with r3 = 20. Clearly there is a marked improvement in the actual convergence rates,
supporting the conjecture that r3 needs to be sufficiently large.

To summarize, we note the following difficulties encountered with the PML ap-
proach:

• It is necessary to separate the true eigenvalues from the spurious eigenvalues.
• Although eigenvalues may appear to converge, they can converge to the wrong

value if the domain is not large enough.
These problems were readily identified in this validation experiment because we

know the exact solution. However, in a situation without any a priori knowledge of
the exact solution, it is important to keep in mind that such difficulties can occur.
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Table 2

Apparent and actual convergence of computed resonance values.

Case r3 = 3

�

∖
J

Computed resonance approximations kJ� (displayed up to 3 digits)

Level 1 Level 2 Level 3 Level 4 Level 5

1 0.441 − 0.202i 0.432 − 0.207i 0.430 − 0.208i 0.429 − 0.209i 0.429 − 0.209i

2 1.173 − 0.239i 1.129 − 0.240i 1.118 − 0.241i 1.115 − 0.241i 1.114 − 0.241i

3 1.175 − 0.236i 1.129 − 0.239i 1.118 − 0.241i 1.115 − 0.241i 1.114 − 0.241i

4 1.901 − 0.209i 1.793 − 0.181i 1.765 − 0.176i 1.759 − 0.175i 1.757 − 0.174i

5 1.902 − 0.151i 1.793 − 0.170i 1.766 − 0.173i 1.759 − 0.174i 1.757 − 0.174i

6 2.176 − 0.356i 2.025 − 0.296i 1.990 − 0.283i 1.981 − 0.280i 1.978 − 0.279i

7 2.692 − 0.125i 2.463 − 0.123i 2.404 − 0.122i 2.389 − 0.122i 2.385 − 0.122i

8 2.700 − 0.150i 2.464 − 0.128i 2.404 − 0.123i 2.389 − 0.122i 2.385 − 0.122i

9 3.070 − 0.380i 2.814 − 0.294i 2.742 − 0.273i 2.723 − 0.268i 2.718 − 0.267i

10 3.128 − 0.374i 2.822 − 0.295i 2.744 − 0.274i 2.724 − 0.268i 2.719 − 0.267i

Apparent mean order Difference between resonances from successive refinements

� of convergence |k1
� − k2

� | |k2
� − k3

� | |k3
� − k4

� | |k4
� − k5

� |
1 1.90 0.0100 0.0029 0.0007 0.0002

2 1.97 0.0440 0.0114 0.0029 0.0007

3 1.96 0.0452 0.0118 0.0030 0.0008

4 2.00 0.1119 0.0277 0.0070 0.0018

5 1.99 0.1105 0.0276 0.0070 0.0018

6 2.02 0.1628 0.0372 0.0096 0.0024

7 1.97 0.2282 0.0592 0.0151 0.0038

8 1.98 0.2372 0.0597 0.0153 0.0039

9 1.92 0.2698 0.0744 0.0197 0.0050

10 1.96 0.3160 0.0806 0.0212 0.0054

Compare Actual mean order Actual errors

with kn,m of convergence J = 2 J = 3 J = 4 J = 5

|kJ1 − k0,1| 0.01 0.0971 0.0957 0.0954 0.0953

|kJ2 − k1,1| 0.90 0.0134 0.0024 0.0015 0.0021

|kJ3 − k1,1| 0.92 0.0139 0.0024 0.0015 0.0020

|kJ4 − k2,1| 1.98 0.0370 0.0093 0.0024 0.0006

|kJ5 − k2,1| 1.99 0.0370 0.0093 0.0023 0.0006

|kJ6 − k0,2| 1.98 0.0501 0.0128 0.0033 0.0008

|kJ7 − k3,1| 1.98 0.0793 0.0201 0.0051 0.0013

|kJ8 − k3,1| 1.98 0.0802 0.0205 0.0052 0.0013

|kJ9 − k1,2| 1.96 0.1009 0.0264 0.0067 0.0017

|kJ10− k1,2| 1.96 0.1090 0.0285 0.0073 0.0018

Degrees of

freedom: 233 969 3,953 15,969 64,193

For instance, in our experiments with PML in cases when an exact solution is un-
known (reported in later subsections), we needed to separate the true eigenvalues
from the spurious eigenvalues. To identify the true eigenvalues, we used the following
techniques: (i) We compared the variations in the computed spectrum when PML
parameters were varied. (ii) We also compared the spectrum computed with the stan-
dard rectangular (tensor product–type [3]) PML with the results from the circular
PML in (3.9). The spectral points that persisted across these changes were consid-
ered to be the real eigenvalues. (We shall not report these details here for the sake
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Table 3

Convergence when the larger domain is used; cf. Table 2.

Case r3 = 20

Compare Actual errors Mean order

with kn,m J = 1 J = 2 J = 3 J = 4 J = 5 of convergence

|kJ1 − k0,1| 0.1096 0.0342 0.0105 0.0034 0.0020 1.44

|kJ2 − k1,1| 0.1283 0.0411 0.0122 0.0032 0.0008 1.83

|kJ3 − k1,1| 0.1299 0.0412 0.0122 0.0032 0.0008 1.83

|kJ4 − k2,1| 0.1763 0.0497 0.0140 0.0036 0.0009 1.90

|kJ5 − k2,1| 0.1961 0.0545 0.0155 0.0040 0.0010 1.90

|kJ6 − k0,2| 0.1376 0.0487 0.0130 0.0033 0.0008 1.84

|kJ7 − k3,1| 0.2965 0.0759 0.0201 0.0051 0.0013 1.97

|kJ8 − k3,1| 0.3089 0.0781 0.0205 0.0052 0.0013 1.97

|kJ9 − k1,2| 0.2237 0.0756 0.0182 0.0046 0.0012 1.89

|kJ10− k1,2| 0.2229 0.0762 0.0186 0.0047 0.0012 1.89

Degrees of

freedom: 427 1,739 7,021 28,217 113,137

of brevity.) It is more difficult to overcome the discrepancy between the apparent
and actual convergence. We typically experiment with an increasing set of r3 values,
holding meshsize (approximately) fixed, until the variation in the eigenvalues of in-
terest becomes negligible. This often requires meshes with a large number of degrees
of freedom and hence entails expensive computations.

3.2. A homogeneous thin membrane. In this subsection, we will describe the
integral equation approach to the computation of resonances and compare the results
from it to those obtained with PML. The resonating object is a thin homogeneous
dielectric membrane occupying the rectangular region [−0.5, 0.5] × [−h/2, h/2]. The
dielectric constant is set to the following function:

(3.12) ε(x, z) =

{
6/h if |z| < h/2, x ∈ [−0.5, 0.5],

1 otherwise;

i.e., we choose ε0(x) ≡ 6. For our numerical experiments here, we choose a geometri-
cally decreasing sequence of values for h.

Let us first describe the collocation discretization of the asymptotic integral equa-
tion derived in section 2. The computational domain, which is now [−0.5, 0.5], is
meshed by a grid of evenly spaced points set at a distance δ apart. Discrete ap-
proximations to resonance modes are now in the space Vδ of continuous functions
which are linear in between adjacent grid points. Define the matrix-valued function
S : C �→ C

N×N by S(λ) = I − λT(λ), where I denotes the identity matrix, and the
entries of the matrix T(λ) are defined by

(3.13) [T(λ)]ij = −
∫ 1/2

−1/2

ε0(x
′)Gλ(xi, 0, x

′, 0)ψj(x
′) dx′.

Here ψj is the unique function in Vδ, which is one at the jth grid point and zero at all
other grid points. With these notations, the discrete problem is the dense nonlinear
eigenvalue problem of finding complex numbers λ and corresponding nontrivial vectors
x satisfying

(3.14) S(λ) x = 0.



56 J. GOPALAKRISHNAN, S. MOSKOW, AND F. SANTOSA

This can be rewritten as a nonlinear system for λ and x, to which Newton’s method or
its variants can be applied. To compute the matrix entries defined by (3.13) we split
the integral into integrals over each mesh interval (of length δ). On those intervals
where the integrand is smooth, the integrals are approximated by high order Gaussian
quadratures. We must be more careful in the intervals containing the singularity of
Gλ. On such elements, we use an expansion of the integrand to approximate the
integral. In all cases, our integral approximations are at least O(δ7) accurate.

To solve (3.14), we use the residual inverse iteration analyzed by Neumaier [15].
Algorithm 3.1 (residual inverse iterations).
1. Input an initial approximation λ0 close to the eigenvalue of interest. If S(λ0)

is invertible, continue.
2. Set (Wilkinson) initial guess x0 for the eigenvector:

(a) Perform the QR-factorization QR = S(λ0).
(b) Let b = Q n, where n is the vector whose components are 1.
(c) Solve the linear system S(λ0)x̃0 = b, by x̃0 = R−1n.
(d) Normalize by x0 = x̃0/e

∗x̃0, where e is the unit vector with one in the
position of the largest entry of x̃0.

(e) Set y∗ = e∗R−1Q∗ for use later.
3. For l = 0, 1, 2, . . . (until a stopping criteria is met) do:

(a) λl+1 = λl − y∗S(λl)xl
y∗S′(λl)xl

, where [S′(z)]ij = d
dz [S(z)]ij .

(b) x̃l+1 = xl − R−1Q∗S(λl+1)xl.
(c) Normalize by xl+1 = x̃l+1/‖x̃l+1‖2.

These iterations can be stopped once |λl+1−λl| is smaller than a prescribed tolerance.
In step 3(a) of the algorithm, we have used one step of a one-dimensional Newton iter-
ation. We can substitute this step with multiple Newton iterations or other nonlinear
solvers.

This algorithm works well in our application if good initial approximations λ0 are
given. In order to find good initial guesses, we borrowed a technique used for plotting
the pseudospectra [18] of matrices. Namely, if σmin(S) denotes the smallest singular
value of S, then it is easy to see that

(3.15) σmin(S(λ)) < δ if and only if ‖S(λ)−1‖2 > 1/δ.

Motivated by this, before launching the residual inverse iterations for fine meshes,
we first use a coarse mesh to obtain an inexpensive matrix approximation S(λ). We
then compute the minimum singular value σmin(S(λ)) on a grid of λ in the complex
plane. For coarse meshes, S(λ) is a small matrix, so this computation is fast. Because
of (3.15), the plot of the minimum singular values locates regions where the resolvent
S(λ) is nearly singular, thus providing good initial guesses for Algorithm 3.1. For our
current example of the homogeneous thin membrane, a coarse mesh resulting in a
20× 20 matrix function S(λ) yields the contour plot of σmin shown in Figure 3. Note
that since k =

√
λ is what we shall report, Figure 3 shows σmin as a function of k

(rather than λ).
Next, we report the first few resonance values computed using Algorithm 3.1

applied to (3.14). We mesh the interval [−0.5, 0.5] uniformly with a mesh of meshsize
δ0 = 1/20. To perform a study of convergence with respect to meshsize, we refine this
coarse mesh by splitting each grid element into two equal elements, so the meshsize at
the refinement level J is δJ = 2−(J−1)/20. Denoting the �th resonance value computed

using the mesh at refinement level J as kJ,∞� , the differences in the computed resonance
values at successive refinements are collected in Table 4. Examining these differences,
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Fig. 3. Contour plot indicating the resonant frequencies in the k plane.

Table 4

Resonance values (square roots k =
√
λ) from the collocation discretization of the asymptotic

integral equation.

� |k1,∞
�

− k
2,∞
�

| |k2,∞
�

− k
3,∞
�

| |k3,∞
�

− k
4,∞
�

| |k4,∞
�

− k
5,∞
�

| |k5,∞
�

− k
6,∞
�

| |k6,∞
�

− k
7,∞
�

| k∗,∞� := k7,∞
�

1 0.0002044 0.0000561 0.0000153 0.0000041 0.0000011 0.0000003 0.5650936 − 0.2220208i

2 0.0020219 0.0005452 0.0001460 0.0000389 0.0000103 0.0000027 1.1080760 − 0.0456433i

3 0.0072890 0.0019383 0.0005112 0.0001341 0.0000350 0.0000091 1.5159978 − 0.0284500i

4 0.0163478 0.0043339 0.0011364 0.0002959 0.0000767 0.0000198 1.8255240 − 0.0175582i

5 0.0303687 0.0080609 0.0021085 0.0005468 0.0001411 0.0000363 2.0959593 − 0.0137123i

6 0.0490834 0.0130928 0.0034242 0.0008862 0.0002280 0.0000584 2.3307014 − 0.0110730i

7 0.0733213 0.1801607 0.0073143 0.0018911 0.0004850 0.0001239 2.7440293 − 0.0080844i

8 0.0964783 0.0377803 0.0099407 0.0025712 0.0006591 0.0001681 2.9294654 − 0.0065552i

9 0.0523806 0.0493936 0.0130412 0.0033757 0.0008650 0.0002205 3.1026198 − 0.0063434i

10 0.0090552 0.0628079 0.0166530 0.0043152 0.0011058 0.0002817 3.2674525 − 0.0052055i

we conjecture that the convergence rate of collocation discretization for the resonance
values is O(δ2), where δ is the meshsize. The last column of Table 4 lists the resonance
values computed using the finest mesh.

We now compare these resonance values with those obtained using the PML
approach. We enclose the dielectric in [−0.5, 0.5]× [−h/2, h/2] by circles of radius r1,
r2, and r3 and set the PML parameters as described in section 3.1. We experimented
with a number of r3 values and concluded that selecting r3 = 20 seems appropriate
to get good approximations in this example. We also needed to isolate the spurious
eigenvalues from the interesting ones (see remarks at the end of section 3.1). We shall
consider the following geometrically decreasing sequence of membrane thicknesses:

h =
0.25

2L−1
, L = 1, 2, . . . , 7.

For each L value, we mesh the domain (Br3) such that mesh aligns with the dielectric
boundaries. Furthermore, the meshes are such that for all values of h considered,
the dielectric region will always have four layers of elements. The meshsize inside
the dielectric is thus maintained approximately at h/4 by constraining the angles of
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Table 5

Difference between the asymptotic and PML resonance approximations.

� |kpml,1
� − k∗,∞� | |kpml,2

� − k∗,∞� | |kpml,3
� − k∗,∞� | |kpml,4

� − k∗,∞� | |kpml,5
� − k∗,∞� |

1 0.0411 0.0205 0.0101 0.0048 0.0021
2 0.1655 0.0864 0.0444 0.0226 0.0115
3 0.4086 0.2144 0.1102 0.0561 0.0284
4 0.7001 0.3684 0.1896 0.0965 0.0488
5 0.6427 0.5498 0.2841 0.1448 0.0733
6 0.7790 0.7500 0.3884 0.1981 0.1003

the mesh triangles to never deteriorate below 25 degrees. With ε(x, y) as in (3.12), we
then solve the resulting finite element eigenproblem (3.11) for the first few eigenvalues
and compare them with the resonance approximations previously displayed in the last
column of Table 4.

One of our aims in this comparison is the verification of the theoretically pre-
dicted asymptotic convergence rate of O(h) of Theorem 2.4. To realize this goal, we
must avoid discretization errors as much as we can, but without going to prohibitively
expensive meshsizes. Note that the first six resonance values in Table 4 have stabilized
up to four digits at the seventh level of refinement, so we denote these six values by
k∗,∞� , � = 1, 2, . . . , 6, and use them for the comparison with the corresponding first six
resonance approximations from PML. In order to avoid finite element discretization
errors in the comparable PML resonance approximations, we perform multiple refine-
ments of the finite element mesh until their first six resonance approximations have
no variation in at least the first two significant digits. Denoting these approximations
by kpml,L

� for the case of membrane thickness h = 0.25/2L−1, we display in Table 5
the distance of these approximations to the asymptotic ones. The linear asymptotic
convergence rate is clearly apparent.

Next we apply Corollary 2.5 to attempt to improve the asymptotic resonance
approximations from the problem in the previous subsection. Recall that from the
residual correction procedure described there, we have limiting resonance value λ0

and a discrete approximation to the corresponding resonance function u0(x). We will
apply these values to calculate

λ0 + hλ1

to get what should be a better approximation to the resonance value λh for a given
total slab thickness h. Note that the correction

λ1 = λ2
0

〈g, u0〉
1 + λ2

0〈DT0(λ0)u0, u0〉
,

where

g(x) = −
∫

Ω

Gλ0(x, 0, x
′, 0)u0(x

′)dx′ +
ε0(x)u0(x)

2

(
ζ2 +

1

4

)
,

involves merely double integrations over Ω, in this case a one-dimensional domain. In
the second term in the numerator the integration in ζ can be calculated exactly. The
integral in the denominator is

〈DT0(λ0)u0, u0〉 = −
∫ .5

−.5

∫ .5

−.5

iε0(x
′)

8
√
λ0

H
(1)
1

(√
λ0|x− x′|

)
|x− x′|u0(x

′)u0(x)dx′dx.
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Fig. 4. The first six computed resonance values λ in the complex plane for varying slab thick-
nesses.

For both of the double integrals, we compute the inner integral using the piecewise
linear basis functions for u0, and for the outer integral we use the trapezoid rule. In
all computations that follow the meshsize was δ = 1/640, the sixth refinement level,
for which we believe the calculations of the first six limiting resonance values λ0 are
accurate up to about four significant digits. Recall that the PML values used from
the previous section are accurate to about two significant digits.

Figure 4 shows all of the computed values plotted on the complex plane, and
Figure 5 gives a log-log plot of the errors. For the first resonance, the corrected
asymptotic values are within the presumed accuracy of the PML approximation for
all values of h, and hence we see the convergence flattening in the log-log plot. For
the third resonance, the convergence appears only slightly more than linear, but all
of the other values exhibit the significantly better than linear convergence expected
from Corollary 2.5.

Remark 3.1. The approximation from [14] used to obtain Corollary 2.5 deteri-
orates for larger frequencies, and we therefore expect that for the higher-numbered
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Fig. 6. The photonic dielectric structure.

resonances, the formula from Theorem 2.4 will be far superior. The computation of
this more accurate correction will involve computing the application of the higher
dimensional integral operator Th, but will not require any inversion.

3.3. A photonic membrane. In this subsection, we will describe the results of
computation from a thin photonic membrane having a periodic dielectric pattern with
a defect. The structure is shown in Figure 6 and was previously investigated in [5] by
time domain methods. We will give results from both the PML and the asymptotic
integral equation approaches. Unlike the previous subsections, our purpose here is not
a convergence study, but rather a comparison with the results in [5]. The structure
in Figure 6 is invariant in the third direction, so the model is reduced to one in the
xz plane perpendicular to the symmetry direction. Note that while fully periodic
structures have band gaps, this structure is not periodic in that it has a defect in the
center and has finite extent in the plane. Hence instead of defect eigenvalues, we seek
resonances.

We choose the dielectric constant as in [5]; namely, in the central defect col-
umn and the fourteen off-center columns, ε(x) is 13, while in the remaining region it
equals 1. We set the scaling parameter a in Figure 6 to 1/14.3 so that the xz cross
section fits into [−0.5, 0.5] × [−h/2, h/2] with h = 0.3a. Since this h is small, it is
reasonable to attempt the asymptotic approach.

For the PML calculations, we enclose the xz cross section of the photonic structure
by disks of radius r1 = 0.6, r2 = 2, and r3 = 10 and set the PML parameters as in
the previous sections. This domain is meshed such that there are at least four layers
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(a)

(b)

(c)

(d)

Fig. 7. A few resonances of the photonic membrane. (a) The highly localized resonance mode
corresponding to k ≈ 28.7878 − 0.0017i obtained using PML. (b) The corresponding mode obtained
using the asymptotic approach, plotted on the limiting domain [−0.5, 0.5]. (c) Point plot of a few
resonant k values computed using PML. (d) The modes corresponding to the k values circled in (c).
(In all plots of the resonance modes, only the real part is plotted and only the region r < r1 is
shown.)

of elements across the membrane thickness (and the mesh coarsens away from the
dielectric). The computations then proceed similarly, except that to obtain higher
accuracy, we now use Lagrange finite elements of degree five. The results are shown
in Figure 7. The mode shown in Figure 7(a) is qualitatively similar to the one in [5,
Fig. 5]. Furthermore, its corresponding resonance value is such that ka/2π ≈ 0.321, a
number close to the frequency of 0.313 reported in [5]. As seen from Figure 7(a), this
mode is highly localized near the defect. Although there are many other resonances, as
seen from Figure 7(d), localization near the defect or even near the membrane seems
to be uncommon. (One other mode that is somewhat localized within the membrane
is seen in the second plot of Figure 7(d).)

For the asymptotic approach, we set ε0 = εh with the ε and h as described above
and solve the resulting one-dimensional nonlinear eigenproblem on Ω = [−0.5, 0.5].
The initial guesses for the nonlinear eigenvalue solver were obtained using the pseudo-
spectrum-like plot in Figure 8 (computed as described previously; see Figure 3).
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Fig. 8. Contour plot in the complex k plane indicating the locations of the asymptotic resonances.

Table 6

A few values of resonances k for the photonic membrane.

Values from PML Asymptotic values Corrected asymptotic values
20.3154 − 0.4704i 17.8719 − 0.2655i 19.9420 − 0.4049i
22.6512 − 0.2292i 19.7458 − 0.1116i 22.7624 − 0.1228i
24.2375 − 0.0658i 20.3675 − 0.0348i 23.7018 − 0.0493i
28.7878 − 0.0017i 23.0690 − 0.0006i 28.0236 − 0.0005i
40.9258 − 0.6283i 29.7120 − 0.1592i 39.1908 − 0.4074i

A few resonance values obtained using Algorithm 3.1 are reported in Table 6. The ta-
ble also gives the corresponding resonance approximations from the PML calculations.
There is good agreement between the PML and asymptotic values, especially after
the correction. The most interesting mode is of course the one localized in the defect.
The limiting, uncorrected resonance value for this mode is such that ka/2π ≈ 0.257,
and produced the nonlinear eigenfunction in Figure 7(b). This qualitatively resembles
not only the mode plot in [5, Fig. 5], but also the trace of the corresponding mode
obtained from PML (Figure 7(a)) on the x-axis (the centerline of the dielectric). The
corrected asymptotic resonance value is such that ka/2π ≈ 0.311, very close to the
value 0.313 reported in [5].

Considering that the PML eigenvalue problem we solved is of size 221201×221201,
while the asymptotic problem is only of size 2289×2289, the advantages of the asymp-
totic approach are clearly evident for this particular geometry.

4. Discussion. We propose two methods for calculating resonance associated
with the scalar wave equation. The first method is suited for thin, high index structures
which are gaining popularity in the photonic band gap community. It is an asymptotic
method that exploits the specifics of the problem and allows for the calculation of
resonance to be carried out in one dimension less than the spatial dimension of the
problem. The second method, based on the finite element method with the PML, is a
general approach which is not restricted to thin structures. In this work, we examine
the convergence properties of the finite element approach and use it to verify the
approximation properties of the asymptotic method. A final set of calculations with
both methods reproduces a photonic band gap resonance calculation reported in the
literature.

For a thin membrane structure with high index, we find that the asymptotic
method (2.3) is particularly effective. When discretized, it leads to a dense, but small,
nonlinear eigenvalue problem. While we established approximation properties of the
method, the numerical evidence is quite convincing. A higher order correction, which
is easy to implement, provides more accuracy at a low cost. In comparison with the
PML approach, the asymptotic method has the clear advantage of a smaller system,
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brought about by the dimensional reduction. Its disadvantage lies in the complications
involved in solving a dense nonlinear eigenproblem.

The finite element PML approach is attractive because the matrices involved are
sparse and the eigenvalue problem to find resonance is linear. It is also more widely
applicable. One challenge in using this method is the presence of spurious modes.
Our experience is that it is possible to identify spurious modes. Another unattractive
feature of the PML approach is that the resonance values may appear to converge
under refinement, but to incorrect limits. Our experience with this method, while
limited, does gives us hope that it is possible to deal with these difficulties, and
that it is possible to develop a robust finite element–based method for calculating
resonance. It remains to be seen, however, if it is a viable alternative to simple FDTD
calculations.

Acknowledgment. The authors thank Joseph Pasciak for several enlightening
discussions on exterior eigenvalue approximations.
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Abstract. We variationally derive a thermodynamically consistent model for surface evolution
under the influence of free adatoms. The resulting system of nonlinear partial differential equations
couples a diffusion equation on a surface to the evolution of the surface. A numerical approach based
on a finite element discretization of a level set equation is described for an anisotropic evolution,
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1. Introduction. Evolving interfaces are a key ingredient in many problems in
materials science. As smaller and smaller length scales become of interest, the im-
portance of interfaces compared with phenomena in the bulk phases increases and
therefore requires more detailed considerations than in classical, more macroscopic
models. To model grain boundaries, solid-vapor interfaces, or coherent phase transi-
tions, various geometric evolution laws have been proposed. Mean curvature flow and
surface diffusion are two prominent examples. In its basic form these laws have been
derived by Mullins [14, 15]. The equations follow from a surface free energy

E[Γ] =

∫
Γ

γ dΓ,

with Γ = Γ(t) a compact smooth connected and oriented hypersurface in R
d+1 (d =

1, 2) and γ = γ(n) the surface free energy density, possibly depending on the normal
to the surface n. The geometric evolution laws are defined as gradient flows of the
energy and read, e.g.,

V = −kHγ ,(1.1)

bV = −(Hγ − c),(1.2)

V = ∇Γ ·
(
ν∇ΓHγ

)
.(1.3)

Here k = k(n) is the evaporation modulus, b = b(n) is a kinetic coefficient, ν = ν(n)
denotes the surface mobility, V is the normal velocity, Hγ is weighted mean curvature

Hγ =

d−1∑
i=1

∂pipi
γ(n)κi,
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which is δE
δΓ · n, the variational derivative with respect to variations in Γ in normal

direction. Here ∂pipi
denotes the second derivative of the one-homogeneous exten-

sion of γ : Sd ⊂ R
d+1 → R with respect to n in the ith principal direction, and κi,

i = 1, . . . , d, are the principal curvatures. The coefficient c =
∫
Γ
b−1Hγ dΓ /

∫
Γ
b−1 dΓ is

the averaged weighted mean curvature. Equation (1.1) models motion by evaporation-
condensation, (1.2) describes the kinetics associated with the rearrangement of
atoms on the surface, and (1.3) accounts for diffusion of atoms along the surface.
Equation (1.1) is known as curvature flow, (1.2) as volume conserved curvature flow,
and (1.3) as motion by surface diffusion. A more general geometric evolution law
combining the three effects has been discussed by Fried and Gurtin [9]:

(1.4) V = ∇Γ ·
(
ν∇Γ(Hγ + bV )

)
− k(Hγ + bV ).

This equation incorporates surface diffusion, evaporation-condensation, and kinetics.
We obtain the individual laws discussed above as follows:

• ν = 0, b = 0 ⇒ evaporation-condensation (1.1).
• ν = ∞, k = 0 ⇒ kinetic (1.2).
• b = 0, k = 0 ⇒ surface diffusion (1.3).

The special case k = 0 has been considered by Cahn and Taylor [6] and can also be
written as

(1.5) V = −
(
∇Γ · (ν∇Γ)

)(
∇ · (ν∇Γ) − 1

b

)−1 (
1

b
Hγ

)
.

Another special case is obtained for ν = 0. The resulting equation reads

(1.6)

(
1

k
+ b

)
V = −Hγ ,

which again is a curvature flow equation, but with a modified kinetic coefficient.

More recently Fried and Gurtin [9] introduced a refined model of (1.4) which
includes free adatoms. Adatoms are mobile atoms on the surface. They diffuse along
the surface and attach and detach from surface defects, which contributes to the
evolution of the surface. Especially in the case of solid-vapor interfaces such adatoms
are assumed to play an important role in the dynamics of the surface evolution. The
model reads

∂tu + V + uHV = ∇Γ · (ν∇Γμ) − kμ,(1.7)

μ = ∂uγ,(1.8)

bV + Hγ1 + γ2H − μ− uHμ = 0,(1.9)

with u the adatom density, H the mean curvature, and μ the surface chemical po-
tential, which is defined as the partial derivative of the surface free energy density
γ(n, u) = γ1(n)+γ2(u) with respect to u, and Hγ1 again the weighted mean curvature,
given as the normal component of the variational derivative of γ1 with respect to vari-
ations in Γ. If u is set to zero, the classic law (1.4) is obtained again with γ = γ1 and
μ = Hγ + bV . The model is derived within the framework of configurational forces.
Burger [3] used the principle of minimal work to derive the model and analyzed it with
k = 0 in detail and numerically solved the isotropic case within a graph formulation.
A phase-field approximation in this situation is considered by Rätz and Voigt [17].
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We will show that the model can also be derived variationally from an energy

E[Γ, u] =

∫
Γ

γ dΓ,

with γ = γ(n, u) = γ1(n) + γ2(u). The more general case, in which the dependency
on n and u cannot be split, will lead to an even more complicated model in which
also the adatom energy will be anisotropic. The functional form of such a depen-
dency, however, is not known for any material. We therefore restrict our treatment to
the separable case, which leads to the model introduced in [9]. We will introduce a
numerical approach based on a level set method and allow for various anisotropies.

The outline of the paper is as follows: In section 2 we derive the model and
show its thermodynamic consistency. In section 3 we describe a level set algorithm
to solve the adatom surface diffusion model. In section 4 we give some details on the
implementation in AMDiS [20] and show numerical results on the evolution towards
the equilibrium shape.

2. Model derivation. In order to define a thermodynamically consistent dy-
namic model for the evolution of the surface we need d

dtE ≤ 0, with E = E[Γ, u]. The
time derivative of E implies

(2.1)
d

dt
E =

∫
Γ

∂tu
δE

δu
dΓ +

∫
Γ

v · δE
δΓ

dΓ,

with δE
δu the variational derivative of E with respect to u and δE

δΓ the variational
derivative of E with respect to Γ, given by

δE

δu
= μ,(2.2)

δE

δΓ
= Hγ1

n + γ2Hn,(2.3)

with the chemical potential μ = ∂uγ and the weighted mean curvature defined above.
We decompose the velocity v into normal and tangential components through v =
V n + T. This decomposition might be used to obtain the identities

(2.4) ∇Γ · v = ∇Γ · (V n + T) = V∇Γ · n + ∇Γ · T = V H + ∇Γ · T,

where H = ∇Γ · n is used, and

(2.5) v · ∇u = (V n + T) · ∇u = V
∂u

∂n
+ T · ∇Γu,

which will be needed in the following derivation.
A basic conservation law we wish to establish is the invariance of mass in time.

The mass in the system is given by

m =

∫
Ωs

1 dΩ +

∫
Γ

u dΓ,

with Ωs = Ωs(t) being the solid domain. Defining an arbitrary portion Σ of Γ and Λ
of Ωs, such that Σ ⊂ ∂Λ and ignoring bulk diffusion, we have

(2.6)
d

dt
m|Σ = −

∫
∂Σ

q · m ds +

∫
Σ

f ds,
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with ∂Σ the boundary of Σ, m the conormal on ∂Σ, q a tangent surface flux, and f
the supply from the vapor. The transport theorems (see, e.g., [1]) imply

d

dt
m|Σ =

d

dt

(∫
Λ

1 dΩ +

∫
Σ

u dΓ

)
=

∫
Σ

V dΓ +

∫
Σ

u̇ + u∇Γ · v dΓ

=

∫
Σ

V + u̇ + uV H + u∇Γ · T.(2.7)

u̇ denotes the normal time derivative of the interfacial field u (see, e.g., [9])

(2.8) u̇ = ∂tu + T · ∇Γu,

where we assume that u is constant in a normal direction. Together with the formula
for integration by parts on Σ,∫

∂Σ

q · m ds =

∫
Σ

∇Γ · q dΓ,

this implies

(2.9) V + u̇ + uV H + u∇Γ · T = −∇Γ · q + f,

which we can rewrite, by using (2.5), as

(2.10) ∂tu + ∇Γ · (uT) + uV H + V = −∇Γ · q + f.

We now use (2.10) in (2.1) and obtain

d

dt
E = −

∫
Γ

(∇Γ · (uT) + uV H + V + ∇Γ · q − f)
δE

δu
dΓ +

∫
Γ

v · δE
δΓ

dΓ

= −
∫

Γ

∇Γ · (q + uT)
δE

δu
dΓ +

∫
Γ

f
δE

δu
+

∫
Γ

V n · δE
δΓ

− (uHV + V )
δE

δu
dΓ,

where we have used T · δE
δΓ = 0. We now define

q + uT = −ν∇Γ
δE

δu
,(2.11)

f = −k
δE

δu
,(2.12)

bV = −
(
n · δE

δΓ
− (uH + 1)

δE

δu

)
,(2.13)

with ν, k, and b positive coefficients. In a general setting these coefficients might
depend on n and/or u. These definitions imply

(2.14)
d

dt
E = −

∫
Γ

1

ν
(q − uT)2 dΓ −

∫
Γ

1

k
f2 dΓ −

∫
Γ

bV 2 dΓ ≤ 0

and thus energy dissipation, and with it consistency with the second law of thermo-
dynamics.

We now use (2.10) and (2.11)–(2.13) to obtain the desired evolution law,

∂tu + uV H + V = ∇Γ · (ν∇Γμ) − kμ,(2.15)

μ = ∂uγ,(2.16)

bV + Hγ1 + γ2H − μ− uHμ = 0,(2.17)

which is exactly (1.7)–(1.9).
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In the same way as the equations are derived from the energy E[Γ, u] =
∫
Γ
γ dΓ,

with γ = γ(n, u), more general surface free energies can be used. One example would
be a curvature regularized free energy, as originally proposed for the evolution of
curves in [7] to deal with strong anisotropies with missing orientations, which lead
to backward parabolic behavior of the evolution laws. An extension to surfaces is
discussed in [10, 16]. Combined with the adatoms the energy reads

E[Γ, u] =

∫
Γ

γ + ε2
1

2
H2 dΓ,

with γ = γ(n, u). Here ε sets a new length scale over which corners and edges in the
surface are smeared out. The corners and edges result from the nonconvexity of γ
with respect to n. Thus the energy can be seen as a geometric generalization of a
Ginzburg–Landau-type energy, where the curvature H plays the role of the gradient
term. The variational derivatives now read

δE

δu
= μ,(2.18)

δE

δΓ
= Hγ1n + γ2Hn − ε2

(
ΔΓH + H

(
‖S‖2 − 1

2
H2

))
n,(2.19)

with S = ∇Γn being the shape operator and ‖S‖ =
√

trace(SST ) its Frobenius norm.
The resulting equations read

∂tu + uV H + V = ∇Γ · (ν∇Γμ) − kμ,(2.20)

μ = ∂uγ,(2.21)

bV + Hγ1 + γ2H − ε2
(

ΔΓH + H

(
‖S‖2 − 1

2
H2

))
= μ + uHμ.(2.22)

If we consider (2.17) with given u and μ, we see that the equation can become back-
ward parabolic if Hγ1 + γ2H − uHμ < 0. This has already been discussed in the
isotropic case in [3], where this situation might occur for large adatom densities and
special choices for γ. In the anisotropic case this situation is much more likely, because
H might be large in situations where Hγ is small. Thus even for weak anisotropies
the discussed regularization might be necessary to deal with the resulting backward
parabolic equation.

3. Numerical approach. The system (2.15)–(2.17) with Hγ1 = H and k = 0
has been numerically treated in a graph formulation by Burger [3] and in a phase field
approach by Rätz and Voigt [17]. Here we will consider a different numerical approach
and allow for anisotropies, including strong anisotropies. Thus we will solve the sys-
tem (2.20)–(2.22). We will use an operator splitting ansatz and consider (2.20) as a
diffusion equation on an evolving surface Γ, with Γ given, and (2.22) as the geometric
equation which determines the normal velocity, with the interfacial quantities u and
μ given.

3.1. Diffusion equations on evolving surface. The systems (2.15)–(2.17)
and (2.20)–(2.22) include the problem of solving a diffusion equation on an evolv-
ing surface. Such problems can be found in various applications, e.g., in materials
science, biophysics, image processing, and computer graphics. Theoretical results for
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such problems are rare and also numerical methods are much less developed then for
equations defined in R

d. Only recently various numerical approaches are introduced.
Dziuk and Elliott [8] introduced a direct approach by parametric finite elements, which
allows one to solve a diffusion equation on an evolving surface. The evolution of the
surface in their approach is given and for complicated movements severe problems
in maintaining the regularity of the surface mesh have to be overcome. A different
approach in which the surface is described implicitly, and thus problems with the reg-
ularity of surface meshes circumvented, was used by Xu and Zhao [21]. In Lowengrub,
Xu, and Voigt [13] this approach is extended to solve a Cahn–Hilliard equation on an
evolving surface. In both approaches the evolution of the surface is described through a
level set function and results from the interaction with a surrounding flow field. Both
implementations, however, are restricted to curves. A different approach in which
the surface is described implicitly is used in Rätz and Voigt [17]. Here a phase field
function is used to describe the evolving surface and the evolution is governed by a
modified Allen–Cahn equation.

3.2. Level set approximation. We are going to use the level set method to
solve diffusion equations on a stationary surface, introduced by Bertalmio et al. [2],
and extend it to evolving surfaces. The interface is described implicitly through a level
set function. Equation (2.20) is thereby approximated by the diffusion equation on
the time-independent domain Ω, with Γ(t) ⊂ Ω for all t ∈ (0, T ),

(3.1) ∂tu− u
∂tψ

‖∇ψ‖∇ · ∇ψ

‖∇ψ‖ − ∂tψ

‖∇ψ‖ =
1

‖∇ψ‖∇ ·
(
ν‖∇ψ‖P∇ψ∇μ

)
− kμ,

where now u and μ denote the extended variable, defined on Ω, and P∇ψ is the
projection operator on the tangential space of Γ(t) defined through

P∇ψ = id− ∇ψ

‖∇ψ‖ ⊗ ∇ψ

‖∇ψ‖ .

The first terms on the left and right sides of (3.1) are shown to represent ∂tu =
∇Γ · (ν∇Γμ); see [2]. In the second and third terms on the left side we use the level
set equation ∂tψ + V ‖∇ψ‖ = 0 to obtain V and the definition of H in level set form.
We obtain

V = − ∂tψ

‖∇ψ‖ ,

H = ∇ · ∇ψ

‖∇ψ‖ .

The second term on the left side can be rewritten as

u∂tψ∇ · ∇ψ

‖∇ψ‖ = ∇ ·
(
u∂tψ

∇ψ

‖∇ψ‖

)
− ∂tψ∇u · ∇ψ

‖∇ψ‖ − u∇(∂tψ) · ∇ψ

‖∇ψ‖ .

For (2.22) we follow the level set representation for curvature regularized anisotropic
mean curvature flow introduced by Burger et al. [5] and obtain

−∂tψ +
1

b

[
∇ · γ1z

(
∇ψ

‖∇ψ‖

)
+ γ2(u)∇ · ∇ψ

‖∇ψ‖ − ε2
(

ΔΓH + H

(
‖S‖2 − 1

2
H2

))

−μ− u∇ · ∇ψ

‖∇ψ‖μ
]
‖∇ψ‖ = 0,(3.2)
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with γ1z

( ∇ψ
‖∇ψ‖

)
= Dγ1(n), where Dγ1 is the differential of the one-homogeneous

function γ1. H and S need to be replaced by their level set definitions, which will be
done in the following weak formulation. The last term in (3.2) can be rewritten as

u∇ · ∇ψ

‖∇ψ‖μ = ∇ ·
(
uμ

∇ψ

‖∇ψ‖

)
− μ∇u · ∇ψ

‖∇ψ‖ − u∇μ · ∇ψ

‖∇ψ‖ ,

and with (1.8) we have μ = γ′
2(u), which gives

γ2(u)∇ · ∇ψ

‖∇ψ‖ = ∇ ·
(
γ2(u)

∇ψ

‖∇ψ‖

)
− μ∇u

∇ψ

‖∇ψ‖ .

A weak form of (3.1) and (3.2) thus reads∫
Ω

‖∇ψ‖∂tuη dx +

∫
Ω

u∂tψ
∇ψ

‖∇ψ‖ · ∇η dx +

∫
Ω

∂tψ∇u · ∇ψ

‖∇ψ‖η dx

+

∫
Ω

u∇(∂tψ) · ∇ψ

‖∇ψ‖η dx−
∫

Ω

∂tψη dx

= −
∫

Ω

ν‖∇ψ‖P∇ψ∇μ · ∇η dx−
∫

Ω

k‖∇ψ‖μη dx,

∫
Ω

b

‖∇ψ‖∂tψξ dx +

∫
Ω

γ1z

(
∇ψ

‖∇ψ‖

)
· ∇ξ dx +

∫
Ω

γ2(u)
∇ψ

‖∇ψ‖ · ∇ξ dx

+
ε2

2

∫
Ω

ω2

‖∇ψ‖3
∇ψ · ∇ξ dx

+ ε2
∫

Ω

P∇ψ∇ω

‖∇ψ‖ · ∇ξ dx +

∫
Ω

μξ dx−
∫

Ω

uμ
∇ψ

‖∇ψ‖ · ∇ξ dx

−
∫

Ω

u∇μ · ∇ψ

‖∇ψ‖ξ dx = 0,

∫
Ω

ω

‖∇ψ‖ϕ dx =

∫
Ω

∇ψ

‖∇ψ‖ · ∇ϕ dx,

with appropriate test functions η, ξ, and φ. The third equation results from setting
ω = −‖∇ψ‖H in (3.2). To discretize in time we use an operator splitting approach,
starting with the second and third equations, to obtain ψn+1 by given ψn, un, and μn.
We apply a convex splitting ansatz derived in [5] for the treatment of the nonlinear
anisotropy term and obtain∫

Ω

b

‖∇ψn‖
ψn+1 − ψn

τn
ξ dx +

∫
Ω

γz

(
∇ψn

‖∇ψn‖

)
· ∇ξ dx +

∫
Ω

γ2(u
n)

∇ψn+1

‖∇ψn‖ · ∇ξ dx

+

∫
Ω

λ

‖∇ψn‖γ
(

∇ψn

‖∇ψn‖

)
(∇ψn+1 −∇ψn) · ∇ξ dx

+
ε2

2

∫
Ω

(ωn)2

‖∇ψn‖∇ψn+1 · ∇ξ dx + ε2
∫

Ω

ωn+1

‖∇ψn‖ · ∇ξ dx

− ε2
∫

Ω

(
id − P∇ψn

)
∇ωn

‖∇ψn‖ · ∇ξ dx +

∫
Ω

μnξ dx−
∫

Ω

unμn∇ψn+1

‖∇ψn‖ · ∇ξ dx

−
∫

Ω

un∇μn · ∇ψn+1

‖∇ψn‖ξ dx = 0,(3.3)
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∫
Ω

ωn+1

‖∇ψn‖ϕ dx =

∫
Ω

∇ψn+1

‖∇ψn‖ · ∇ϕ dx,(3.4)

with λ an appropriate parameter. ψn+1 is then used in the first equation to determine
un+1 by given un, ψn, and ψn+1:

∫
Ω

‖∇ψn+1‖u
n+1 − un

τn
dx +

∫
Ω

un+1ψ
n+1 − ψn

τn
∇ψn+1

‖∇ψn+1‖ · ∇η dx

+

∫
Ω

ψn+1 − ψn

τn
∇un+1 · ∇ψn+1

‖∇ψn‖η dx +

∫
Ω

un+1∇
(
ψn+1 − ψn

)
τn

· ∇ψn+1

‖∇ψn‖η dx

−
∫

Ω

ψn+1 − ψn

τn
η dx

= −
∫

Ω

ν‖∇ψn+1‖P∇ψ∇μn+1 · ∇η dx−
∫

Ω

k‖∇ψn+1‖μn+1η dx.(3.5)

For the calculation of un+1 the adatom density un of the last timestep is needed at the
new interface ψn+1. The interface moves in a normal direction. So to ensure that un

has adequate values at the new interface, we extend the adatom density in direction
normal to the interface after each timestep. The extension is done by an adaption
of the redistancing algorithm introduced in [19] and described in detail in [4]. The
approach uses the Hopf–Lax formula and offers an efficient alternative to fast marching
or fast sweeping algorithms, which works also on unstructured grids.

The equations resulting from (3.3)–(3.5) are linear and are discretized in space by
linear finite elements. To describe the linear system to be solved we use the following
weighted mass, first order, and stiffness matrices:

M [f ] :=

(∫
Ω

f ϕi ϕj dx

)
i,j

, F [v] :=

(∫
Ω

v · ∇ϕi ϕj dx

)
i,j

,

L[f ] :=

(∫
Ω

f ∇ϕi ∇ϕj dx

)
i,j

, L[A] :=

(∫
Ω

A∇ϕi ∇ϕj dx

)
i,j

,

with functions f : Ω → R, v : Ω → R
d and A : Ω → R

d×d and basis functions ϕi of
the finite element space Vh defined through

Vh = {v ∈ C(Ω) | v|T is linear polynomial for T ∈ T },

with T a decomposition of the polygonal domain Ω into triangles or tetrahedra and
Vh ⊂ V = H1(Ω). In the case of periodic boundary conditions on part of the boundary
Γper ⊂ ∂Ω, the corresponding periodic subspaces of V and Vh are used. Moreover we
assume natural boundary conditions for all variables on the boundary ∂Ω\Γper. We
make use of a norm regularization ‖∇ψn‖δ = (‖∇ψn‖2 +δ2)1/2, δ about the grid size,
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for small norm values ‖∇ψn‖. With the matrices and right-hand side vectors

M1 := M [‖∇ψn‖−1
δ ], M2 := M [1],

M3 := M [b ‖∇ψn‖−1
δ ], M4 := M [k ‖∇ψn‖δ],

M5 := M [‖∇ψn+1‖δ], M6 := M [‖∇ψn+1‖−1
δ ∇ψn+1 · ∇

(
ψn+1 − ψn

)
],

F1 := F [un ∇μn ‖∇ψn‖−1
δ ], F2 := F [

(
ψn+1 − ψn

)
‖∇ψn+1‖−1

δ ∇ψn+1],

L1 := L[(Wn)2 ‖∇ψn‖−3
δ ], L3 := L[‖∇ψn‖−1

δ ],

L4 := L[(id− P∇ψn) ‖∇ψn‖−1
δ ], L5 := L

[
γ

(
∇ψn

‖∇ψn‖δ

)
‖∇ψn‖−1

δ

]
,

L6 := L[ν P∇ψn ‖∇ψn‖δ], L7 := L[un μn ‖∇ψn‖−1
δ ],

L8 := L[(un)2 ‖∇ψn‖−1
δ ], G :=

(∫
Ω

γz

(
∇ψn

‖∇ψn‖δ

)
· ∇ϕj dx

)
j

,

and the linear expansions

ψn+1 =

L∑
i=1

Ψn+1
i ϕi, ωn+1 =

L∑
i=1

Wn+1
i ϕi,

μn+1 =

L∑
i=1

Υn+1
i ϕi, un+1 =

L∑
i=1

Un+1
i ϕi,

with L the dimension of the finite element space Vh, the linear system for (3.3) and
(3.4) then reads⎛
⎜⎝M3 + τ ε2

2 L1 + τλL5 τε2L3

−τL7 + τ α
2L8 − τF1

−L3 M1

⎞
⎟⎠

(
Ψn+1

Wn+1

)
=

⎛
⎝−τM2Υ

n + M3Ψ
n + τε2L4W

n

+τλL5Ψ
n − τG

0

⎞
⎠ .

We use a Schur complement approach to solve the system for the unknown ψn+1,
which gives(

M3 + τ
ε2

2
L1 + τλL5 − τL7 + τ

α

2
L8 − τF1 + τε2L3M

−1
1 L3

)
Ψn+1

= −τM2Υ
n + M3Ψ

n + τε2L4W
n + τλL5Ψ

n − τG,

where Wn is calculated via Wn = M−1
1 L3ψ

n and the inverse M−1
1 is obtained with

mass lumping. The Schur complement system is solved by a GMRES solver, as the
system matrix might not be positive definite for the timesteps used. Within the special
case of a free energy γ such that μ = αu, with α a positive parameter, the system for
(3.5) reads[

M5 +
(
F2 + FT

2

)
+ M6 + ταL6 + ταM4

]
Un+1 = M5U

k + M2

(
Ψk+1 − Ψk

)
and is solved by a GMRES solver.

4. Simulation results. The derived numerical scheme is implemented in the
adaptive finite element toolbox AMDiS [20]. The toolbox provides a framework for
the efficient solution of systems of partial differential equations by adaptive finite
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Fig. 4.1. Isotropic evolution of interface and adatom density. Simulation parameters: [0, 4] ×
[0, 4] grid, grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.3. From top left to bottom right:
t = 0.0, 0.002, 0.01, 0.03, 0.06, 0.09, 0.2, 2.5, 3.0.

elements. In the following examples linear finite elements are used on unstructured
simplicial meshes, and the refinement is based on bisection. The criteria for refine-
ment/coarsening is heuristic and based on the distance to the zero level set. This
reduces the computational overhead by allowing for coarse meshes away from the zero
level set. The computational cost is therefore comparable to a narrow band approach
or a phase-field approximation with adaptive refinement at the diffuse interface.

The examples are chosen such that the influence of the adatom density is high-
lighted. For that purpose we compare the results with the corresponding model (1.5)
in which the adatom density is neglected. The numerical approach used to solve (1.5)
is described in [18]. In all simulations we use either the isotropic function γ1(n) = 1
or the anisotropic function

γ1(n) = 1 + a

d∑
k=1

n4
k, d = 2, 3,

with nk denoting the kth spatial component of the normal. If not stated otherwise,
we choose a = 2.0 (i.e., γ1 is nonconvex), α = 1.0 (i.e., μ = u), the regularization
parameter ε = 0.1, the evaporation modulus k = 0, the kinetic coefficient b = 1.0,
and the surface mobility ν = 1.0. The relation between grid size h at the interface
and timestep Δt is Δt ≤ h4/ε2. As ε has to be resolved by h we obtain with h ∼ ε
a timestep restriction of approximately Δt ≤ h2, which justifies the use of a semi-
implicit discretization, as the restriction for an explicit strategy would be Δt ≤ h6 for
the underlying sixth order problem.

Figure 4.1 shows the evolution of a perturbed circle with initial constant adatom
concentration to the Wulff shape under isotropic conditions. The results are in agree-
ment with the phase-field simulations for the same problem considered in [17]. The



74 CHRISTINA STÖCKER AND AXEL VOIGT

density
0.105
0.095
0.085

density
0.114
0.103
0.092

density
0.127
0.12
0.113

density
0.1373
0.13685
0.1364

density
0.1535
0.15325
0.153

density
0.1789
0.17845
0.178

density
0.2073
0.2072
0.2071

density
0.2195
0.219
0.2185

density
0.2195
0.219
0.2185

Fig. 4.2. Anisotropic evolution of interface and adatom density. Simulation parameters: [0, 4]×
[0, 4] grid, grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.1, α = 10.0. From top left to bottom
right: t = 0.0, 0.005, 0.02, 0.04, 0.06, 0.1, 0.2, 0.5, 1.0.

Fig. 4.3. Anisotropic evolution: comparison of adatom model (solid) and kinetic model (dashed).
Simulation parameters: [0, 4] × [0, 4] grid, grid size h = 0.03125, timestep Δt = 10−5 (adatom
model), and Δt = 5 × 10−6 (kinetic model). In adatom model: u0 = 0.1. From left to right: t =
0.0, 0.01, 0.03, 0.2.

perturbations smooth out and influence the adatom concentration, which adjusts to
the local curvature and velocity. After a circle is obtained the adatom concentration
becomes constant and converges to an equilibrium value, which is determined through
the initial conditions.

Figure 4.2 shows the evolution of a circle with a constant initial adatom concentra-
tion to its Wulff shape under anisotropic conditions. Again the adatom concentration
adjusts during the evolution to the local curvature and velocity, but if the Wulff shape
is reached the adatom concentration becomes constant and converges towards its equi-
librium value, which again depends on the initial conditions. Thus in equilibrium the
adatom concentration is constant, independent on the local curvature.

If we compare this evolution with the kinetic surface diffusion model in which
adatoms are neglected, we obtain similar results on the dynamics and the equilibrium
shape; see Figure 4.3. The only difference is the size of the final shape, as in the kinetic
surface diffusion model conservation in mass results in conservation in area, which is
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Fig. 4.4. Isotropic evolution of interface and adatom density. Simulation parameters: [0, 4] ×
[−0.5, 0.5] grid, grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.2. From top left to bottom right:
t = 0.0, 0.01, 0.03, 0.09, 0.2, 7.0.

Fig. 4.5. Isotropic evolution: comparison of adatom model (solid) and kinetic model (dashed).
Simulation parameters: [0, 4] × [−0.5, 0.5] grid, grid size h = 0.03125, timestep Δt = 10−5 (adatom
model), and Δt = 5 × 10−6 (kinetic model). In adatom model: u0 = 0.2. From top left to bottom
right: t = 0.0, 0.01, 0.03, 0.09, 0.2, 1.3.

not the case in the adatom model. Here the area can be reduced by increasing the
adatom density. From a numerical point of view an additional difference is observed.
The timesteps in the adatom model can be chosen larger than for the kinetic surface
diffusion model. This results from the diffusion character of the adatom model and
has already been speculated in [9].

The following examples are devoted to curves, which are not closed. Figure 4.4
shows the evolution of a perturbed straight line with a constant initial adatom concen-
tration under isotropic conditions. In agreement with the results obtained by a graph
formulation [3] and a phase-field formulation [17] the perturbations smooth out and
the adatom concentration adjusts to the local curvature and velocity. After a straight
line is formed the adatom concentration converges to zero.

In Figure 4.5 the evolution is compared with the kinetic surface diffusion model in
which adatoms are neglected. Again the results agree, with the only difference being
that the height in the adatom model is higher, which results from the additional mass
from the adatoms, which become incorporated during the evolution. Numerically we
again can use larger timesteps in the adatom model.

Figure 4.6 shows the evolution of a perturbed straight line with a constant initial
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Fig. 4.6. Anisotropic evolution of interface and adatom density. Simulation parameters: [0, 4]×
[−1.0, 1.0] grid (shown here: [0, 4]×[−0.5, 0.5]), grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.2.
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Fig. 4.7. Anisotropic evolution of interface and adatom density. Simulation parameters: [0, 4]×
[−1.0, 1.0] grid (shown here: [0, 4]×[−0.5, 0.5]), grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.2.
From top left to bottom right: t = 0.0, 0.02, 0.04, 0.06, 0.07, 0.2, 0.76, 0.8, 1.2, 2.6.

adatom concentration under anisotropic conditions. We observe the facet formation
and the adjustment of the adatom concentration to the local curvature and velocity.
After the facets are formed the adatom concentration is reduced. The structure, how-
ever, is not stable, due to the corner energy resulting from the regularization. Thus
coarsening is expected, which will reduce the number of corners.

To further study the coarsening, we now start from an initially unstable orien-
tation with an initially constant adatom concentration. Figures 4.7 and 4.8 show the
spinodal decomposition into allowed orientations and the subsequent coarsening of
the structure. The influence of the coarsening event on the adatom concentration can
clearly be observed. During coarsening the interface moves fast. High velocities in the
coarsening areas result in a smaller adatom concentration where the interface moves
in a positive normal direction and a higher adatom concentration where the interface
moves in a negative normal direction.

Again we compare this evolution with the kinetic surface diffusion model. Fig-
ure 4.9 shows the qualitative agreement. Numerically we again can use larger timesteps
in the adatom model.

Finally we show results in three dimensions. We start with a cube and a constant
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Fig. 4.8. Anisotropic evolution of interface and adatom density. Simulation parameters: [0, 4]×
[−1.0, 1.0] grid (shown here: [0, 4]×[−0.5, 0.5]), grid size h = 0.03125, timestep Δt = 10−5, u0 = 0.2.
From top left to bottom right: t = 0.0, 0.008, 0.02, 0.07, 0.08, 0.3, 0.4, 0.42, 0.43, 0.9, 1.4, 2.4, 2.5, 2.6.

Fig. 4.9. Anisotropic evolution: comparison of adatom model (solid) and kinetic model (dashed).
Simulation parameters: [0, 4] × [−0.5, 0.5] grid, grid size h = 0.03125, timestep Δt = 10−5 (adatom
model), and Δt = 5 × 10−6 (kinetic model). In adatom model: u0 = 0.2. From top left to bottom
right: t = 0.0, 0.07, 0.08, 0.4.

adatom density, which relaxes to sphere. The adatom density adjusts to local curva-
ture and velocity during evolution and saturates at a constant value; see Figure 4.10.
Figure 4.11 shows the evolution of a randomly perturbed initial surface within an
unstable orientation and a constant initial adatom concentration. Again the facet
formation and the subsequent coarsening of the surface morphology can be observed.
The adatom concentration adjusts to the local curvature and velocity. If we start with
a periodic structure and a constant initial adatom concentration, we observe a sym-
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Fig. 4.10. Isotropic evolution of interface and adatom density. Simulation parameters:
[0.0, 4.0] × [0.0, 4.0] × [0.0, 4.0] grid, grid size h = 0.0625, timestep Δt = 10−5, ε = 0.0, u0 = 0.2.
From top left to bottom right: t = 0.0, 0.02, 0.05, 0.1, 0.15, 0.2.

metric coarsening in which four mounds collapse to form one mound; see Figure 4.12.
This symmetry is probably a result of the 4-fold symmetry of the anisotropy function.
A further example in Figure 4.10 shows the evolution of a cube with initial constant
adatom concentration under isotropic conditions.

A more detailed study on the coarsening with more realistic physical parameters
also under growth will be done elsewhere. Of interest is the influence of the adatom
density on coarsening laws, as derived by Haußer and Voigt [11, 12]. The simulations
in this paper are depicted to show the applicability of the algorithm. It has been
shown that the introduced level set approach can be used to efficiently solve evolution
equations on evolving surfaces. The approach is not restricted to diffusion problems
on evolving surfaces but can be generalized to other equations as well.

Acknowledgment. The authors thank Martin Burger for helpful discussions.
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Fig. 4.11. Anisotropic evolution of interface and adatom density. Simulation parameters:
[−2.0, 2.0] × [−2.0, 2.0] × [−0.5, 0.5] grid, grid size h = 0.03125, timestep Δt = 10−5, ε = 0.07,
u0 = 0.4. From top to bottom: t = 0.001, 0.005, 0.014.

Fig. 4.12. Anisotropic evolution of interface and adatom density. Simulation parameters:
[−2.0, 2.0]× [−2.0, 2.0]× [−0.5, 0.5] grid, grid size h = 0.05, timestep Δt = 10−4, ε = 0.07, u0 = 0.4.
From top left to bottom right: t = 0.0, 0.05, 0.1, 0.15.
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INVERSE SOURCE PROBLEM IN NONHOMOGENEOUS
BACKGROUND MEDIA. PART II: VECTOR FORMULATION AND
ANTENNA SUBSTRATE PERFORMANCE CHARACTERIZATION∗
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Abstract. This paper solves analytically and illustrates numerically the full-vector, electro-
magnetic inverse source problem of synthesizing an unknown source embedded in a given substrate
medium of volume V and radiating a prescribed exterior field. The derived formulation and results
generalize previous work on the scalar version of the problem, especially the recent Part I of this
paper [A. J. Devaney, E. A. Marengo, and M. Li, SIAM J. Appl. Math., 67 (2007), pp. 1353–1378].
Emphasis is put on substrates having constant constitutive properties within the source volume V ,
which, for formal tractability, is taken to be of spherical shape. The adopted approach is one of con-
strained optimization which also relies on spherical wavefunction theory. We find that the observed
peaks in the spectrum of the singular values are primarily due to the phenomenon of Mie resonance.
Therefore, for a given antenna radiating at a prescribed frequency, the set of solutions to the Mie
resonance conditions corresponds to a set of constitutive parameters that maximize the radiated
electromagnetic fields. The derived theory and associated implications for antenna substrates are
illustrated numerically.
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1. Introduction. In this paper we investigate the full-vector, electromagnetic
inverse source problem of reconstructing an unknown source (antenna) that is em-
bedded, within a spherical region V ≡

{
r ∈ R

3 : r ≡ |r| ≤ a
}
, in a given material or

metamaterial substrate, and that radiates a given exterior field outside V . The derived
formulation and results of this inverse source problem in substrate media generalize,
within the full-vector formulation, previous work on the inverse source problem in
free space (cf. [32] and the references therein), as well as previous work on the scalar
version of the problem for nonhomogeneous backgrounds [13, 43], particularly Part I
of this paper [12], coauthored by one of the authors of the present paper (Marengo).
The formulation is based on constrained optimization. Two solution constraints are
emphasized in the paper, in particular, the minimizing of the source L2-norm or
functional energy characterizing the “current level,” with and without tuning to res-
onance, the former case corresponding to zero source reactive power. The ability of
an antenna to radiate a prescribed power with reduced current levels as characterized
by this norm is an indication of efficiency which has been adopted as a constraint
in the antenna synthesis problem [5, 9]. Fundamental radiation limits related to the
realizability of given fields or radiation performance with given source resources (an-
tenna size, current level as measured by the source energy, reactive power, and so on)
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or, alternatively, of the minimal resources needed for a given performance, are also
elucidated as a by-product of the derived inverse source theory.

Motivation for this research is provided by the possibility of embedding an an-
tenna in a substrate of a given size, where the original antenna plus the substrate
are treated as the total antenna, so as to generate a given field or performance
level which could not be achieved under the same physical constraints by another
antenna in free space (i.e., without the substrate medium). This possibility has at-
tracted interest from time to time in the antenna community; of particular inter-
est have been a variety of antenna-embedding materials, including plasmas [37],
nonmagnetic dielectrics [24, 25, 27, 26, 22, 2], magneto-dielectrics [18, 10, 36, 29],
and, more recently, double-negative and single-negative metamaterials, which are re-
ceiving much attention as antenna performance-enhancing substrates by a number
of groups [41, 40, 16, 3, 48, 42, 17, 28, 47]. The envisaged property is miniaturiza-
tion of antennas by controlling electric size, via larger wavenumber, but other effects
are involved, particularly when metamaterials are used. (A review of the pertinent
state-of-the-art can be found in [15].)

For instance, it is well known [31, 34] that in the free-space case the source energy
increases exponentially, for a given radiation pattern, with decreasing k0a, where k0

is the free-space wavenumber of the field. This increase occurs below a critical point
determined by the fine detail that is desired in the radiation pattern, specifically, the
antenna directivity. The question then is whether the critical source size in question
can be made smaller by embedding the source in a properly selected substrate which
becomes integral to the antenna. For small antennas (whose dimensions are smaller
than about 1/3 of the wavelength [45, 46]) one is particularly interested in achiev-
ing radiation of an elemental dipolar mode, using minimal resources. Can antenna
substrates help toward this goal? Alternatively, in certain applications using larger,
resonant antennas whose dimensions are comparable to or larger than the wavelength,
one can dispose of some “extra space” to accommodate a substrate, and the question
is, Does antenna embedding yield enhancement of antenna directivity? Which values
of the constitutive parameters give better performance?

We address these and related questions aided by the formalism of the inverse
source problem, paying particular attention to lossless piecewise-constant radially
symmetric backgrounds having electric permittivity εs and permeability μs. In par-
ticular, the total permittivity distribution is of the form

(1.1) ε(r) = εsΘ(a− r) + ε0Θ(r − a),

where Θ denotes Heaviside’s unit step function (Θ(x) = 1 for x � 1; otherwise
Θ(x) = 0), and the total permeability distribution is of the form

(1.2) μ(r) = μsΘ(a− r) + μ0Θ(r − a).

All the results are derived for time-harmonic fields, and thus the values of the consti-
tutive parameters, which generally vary with frequency, are considered in this work
for a given central frequency only.

Our results reveal the performance improvements due to antenna-embedding sub-
strates from a fundamental inverse antenna theory point of view which is different
from and complementary to efforts by other groups in this fruitful area. The observed
peaks in the spectrum of the singular values of the source-to-exterior field mapping
are primarily due to the phenomenon of Mie resonance, and maximum enhancement
conditions are effectively summarized by the Mie resonance conditions (4.2) and (4.3).
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Therefore, for a given antenna radiating at a prescribed frequency, the set of solu-
tions to (4.2) and (4.3) corresponds to a set of constitutive parameters that maximize
the radiated electromagnetic fields. As their amplitudes increase these radiated fields
draw energy from the embedding medium. But because this medium is of finite extent
the energy extraction process saturates, ultimately, and as a result of this saturation
the fields fall short of effectively “blowing up.”

2. The forward problem.

2.1. Electromagnetic generalities. Our starting point is provided by the
frequency-domain Maxwell equations for a generally lossless, nonhomogeneous me-
dium, in particular [7, 11],

∇× E(r) = iωμ(r)H(r),(2.1)

∇× H(r) = J(r) − iωε(r)E(r),(2.2)

where J(r) represents an impressed current density (i.e., the source) confined within
the spherical volume V , and E(r) and H(r) are, respectively, the electric and mag-
netic fields it generates. (These fields are subject to the radiation condition [38].)
Substituting H(r) from (2.1) into (2.2) yields the vector wave equation

(2.3) ∇×
(
∇× E(r)

μ(r)

)
− ω2ε(r)E(r) = iωJ(r).

The partial differential operator in (2.3) admits an outgoing-wave dyadic Green’s
function Ḡ(r, r′) which, along with the radiation condition, obeys

(2.4) ∇×
(
∇× Ḡ(r, r′)

μ(r)

)
− ω2ε(r)Ḡ(r, r′) = iωδ(r − r′)Ī,

where Ī denotes the identity dyadic and δ the Dirac delta.
For future convenience we define the weighted inner product

(2.5) (f , f ′) =

∫
drM(r)f∗(r) · f ′(r),

where f and f ′ are any two functions of position and the asterisk ∗ denotes the complex
conjugate; M(r) is a characteristic (indicator or masking) function defined as

(2.6) M(r) =

{
1, r ∈ V,
0, r /∈ V.

Using this inner product, we express the source energy E as

(2.7) E ≡ (J,J),

and the complex interaction power P (cf. [7]) as

(2.8) P = −1

2
(J, G̃J),

where we have introduced the linear mapping G̃ defined by

(2.9) [G̃J](r) ≡
∫

dr′Ḡ(r, r′) · J(r′).
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The real part of P, i.e., � [P], represents the radiated power which is determined

by the multipole moments a
(j)
l,m via [14, 21, 30]

(2.10) � [P] =
1

2η0

2∑
j=1

∞∑
l=1

l∑
m=−l

l(l + 1)|a(j)
l,m|2,

where η0 =
√
μ0/ε0 is the free-space wave impedance.

On the other hand, the imaginary part of P, i.e., � [P], corresponds to the energy-
storage reactive power [7]. It can have a prescribed value, say, zero (as was shown in
[32, 34]), which corresponds to a tuned antenna and is one of the solution constraints
to be employed in the formulation to follow. We note that the reactive power can be
expressed as

(2.11) � [P] = −1

2

∫
V

drJ∗(r) ·
∫
V

dr′ḠS(r, r′) · J(r′) ≡ −1

2
(J, G̃SJ),

where

(2.12) ḠS(r, r′) ≡ �
[
Ḡ(r, r′)

]
=

1

2i

[
Ḡ(r, r′) − Ḡ∗(r, r′)

]
,

and where we have introduced the linear mapping G̃S defined by (2.9) after the

substitutions G̃ → G̃S and Ḡ → ḠS .

2.2. Source-to-multipole-moment mapping. To formulate the inverse prob-
lem for the cases described in (1.1) and (1.2) it is necessary to first have at our disposal
the solution of the associated forward or radiation problem. To accomplish this, we
note that, for these cases, the electric field E(r) generated by the most general source
of support V can be represented, outside V , by the multipole expansion [14]

(2.13) E(r) =

2∑
j=1

∞∑
l=1

l∑
m=−l

a
(j)
l,mΛ

(j)
l,m(r), r /∈ V,

where the complex-valued expansion coefficients a
(j)
l,m are the multipole moments of

the field, and where the multipole fields are

(2.14) Λ
(j)
l,m(r) =

⎧⎪⎨
⎪⎩

∇× [h
(+)
l (k0r)Yl,m(r̂)], j = 1,

ik0h
(+)
l (k0r)Yl,m(r̂), j = 2,

where r̂ ≡ r/r; h
(+)
l denotes the spherical Hankel function of the first kind and

order l (as defined in [6]), corresponding to outgoing spherical waves in the far
zone; Yl,m is the vector spherical harmonic of degree l and order m (as defined
in [14, equations (4.7) and (4.8)]); and j = 1 and j = 2 correspond to electric and
magnetic multipole fields, respectively. The scalar spherical harmonics Yl,m(r̂) and
the vector spherical harmonics Yl,m(r̂) satisfy the analytic continuation properties

Y ∗
l,m(r̂) = (−1)

m
Yl,−m(r̂) and Y∗

l,m(r̂) = (−1)
m+1

Yl,−m(r̂) along with well-known
orthogonality properties that can be found, e.g., in [14] (see [20] for further details).
We will employ these properties in the following.
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At this point it is important to note that the multipole moments a
(j)
l,m are uniquely

determined by the tangential component of the electric field E(r) on a sphere of radius
R > a, in particular,

(2.15) a
(j)
l,m =

⎧⎪⎨
⎪⎩

− i

l(l+1)k0h
(+)
l (k0R)

∫
Y∗

l,m(r̂) · E(Rr̂)dr̂, j = 1,

1
l(l+1)k0Vl(k0R)

∫
r̂ × Y∗

l,m(r̂) · E(Rr̂)dr̂, j = 2.

(This follows by expanding (2.13) using [33]

(2.16) ∇× [φl(r)Yl,m(r̂)] = r̂
il(l + 1)

r
φl(r)Yl,m(r̂) +

1

r

d

dr
[rφl(r)]r̂ × Yl,m(r̂),

and then invoking the orthogonality properties of the vector spherical harmonics and
the associated vector functions r̂ × Yl,m(r̂).)

The electric and magnetic multipole moments, a
(1)
l,m and a

(2)
l,m, respectively, are

related to the current distribution J by

(2.17) a
(j)
l,m = (B

(j)
l,m,J), j = 1, 2;

i.e., they are the projections of the current distribution J onto the set of source-free

vector fields B
(j)
l,m which need to be determined for the particular antenna background

medium. For the special free-space case where μ(r)/μ0 = 1 = ε(r)/ε0 the latter fields
are the familiar source-free multipole fields, in particular (cf. [19] and [11]),

(2.18) B
(j)
l,m(r) ≡

⎧⎪⎨
⎪⎩

− η0

l(l+1)∇× [jl(k0r)Yl,m(r̂)], j = 1,

−i k0η0

l(l+1)jl(k0r)Yl,m(r̂), j = 2,

where jl is the spherical Bessel function of the first kind and order l (as defined in [6],
for instance). On the other hand, it is shown in Appendix A that, for piecewise-
constant radially symmetric backgrounds whose permittivity and permeability are
given by (1.1) and (1.2),

(2.19) B
(j)
l,m(r) ≡

⎧⎪⎨
⎪⎩

−η0

l(l+1)F
∗(1)
l (k0a, ka, εr, μr)∇× [jl(k

∗r)Yl,m(r̂)] , j = 1,

−ik0η0

l(l+1) F
∗(2)
l (k0a, ka, εr, μr)jl(k

∗r)Yl,m(r̂), j = 2,

where the substrate wavenumber k = ω
√
μsεs, the relative permittivity εr = εs/ε0, the

relative permeability μr = μs/μ0, and where we have defined the complex amplitudes

(2.20) F
(j)
l (k0a, ka, εr, μr) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i/(k0ka
2)

(εr/μr)1/2jl(ka)Vl(k0a)−h
(+)
l (k0a)Ul(ka)

, j = 1,

iμr/(k0ka
2)

(μr/εr)1/2jl(ka)Vl(k0a)−h
(+)
l (k0a)Ul(ka)

, j = 2,

where

(2.21) Ul (λa) ≡ Ul (λr)|r=a ≡
[
djl(λr)

d (λr)
+

jl(λr)

λr

]∣∣∣∣
r=a
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and

(2.22) Vl (λa) ≡ Vl (λr)|r=a ≡
[
dh

(+)
l (λr)

d (λr)
+

h
(+)
l (λr)

λr

]∣∣∣∣∣
r=a

.

Because of the self-imposed restriction to the study of lossless substrates, the
relative constitutive parameters μr and εr admit only real values. Consequently, the
wavenumber k can assume only real values (positive for double-positive materials and
negative for double-negative metamaterials) or purely imaginary values (for single-
negative metamaterials). When k is purely imaginary, i.e., k = iα, α ∈ R, the argu-
ments of the spherical Bessel functions involving k in (2.20)–(2.22) are, accordingly,
purely imaginary. In this case one notes that the regular spherical Bessel functions

jl and h
(+)
l are replaced, respectively, with the modified spherical Bessel functions il

and kl such that (cf., for instance, [6])

(2.23) jl (ka) ≡ ilil(αa)

and

(2.24) h
(+)
l (ka) ≡ −i−lkl(αa).

(There shall be no confusion between the modified spherical Bessel functions il and
kl and the imaginary unit i and the wavenumber k since the latter do not carry a
subscript.)

We draw the attention of the reader to the fact that F
(j)
l , j = 1, 2, represent the

Mie amplitudes due to the scattering of a plane electromagnetic wave off a sphere of
radius a and wavenumber k embedded in an infinite homogeneous medium of wave-

number k0, F
(1)
l being the amplitudes of the electric oscillations and F

(2)
l those of the

magnetic oscillations. This should not come as a surprise in view of the physics of the
problem as well as the formulation itself.

3. Inverse source theory based on constrained optimization. The inverse
source problem of deducing the source J(r), confined within V from knowledge of the
exterior field E(r), is seen from (2.13) to be equivalent to that of determining the
source from knowledge of the multipole moments, i.e., to that of inverting (2.17).
The respective inversion is addressed next via a generalization of the free-space op-
timization theory in [32] to nonhomogeneous backgrounds. Emphasis is given to the
particular case of piecewise-constant radially symmetric backgrounds, but most of the
derived expressions apply to more general cases including that of spherically symmet-
ric backgrounds.

3.1. Minimum energy solution by constrained optimization. We start by
addressing the problem of determining the minimum energy source JME embedded
in a substrate of volume V with fixed constitutive parameters εr, μr and generating a
given exterior field. The problem can be cast as

(3.1) min
J∈S

E (J) ,

where

(3.2) S ≡
{
J ∈ L2

(
V ; C3

)
: a

(j)
l,m − (B

(j)
l,m ,J) = 0

}
.
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Note that the constraint set S is convex; also, the objective functional E is coercive
and strictly convex.

If a minimizer JME exists, then its uniqueness and global minimality are ensured
by the strict convexity of E and the convexity of S [4]. But what guarantees the
existence of at least one such minimizer? We note that, since S is closed and since
E is weakly sequentially lower semicontinuous, problem (3.1), (3.2) admits only one
global solution.

It is well known [4] that difficulties related to the definition of linearity of the
Fréchet differentiation operator would be encountered when f maps a complex Banach
space (in our case L2(V ; C3)) into a real Banach space (in our case R). This is in par-

ticular the case for E and (J, G̃SJ). In such cases one considers L2(V ; C3) as a Hilbert
space over R instead of C [4]. It is then easy to show that the Fréchet derivatives of

E and the constraints are given by ∇JE (J) = 2J and that ∇J [a
(j)
l,m − (B

(j)
l,m,J)] =

−B
(j)
l,m, respectively. Due to the continuity of these derivatives and the fact that

∇J [a
(j)
l,m − (B

(j)
l,m,J)]|J=JME

maps L2(V ; C3) onto C, there exist [23] Lagrange multi-

pliers c
(j)
l,m ∈ C such that the generalized Lagrangian

(3.3) L
(
J, c

(j)
l,m

)
≡ E + 2�

⎡
⎣ 2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)
l,m

(
a
(j)
l,m − (B

(j)
l,m , J)

)⎤⎦
is stationary at JME .

To compute the solution we require that

(3.4) δL = 2�

⎡
⎣
⎛
⎝δJ , J −

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m B

(j)
l,m

⎞
⎠
⎤
⎦ = 0.

From the Du Bois-Raymond lemma, (3.4), and the forward mapping relations (2.17),
(2.19), (2.20), one finds that for piecewise-constant radially symmetric backgrounds,
the minimum-energy source is given by

(3.5) JME(r) =

2∑
j=1

∞∑
l=1

l∑
m=−l

a
(j)
l,m[

σ
(j)
l (k0a, ka, εr, μr)

]2 B
(j)
l,m(r),

where we have introduced the positive-definite “singular values”

(3.6) [σ
(j)
l (k0a, ka, εr, μr)]

2 ≡ (B
(j)
l,m,B

(j)
l,m),

specifically,

(3.7)
[
σ

(j)
l (k0a, ka, εr, μr)

]2
= |F (j)

l (k0a, ka, εr, μr)|2
[
κ

(j)
l (k0a, ka)

]2
,

where

(3.8)
[
κ

(j)
l (k0a, ka)

]2
≡

⎧⎪⎨
⎪⎩

η2
0

∫ a

0
dr
[
|jl(kr)|2 + |kr|2

l(l+1) |Ul(kr)|2
]
, j = 1,

η2
0k0

2

l(l+1)

∫ a

0
dr r2 |jl(kr)|2 , j = 2.
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For real k2 the integral associated with the j = 2 case is calculable through the use of
the second Lommel integral (see, for instance, [6]) and the recurrence relations of the
Bessel functions along lines similar to those employed in [31] to evaluate similar inner
products. Afterwards, the recurrence relations are also used to express the integral
associated with the j = 1 case in terms of the calculated integral associated with the
j = 2 case. Consequently, equations (3.8) reduce to

(3.9)
[
κ

(j)
l

]2
=

⎧⎪⎨
⎪⎩

η2
0a|ka|

2

l(l+1)(2l+1)

[
(l + 1)γ2

l−1(ka) + lγ2
l+1(ka)

]
, j = 1,

η2
0a(k0a)2

l(l+1) γ2
l (ka), j = 2,

where we have introduced the unitless quantity (cf. [31, equation (17)])

γ2
l (ka) ≡ 1

a3

∫ a

0

dr r2j2
l (kr)

=
1

2

[
j2
l (ka) − jl−1(ka)jl+1(ka)

]
.(3.10)

For k = iα, α ∈ R, as is the case for single-negative metamaterials, one uses definition
(2.23) to express (3.9) and (3.10) in terms of il. (Note that the lone appearance of
the size parameter a in (3.9), i.e., its appearance decoupled from the wavenumbers,

is a direct consequence of the fact that the multipole moments a
(j)
l,m are dimensioned

quantities. It is, as well, a reminder of the boundedness of the enclosing volume V ,
i.e., of the embedding sphere of substrate material.)

Furthermore, the minimum source energy

(3.11) EME ≡ (JME ,JME) =

2∑
j=1

∞∑
l=1

l∑
m=−l

|a(j)
l,m|2

[σ
(j)
l ]2

.

As expected, these developments reduce, for εr = 1 = μr, to the free-space result

((13) and (14) in [32]) since F
(j)
l (k0a, ka, εr, μr) = 1; that is, the free-space minimum

energy solution is given by (3.5) with B
(j)
l,m given by (2.18) and [σ

(j)
l ]2 substituted by

[κ
(j)
l (k0a = ka)]2.

3.2. Minimum energy source having zero reactive power. Next we con-
sider the constrained optimization problem of minimizing the functional energy of the
source subject to the additional constraint that the reactive power of the source has
a prescribed value. The results for this problem will be elaborated next for the par-
ticular and important case of zero reactive power, i.e., � [P] = 0. This corresponds to
the minimizing of the antenna currents (the physical resources) while simultaneously
enforcing perfect antenna reactance tuning inside the antenna.

The problem can be cast as

(3.12) min
J∈X

E (J) ,

where

(3.13) X ≡
{
J ∈ L2

(
V ; C3

)
: a

(j)
l,m − (B

(j)
l,m ,J) = 0, (J, G̃SJ) = 0

}
.

The constraint set X is closed, unbounded, and nonconvex. Its nonconvexity stems
from that of the newly introduced constraint (J, G̃SJ) = 0. The set X is assumed to
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be nonempty. (If it turns out to be empty, this would mean that it is not possible for
an antenna having a substrate medium of constitutive parameters εr, μr to produce
the prescribed external field and at the same time have a vanishing reactive power.)

It is clear that problem (3.12), (3.13) is an inherently difficult nonconvex pro-
gramming problem. Not only do we seek to minimize an objective functional under
nonconvex functional constraints, but we also have to do that on an unbounded set.
Proving, for instance, the existence of a solution to problem (3.12), (3.13) would have
been easier if X were convex, but it is straightforward to show that the only way for X
to become convex is to have �[(J1, G̃SJ2)] ≤ 0 for all J1,J2 ∈ L2

(
V ; C3

)
. This would

amount to imposing a new constraint which appears not to correspond to anything
meaningful, physically speaking.

Now let us try to establish the existence of a solution to problem (3.12), (3.13)
in the absence of the convexity and boundedness of the constraint set X. Since X is
a closed subset of a normed vector space and since E is a coercive functional, there
exist [23] J0 ∈ X and Γ > 0 such that

(3.14) inf
J∈X

E (J) = inf
{
E (J) : J ∈ X ∩BΓ (J0)

}
,

where BΓ (J0) is the closed (and bounded) ball of radius Γ and center J0. This is a
powerful result. What this tells us is that minimizing E over the unbounded set X can
be reduced to minimizing E over a bounded subset in X that could be much smaller
than X. All that remains to complete the proof of existence of a solution to problem
(3.12), (3.13) is to demonstrate the existence of a solution to the auxiliary problem

(3.15) min
J∈X∩BΓ(J0)

E (J) .

A useful variant of the generalized Weierstrass theorem stipulates that for a weakly
sequentially lower semicontinuous functional defined on a weakly sequentially com-
pact subset of a Hilbert space there exists at least one solution to the minimiza-
tion problem [4]. But we have already shown that E is a weakly sequentially lower
semicontinuous functional (see the discussion of problem (3.1), (3.2)). Consequently,
the existence of a solution to problem (3.15), (3.13) depends entirely on the demon-
stration that X ∩ BΓ (J0) is a weakly sequentially compact subset. But this, too, is
true because any bounded subset of a reflexive Banach space (e.g., a Hilbert space) is
also weakly sequentially compact [8]. Hence, assuming that X ∩BΓ (J0) is nonempty,
we are, from the preceding discussion, in a position to affirm the existence of at least
one global minimizer JE,P ∈ X ∩ BΓ (J0) for the auxiliary problem (3.15), (3.13).
However, by virtue of (3.14), this point JE,P is also the sought solution of problem
(3.12), (3.13), which completes our proof.

Unfortunately, though, we have yet to guarantee the uniqueness of this solution or
even write down a minimality condition that would yield this solution. We shall now
focus on trying to write down a necessary minimality condition whose solution would,
at least in principle, yield a candidate JE,P . The Fréchet derivative of the nonconvex

constraints is given by ∇J(J, G̃SJ) = 2G̃SJ. Now, let JE,P be a minimizer. In view of
the noted Fréchet differentiability of the objective functional and the constraints, the

continuity of their Fréchet derivatives, and the fact that ∇J [a
(j)
l,m − (B

(j)
l,m,J)]|J=JE,P

is surjective and the range of ∇J(J, G̃SJ)|J=JE,P is closed, there exist Lagrange mul-

tipliers χ ∈ R and c
(j)
l,m ∈ C such that [23]
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(3.16) �
[(

∇JL
(
JE,P , χ, c

(j)
l,m

)
, J − JE,P

)]
≥ 0 ∀J ∈ L2

(
V ; C3

)
,

where the generalized Lagrangian functional is given by

L
(
J, χ, c

(j)
l,m

)
≡ E (J) + χ

(
J, G̃SJ

)

+ 2�

⎧⎨
⎩

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)
l,m

[
a
(j)
l,m − (B

(j)
l,m,J)

]⎫⎬
⎭ .(3.17)

Condition (3.16), (3.17) reduces to
(3.18)

�

⎡
⎣
⎛
⎝JE,P + χG̃SJE,P −

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)
l,mB

(j)
l,m , J − JE,P

⎞
⎠
⎤
⎦ ≥ 0 ∀J ∈ L2

(
V ; C3

)
.

According to (3.18), to determine JE,P one needs to solve an infinite number of
equations with an infinite number of unknowns. That, of course, is not the case in
practical situations. For any real problem the radiation emitted by the source has a
maximum multipolarity lmax ∼ ka (< ∞). Thus for real problems one would need to
solve 2lmax (lmax +2)+4 integral equations with 2lmax (lmax +2)+4 unknowns. By all
standards this is a tedious task, even for small values of lmax. One should try to find
a more clever way of determining what the solution is. For instance, one could resort
to numerical techniques and algorithms available in the literature (see, e.g., [44] and
the references therein). In what follows we plan on adopting a similar approach that
combines analytical and numerical methods.

We shall assume that X �= ∅ and adopt partly analytical, partly numerical strate-
gies to find a candidate JE,P , which we proved exists, without having to solve a large
number of complicated equations. The “hybrid” approach below is very much in line
with the spirit of those adopted for this kind of problem. We shall also try to explore
some of the properties of the solution. Once a feasible point JE,P is found by means
of the technique below, one would substitute it into the derived minimality conditions
to check whether it satisfies these conditions.

Now let L be the generalized Lagrangian defined as

L
(
J, χ, c

(j)
l,m

)
≡ E (J) + χ

{
(J, G̃SJ) + 2�[P]

}

+ 2�

⎧⎨
⎩

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)
l,m

[
a
(j)
l,m − (B

(j)
l,m,J)

]⎫⎬
⎭ ,(3.19)

wherein the constraint on the reactive power is now written in such a way that it
permits the latter to have an arbitrary value �[P ] that is not necessarily zero.

The first variation of the last term in (3.19) is found from (2.11) and (2.12) to be

(3.20) χδ(J, G̃SJ) = 2�
[
χ(δJ, G̃SJ)

]
.
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It follows from (3.3), (3.4), and (3.20) that the first variation of the Lagrangian in
(3.19) is

(3.21) δL = 2�

⎡
⎣(δJ,J) + χ(δJ, G̃SJ) −

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m (δJ,B

(j)
l,m)

⎤
⎦ .

By equating the variation in (3.21) to zero, one deduces that the sought solution,
to be denoted as JE,P(r), must obey, within its support V , the relation

(3.22) JE,P(r) + χG̃SJE,P(r) =

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m B

(j)
l,m(r).

If χ = 0, then this approach coincides with the one given earlier, leading to the
minimum energy source in (3.5) (in such a situation, that source generates zero re-
active power), while for the more general case χ �= 0 the two formulations (and their
solutions) differ. However, we note that for certain peculiar constitutive-parameter
values the constraint is not active and therefore χ = 0. In that peculiar case the
minimum-energy sources are intrinsically resonant.

By letting the vector wave equation operator (∇×∇×− (k∗)
2
) = (∇×∇×−k2)

(the equality stems from the requirement that the substrate be lossless) act on both

sides of (3.22) and with the aid of the fact that the fields B
(j)
l,m are solutions of the

homogeneous wave equation associated to the same operator, one concludes that the
source JE,P(r) obeys the homogeneous wave equation

(3.23) ∇×∇× JE,P(r) −K2JE,P(r) = 0

in the interior of the source region V ; the quantity K which appears in (3.23) is a
modified wavenumber defined by

(3.24) K2 ≡ k2 − χμsω.

(Note that K quickly becomes purely imaginary as χ becomes large and positive.)
Now, the most general source that is confined within the spherical source volume

V and is a solution of (3.23) in the interior of V must admit the representation

(3.25) JE,P(r) =

2∑
j=1

∞∑
l=1

l∑
m=−l

v
(j)
l,mD

(j)
l,m(r),

where v
(j)
l,m are expansion coefficients that need to be determined (for the constraints

of the problem) and where

(3.26) D
(j)
l,m(r) =

⎧⎪⎨
⎪⎩

− η0

l(l+1)∇× [jl(Kr)Yl,m(r̂)], j = 1,

− iη0K
l(l+1)jl(Kr)Yl,m(r̂), j = 2.

From the formal similarity of B
(j)
l,m and D

(j)
l,m (cf. (2.19)) it follows at once from (3.6),

(3.7), (3.9), and (3.10) that the inner product

(3.27)
(
D

(j)
l,m,D

(j)
l,m

)
= p(j)

[
κ

(j)
l (k0a,Ka)

]2
,
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where

(3.28) p(j) =

⎧⎨
⎩

1, j = 1,

|K|2/k2
0, j = 2.

By substituting from (3.25) and (3.26) into (2.17) while using well-known orthog-
onality properties of the vector spherical harmonics Yl,m(r̂) and the associated vector
functions r̂ × Yl,m(r̂) one obtains

(3.29) JE,P(r) =

2∑
j=1

∞∑
l=1

l∑
m=−l

a
(j)
l,m

(B
(j)
l,m,D

(j)
l,m)

D
(j)
l,m(r),

where

(3.30) (B
(j)
l,m,D

(j)
l,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η2
0F

(1)
l

∫ a

0
dr
[
jl(kr)jl(Kr) + kKr2

l(l+1)Ul (kr)Ul (Kr)
]
,

j = 1,

η2
0F

(2)
l

k0K
l(l+1)

∫ a

0
drr2jl(kr)jl(Kr), j = 2.

Similarly to the integrals in (3.8), the integral associated with the j = 2 case in
(3.30) is calculable through the use of the first Lommel integral (cf., for instance, [6]).
The above inner product takes the form

(3.31) (B
(j)
l,m,D

(j)
l,m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η2
0kKa3F

(1)
l

l(l+1)(2l+1) [(l + 1)ψl−1 (ka,Ka) + lψl+1 (ka,Ka)] ,

j = 1,

η2
0k0Ka3F

(2)
l

l(l+1) ψl (ka,Ka) , j = 2,

where we have introduced the unitless quantity

ψl (ka,Ka) ≡ 1

a3

∫ a

0

drr2jl(kr)jl(Kr)

=
1

a (k2 −K2)
[Kjl(ka)jl−1(Ka) − kjl−1(ka)jl(Ka)] .(3.32)

(Note that (3.32) is valid only for k �= K, i.e., for χ �= 0. The case k = K, i.e., for
χ = 0, has already been discussed.)

The source energy corresponding to (3.29) is of the form

(3.33) EE,P ≡ (JE,P ,JE,P) =

2∑
j=1

∞∑
l=1

l∑
m=−l

(D
(j)
l,m,D

(j)
l,m)

|(B(j)
l,m,D

(j)
l,m)|2

|a(j)
l,m|2.

Note that the above results (3.29) and (3.33) do not assume any particular value for
� [P].

We need to incorporate the reactive power constraint, i.e., (2.11), which defines
the value of the remaining Lagrange multiplier χ. Since the desired reactive power is
specified to be zero, the problem now is to find an expression for the reactive power
in terms of χ from which one can deduce the value of χ which minimizes the source
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energy under the constraint � [P] = 0. This value of χ will be called χ0. A number of
partly analytical, partly numerical strategies can be implemented to accomplish this
step.

One such approach, which generalizes the development for the free-space case
in [32], consists of determining the field E(r) generated by the source JE,P(r) in
the interior of the source region V . In particular, after evaluating the field, one can
compute the interaction power via (2.8) and (2.9) and require that its imaginary part
vanish. In particular, plotting � [P] and EE,P versus χ one can finally select the value
of χ which yields minimum EE,P out of all values of χ for which � [P] = 0. We adopt
this approach next.

By rewriting (3.23) as

(3.34)
(
∇×∇×−k2

)
[JE,P(r) − iχE(r)] = 0,

where we have borrowed from (2.3), one concludes that the field E(r) must admit in
the interior of the source region V an expansion of the form

(3.35) E(r) =
1

iχ

⎡
⎣JE,P(r) +

2∑
j=1

∞∑
l=1

l∑
m=−l

u
(j)
l,mB

(j)
l,m(r)

⎤
⎦ , r ∈ V,

where the expansion coefficients u
(j)
l,m need to be determined taking into account conti-

nuity of the tangential components of the field on the boundary ∂V ≡ {r ∈ R
3 : r = a}

of V . Continuing with this idea, it is not hard to show from these developments, and by
straightforward generalization of the discussion of the free-space version of the prob-
lem in [32], equations (30)–(42), that the complex interaction power can be expressed
as

(3.36) P =
2∑

j=1

∞∑
l=1

l∑
m=−l

q
(j)
l |a(j)

l,m|2,

where

(3.37) q
(j)
l =

i

2χ

⎡
⎢⎣

(
D

(j)
l,m,D

(j)
l,m

)
∣∣∣(B

(j)
l,m,D

(j)
l,m

)∣∣∣2 +
u

(j)
l,m

a
(j)
l,m

⎤
⎥⎦ ,

where the quantity u
(j)
l,m/a

(j)
l,m is given by

(3.38)
u

(j)
l,m

a
(j)
l,m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

F
∗(1)
l k∗Ul(k∗a)

[
−ik0

η0
χl(l + 1)Vl(k0a) − KUl(Ka)(

B
(1)
l,m,D

(1)
l,m

)
]
,

j = 1,

1

F
∗(2)
l k0jl(k∗a)

[
−ik0

η0
χl(l + 1)h

(+)
l (k0a) − Kjl(Ka)(

B
(2)
l,m,D

(2)
l,m

)
]
,

j = 2,

where the radial functions Ul and Vl have already been defined in (2.21) and (2.22),
respectively.
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Thus the reactive power of the source JE,P is given by

(3.39) � [P] =

2∑
j=1

∞∑
l=1

l∑
m=−l

g
(j)
l |a(j)

l,m|2,

where

(3.40) g
(j)
l =

1

2χ

⎧⎪⎨
⎪⎩

(
D

(j)
l,m,D

(j)
l,m

)
∣∣∣(B

(j)
l,m,D

(j)
l,m

)∣∣∣2 + �
[
u

(j)
l,m

a
(j)
l,m

]⎫⎪⎬
⎪⎭ .

By taking the real part of the complex interaction power, as given by (3.36)–(3.38),
one also recovers (2.10), which is the well-known expression for the radiated power in
terms of the multipole moments.

Equations (3.38)–(3.40) relate χ directly to � [P], as desired. For a certain prob-

lem, where a
(j)
l,m and � [P] are given, one can compute the values of χ for which

� [P] = 0 by using these expressions, and pick, out of those values, the one which
minimizes the functional energy in (3.33). By substituting that value of χ (i.e., χ0)
into (3.24), (3.26), and (3.29) one arrives at the desired solution.

Let

(3.41) Ξ ≡ {χ ∈ R : � [P (χ)] = 0} .

It is found, numerically, that (see section 4) the minimum source energy is achieved
for the value of χ that is closest to χ = 0, i.e.,

(3.42) |χ0| = inf
χ∈Ξ

{|χ|} .

It appears only natural to assume that an increase in the source energy from EME

should correspond to χ0 (and any other value of χ ∈ Ξ for that matter). This would
be understood, intuitively, as a cost that one would have to pay to realize a tuned
antenna. The numerical simulations suggest that this, in fact, is the case: Substituting
any nonzero value χ ∈ Ξ in the expression for EE,P yields a value that is larger
than EE,P |χ=0 = EME . Does this mean that EME is a lower bound of EE,P and that

EE,P (χ0) is a global minimum? Before we examine this question we note that the
above observations remind us of (3.14). Indeed, a convenient way of viewing these
observations is to think of the origin of the sphere BΓ (J0) � JE,P as the point
J0 = JME and to think of its radius as Γ ≥ |χ0|.

Supposing that EE,P (χ0) corresponds to a feasible point, let us try to derive a
condition for it to be a global minimum. By definition, EE,P (χ0) is said to be a global
minimum when

(3.43) EE,P (χ) ≥ EE,P (χ0) ∀χ ∈ Ξ.

If the inequality is strict, then the global minimum is also unique.
It follows from (2.17), (2.11), and (3.22) that

EE,P − 2χ�[P] =

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m (JE,P ,B

(j)
l,m)

=

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m a

(j)∗
l,m .(3.44)
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Thus if we require � [P (χ)] = 0, (3.44) yields

(3.45) EE,P =

2∑
j=1

∞∑
l=1

l∑
m=−l

c
(j)∗
l,m a

(j)∗
l,m .

Furthermore, by projecting both sides of (3.22) onto the functions B
(j)
l,m while recalling

(2.17) and (3.6), one obtains

(3.46) a
(j)
l,m + χ(B

(j)
l,m, G̃SJE,P) = c

(j)∗
l,m [σ

(j)
l ]2.

By substituting from this result into (3.45), one obtains

(3.47) EE,P = EME + χ

2∑
j=1

∞∑
l=1

l∑
m=−l

(B
(j)
l,m, G̃SJE,P)a

(j)∗
l,m

[σ
(j)
l ]2

,

where χ ∈ Ξ. Upon substituting JE,P(r) from (3.29) into (3.47) and using standard
orthogonality properties of the spherical harmonics, one obtains

(3.48) EE,P = EME + χ

2∑
j=1

∞∑
l=1

l∑
m=−l

(B
(j)
l,m, G̃SD

(j)
l,m (χ))

(B
(j)
l,m,D

(j)
l,m (χ))

|a(j)
l,m|2

[σ
(j)
l ]2

.

Expression (3.48) for the source energy directly assumes that � [P] = 0, while expres-
sion (3.33) holds for any value of the reactive power � [P].

It follows from (3.43) and (3.48) that the condition for EE,P (χ0) to be a global
minimum is given by

(3.49)
2∑

j=1

∞∑
l=1

l∑
m=−l

{
χ

(B
(j)
l,m, G̃SD

(j)
l,m (χ))

(B
(j)
l,m,D

(j)
l,m (χ))

− χ0

(B
(j)
l,m, G̃SD

(j)
l,m (χ0))

(B
(j)
l,m,D

(j)
l,m (χ0))

}
|a(j)

l,m|2

[σ
(j)
l ]2

≥ 0

for any value of χ ∈ Ξ. Condition (3.49) is a necessary and sufficient condition for
EE,P (χ0) to be a global minimum. The way it should be used is as follows. For a
given substrate, solve � [P (χ)] = 0 for χ (where � [P (χ)] is given by (3.38)–(3.40)).
If condition (3.49) is satisfied for all values of χ ∈ Ξ, then EE,P (χ0) is a global
minimum. If it is not satisfied for at least one value of χ ∈ Ξ, then EE,P (χ0) is not a
global minimum (but it may still be a local minimum).

Condition (3.49) was written based on the presumption that EE,P (χ0 �= 0) was a
global minimum. For EE,P (χ0 = 0) = EME , condition (3.49) reduces to

(3.50) χ

2∑
j=1

∞∑
l=1

l∑
m=−l

(B
(j)
l,m, G̃SD

(j)
l,m)

(B
(j)
l,m,D

(j)
l,m)

|a(j)
l,m|2

[σ
(j)
l ]2

≥ 0 ∀χ ∈ Ξ.

4. Computer simulation study. The previous theory and algorithms are ap-
plied next to elucidate the effect of the antenna-embedding medium on radiation
performance for two classes of antennas: electrically small and larger (resonant) an-
tennas.
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Fig. 4.1. Free-space singular values [σ
(1)
l (x = x0, εr = +1 = μr)]2 versus l for a few represen-

tative values of x0 ≡ k0a/π. (The unit of the singular values is V 2m/A2.)

4.1. Minimum energy sources. It follows from (3.11) that, generally, the

larger the singular values [σ
(j)
l ]2, the smaller the minimum source energy EME re-

quired for the launching of a given radiation pattern with a source of a given size.

The singular values [σ
(j)
l (k0 = k, εr = +1 = μr)]

2 correspond to the source in free

space, that is, without the substrate. Thus, the larger the singular values [σ
(j)
l ]2 for

a given substrate wavenumber ka relative to the corresponding free-space values, the
greater the associated enhancement, due to the substrate, of radiation of the lth
multipole order field with given resources. It is thus important to understand the

dependence of the singular values [σ
(j)
l (k0a, ka, εr, μr)]

2 on k0a, ka, εr, μr, and l, for
both the electric (j = 1) and the magnetic (j = 2) cases. Large singular values, such
as resonances or peaks in the plots of the singular values versus these variables, will
indicate enhanced radiation for such operational modes or conditions, with the given
resources. This aspect is investigated numerically next.

Before engaging in the numerical illustrations we make some remarks: (1) the mul-
tipolarity l is handled in the plots as a continuous variable to facilitate understanding
of the curves, yet the meaningful results correspond solely to the discrete values of
l; (2) in the simulations the size parameter (radius) a of the antenna including the
substrate has been set to unity, i.e., a = 1 meter; and (3) in the plots and associ-
ated discussion we consider the normalized wavenumbers defined by x ≡ ka/π and
x0 ≡ k0a/π. The normalized wavenumber x represents the wavenumber of the field
in the material, hence, the effective electric size in the material, while the normalized
wavenumber x0 measures the respective size in free space.

4.1.1. Behavior of the singular values [σ
(j)
l ]2. Figure 4.1 shows, for different

antenna sizes, the free-space singular values [σ
(1)
l (x0 = x, , εr = 1 = μr)]

2. No local
maxima or resonances are seen for the free-space cases; in particular, in those cases the
singular value spectrum decays exponentially. Figure 4.2 shows, for an antenna whose
size corresponds to that of a quarter-wave antenna in free space (x0 = 1/4), plots of

the normalized electric singular values [�
(1)
l (x0, x, εr, μr)]

2 ≡ [σ
(1)
l (x0 = 1/4, x, , εr =
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Fig. 4.2. Normalized singular values [�
(1)
l ]2 versus l for x0 = 1/4 (quarter-wave case), εr = +1,

and a few representative values of x.

1)]2 / [σ
(1)
l (x0 = 1/4 = x, , εr = 1 = μr)]

2 versus l, parameterized by the normal-
ized wavenumber in the substrate x. From now on, the normalized singular values

[�
(j)
l (x0, x, εr, μr)]

2 defined as

(4.1)
[
�
(j)
l (x0, x, εr, μr)

]2
≡

[
σ

(j)
l (x0, x, εr, μr)

]2
[
σ

(j)
l (x0 = x, , εr = 1 = μr)

]2
will be referred to simply as singular values, unless otherwise specified. The singular
value spectrum plots for the larger x values considered (x = 5 and 10) reveal well-
defined resonances (local peaks). The dominant resonances for these larger x values
occur around l ∼ π. In fact, the resonances in question appear to arise only when
x � 1. Overall, it is seen that as the material becomes electromagnetically denser, i.e.,
as the substrate normalized wavenumber x increases, the magnitudes of the singular
values become accordingly larger. Since electrically small antennas such as the one
considered here can effectively radiate only the lowest multipole orders (such as the
dipolar mode), then of particular interest for small antenna applications is the antenna
substrate-induced enhancement for low multipolarity l. The plots reveal that the
dipolar-mode (l = 1) singular values can be significantly higher for the embedding
substrate case than for the free-space case. The improvement for x = 5 and 10 relative
to the free-space case is of more than 3 orders of magnitude (decades). This means
that the magnitude of the exciting current or source required for launching of the given
dipolar field can be made correspondingly smaller than in free space by embedding the
antenna in a high wavenumber or electromagnetically dense substrate. Alternatively,
for fixed source energy, the antenna size parameter a can be reduced relative to its
value without the embedding substrate. The improvement for l = 2 and 3 associated
to the larger wavenumber cases (x = 5 and 10) is also noticeable.

The respective plot for the case of a resonant or electrically large x0 = 10 antenna
is shown in Figure 4.3. The respective magnetic singular value spectra are shown in
Figures 4.4–4.5. Many of the key features outlined above in the explanation of the
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Fig. 4.3. Normalized singular values [�
(1)
l ]2 versus l for x0 = 10 (resonant or electrically large

antenna), εr = +1, and a few representative values of x.
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Fig. 4.4. Normalized singular values [�
(2)
l ]2 versus l for x0 = 1/4 (quarter-wave case), εr = +1,

and a few representative values of x.

particular electric quarter-wave antenna case also arise for these other cases. Yet other
aspects become salient. A summary of the main results is given next, along with some
of the former observations, as general conclusions learned from these simulations as a
whole.

It is seen that, for sufficiently large multipolarity l (i.e., for l � 6), and for the
values of x0 considered which comprise both small and large or resonant antennas,
the singular values are consistently higher for the denser substrates (larger x) than
for the less dense substrates including the free-space (x = x0) case. This is true for
both electric (j = 1) and magnetic (j = 2) modes. As we had indicated for the
particular electric quarter-wave antenna case, generally for x = x0 (no embedding
medium or free-space case), the singular value spectrum decays exponentially with
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Fig. 4.5. Normalized singular values [�
(2)
l ]2 versus l for x0 = 10 (resonant or electrically large

antenna), εr = +1, and a few representative values of x.

l, i.e., without resonances. This decay is more or less exponential for the smaller an-
tenna cases. For larger antennas the singular values remain more or less within a given
order of magnitude until about the cutoff l ∼ k0a (this value approximately corre-
sponds to the inflection point in the singular value spectrum curve for the free-space
case), but this cutoff is clearly higher (includes higher order multipoles) for the large
wavenumber cases. (Note that in order to see this visually one would need to plot

not the normalized singular values [�
(j)
l ]2 but the singular values [σ

(j)
l ]2 themselves.

Yet a careful comparison of normalized values in Figures 4.2–4.5 and the illustra-
tive free-space values in Figure 4.1 leads to the same conclusion.) This further shows
performance enhancement via larger wavenumber or electromagnetically denser sub-
strates since higher multipoles represent higher antenna directivity (higher level of
details or narrower width in the radiation pattern). It is also important to note that
the enhancement in the singular values due to larger substrate wavenumber k holds
for both small and large multipolarities l.

Having shown some of the radiation enhancing possibilities offered by electromag-
netically denser substrates, we discuss next the question of local optimal selection of
the wavenumber x. Consider, for example, a half-wave antenna (so that x0 = 1/2) em-
bedded in a substrate with εr = 1 and launching purely magnetic modes (j = 2). Local

maxima of the respective normalized singular values [�
(2)
l (x0 = 1/2, x, εr = 1, μr)]

2

for l = 1, 2, and 3 were found to occur as follows: for the emission of dipole radia-

tion (l = 1) at x � 1.430, with an enhancement or gain [�
(2)
l (x0 = 1/2, x = 1.430,

εr = 1, μr)]
2 � 3.110 × 105, relative to free space; for the emission of quadrupole

radiation (l = 2) at x � 1.833, with a gain relative to free space of 1.925 × 107; and
for the emission of octupole radiation (l = 3) at x � 2.224, with a gain of 1010. For
antennas embedded in denser substrates the numerical study indicates, however, that
the improvement attained is comparatively marginal. For example, the gain associ-
ated to going from the aforementioned values of x to the local maxima at x ∼ 10 is
only 44.03, 23.86, and 5.55 for the dipole, quadrupole, and octupole radiation cases,
respectively. Conversely, a half-wave antenna radiating purely electric modes instead
displays a significantly different behavior in this regard, and the overall improve-
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ments of the substrate are also more significant. Thus for modest values of x, a locally
maximum improvement in the radiation ability of the half-wave antenna can be at-
tained for the following values: for electric dipole radiation at x � 0.946 with a gain

[�
(1)
1 (x0 = 1/2, x = 0.946, εr, μr)]

2 � 5.36; for quadrupole radiation at x � 1.362
with a gain relative to free space of 163.6; for octupole radiation at x � 1.800 with a
gain of 2.952 × 104. For denser materials the enhancement relative to free space can

be significantly larger. Thus numerical maximization of [�
(1)
l (x0, x, εr, μr)]

2 yields the
following gains associated to going from the aforementioned values of x to the local
maxima at x ∼ 10: 126, 70.81, and 33.56 for the dipole, quadrupole, and octupole
radiation cases, respectively. The first two of those numbers are relatively significant
enhancements, yet for much denser materials the enhancements are less dramatic,
though still meaningful.

A legitimate question arises as to the physical reason behind the appearance of
these resonances in the spectra of the non–free-space singular values. As noted earlier,

a careful examination of the quantities F
(j)
l defined in (2.20) shows that these quanti-

ties are essentially the Mie amplitudes, F
(1)
l being the amplitudes of the electric modes

and F
(2)
l those of the magnetic modes [35, 38]. The question that arises now is, Are

those resonant peaks, which correspond to local maximum enhancement, related to
Mie resonances? Before answering this question we review very briefly the features of
Mie resonance that are most relevant to our results. Mie resonances are characterized
by the vanishing of the denominators of the amplitudes F

(j)
l , or, more realistically,

by the requirement that those denominators be minimum [38]. Thus the resonance
conditions can be cast in the form of approximate transcendental equations, viz.,

(4.2)
√
εr

Vl(x0)

h
(+)
l (x0)

� √
μr

Ul(x)

jl(x)

for the electric modes, and

(4.3)
√
μr

Vl(x0)

h
(+)
l (x0)

� √
εr
Ul(x)

jl(x)

for the magnetic modes, where Ul and Vl are the functions defined in (2.21) and (2.22).
Because of the presence of Bessel functions, (4.2) and (4.3) admit a discrete, albeit
infinite, set of solutions. These solutions correspond to the so-called Mie resonances.

Now we can go back to the question of how the observed resonant peaks which
correspond to local maximum enhancement relate to Mie resonances. Singular values

[�
(j)
l (x0, x, εr, μr)]

2, defined by (4.1), (3.7), and (3.8), are composed not only of the

quantities |F (j)
l |2, defined in (2.20), but also of another term, viz., [κ

(j)
l (x0, x)]2,

defined in (3.8), and unless these latter quantities are sufficiently well behaved,
one cannot conclude anything as to the relationship of the resonant values of

[�
(j)
l (x0, x, εr, μr)]

2 to Mie resonances. Incidentally, the quantities [κ
(j)
l (x0, x)]2, where

x ∈ R, are essentially nonpathological combinations of the spherical Bessel functions
jl (λa) which are well behaved for all integer values of l and λ ∈ R [1] (which represent
the most general cases considered in this work). Hence, one can confidently claim that
the observed peaks in the spectrum of the singular values are primarily due to the
phenomenon of Mie resonance and maximum enhancement conditions are effectively
summarized by the two conditions (4.2) and (4.3). Therefore, for a given antenna
radiating at a prescribed frequency, the discrete set of solutions x corresponds to a
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Fig. 4.6. Logarithmic mesh plot of the source energy E(j=1=l)
ME versus x0 and x for a double-

positive material with εr = +1.

set of constitutive parameters εs and μs that maximize the radiated electromagnetic
fields. As their amplitudes increase, these radiated fields draw energy from the em-
bedding medium. But because this medium is of finite extent, the energy extraction
process saturates, ultimately, and as a result of this saturation the fields fall short of
effectively “blowing up.”

4.1.2. Further details: Electric dipole radiation. This part examines in
greater detail the fundamental electric dipole radiation case, in particular, the multi-

pole moment a
(j)
l,m = 1 if j = 1 = l and m = 0, and a

(j)
l,m = 0 otherwise. The minimum

source energy reduces in this case to E(j=1=l)
ME (x0, x, εr, μr) = [σ

(1)
1 (x0, x, εr, μr)]

−2.

Figure 4.6 shows a mesh plot of the minimum source energy E(j=1=l)
ME versus the nor-

malized wavenumbers x0 and x for a double-positive substrate material with εr = 1.
For a double-negative substrate material having εr = −1, the numerical study shows
(plots not shown) that the minimum source energy displays a very similar, though not
completely symmetrical, behavior when x changes sign, for a given x0. Consequently,

source energy E(j=1=l)
ME is not an even function of x, and hence distinguishes between

double-positive and double-negative embedding substrates. Figure 4.7 shows slices or
cross-sections of the mesh plot in Figure 4.6 for particular values of the free-space nor-
malized wavenumber x0. Similar plots (results not shown) were obtained for εr = −1
and negative x. Figure 4.6 also shows that, in general terms, source energy tends to
decrease as the size of the antenna increases; this is also true when x is negative. Thus
as the antenna size increases it tends to be easier to distribute the source currents in
a more efficient way. As shown in Figure 4.7, for small antennas the source energy
exhibits its first local minima at |x| ∼ 1. In particular, for x0 = 1/4 (quarter-wave

antenna case) and x0 = 1/2 (half-wave case) the first local minimum of E(j=1=l)
ME ap-

pears for positive x at x � 0.960 and x � 0.946, respectively, and for negative x at
x = −0.760 and x = −0.860, respectively. For x0 = 1 (full-wave antenna case) the first

local minimum of E(j=1=l)
ME appears for positive x at x � 1.155 and for negative x at

x � −1.200. However, for large antennas a slightly more subtle behavior is observed.
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Fig. 4.7. Logarithmic plot of the source energy E(j=1=l)
ME versus x for εr = +1 and some repre-

sentative values of x0 for a double-positive medium.

If |x| < x0, the local minima of E(j=1=l)
ME appear at |x| ∼ (2n + 1) /2, n = 1, 2, 3, . . . ,

while if |x| > x0, the minima appear at |x| ∼ n, n = 1, 2, 3, . . . , with the least min-
imum still belonging to the smallest antenna (cf. Figure 4.7). These rules of thumb
depend on the particular combination of constitutive parameters εr and μr under in-
vestigation. For example, it was found that for a double-positive material with μr = 1

the rules are interchanged; i.e., now, if x < x0, the local minima of E(j=1=l)
ME appear

at x ∼ n, n = 1, 2, 3, . . . , while if x > x0, the minima appear at x ∼ (2n + 1) /2,
n = 1, 2, 3, . . . .

Finally, to further illustrate the possibility of reducing radiator size while achiev-
ing a given radiation pattern with prescribed source resources, specifically, source
energy, we considered the free-space wavenumber k0 = π/4 and sought values of the
size parameter a for which the minimum source energy of a source embedded in a
medium having k = 10π renders the same source energy as a unit-valued a embedded
in free space, for which k = k0 = π/4. For an embedding substrate with εr = 1 the
first such values of a are 0.098, 0.101, 0.196, 0.204, . . . (units of meter), which are seen
to occur in pairs around 0.1, 0.2, 0.3, etc. This is not surprising in light of the for-
mula introduced earlier; in particular, the locally optimal values of ka are ka ∼ nπ,
n = 1, 2, 3, . . . , that is, a ∼ 1/10, 2/10, 3/10, . . . . The values of the size parameter
a for which the source energy in question coincides with the free-space case source
energy for a larger source having unit-valued radius then occur in pairs around these
optimal values, which completes the picture.

4.2. Tuned minimum energy sources: Additional zero reactive power
constraint. Next we consider minimum energy sources subjected to the additional
zero reactive power constraint. In particular, we require the reactive power to vanish,
that is, � [P] = 0. As in the preceding subsection, the focus is the fundamental case

of an electric dipole radiator (specifically, a
(j)
l,m = 1 if j = 1 = l and m = 0, and

a
(j)
l,m = 0 otherwise). Particular attention is given to the quarter-wave and the half-

wave antenna cases, though some results related to larger antennas are also presented.
As in [32], we define the normalized reactive power
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Fig. 4.8. Plot of the normalized reactive power g
(1)
1 versus χ for x0 = 1/4 = x and εr = +1.

(4.4) g
(1)
1 ≡ g

(1)
1

� [P]
= η0g

(1)
1 ,

where � [P] = 1/2η0 is the radiated power and where the free-space wave impedance

η0 =
√
μ0/ε0 � 120πΩ. We define χ0 as the Lagrange multiplier value χ which annuls

the normalized reactive power g
(1)
1 , i.e., g

(1)
1 (χ) |χ=χ0 = 0, and for which the resulting

source energy is minimal among all such zero reactive power Lagrange multiplier
values. The value in question was consistently found to occur in the vicinity of χ = 0.
This is not surprising since the absolute or unconstrained minimum energy source

and its energy E(j=1=l)
ME correspond to χ = 0; that is, the minimum energy source is

min E(j=1=l)
EP ≡ limχ→0 E(j=1=l)

EP (x0, x, εr, μr, χ) = E(j=1=l)
ME (see section 3).

Figure 4.8 is a plot of the normalized reactive power g
(1)
1 versus the Lagrange

multiplier χ for a quarter-wavelength antenna, embedded in substrates with εr = 1 and
x = 1/4. The Lagrange multiplier value χ0 is sought for which the respective source
energy (shown in Figure 4.9) is minimized among all χ values rendering zero reactive
power. Tables 4.1, 4.2, 4.3, and 4.4 summarize the values of χ0, source energy for

χ = χ0 (i.e., E(j=1=l)
E,P ), and absolute minimum energy E(j=1=l)

ME for the case addressed
in these plots, as well as for other cases.

One notes, from these results and other plots not shown due to space constraints,

that the minimum energy solution J
(j=1=l)
ME yields minimum source energy E(j=1=l)

ME

or current level, but its reactive power is comparable to the maximum, saturated
value corresponding to χ � 1 for the double-positive materials and to χ � −1
for double-negative materials (cf. Figure 4.8). On the other hand, the new solution

J
(j=1=l)
E,P corresponding to χ0 yields zero reactive power at the expense of a raised

source energy or current level (cf. Tables 4.1, 4.2, 4.3, and 4.4). The difference be-

tween the source energies E(j=1=l)
EP and E(j=1=l)

ME of the two sources JE,P and JME ,
respectively, is the source energy of the additional nonradiating part contained in
JE,P whose role in the new source is to counteract the reactive power of the minimum
energy source alone. It decreases as the electromagnetic density of the substrate in-
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Fig. 4.9. Plot of the source energy E(j=1=l)
EP versus χ for x0 = 1/4 = x and εr = +1.

Table 4.1

Results of the numerical study for the constrained quarter-wave antenna embedded in a double-
positive material with εr = +1. (The unit of the source energies is A2/m.)

x χ0[10−4] E(j=1=l)
EP (χ0) min E(j=1=l)

EP
1/4 −421.2 4.637 × 10−4 1.161 × 10−4

1/2 −5.803 8.031 × 10−5 8.014 × 10−5

0.511 0 7.809 × 10−5 7.809 × 10−5

1 −44.52 2.090 × 10−5 2.206 × 10−6

5 −8.039 4.782 × 10−6 7.094 × 10−8

10 −4.008 2.486 × 10−6 1.763 × 10−8

Table 4.2

Results of the numerical study for the constrained half-wave antenna embedded in a double-
positive material with εr = +1. (The unit of the source energies is A2/m.)

x χ0[10−4] E(j=1=l)
EP (χ0) min E(j=1=l)

EP
1/4 −899.5 3.087 × 10−4 5.854 × 10−5

1/2 −80.37 4.857 × 10−5 4.191 × 10−5

1 −35.08 1.513 × 10−5 8.824 × 10−6

5 −13.51 3.690 × 10−6 2.838 × 10−7

10 −7.234 2.081 × 10−6 7.051 × 10−8

creases, this being true for both double-positive and double-negative substrates. We
found that, for x0 = 1/4 and 1/2, performances better than those of the free-space
cases (i.e., for which k = k0 and εr = 1 = μr) can be achieved (cf. Tables 4.1, 4.2, 4.3,

and 4.4, though for the sake of space the energy difference E(j=1=l)
EP (χ0)−min E(j=1=l)

EP
is not explicitly displayed in the tables). Superior performance can also be obtained
by means of a judicious choice of the substrate constitutive properties, as we explain
below. In addition to this, we note that the minimum of the energy decreases as the
electromagnetic density of the substrate increases, whether the substrate is double-
positive or double-negative. In Figure 4.9 it is clear that as χ → 0 the source energy
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Table 4.3

Results of the numerical study for the constrained quarter-wave antenna embedded in a double-
negative metamaterial with εr = −1. (The unit of the source energies is A2/m).

x χ0[10−4] E(j=1=l)
EP (χ0) min E(j=1=l)

EP
−1/4 · · 3.071 × 10−5

−1/2 · · 1.462 × 10−5

−1.338 0 7.980 × 10−5 7.980 × 10−5

−1 24.27 6.288 × 10−5 2.540 × 10−5

−5 7.218 1.708 × 10−5 8.167 × 10−7

−10 3.757 9.392 × 10−6 2.029 × 10−7

Table 4.4

Results of the numerical study for the constrained half-wave antenna embedded in a double-
negative metamaterial with εr = −1. (The unit of the source energies is A2/m.)

x χ0[10−4] E(j=1=l)
EP (χ0) min E(j=1=l)

EP
−1/4 · · 3.718 × 10−5

−1/2 · · 2.554 × 10−5

−1 37.88 2.696 × 10−5 1.462 × 10−5

−5 13.74 6.821 × 10−6 4.702 × 10−7

−10 7.304 3.825 × 10−6 1.168 × 10−7

E(j=1=l)
E,P reaches an absolute minimum min E(j=1=l)

EP , as expected. This minimum
is not the same for double-positive materials and double-negative metamaterials
(cf. Tables 4.1, 4.2, 4.3, and 4.4), as we discussed earlier. Interestingly, the cancel-
lation of the reactive power is not always possible. For instance, for a quarter-wave

antenna and for εr = 1, the equation g
(1)
1 (χ) |χ=χ0

= 0 admits no solutions if x = −1/4
or −1/2. (This is also true for x0 = 1/2 and 1.)

Furthermore, it also follows that, if one allows the electromagnetic properties of
the embedding substrate (i.e., εr and μr) to vary, then one could make the reactive
power vanish for χ0 = 0, this being a matching condition under which the minimum
energy sources are not only of local minimum energy (see below) but also self-matched
to resonance. Let us illustrate this for a quarter-wavelength antenna. For a given
positive relative electric permittivity, for instance, εr = 1, we find that the matching
condition mentioned above is satisfied for x � 0.511, i.e., in this case εr = 1 and
μr � 4.18. Now, for a given negative relative electric permittivity, for instance, εr =
−1, we find that the matching condition is satisfied for x � −1.338, i.e., in this case
εr = −1 and μr = −28.64. A word of caution is necessary at this point. From the

definition itself of the abovementioned matching, for χ0 = 0 one obtains E(j=1=l)
E,P =

min E(j=1=l)
E,P (cf. Tables 4.1 and 4.3). Yet one must not be lured into thinking that

the substrate constitutive properties εr and μr associated to the matching cases must

correspond to global minima for E(j=1=l)
E,P , i.e., that they represent the best substrate

values. This is very clearly illustrated in Tables 4.1 and 4.3 where for x = 1, 5, and 10

in Table 4.1 and for x = −1, −5, and −10 in Table 4.3 one has E(j=1=l)
E,P |χ0 	=0 <

E(j=1=l)
E,P |χ0=0. In other words a quarter-wavelength antenna embedded in substrates

having those values of x as their electromagnetic densities exhibits source energies
smaller than those exhibited by the antenna when it is embedded in a substrate
whose constitutive parameters satisfy the matching condition.



106 E. A. MARENGO, M. R. KHODJA, AND A. BOUCHERIF

Appendix A. Wavefunctions B
(j)
l,m for piecewise-constant radially sym-

metric backgrounds. The aim of this appendix is to show that the multipole mo-

ments a
(j)
l,m are given by (2.17) with the wavefunctions B

(j)
l,m given by (2.19) and (2.20).

The manipulations below rely on (2.13) and (2.14) and the concept of reciprocity. The
latter can be stated as follows [7]: The reaction (coupling) RE→J0 of the field E pro-
duced by a source J on another source J0, given by

(A.1) RE→J0
=

∫
drE(r) · J0(r),

is equal to the reaction of the field E0 produced by the source J0 on the source J, in
particular,

(A.2) RE0→J =

∫
drE0(r) · J(r) = RE→J0 .

To evaluate the field due to a current distribution J(r) that is embedded in the
piecewise-constant radially symmetric background of interest, we consider, without
loss of generality, the following two classes of canonical sources:

(A.3)
[
J

(1)
l,m

]
0
(r) = δ(r −R)r̂ × Yl,m(r̂)

and

(A.4)
[
J

(2)
l,m

]
0
(r) = δ(r −R)Yl,m(r̂),

where in both expressions R > a represents the radius of the helper source centered

around the origin. (Ultimately, the multipole moments a
(j)
l,m are expected to, and in

fact will, turn out to be independent of R.) The justification for the above consider-
ations relies on two results: (1) the transverse component of an arbitrary vector field
on the spherical surface of radius R > a centered about the origin is uniquely charac-
terized by its expansion in terms of the vector spherical harmonics Yl,m(r̂) and their
associated vector functions r̂×Yl,m(r̂), and (2) the multipole moments characterizing
any electric field outside the support of the emitting sources is uniquely determined
by the tangential component of this field on a sphere totally enclosing the support of
the emitting sources (as noted in section 2).

The field [E
(j)
l,m]inc that would be produced by the source [J

(j)
l,m]0 in (A.4) if it were

in free space (this will be the incident field in the following) is given by

[
E

(j)
l,m

]
inc

=

∫
drḠ0(r, r

′) ·
[
J

(j)
l,m

]
0
,

where Ḡ0(r, r
′) is the multipole representation of the free-space electric dyadic Green’s

function [39], viz.,

Ḡ0(r, r
′) =

∞∑
l=1

l∑
m=−l

−ωμ0

k0l (l + 1)

{
k2
0 [jl(k0r<)Yl,m(r̂<)]

[
h

(+)
l (k0r>)Y∗

l,m(r̂>)
]

+ ∇× [jl(k0r<)Yl,m(r̂<)]∇×
[
h

(+)
l (k0r>)Y∗

l,m(r̂>)
]}

+
i

ωε0
r̂r̂δ (r − r′) .(A.5)
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The < (>) subscript designates the smaller (larger) of r and r′.

For r < R the field [E
(1)
l,m]inc is found to be given by

(A.6)
[
E

(1)
l,m

]
inc

(r) = τl(k0, R)∇× [jl(k0r)Yl,m(r̂)],

where we have defined

(A.7) τl(k0, R) ≡ −η0k0R
2Vl (k0R) .

Along analogous lines, the (incident) field [E
(2)
l,m]inc produced by the source [J

(1)
l,m]0 in

(A.3) in free space is found, for r < R, to be given by

(A.8)
[
E

(2)
l,m

]
inc

(r) = ζl(k0R)jl(k0r)Yl,m(r̂),

where we have introduced

(A.9) ζl(k0R) ≡ −η0 (k0R)
2
h

(+)
l (k0R).

The obtainment of the above results requires the use of orthogonality properties of the
vector spherical harmonics Yl,m(r̂) and the associated vector functions r̂ × Yl,m(r̂).

Introducing the index of refraction n =
√
μsεs/

√
μ0ε0 =

√
μrεr, the evaluation

of the total fields [E
(j)
l,m]0, j = 1, 2, associated with these sources for r < R is seen

from (1.1), (1.2), (2.1)–(2.3) to correspond to the solution of the forward scattering
problem associated for r < R with the equation

(A.10)
[
∇2 + k2

0Θ(r − a) + n2k2
0Θ(a− r)

] [
E

(j)
l,m

]
0
(r) = 0

upon excitation by the incident fields [E
(j)
l,m]inc.

The total (incident plus scattered) field [E
(1)
l,m]0 must be, due to considerations of

causality (in the scattered field) and well-behavedness of the interior field for r < a,
of the form
(A.11)

[
E

(1)
l,m

]
0
(r) =

⎧⎪⎨
⎪⎩

∇×
[
τl(k0, R)jl(k0r)Yl,m(r̂) + D1h

(+)
l (k0r)Yl,m(r̂)

]
, r > a,

A1∇× [jl(kr)Yl,m(r̂)], r ≤ a,

where k = nk0 is the wavenumber of the field in the background material confined
within the source volume V and A1 and D1 are coefficients that are to be determined
by imposing continuity of the tangential components of the electric and magnetic

fields on the boundary ∂V ≡ {r ∈ R
3 : r = a}. Analogously, the total field [E

(2)
l,m]0

must be of the form

(A.12)
[
E

(2)
l,m

]
0
(r) =

⎧⎪⎨
⎪⎩

[
ζl(k0R)jl(k0r) + D2h

(+)
l (k0r)

]
× Yl,m(r̂), r > a,

A2jl(kr)Yl,m(r̂), r ≤ a,

where A2 and D2 are coefficients that need to be determined from the boundary
conditions on ∂V .
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By imposing the continuity requirements on the boundary ∂V and using the
Wronskian relation for spherical Bessel functions [6], one obtains (for j = 1)

A1

τl(k0, R)
=

i/ (k0a) (ka)

(εr/μr)
1/2

jl(ka)Vl(k0a) − h
(+)
l (k0a)Ul(ka)

≡ F
(1)
l (k0a, ka, εr, μr) ,(A.13)

where Ul and Vl have already been defined in (2.21) and (2.22). The coefficient A2

associated with the field [E
(2)
l,m]0 can be obtained by an analogous procedure which

yields

A2

ζl(k0R)
=

iμr/ (k0a) (ka)

(μr/εr)
1/2

jl(ka)Vl(k0a) − h
(+)
l (k0a)Ul(ka)

≡ F
(2)
l (k0a, ka, εr, μr) .(A.14)

Along with (A.11) and (A.12) the above results define the fields [E
(1)
l,m]0 and [E

(2)
l,m]0

in the region V .
By applying the reciprocity relation equation (A.2) to the preceding results (in

particular, (A.3), (A.4), (A.7), (A.9), (A.11)–(A.14)), one finds that the multipole

moments a
(j)
l,m are indeed independent of R and are given by (2.17) with the source-free

wavefunctions B
(j)
l,m(r) given by (2.19)–(2.22). In obtaining these results we have also

recalled the multipole expansion for the electric field E(r), i.e., (2.13) and (2.14), along
with the orthogonality and analytic continuation properties of the vector spherical
harmonics, and the analytic continuation property of the spherical Bessel functions
of the first kind, viz., j∗l (ka) = jl(k

∗a).
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25 (1908), pp. 377–445.

[36] H. Mosallaei and K. Sarabandi, Magneto-dielectrics in electromagnetics: Concept and ap-
plications, IEEE Trans. Antennas and Propagation, 52 (2004), pp. 1558–1567.

[37] H. R. Raemer, Radiation from linear electric or magnetic antennas surrounded by a spherical
plasma shell, IRE Trans. Antennas and Propagation, 10 (1962), pp. 69–78.

[38] J. A. Stratton, Electromagnetic Theory, McGraw–Hill, New York, 1941.
[39] C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory, Intext Educational, Scranton,

PA, 1971.



110 E. A. MARENGO, M. R. KHODJA, AND A. BOUCHERIF

[40] B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M.

Ho, Photonic crystal-based resonant antenna with a very high directivity, J. Appl. Phys.,
87 (2000), pp. 603–605.
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BOUNDARY DRIVEN WAVEGUIDE ARRAYS:
SUPRATRANSMISSION AND SADDLE-NODE BIFURCATION∗

HADI SUSANTO†

Abstract. In this paper, we consider a semi-infinite discrete nonlinear Schrödinger equation
driven at one edge by a driving force. The equation models the dynamics of coupled waveguide
arrays. When the frequency of the forcing is in the allowed band of the system, there will be a linear
transmission of energy through the lattice. Yet, if the frequency is in the upper forbidden band, then
there is a critical driving amplitude for a nonlinear tunneling, which is called supratransmission,
of energy to occur. Here, we discuss mathematically the mechanism and the source of the supra-
transmission. By analyzing the existence and the stability of the rapidly decaying static discrete
solitons of the system, we show rigorously that two of the static solitons emerge and disappear in a
saddle-node bifurcation at a critical driving amplitude. One of the emerging solitons is always stable
in its existence region and the other is always unstable. We argue that the critical amplitude for
supratransmission is then the same as the critical driving amplitude of the saddle-node bifurcation.
We consider as well the case of the forcing frequency in the lower forbidden band. It is discussed
briefly that there is no supratransmission because in this case there is only one rapidly decaying
static soliton that exists and is stable for any driving amplitude.
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1. Introduction. An exotic nonlinear phenomenon has been discovered recently
by Geniet and Leon [1] in a semi-infinite chain of coupled oscillators driven at one
edge by a time periodic forcing. Energy excitations will propagate through the chain
if the driving frequency is in the allowed band of the discrete system. It is natural
because of the system’s dispersion relation. In contrast, it would be expected that if
the forcing frequency is in the band gap, then there would be no energy flow. Yet,
Geniet and Leon [1] show theoretically and experimentally that there is a definite
driving amplitude threshold above which a sudden energy flow takes place. This phe-
nomenon is called nonlinear supratransmission [1]. An exciting independent work on
a modified Klein–Gordon equation describing the Josephson phase of layered high-Tc

superconductors shows the presence of the same phenomenon [2]. Promising techno-
logical applications employing supratransmission have been proposed accompanying
these findings, such as binary signal transmissions of information [3] and terahertz
frequency selection devices [4].

In [5] Khomeriki considers boundary driven coupled optical focusing waveguide
arrays described by

(1.1) i
∂ψn

∂z
= −ψn+1 − ψn−1 − γ|ψn|2ψn, ψ0 = AeiΔz,

with γ > 0 and n = 1, 2, . . . . Here, ψn is the electromagnetic wave amplitude in
the nth guiding core, z is the propagation variable, Δ is the propagation constant
or the driving frequency, and γ represents the nonlinearity coefficient, which is taken
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Fig. 1.1. Three-dimensional plots of time evolution of the boundary driven waveguide arrays
of (1.1). When the driving frequency −2 < Δ < 2 is in the allowed band, any driving amplitude
will lead to an energy flow to remote sites (top left panel). If Δ is in the upper forbidden band and
A is small enough, the boundary will excite a couple of arrays only (top right panel). Yet, there
is a critical threshold amplitude Ath(Δ) above which there is a nonlinear forbidden band tunneling
indicated by the released of a train of discrete solitons (bottom left panel). A quantitatively different
behavior of supratransmission occurs when the driving frequency is large enough, as is shown in the
bottom right panel.

to be γ = 2 in this report. This model can also be considered as a slow modulation
wave approximation to the discrete sine-Gordon equation [6]. Similar to the nonlinear
band-gap tunneling observed by Geniet and Leon [1], it is reported that there is a
critical threshold Ath(Δ) for supratransmission when the propagation constant Δ is
in the forbidden band Δ > 2 [5].

In Figure 1.1, we present numerical simulations of the dynamics of (1.1). Follow-
ing [5], the driving is turned on adiabatically to avoid the appearance of an initial
shock by assuming the form

A = Ă(1 − exp(−z/τ)),

where we omit the breve symbol henceforth. In the following figures, we take τ = 50
and apply a linearly increasing damping to the last 20 sites to suppress edge reflection.

Presented in the top left panel of Figure 1.1 is a three-dimensional plot of time
evolution of (1.1) when the driving frequency is in the allowed band −2 < Δ < 2.
A small driving amplitude will excite all the sites. On the other hand, if the driving
frequency is in the upper band Δ > 2, a small A will only excite several neighboring
sites, as is shown in the top right panel of Figure 1.1. Yet, if the driving amplitude
is large enough, then a train of “traveling” discrete solitons can be released [5] (see
bottom left panel of the same figure). This flow of energy is the so-called supra-
transmission or nonlinear forbidden band tunneling, and we call the minimum A for
supratransmission to occur a critical threshold Ath. The word traveling is in quotes
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because (1.1) does not admit a genuine one (see [7] and the references therein). If
one waits long enough, the gap solitons will be trapped by the lattice. Khomeriki [5]
also notices an immediate trapping when the driving frequency Δ is relatively large,
as is shown in the bottom right panel of Figure 1.1. In this regime, the corresponding
discrete gap solitons are highly localized.

An analytical approximation of Ath(Δ) in the limit 0 < Δ− 2 � 1 is given by [5]

(1.2) Ath(Δ) =
√

Δ − 2.

Remark 1.1. Equation (1.1) is symmetric with respect to the transformation
A → −A and ψn → −ψn. This means that there is also a critical amplitude −Ath(Δ)
if one applies A < 0 such that for A < −Ath(Δ) < 0, a nonlinear forbidden band
tunneling will occur. Equation (1.1) is also symmetric with respect to the transfor-
mation Δ → −Δ, ψn → (−1)nψn, and γ → −γ. Therefore, the same phenomenon
can be observed in defocusing waveguide arrays γ < 0. Due to the transformation,
the only difference of defocusing arrays from the self-focusing ones is that there will
be a π phase difference between neighboring lattices.

It is presented in [5] that the numerical result for the threshold amplitude deviates
rapidly from the approximation (1.2). It is because (1.2) is actually the amplitude-
temporal frequency relation of the continuous nonlinear Schrödinger (NLS) equation’s
solitons. The relation has been phase-shifted properly due to some transformation,
i.e., ψn → ψn exp(2iz). Applying the transformation to (1.1) will take it to a normal-
ized standard finite difference approximation of the continuous NLS equation.

Remembering the aforementioned promising applications of nonlinear tunneling,
it is therefore of interest to obtain an approximation of the threshold amplitude in
the other limit Δ − 2 � 1. This is one of the aims of the present report. The other
aim is to understand mathematically the mechanism of the nonlinear tunneling. It is
mentioned but not rigorously proved [8] that the supratransmission happens because
of the emergence of two solutions at the critical driving amplitude, i.e., a saddle-node
bifurcation. If this is the case, then this means that supratranmissions correspond
to an existence issue, as opposed to a stability phenomenon [9], and the threshold
amplitude is not necessarily the amplitude of the corresponding fundamental soliton
(1.2). Understanding the source of supratransmission also will allow us to explain,
for example, the reason why there is no threshold amplitude for nonlinear tunneling
when the driving frequency is in the lower forbidden band Δ < −2.

Nonetheless, one may question the relevance of our first aim, as supratransmission
is quickly trapped by the lattices for large Δ. Even though our analysis may not be
immediately applicable to the present case, the aim is still of relevance. There are sev-
eral experimentally realizable discrete equations that support “traveling” solitons in a
parameter region where the gap solitons are highly localized. One particular example
is the discrete Schrödinger equation with saturable nonlinearity in the large nonlin-
earity coefficient regime [10]. We have observed supratransmission in this equation
and have successfully applied our analysis presented herein to obtain an approxi-
mation to the threshold amplitude [11]. Later on in this paper, we also conjecture
that our analytically obtained approximation, presented in terms of a power series
expansion, may well be convergent uniformly in the region of interest, i.e., Δ > 2.
Moreover, the mathematical procedure presented herein can also be applied as an
alternative method to analyze the bistability effect considered, e.g., in [12]. We might
even consider it simpler and more appropriate as the analysis can then be done solely
in its discrete setup, with no need for approximating the problem with its continuous
counterpart [12].
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In this study, we will show that the supratransmission is indeed related to saddle-
node bifurcations. To mathematically prove this, our strategy is as follows. We will
first prove the existence of a mode bifurcating from the constant solution ψn ≡ 0
due to the driving site. We will also show that there is a singular mode bifurcating
from infinity. We will then demonstrate that these two modes collide in a saddle-
node bifurcation by developing an asymptotic analysis in the range of Δ large. Such
an analysis is doable in that regime because the modes are highly localized. The
final step to show that the critical amplitude is the same as the threshold amplitude
for supratransmission is to prove that the mode bifurcating from the zero state is
stable, all the way on its existence region. Using this result, then we can derive an
approximation of the threshold amplitude in terms of a power series expansion that
can be calculated to any order. Numerical computations will be presented as well to
compare our analytical results.

Our paper is outlined as follows. In subsection 2.1, we present our asymptotic
analysis for the existence of monotonically decaying static solutions of (1.1). The
next subsection will contain our study on the stability analysis of solutions discussed
in the preceding subsection. Using the same procedures, we then briefly discuss in
subsection 2.3 that there is no supratransmission in the case of Δ < −2 as there is no
bifurcation occurring in this regime. Then we compare our analytical findings with
the results of numerical computations in subsection 2.4. Finally, we summarize our
findings and present our conclusions in the last section.

2. Existence and stability analysis of rapidly decaying discrete solitons.

2.1. Existence analysis. Stationary solutions of (1.1) are sought in the form
of ψn(z) = φne

iΔz, where φn is a real-valued function. This ansatz can be applied, as
one would naturally expect that all the sites will be excited with the same frequency
as the driving frequency. Since we are interested in the large propagation constant Δ,
we scale Δ → 1 and define ε = 1/Δ. Hence, we consider |ε| � 1. A static equation of
(1.1) is then given by

(2.1) F (φ, ε) := −φn + ε
(
φn+1 + φn−1 + γφn

3
)

= 0,

with φ0 = A.
When |ε| is small enough, apart from the boundary, the leading order solution of

φn would formally satisfy

(2.2) φn

(
−1 + εγφn

2
)
≈ 0,

from which we obtain that φn ≈ 0 and φn ≈ ±1/
√
εγ. It physically means that the

arrays are almost uncoupled and indicates that solutions of (2.1) can be expressed
in terms of an asymptotic or a perturbation expansion in ε. It also says that when
we consider finitely long waveguide arrays, i.e., n = 1, 2, . . . , N , (2.1) can have at
most 3N solutions. Yet, only some of them are related to the nonlinear tunneling
phenomenon presented in Figure 1.1. We are especially interested in solutions with
a magnitude that is monotonically decaying with the property |φn| → 0 as n → ∞.
This consideration is based on the fact that when the driving frequency is in the
forbidden band and the driving amplitude is below the critical threshold, the solution
profile is monotonically decaying as n → ∞ (see the top right panel of Figure 1.1).
Moreover, we only need to consider particularly a family of rapidly decaying discrete
solitons, which is defined as follows.
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Definition 2.1. Let φn =
∑∞

k=0 an,kϑk(ε) be a solution of (2.1), where n ∈ Z
+,

ϑk(ε) is an asymptotic sequence, and ϑk(ε) = o (ϑk−1(ε)) for ε → 0. φn is a rapidly
decaying discrete soliton of (2.1) if |φn| is a monotonically decreasing function to 0
as n → ∞ with a property that to the leading order O(ϑ0) only the first lattice site is
nonzero, i.e., a1,0 
= 0 and an,0 = 0, n 
= 1.

As an example of this definition, let us consider the following solution of (2.1):

(2.3) Φ0(n,A) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
√
γ

(
1√
ε

+

√
ε

2

)
−A

ε

2
+ O(ε3/2), n = 1,

1
√
γ

(
1√
ε

+

√
ε

2

)
+ O(ε3/2), n = 2,

O(
√
ε) otherwise.

This solution is obtained from the expansion: φ1 = −1/
√
εγ+a1,1

√
ε+a1,2ε+ · · · ,

φ2 = 1/
√
εγ + a2,1

√
ε + a2,2ε + · · · , φ3 = 0 + a3,1

√
ε+, and φn = 0 + · · · for n > 3.

Substituting the ansatz to (2.1) will yield polynomials in ε. Equating the coefficients
of the polynomials for all orders of ε to zero will yield equations for ak,l that have to
be solved simultaneously to obtain (2.3).

It is clear that the profile of |Φ0(n,A)| (2.3) is monotonically decaying in n.
However, this solution is not rapidly decaying as to the leading order, i.e., O(1/

√
ε),

|Φ0(2, A)| = |Φ0(1, A)| 
= 0.
The existence of rapidly decaying solutions of (2.1) when A = O(1) is guaranteed

by the following theorem.
Theorem 2.2. Let A be of O(1). Then for ε positive and small there are

three rapidly decaying discrete solitons of the static equation (2.1). Denoted by Φj,
j = 1, 2, 3, the solitons are given by

Φ1(n,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
√
εγ

−A
ε

2
− ε3/2

2
√
γ

+ O(ε2), n = 1,

√
ε

√
γ

+ O(ε2), n = 2,

ε3/2
√
γ

+ O(ε2), n = 3,

0 + O(ε2) otherwise,

(2.4)

Φ2(n,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aε + Aε3 + O(ε5), n = 1,

Aε2 + O(ε4), n = 2,

Aε3 + O(ε5), n = 3,

0 + O(ε4) otherwise,

(2.5)

Φ3(n,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
√
εγ

−A
ε

2
+

ε3/2

2
√
γ

+ O(ε2), n = 1,

−
√
ε

√
γ

+ O(ε2), n = 2,

−ε3/2
√
γ

+ O(ε2), n = 3,

0 + O(ε2) otherwise.

(2.6)
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Proof. Because we are looking for rapidly decaying solitons, to the leading order
(2.1) can be represented by

(2.7) −φ1 + εA + γεφ1
3 = 0.

Equation (2.7) is a cubic equation similar to (2.2), also with three roots. However, as
ε → 0, (2.7) reduces to a linear equation φ1 = 0 with only a single root. Therefore,
finding the roots of the equation is a singular perturbation problem. Following, e.g.,
[13] (see Example 3 of sections 2.1 and 2.2), one will obtain the roots of (2.7), i.e., φ1 =
Aε+ · · · and φ1 = ±1/

√
γε+ · · · . This concludes that there are three rapidly decaying

solutions of (2.1). In the following, let us name the solitons Φj(n,A), j = 1, 2, 3,
with Φ1(1, A) = 1/

√
εγ + · · · , Φ2(1, A) = εA + · · · , and Φ3(1, A) = −1/

√
εγ + · · · .

The existence of Φj(n,A) for (2.1) follows immediately from the implicit function
theorem (see, e.g., [14]) since F is differentiable and the Jacobian matrix of problem
(2.1) DF (φ, 0) is invertible. Explicit calculations to obtain (2.4)–(2.6) can be done
similarly following the derivation of (2.3).

If one compares the above theorem and the top right panel of Figure 1.1, it can
be recognized immediately that the solution observed in the panel in the limit z → ∞
is nothing else but |Φ2(n,A)|.

One still can obtain the existence of the above rapidly decaying solutions even
when A � 1, as stated in the following theorem.

Theorem 2.3. Let A be scaled to A = Ã/ε3/2, Ã < 2/
√

27γ.

(2.8) Φj(n,A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ0
j√
ε

+
Ã

3γΦ0
j
2 − 1

(√
ε− ε

)
+ O(ε3/2), n = 1,

Φ0
j

√
ε + O(ε3/2), n = 2,

0 + O(ε3/2) otherwise,

with Φ0
j given by

(2.9) Φ0
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3γ

cos

(
1

3
arccos

(
−Ã

√
27γ

2

))
, j = 1,

2√
3γ

cos

(
4π

3
+

1

3
arccos

(
−Ã

√
27γ

2

))
, j = 2,

2√
3γ

cos

(
2π

3
+

1

3
arccos

(
−Ã

√
27γ

2

))
, j = 3.

Moreover, if we write A = 2/
√

(27γε3) − Â
√
ε, with Â > 1/

√
3γ, then Φj, j = 1, 2,

can be written as

(2.10) Φ1,2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
3γ

√
ε
∓

√
Â√
3γ

− 1

3γ

√
ε + O(ε3/2), n = 1,

√
ε√

3γ
+ O(ε3/2), n = 2,

O(ε3/2) otherwise.

Proof. As we are interested in the case of A � 1, we first scale A = Ã/ε3/2 and
correspondingly write Φj(n,A) = Φ0

j (n,A)/
√
ε + · · · , j = 1, 2, 3, with Φ0

j (n,A) = 0
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for all 1 < n ∈ Z
+. Substituting the expansion to (2.1) and identifying coefficients

for power series of O(1/
√
ε) yields the following cubic equation for Φ0

j (1, A) = Φ0
j :

(2.11) G
(
Φ0

j

)
:= −Φ0

j + Ã + γ
(
Φ0

j

)3
= 0.

Equation (2.11) cannot be solved perturbatively to obtain the roots Φ0
j as before

since all the terms in (2.11) are of the same order. Therefore, we need the following
lemma on cubic equations.

Lemma 2.4. Consider the following polynomial equation:

g(x) = ax3 + bx2 + cx + d, a, b, c, d ∈ R.

Let

X =
−b

3a
, Y = g(X), h = 2aυ3,

υ2 =
b2 − 3ac

9a2
, θ =

1

3
arccos

(
−Y

h

)
.

If Y 2 < h2, then the cubic equation has three distinct real roots given by

x1 = X + 2υ cos θ,(2.12)

x2 = X + 2υ cos(4π/3 + θ),(2.13)

x3 = X + 2υ cos(2π/3 + θ),(2.14)

where

x1 > x2 > x3.

When Y 2 = h2, two of the roots which are neighbors to each other, i.e., x1 and x2 or
x2 and x3, will collide in a saddle-node bifurcation and disappear when Y 2 > h2, i.e.,
the cubic equation then has only a single real root.

Proof. There is an enormous number of textbooks and online references on cubic
equations; see, e.g., http://mathworld.wolfram.com/CubicFormula.html. The expres-
sion of the cubic polynomial roots (2.12)–(2.14) is using Nickalls’s geometric repre-
sentation [15].

According to Lemma 2.4, (2.11) has geometric representation parameters:

X = 0, Y = Ã, υ =
1√
3γ

, h =
2√
27γ

, θ =
1

3
arccos

(
−Y

h

)
,

from which we can conclude that (2.11) has three real roots when Ã < 2/
√

27γ. The
roots of (2.11), i.e., (2.9), are obtained using (2.12)–(2.13). Then the continuation of
Φ0

j can be obtained immediately using the implicit function theorem.

It is then straightforward to calculate that when Ã = 2/
√

27γ, Φ0
1,2 = 1/

√
3γ as

2 cos θ = 2 cos(4π/3 + θ) = 1. Hence, we know that Φ1(n,A) collides with Φ2(n,A)
in a saddle-node bifurcation.

For the value of A close to the occurrence of the saddle-node bifurcation, we
write A = 2/

√
27γε3 − Â

√
ε. In this case, the implicit function theorem cannot be

immediately employed to prove the existence of Φ1 and Φ2 as we need a bound for Â.
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First, we substitute Φj = Φ0
j (n,A)/

√
ε+

√
εΦ1

j (n,A), j = 1, 2, in the steady state

equation (2.1) with Φ0
j (n,A) = 1/

√
3γ for n = 1 and 0 otherwise. This then gives the

following equations:

G̃1(Φ
1
j , ε) := Φ1

j (2, A) − Â +
√

3γ
(
Φ1

j (1, A)
)2

+ εγ
(
Φ1

j (1, A)
)3

= 0,

G̃2(Φ
1
j , ε) := −Φ1

j (2, A) + εΦ1
j (3, A) +

1√
3γ

+ εΦ1
j (1, A) + ε2γ

(
Φ1

j (1, A)
)3

= 0,

G̃n(Φ1
j , ε) := Φ1

j (n,A) + ε
(
Φ1

j (n + 1, A) + Φ1
j (n− 1, A) + εγΦ1

j (n,A)3
)

= 0, n 
= 1, 2.

Taking ε = 0, the above equations give us

Φ1
j (1, A) = ±

√
Â√
3γ

− 1

3γ
,

Φ1
j (2, A) =

1√
3γ

,

Φ1
j (n,A) = 0, n 
= 1, 2.

Note that the ±-solutions collide for Â = 1/
√

3γ. Because the linearization DG̃(Φ1
j , 0)

is invertible for Â > 1/
√

3γ, the implicit function theorem can be applied again and
we have the existence of rapidly decaying solitons Φj = Φ0

j (n,A)/
√
ε +

√
εΦ1

j (n,A),
j = 1, 2.

With this theorem, we then have shown that Φ1 collides in a saddle-node bifur-
cation with Φ2. Yet, we cannot directly claim that this is the source of the supra-
transmission observed in Figure 1.1 before we show and discuss the stability of the
two solitons.

2.2. Stability analysis. After discussing the existence of rapidly decaying soli-
tons of (2.1), we study their stability. If φn, n = 1, 2, . . . , is a solution of (2.1),
then the linear spectral stability of φn can be obtained by substituting the ansatz
ψn = (φn + δ[vne

iλz + wne
−iλz])eiΔz with λ ∈ C, (vn, wn) ∈ C

2, and n ∈ Z
+ into

(1.1). Linearizing the equation to O(δ), we obtain the eigenvalue problem

(2.15) λε

(
vn
wn

)
= εσ

(
vn−1

wn−1

)
+ L

(
vn
wn

)
+ εσ

(
vn+1

wn+1

)
,

with (
v0

w0

)
=

(
0
0

)
, σ =

(
1 0
0 −1

)
,

L =

(
−1 + 2εγ|φn|2 εγφn

2

−εγφn
2 1 − 2εγ|φn|2

)
, n ∈ Z

+,

where we have scaled Δ → 1.
The natural domain for L̃ = (εσ L εσ) is L2(C). We call λ an eigenvalue of

L̃ if there is a function {vn}n∈Z+ , {wn}n∈Z+ ∈ L2(C) which satisfies (2.15). Since L̃
depends smoothly on A, the eigenvalues of L̃ will depend smoothly on A, too. φn is
linearly stable if the imaginary part of λ is zero, i.e., Im(λ) = 0.

The continuous spectrum is obtained by substituting

vn = Aeikn, wn = Beikn, φn = 0
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in (2.15), from which we will obtain

ελ = ±2ε cos k ∓ 1.

Thus, the continuous spectrum of solutions under investigation is the range

(2.16) λ ∈
(
−1

ε
− 2, −1

ε
+ 2

)
and λ ∈

(
1

ε
− 2,

1

ε
+ 2

)
.

As the continuous spectrum lies in the real axis, the stability of the solutions is
determined only by the discrete spectrum, i.e., eigenvalues. For the solutions given in
Theorems 2.2 and 2.3, we have the following stability results.

Theorem 2.5. For small driving amplitude A = O(1), the various rapidly de-
caying discrete solitons have the following properties:

1. The discrete soliton Φ1 is unstable. It has a single imaginary eigenvalue.
2. The soliton Φ2 is strictly stable as the soliton has no discrete eigenvalues.
3. The discrete soliton Φ3 is stable. It has a single real eigenvalue.

Proof. We are looking for eigenvectors that are also rapidly decaying. Therefore,
the eigenvalue problem (2.15) to the leading order can be approximated by the linear
eigenvalue problem

λε

(
v1

w1

)
= L

(
v1

w1

)
,

which gives the following approximate eigenvalues:

(2.17) λ = ±1

ε

√
3
(
εγφn

2
)2 − 4εγφn

2 + 1.

In the above expression, we have taken into account the fact that φn ∈ R.
For the stability of Φ1 and Φ3, substitute φ1 = Φj(1, A), j = 1, 3, into (2.17).

Taking the series expansion of the expression gives the following eigenvalue λ for
Φj(n,A):

(2.18) λ =

{
ε−1/4

√
2A

√
γi + O(ε1/4), j = 1,

ε−1/4
√

2A
√
γ + O(ε1/4), j = 3.

Because the eigenvalue of Φ1(n,A) has a nonzero imaginary part, we conclude that
to the leading order Φ1 is unstable, as opposed to Φ3.

As for φ1 = Φ2(1, A), the series expansion of (2.17) gives

(2.19) λ = 1/ε + O(ε2).

Because λ is inside the continuous spectrum (2.16), our assumption that the eigen-
function is rapidly decaying is not justified. Nonetheless, we know that Φ2 bifurcates
from a uniform solution φn ≡ 0, which is stable. Because L depends smoothly on A,
we then can conclude that Φ1 has no eigenvalue.

When the driving amplitude is large, we also have the following theorem.
Theorem 2.6. For large driving amplitude A = Ãε−3/2, the various rapidly

decaying discrete solitons have the following properties:
1. The discrete soliton Φ1 is unstable with a single imaginary eigenvalue.
2. The soliton Φ2 is strictly stable with a single real eigenvalue.
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3. The discrete soliton Φ3 is in general stable with a single eigenvalue, except in
a finite interval, where our asymptotic analysis is inconclusive.

To the leading order, the eigenvalue of the three solitons is given by

(2.20) λ = K/ε +
Ã

Φ0
j

(
3γ

(
Φ0

j

)2 − 1
)
⎛
⎝
(
3γ2

(
Φ0

j

)4 − 1
)

K
+ K

⎞
⎠ + O(

√
ε),

with K =
√

3(γΦ0
j
2
)2 − 4γΦ0

j
2

+ 1. Moreover, by writing A = 2/
√

27γe3 − Â
√
ε, the

eigenvalue of Φ1,2 is given by

(2.21) λ =
2

31/4
√
ε

√√√√∓

√
Â

√
γ

3
− 1

3
+ O(

√
ε),

with the minus sign for the eigenvalue of Φ1 and the plus sign for Φ2.
Proof. The proof of Theorem 2.6 is similar to the proof of Theorem 2.5. The

stability result of Φ3 cannot be deduced immediately because the expression of Φ3

is not trivial. The presence of a finite interval where our asymptotic analysis is
inconclusive cannot be seen clearly. It is inconclusive because there is a range of A in
which λ is in the domain of the continuous spectrum (2.16). A numerical proof will
be presented in the following section.

2.3. Analysis for the case of Δ < −2. We omit the details and the rigorous
proof, but it can be shown that for Δ < −2, there is only one rapidly decaying soliton
which is stable for any driving amplitude. The idea is as follows.

Instead of (2.1), consider

(2.22) φn = −ε(φn+1 + φn−1) − γεφn
3, φ0 = A,

where we again have scaled 0 > Δ → 1 and define ε = 1/|Δ|. For a rapidly decaying
solution, the leading order equation of (2.22) is then given by

(2.23) f := φ1 + ε
(
A + γφ1

3
)

= 0.

It is clear that f → ±∞ as φ → ±∞. Yet, f has no critical point, i.e., df/dφ1 > 0.
Therefore, one can conclude that f is a monotonically increasing function which in-
tersects the horizontal axis once, i.e., f has one real root. The stability of this rapidly
decaying solution might be determined immediately following Theorems 2.5 and 2.6.
Our numerics, which are not presented here, show that when A = O(1) the solution
is stable with no discrete spectrum, and when A = O(1/ε3/2) there is an eigenvalue
bifurcating from the upper edge of the continuous spectrum. Hence, the soliton is
stable all the way to A → ∞, which explains why there is no supratransmission for
Δ < −2.

2.4. Numerical results. To accompany our analytical results, we have used
numerical calculations. For that purpose, we have made a continuation program based
on a Newton iteration technique to obtain stationary rapidly decaying discrete solitons
of (2.1) and an eigenvalue problem solver to solve (2.15) in MATLAB. Throughout
the subsection, we consider in particular Δ = 10. Even though there is no prominent
supratransmission of energy for this value of Δ, it is taken solely as an example to
show that especially in the regime of Δ large, our asymptotic analysis explains the
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Fig. 2.1. Presented is the comparison between the numerically obtained results and the analyti-
cal calculations presented in section 2. Top left panel: the existence curve of Φ1 and Φ2 represented
by the solution of the first site, where the upper and lower branches correspond to the existence curve
of Φ1 and Φ2, respectively. Top right panel: the threshold amplitude Ath as a function of the propa-
gation constant Δ. Bottom panels: the critical eigenvalue of Φ1 (left) and Φ2 (right) as a function
of the driving amplitude A. Shaded region in the bottom right panel shows the region for the con-
tinuous spectrum. Analytical approximations calculated in section 2 are also presented as dashed,
dotted, and dash-dotted lines (see the text).

problem well. It will be shown below that, e.g., even using the first two terms of
the approximate threshold amplitude, our analytical result is already relatively in
agreement with the numerical results.

We summarize our results and discussions for the existence and the stability of
Φ1 and Φ2 in Figure 2.1. At the top left panel of the figure, we present the existence
of Φj , j = 1, 2, represented by the solution of the first site, where the upper and lower
branches correspond to the existence curve of Φ1 and Φ2, respectively. Numerical
results are represented by the solid lines. Our analytical result as given by (2.4) and
(2.5) which is supposed to be valid when A = O(1) is depicted by dash-dotted lines.
As for the analytical approximations for A = O(1/ε3/2), i.e., (2.8) and (2.10), they
are presented as dotted and dashed lines, respectively. It is interesting to note that
Figure 2.1 shows clearly a good agreement between our analytical and the numerical
results.

Top right panel of Figure 2.1 presents the comparison between the critical am-
plitude Ath(Δ) calculated numerically from (2.1) and our approximation Ath(Δ) =

2/
√

27γε3/2 −
√
ε/
√

3γ (see Theorem 2.3), which are presented in solid and dashed
lines, respectively. The numerical results were also checked against the full dynam-
ics of the original problem (1.1), where an agreement is obtained as it should be
provided that τ is large enough. Note the good agreement when Δ � 1. As a com-
parison with the analytical approximation obtained by Khomeriki [5], we also present
Ath(Δ) =

√
Δ − 2 as a dash-dotted line.

It is interesting to note that in the limit Δ → 2 our analytical approximation
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does not diverge. As is shown in the inset of the top right panel, the difference of the
approximate value of the threshold amplitude and the numerical result at Δ = 2 is
about 50%. Using the same method presented in the preceding sections, we obtain
that the first three terms of the approximation of Ath(Δ) are actually given by

(2.24) Ath(Δ) =
2√

27γε3/2
−

√
ε√

3γ
− 13

√
3

36
√
γ
ε5/2.

The plot of this curve is depicted in the same panel as a dotted line, where one can
see that the difference now has decreased by about 10%. This then motivates us to
question whether the infinite power series of the approximate threshold amplitude
Ath(Δ) is actually convergent uniformly to the critical amplitude curve. Considering
the fact that the region of interest is on 0 < ε ≤ 1/2 and the coefficients of the power
series are so far bounded, the answer might well be affirmative. Yet, this question
is out of the scope of the present paper and will therefore be addressed in future
investigations.

After presenting the numerical and the analytical results for the existence of Φ1

and Φ3, next we consider the stability of the solitons. The bottom panels of Figure 2.1
present the comparison between the results. The left panel shows the imaginary part
of the critical eigenvalue of Φ1 as a function of A in its existence region. It is clear
that the soliton is always unstable. The right panel presents the eigenvalue of Φ2

as a function of the driving amplitude, where one can see that the soliton is always
stable, as opposed to Φ1. Our analytical approximations (2.18), (2.20), and (2.21)
are presented as well in the two panels as dash-dotted, dotted, and dashed lines,
respectively. It is also interesting to note that, as is predicted by Theorem 2.2, Φ2

has no eigenvalue when A is small. Our analytical approximation (2.21) predicts very
well the appearance of the eigenvalue of Φ2.

Because it is known that Φ1 is unstable in its entire existence region, it is of
interest to see the dynamics with regards to instability. In Figure 2.2 we present
the evolution of Φ1 for a parameter value A ≡ 8.46 (A is already at this value from
the beginning z = 0, as opposed to Figure 1.1, where A is 0 in the beginning and
gradually increases to a constant). The top left panel presents the dynamics of Φ1

with the initial condition ψn(z = 0) = Φ1(n,A)−10−4. The initial condition Φ1(n,A)
is obtained numerically from (2.1). The top right panel depicts the behavior of the
first site in time, where one can see that the instability manifests in the form of the
soliton’s oscillations. Interestingly, if we start with an initial condition of the form
ψn(z = 0) = Φ1(n,A) + 10−4, the solution has a similar instability behavior but with
a different oscillation maximum. The dynamics are presented in the bottom panels
of Figure 2.2. It is important to note that with such a small change, the dynamics
can be significantly different. This duality therefore might be employed as a small
intensity light detector similar to the proposal of [12].

We have numerically analyzed as well the existence and the stability of the soliton
Φ3. We summarize our results in Figure 2.3. The numerical result for the existence of
the soliton is shown in the top left panel of the figure. Our analytical approximations
(2.6) and (2.8) are shown in dash-dotted and dotted lines, respectively, where one can
see the good agreement between the numerical and the analytical results.

After studying the existence of the discrete soliton, we next present our stability
analysis of the soliton. Shown in the bottom panels of Figure 2.3 is the numerically
obtained critical eigenvalue of Φ3 as a function of A. In the bottom left panel is the real
part of the critical eigenvalue. It is clear that when A = 0, the eigenvalue is a double
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Fig. 2.3. Similar to Figure 2.1 but for the soliton Φ3. Top left panel shows the numerical
results for the existence of Φ3 versus the driving amplitude A (solid line). Presented is the value
of the solution at the first site, i.e., Φ3(1, A). The bottom left panel presents the stability of the
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this region. The behavior of the critical eigenvalue in the complex plane is depicted in the bottom
right panel. In the panel, the parametric variable is the driving parameter A. The top right panel
shows the dynamics of the soliton when it is unstable. See the text for the analytical approximation
curves. (For interpretation of the references to color in this figure legend, the reader is referred to
the online version of this article.)
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eigenvalue at zero. As soon as A is increased, the zero eigenvalue bifurcates along
the real line. At a critical driving amplitude, the eigenvalue collides with the lower
boundary of the continuous spectrum. The result of the collision is the bifurcation
of the eigenvalue into the complex plane resulting in an eigenvalue with nonzero
imaginary part. In the bottom right panel, we present the trajectory of the eigenvalue
in the complex plane as A is increased. One can then see that there is also another
critical amplitude above which the eigenvalue becomes real again, i.e., the soliton
becomes stable. In the region where the imaginary part is nonzero, we depict the
curve in the bottom left panel of Figure 2.3 in solid red line. We also compare
it with our analytical approximations, (2.18) and (2.20), which are shown as dash-
dotted and dotted lines, respectively. In Theorem 2.6, it is stated that our analytical
approximation is inconclusive for the case of A large. As can be seen from Figure 2.3,
our analytical approximation equation (2.20) is always real. This is because when the
real part of the eigenvalue is in the region of the continuous spectrum, our assumption
that the eigenfunction is rapidly decreasing is not justified.

It is then interesting to see the dynamics of the instability. In the top right panel,
we depict the evolution of an unstable discrete soliton of type Φ3. The parameter
values are depicted in the figure. The setup for the driving amplitude is similar to
the setup of Figure 2.2.

Regarding the involvement of Φ3 in the dynamics of the driven boundary wave-
guides (1.1) (see Figure 1.1), it is not clear, when Φ2 disappears, whether it evolves
into Φ3.

3. Conclusions. We have analyzed mathematically the mechanism of supra-
transmissions observed in a boundary driven discrete nonlinear Schrödinger equation
describing electromagnetic fields in waveguide arrays. We have shown that the source
of the phenomenon is the presence of a saddle-node bifurcation between a stable dis-
crete soliton and an unstable one. We have shown as well numerically that the unsta-
ble one can exhibit a different dynamics, sensitive to the perturbation. We therefore
argue that it might be possible to propose it as a weak signal light detector.

Acknowledgments. The author wishes to thank Panayotis Kevrekidis and Ra-
maz Khomeriki for numerous useful interactions and discussions. The manuscript has
greatly benefited from the constructive comments and suggestions of two anonymous
reviewers.
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THE SHAPE OF CHARGED DROPS OVER A SOLID SURFACE AND
SYMMETRY-BREAKING INSTABILITIES∗

M. A. FONTELOS† AND U. KINDELÁN‡

Abstract. We study the static shape of charged drops of a conducting fluid placed over a solid
substrate, surrounded by a gas, and in absence of gravitational forces. The question can be formulated
as a variational problem where a certain energy involving the areas of the solid-liquid interface and
of the liquid-gas interface, as well as the electric capacity of the drop, has to be minimized. As a
function of two parameters, Young’s angle θY and the potential at the drop’s surface V0, we find the
axisymmetric minimizers of the energy and describe their shape. We also discuss the existence of
symmetry-breaking bifurcations such that, for given values of θY and V0, configurations for which
the axial symmetry is lost are energetically more favorable than axially symmetric configurations.
We prove the existence of such bifurcations in the limits of very flat and almost spherical equilibrium
shapes. All other cases are studied numerically with a boundary integral method. One conclusion
of this study is that axisymmetric drops cannot spread indefinitely by introducing sufficient amount
of electric charges, but can reach only a limiting (saturation) size, after which the axial symmetry
would be lost and finger-like shapes energetically preferred.

Key words. electrowetting, symmetry-breaking bifurcations, boundary integral method, varia-
tional formulation
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DOI. 10.1137/080713707

1. Introduction. The determination of the stationary shapes of liquid drops
surrounded by a vapor phase and in contact with a solid surface is an old problem
both in fluid mechanics and in the theory of partial differential equations (see [7]
and the references therein). The problem can be posed, since Gauss, in a variational
setting consisting of obtaining the configurations of a given mass of fluid that minimize
(or in general make extremal) an energy defined by

(1.1) E = γlvAlv − (γsv − γsl)Asl + EF ,

where γlv, γsv, and γsl denote the liquid-vapor, solid-vapor, and solid-liquid surface
tensions, respectively; Alv and Asl denote the area of the liquid-vapor and solid-liquid
interfaces, respectively (see Figure 1.1). EF is the contribution of external forces to
the total energy. If the drop is affected by gravity, then EF =

∫
Ω

g · xdx, where g is
the gravitational force and Ω the domain occupied by the fluid. In absence of external
forces, the configurations that minimize the energy (1.1) are spherical caps such that
the contact angle θY , called Young’s angle, between the liquid-vapor and solid-liquid
interfaces satisfies

cos θY =
γsv − γsl

γlv
.

When the volume of fluid under consideration is sufficiently small, the contribu-
tion of gravitational forces to the energy is negligible in comparison with interfacial
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Fig. 1.1. Sketch of the problem.

energies. A consistent approximation is then to ignore gravity in (1.1), as it is done
systematically in the study of multiphase flows in microfluidic applications, for in-
stance (see [18]). It is precisely in connection with such microfluidic applications that
electric fields are incorporated with the purpose of controlling the shape and motion
of small masses of fluid. This is the case, for instance, of electrowetting applications
in which the shape of a mass of electrically conducting fluid is controlled via the ad-
dition of electric charges and application of external electric fields (see [12] and the
references therein).

The simplest situation corresponds to a drop of perfectly conducting fluid with a
total charge Q. In this case, the energy would be given (cf. [12]) by

(1.2) E = γlv [Alv − (cos θY )Asl] −
1

2
ε0

∫
R3\Ω

|E|2 dx,

where E = −∇V is the electric field (V is the electric potential) created by the
charges, concentrated in ∂Ω with a density σ = −ε0

∂V
∂n in a perfect conductor. ε0 is

the dielectric constant of the medium surrounding the drop. The potential V at the
surface of a conductor is constant and, in absence of charges in R

3 \ Ω, is harmonic
in the exterior of Ω. Hence, V is solution of the boundary value problem

ΔV = 0 at R
3 \ Ω,(1.3)

V = V0 at ∂Ω,(1.4)

V = O(|r|−1
) as |r| → ∞.(1.5)

The electrical energy term in (1.2) can be written, after integration by parts, in the
equivalent forms

1

2
ε0

∫
R3\Ω

|E|2 dx =
1

2
ε0

∫
∂Ω

V
∂V

∂n
dS =

1

2

∫
∂Ω

V0σdS =
1

2
QV0 =

1

2
CV 2

0 ,

where C is the capacity of Ω defined as

C = − ε0

V0

∫
Ω

∂V

∂n
dS.

The determination of the capacity of a given set is, in general, a difficult problem.
There are explicit expressions for only a few configurations, such as spheres and discs
(see [10]). The best source concerning estimation of the capacity of arbitrary sets is
[14] and the related article [15]. More complex configurations, such as spherical caps,
have a capacity that can be estimated from above and below but no explicit formulae.
This is the main difficulty in the deduction of minimizers of (1.2).
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A particular case of the problem corresponds to θY = 2π, which would correspond
to absence of contact with solids. This is the case of levitating droplets, in which the
energy is, instead of (1.2),

E = γlvAlv −
1

2
CV 2

0 ,

and extremal values are reached by spheres, as Lord Rayleigh showed in 1882 [17].
This particular situation points to the possibility of appearance of instabilities break-
ing the axial symmetry and leading to singularities at the drop’s surface. When the
electric charge (and V0 therefore) is large enough, those spheres cannot be stable. Two
scenarios are possible then: evolution towards nonspherical stationary configurations
that accommodate such amount of charge, or destabilization leading to singularities at
the interface in finite time. The existence of nonspherical equilibrium configurations
in the form of spheroids was proved in [8], and they were characterized as branches
of solutions bifurcating, via the Crandall–Rabinowitz theorem, from the branch of
spherical solutions. The appearance of singularities in the evolution of initially spher-
ical levitating drops with large charge was shown in [3]. The drop evolves initially
into a prolate spheroid with its poles increasing in curvature and becoming conical
tips in finite time.

By computing the first variation of the functional (1.2) one arrives at the following
equation:

(1.6) γκ− σ2

2ε0
= −p,

where γ = γlv, κ is the mean curvature (sum of the principal curvatures) of the
liquid-vapor interface at a point x, σ = −ε0

∂V
∂n is the surface charge density at the

same point x, and p is a constant to be determined through the constraint that the
drop has a given volume. In the fluid dynamics context, p is the difference of pressure
across the interface. Equation (1.6) has to be complemented with the boundary
condition stating that the normal vector to the interface forms a constant angle with
the normal to the solid substrate at any point of the contact line Γ, the set where
the liquid-vapor and the solid-liquid interfaces meet. This angle has to be, exactly,
θY (cf. [13]). Finally, we introduce characteristic length (Vol.)

1
3 , where Vol. is the

volume of the drop, characteristic potential (Vol.)
1
6 (γε−1

0 )
1
2 , characteristic surface

charge density (Vol.)−
1
6 (γε0)

1
2 , and characteristic pressure γ(Vol.)−

1
3 . Accordingly,

we change variables and unknowns in the form x → (Vol.)
1
3 x, V → (Vol.)

1
6 (γε−1

0 )
1
2V ,

σ → (Vol.)−
1
6 (γε0)

1
2σ, p → γ(Vol.)−

1
3 p so that space coordinates, potential, surface

charge density, and pressure are now dimensionless. We end up with the following
dimensionless version of (1.6):

(1.7) κ− σ2

2
= −p,

and the variational problem associated to the functional

(1.8) E = [Alv − (cos θY )Asl] −
1

2
CV 2

0 ,

where C = − 1
V0

∫
Ω

∂V
∂n dS, V being the solution to (1.3)–(1.5), and Ω is now a domain

of unit volume.
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One important motivation for this work is its relation with the phenomenon of
electrowetting. This consists in the control of the wetting properties of fluids by means
of electric fields. The simplest situation is that of a drop of conducting fluid connected
to a battery and, therefore, kept at a given difference of potential with respect to an
electrode placed at some distance below the solid substrate. In the situation studied
in the present paper, such an electrode would be placed at infinity, so that we establish
a given potential on the drop’s surface and assume the potential to decay at infinity.
The simplest theories on electrowetting follow the original ideas of Lippmann, who
developed a formula (cf. [11]) that predicts an unlimited spreading of droplets through
application of sufficiently strong electrostatic potentials. Nevertheless, the physical
observation is that drops do not spread infinitely but reach a saturation regime such
that an increase of the potential does not produce any additional spreading but rather
the appearance of instabilities at the contact line with subsequent emission of a varying
number of satellite filaments (see [12] and the references therein). The demonstration
of such facts, also appearing when the electrode is at a fixed distance to the drop,
requires a somewhat different analysis and will be published elsewhere.

In this paper we shall study, as a function θY and V0, the equilibrium config-
urations. We will present explicit formulae for the geometry of axially symmetric
profiles in certain limits of θY and V0. We will deduce a first constraint to indefinite
spreading due to the fact that static solutions develop dewetted cores with the fluid
concentrated in a rim around these cores. The second constraint concerns stability.
By analyzing the energy functional (1.8) we will conclude that axially symmetric solu-
tions must become unstable under nonaxisymmetric perturbations with n undulations
(n = 2, 3, . . .), provided V0 is large enough. We shall determine numerically (and ana-
lytically in some limiting cases) for what values of V0 such instabilities do develop as
a function of θY . This offers a possible explanation to the saturation effect explained
above and the contact line instabilities observed in experiments.

The paper is organized as follows. In section 2 we study the radially symmetric
configurations. We perform an analysis in the limiting cases of almost spherical drops
and almost flat drops and then develop a numerical code to compute the profiles in
all intermediate cases. This allows us to represent in a phase diagram the radius of
spreading of a drop as a function of V0 for arbitrary θY . In section 3 we study the
stability of the radially symmetric solutions under symmetry-breaking perturbations.
Again, we focus the theoretical discussion in the limiting cases of almost spherical and
flat drops, but end with a numerical study of all cases. Finally, section 4 is devoted to
the study of the capacity of axially symmetric configurations perturbed in the radial
direction and it also includes the proof of several results used in previous sections.

2. Radially symmetric configurations. These are solutions of (1.6) which are
invariant under rotations about an axis normal to the solid surface. We can describe
the height of each point of the fluid-vapor interface by a function h(r), where r is the
radial coordinate in a cylindrical coordinate system about the axis of symmetry. The
mean curvature is then (see [7])

(2.1) κ = −1

r

d

dr

(
r

hr

(1 + h2
r)

1
2

)
= −1

r
(r sinψ)r,

where ψ is the angle of inclination of the solution curve h(r) with respect to the r-axis.
Notice that tanψ = dh

dr . We shall study in this section the radially symmetric profiles
in two limits for which the analysis simplifies: (1) the limit of small potential V0 at
∂Ω so that drops are almost spherical caps, and (2) the limit of large potential V0 at
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∂Ω or small contact angle so that drops are almost flat discs. The profiles between
these two situations will be found numerically.

2.1. Almost spherical shapes. If we assume ∂Ω to be continuously differen-
tiable except for the contact line, which we consider located at r = L, where h(r)
is only Lipschitz continuous (due to the existence of a corner of opening angle θY ),
then by the classical theory of Dirichlet problems for elliptic linear partial differen-
tial equations (cf. [6], for instance) we will have a continuous solution V of problem
(1.3)–(1.5) such that ∂V

∂n will be continuous everywhere except for the contact line.

There ∂V
∂n will be singular since V has the asymptotic behavior

V = V0 + Aρα sin(αθ),

where (ρ, θ) are polar coordinates about (r, z) = (L, 0) and α is such that sin(α0) =
sin(α(2π − θY )) = 0 and ∂V

∂ρ is square integrable in the neighborhood of the contact

line. Hence α = 1
2−θY /π and

σ = −∂V

∂n
∼ A′ρ

1
2−θY /π−1

as ρ → 0.

Notice that σ2 is integrable with respect to ρ, provided θY > 0, and therefore is
integrable over the whole ∂Ω.

Let us assume that V0 = ε � 1 so that we can write the surface charge distribution
of a unit volume spherical cap with contact angle θY as εΣ. Then (1.7) and (2.1) yield
the equation

1

r

d

dr

(
r

hr

(1 + h2
r)

1
2

)
= −ε2 Σ2

2
+ p.

By integrating once we get

sinψ =
1

2
pr − ε2a1(r),

where

a1(r) =
1

r

∫ r

0

Σ2

2
r′dr′.

Notice that

(2.2) − sin θY =
1

2
pL− ε2a1(L).

In order to find the profile we use

hr = tanψ =
1
2pr − ε2a1(r)√

1 −
(

1
2pr − ε2a1(r)

)2
=

1
2pr√

1 − 1
4p

2r2
− 1(

1 − 1
4p

2r2
) 3

2

ε2a1(r) + O(ε4),

and then

h(r) = h0 +
2

p
− 2

p

√
1 − 1

4
p2r2 − ε2a2(r, p),
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where

a2(r, p) =

∫ r

0

1(
1 − 1

4p
2r′2
) 3

2

a1(r
′)dr.

The parameters h0, p, and L are chosen so that (2.2) is satisfied, the volume is 1, and
h(L) = 0. Hence we impose (2.2) together with the condition

2π

∫ L

0

(
h0 +

2

p
− 2

p

√
1 − 1

4
p2r2

)
rdr − ε2a3(L, p)

= πL2

(
h0 +

2

p

)
− 16π

3p3

(
1 −
(

1 − 1

4
p2L2

) 3
2

)
− ε2a3(L, p) = 1,(2.3)

where

a3(r, p) = 2π

∫ r

0

a2(r
′, p)r′dr′

and

(2.4) 0 = h0 +
2

p
− 2

p

√
1 − 1

4
p2L2 − ε2a2(L, p).

We write now p = p0 + ε2p1, h0 = h0,0 + ε2h′0,1, L = L0 + ε2L1 and obtain the
following solution at order zero in ε from (2.2), (2.3), (2.4):

L0 =

[
3

π

sin3 θY

(cos θY − 1)
2
(cos θY + 2)

] 1
3

,(2.5)

p0 = −2
[π
3

(cos θY − 1)
2
(cos θY + 2)

] 1
3

,(2.6)

h0,0 =

(
3

π

1 − cos θY
2 + cos θY

) 1
3

;(2.7)

and we obtain the following solutions at O(ε2):

p1 =
−a3p

3
0 cos θY + 8πa1 sin3 θY − 8πa2p0 cos θY sin2 θY

3p2
0 cos θY

,

L1 =
2

p0

(
− a1

cos θY (cos θY + 2)
+

1

6

L0

(
a3p

3
0 cos θY + 8πa2p0 cos θY sin2 θY

)
p2
0 cos θY

)
,

h0,1 =
2(1 − cos θY )

(
a3p

3
0 cos θY + 8πa2p0 sin2 θY cos θY

)
3p4

0 cos θY
+

2a1 sin θY
p0 (cos θY + 2)

− a2,

where a1 = a1(L), a2 = a2(L, p), a3 = a3(L, p). Notice that, since ai > 0 for i = 1, 2, 3
and p0 < 0, it follows that L1 > 0 and h0,1 < 0. Therefore, the drops spread a length
ε2L1 + O(ε4).
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2.2. Almost flat shapes. In the limit of large values of the potential, or in
case θY � 1, the drop’s configurations are so that the aspect ratio of its height to its
radius is a very small number and we can approximate the drop by a flat disc. An
advantage to this approximation lies in the fact that the charge distribution in a flat
conducting disc has an explicit closed form formula (see [9]) given by

(2.8) σ(r) =
Q/(2πa)√
a2 − r2

,

where Q is the total charge stored by the disc and a is its radius. Here we consider
the disc to be two-sided and the distribution on each side will be 1/2 of the density
σ(r) in (2.8). Therefore, (1.7) can be approximated by

κ− Q2/(4πa)2

2(a2 − r2)
= −p,

or, in terms of the potential V0 at the surface of the drop and using the value of the
capacity of a flat disc C = 8a, by

(2.9) −1

r

d

dr

(
r

hr

(1 + h2
r)

1
2

)
− 2

π2

V 2
0

(a2 − r2)
= −p.

We introduce now the change of variables in (2.9),

p =
V 2

0

a2
k, r = ar′, h = V 2

0 H,

to arrive at

1

r′
d

dr′

(
r′

Hr′

(1 +
V 2

0

a2 H2
r′)

1
2

)
+

2

π2

1

(1 − r′2)
= k

and assume
V 2

0

a2 � 1 so that we can finally deduce the equation

1

r′
d

dr′
(r′Hr′) +

2

π2

1

(1 − r′2)
= k,

with solution

(2.10) H(r′) = −1

4
k +

1

12
+

1

4π2
(4 dilog(1 − r′) + 4 dilog(1 + r′) + π2kr′2),

such that H(1) = 0. A few profiles H(r′) for various values of k are represented in
Figure 2.1. The fact that the drop’s center touches the solid substrate when k = 1

3 , as
one can easily compute from (2.10), implies that these solutions cannot be constructed
for arbitrary values of a and V . If we compute the volume associated to these drops,
we find

2π

∫ 1

0

H(r′)r′dr′ =
Vol.

V 2
0 a

2
,

or, using (2.10),

0.6366

4
· · · − 1

8
πk =

Vol.

V 2
0 a

2
,
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Fig. 2.1. Profiles H(r′) for k = 0, 1/8, 1/6, 1/4, 1/3.

implying, since k < 1
3 ,

(2.11) V 2
0 a

2/4 < 8.847 . . . .

The immediate implication of this formula is that one cannot spread the drop indefi-
nitely even when it is strongly charged.

2.3. The calculation of shapes for moderate values of V0 and θY . We
have implemented a numerical method in order to calculate stationary shapes of drops.
For a given value of the potential V0 we find the shapes for varying values of the base
radius a and compute their energy. This will allow us to compute the solid-liquid
interface radius of the equilibrium shapes for given values V0 and θY by minimization
of the energy (1.8) as a function of a. The way to approach the problem is by finding
solutions of (1.7) as stationary solutions of the evolution problem

(2.12) ht − Δ

(
κ− σ2

2

)
= 0,

with boundary conditions

(2.13) h(a) =
∂(κ− σ2

2 )

∂n

∣∣∣∣∣
r=a

= 0.

As the initial condition we take a spherical cap with base radius a. We compute

numerically the solutions to problem (2.12), (2.13) and observe that κ− σ2

2 converges
to a constant value −p and stop the calculation when the difference between the

maximum and minimum values of κ − σ2

2 lies below some tolerance threshold fixed
a priori. At each time-step we compute σ by solving the integral equation

(2.14) V0 =
1

4π

∫
∂Ω

σ(r′)

|r − r′|dS

with a boundary element technique for axisymmetric profiles (cf. [16]).
We compute, for these profiles, the energy as the sum of two contributions,

E = E1 − cos θY E2,

E1 = Alv −
1

2
CV 2

0 , E2 = Asl = πa2.
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0.8 1 1.2 1.4 1.6 1.8 2 2.2
−30

−25

−20

−15

−10

−5

0

5

10

15

a

E
1

V
0
=0.15

V
0
=2.25

V
0
=2.10

V
0
=1.95

V
0
=1.80

V
0
=1.65

V
0
=1.50

V
0
=1.35

V
0
=1.20

V
0
=1.05

V
0
=0.90

.

.

.

.

.

E
2

Fig. 2.2. Energies as a function of the radius of the circular base (a) for different potentials
V0. The potentials run from 0.15 up to 2.25 at intervals of 0.15.
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Fig. 2.3. Shapes of the profiles for various values of the radius of the circular base (a) and
V0 = 0.15.
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Fig. 2.4. Shapes of the profiles for various values of the radius of the circular base (a) and
V0 = 2.25.

In Figure 2.2 we represent the computed values of E1 for various values of V0. The
profiles for V0 = 0.15 and 2.25 are represented in Figures 2.3 and 2.4, respectively.
For a given value of θY one can compute the equilibrium shapes for each value of V0

by minimizing E as a function of a, that is, by finding the solutions to

dE

da
=

dE1

da
− cos θY

dE2

da
= 0,

leading to the relation

θY = arccos

(
dE1

da
dE2

da

)
.

In Figure 2.5 we represent θY as a function of a for various V0. The intersection of the
horizontal line corresponding to a given θY with the curves of constant V0 gives the
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Fig. 2.5. θY as a function of the radius of the circular base (a) for different values of the
potential V0. The potentials run from 0.15 up to 2.25 at intervals of 0.15. The dashed line is the
explicit curve, at V0 = 0, of L0 (= a) as a function of θY given by (2.5).

values of a as a function of V0. Notice that we are representing level lines of constant
V0 at intervals of 0.15 and that the level lines increase their separation with increasing
V0. This implies a superlinear growth of a with V0 for a given value of θY . As we saw
in section 2.1, this increase is exactly quadratic for sufficiently small V0.

2.4. The approximation with ellipsoids. When V0 = 0, the axially symmet-
ric minimizers of (1.8) are spherical caps. In the case of levitating droplets (θY = π)
the minimizers are spheres if V0 < 1.575 . . . and approximately oblate ellipsoids (cf. [8],
[4], and section 3.1 below) if V0 > 1.575 . . . . Moreover, we have observed that for mod-
erate values of the potential the profiles can be approximated by truncated oblate
ellipsoids (ellipsoidal caps) with a very high degree of accuracy. These observations
lead us to study the variational problem (1.8) restricted to the class of ellipsoidal caps
in the neighborhood of θY = π. We shall see below that the resulting a− θY diagram
is consistent with Figure 2.5 and that both overlap smoothly in the common region.

The family of profiles we consider is

1

c2
(z − αc)2 + β2r2 = 1

for z ≥ 0 only. These are ellipsoidal caps resulting from the truncation of an axially
symmetric ellipsoid with the center at αc and semiaxis c and β−1. Written in this
form, it is simple to compute c such that the volume of the drop is 1. Hence we
have to consider a two-parameter family of profiles with parameters −1 ≤ α ≤ 1 and
β ≤ 1

c . The areas Alv and Asl and the capacity C are then functions of α and β, and
the minimization problem is simply the one of finding the minima of a function of two

variables. We can show that Asl = π 1−α2

β2 . The main difficulty is the lack of explicit

expressions (except for just a few cases) for Alv and C. We compute these values
numerically for (α, β) in a grid with O(105) nodes. The capacity is determined as
the total charge from a surface charge distribution σ that we evaluate by solving the
integral equation (2.14) with a boundary element method. Then, for given values of
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Fig. 2.6. θY as a function of the radius of the circular base (a) for different values of the
potential V0 using the approximation with truncated ellipsoids. The dotted line is the explicit curve
at V0 = 0. The dashed line represents the line of symmetry breaking bifurcations to be discussed in
section 3.

V0, we compute for each θY the values of α and β in the grid that minimize the energy
(1.8), and with these values we compute a. The result is represented in Figure 2.6. In
the range of values of a and θY for which Figures 2.5 and 2.6 overlap, the ellipsoidal
approximation is very accurate. Nevertheless, it degrades for larger values of a, and
one can only apply it safely in the parametric region of Figure 2.6.

3. Instabilities of radially symmetric solutions. In this section we shall
proceed to study the stability of the radially symmetric solutions deduced above.
We approach the problem in a spirit very similar to Rayleigh’s in [17], that is, by
computing the energy associated to charged axially symmetric droplets and looking
at situations where the breaking of axial symmetry via a small perturbation is more
favorable energetically. The existence of these energetically preferred nonsymmetric
configurations in the neighborhood of a symmetric configuration indicates that in a
dynamic situation, such as, for instance, a gradient flow associated to this energy
or a thin-film-type equation [2], symmetric solutions might become unstable. Once a
symmetric solution destabilizes there are essentially two possibilities: evolving towards
a different equilibrium configuration with broken symmetry, or evolving in time up to
the formation of some kind of singularity in the solution of the system of evolution
partial differential equations (such as Navier–Stokes for fluids). We are not going
to study the evolution problem here, but our discussion will show when instabilities
happen and which kind of perturbation modes make the energy decrease most so
that one can expect them to be the dominant ones in the early-time evolution of the
system and somehow determine the shape of the asymmetric drop. As in the previous
section, we start with two limiting cases: the spherical drops and the flat drops, where
analytical calculations are feasible, and study all other cases numerically.

3.1. Almost spherical shapes. When θY = π, there are equilibrium configura-
tions which are perfectly spherical independent of the potential at their boundary V0.
These configurations are certainly stable when V0 is sufficiently small, but eventually
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will become unstable if they store a large charge (and have a large V0 consequently).
In what follows, we will compute the energy of nearby spheroidal configurations and
deduce a formula for the value of V0 at which spheroidal shapes are preferred to spher-
ical shapes. This analysis can easily be extended to drops with different, but close to
π, values of θY .

For an oblate ellipsoid with semiaxis a and c such that c < a, the volume, area,
and capacity (see [14] and [15]) are given by

Vol. =
4

3
πa2c,

A = 2π

(
a2 + c2

arctanh(sinα)

sinα

)
,

C = 4π
aβ

arcsinβ
,

where

α = arccos(c/a),(3.1a)

β =

√
1 − c2

a2
.(3.1b)

For a prolate ellipsoid with semiaxis a and c such that a < c,

Vol. =
4

3
πa2c,

A = 2π
(
a2 + c2

α

tanα

)
,

C = 8π
aβ

log 1+β
1−β

,

with α and β given by (3.1a), (3.1b). Hence, the energy associated to both oblate
and prolate spheroids is, respectively,

Eoblate = 2π

(
a2 + c2

arctanh(sinα)

sinα

)
− 1

2

(
4π

aβ

arcsinβ

)
V 2

0 ,

Eprolate = 2π
(
a2 + c2

α

tanα

)
− 1

2

(
8π

aβ

log 1+β
1−β

)
V 2

0 .

If a = c = R, the case of a sphere, then

Eoblate = Eprolate = 4πR2 − 2πRV 2
0 .

If we perturb the sphere to be an ellipsoid (with the same volume) by considering

a = R(1 + ε), c =
R

(1 + ε)2
in the oblate case,

a =
R

(1 + ε)
, c = R(1 + ε)2 in the prolate case

(0 < ε � 1), we get the following energies:

Eoblate = (4πR2 − 2πRV 2
0 ) +

(
−8

5
πRV 2

0 +
32

5
πR2

)
ε2 + O(ε3),

Eprolate = (4πR2 − 2πRV 2
0 ) + (8πR2 − 2πRV 2

0 )ε + O(ε2).
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In both types of perturbations, the ellipsoidal shapes are more favorable energet-
ically when

(3.2) V 2
0 > 4R.

In fact, since ε � 1, the prolate shape should be more favorable. A spherical drop
such that (3.2) is satisfied shall become unstable, and preferably start its evolution by
deforming into a prolate spheroid. This is, in fact, what is observed in experiments
done on levitating droplets [5] and in the numerical simulations in [3].

For a sphere of unit volume, (3.2) holds when

(3.3) V0 > 2

(
3

4π

) 1
6

= 1.575 . . . .

3.2. Almost flat shapes. We consider now very extended drops such that the
radius of their base is a 
 1 and their height h0 = h(0) � 1. When V0 = 0 these
drops are spherical caps and they appear when θY � 1. If the volume, given by

(3.4) Vol. =
1

6
πh0(3a

2 + h2
0),

is equal to 1, then it follows from a direct calculation that, for V0 = 0, a and h0 are
given by

(3.5) h0 =

(
3

π

1 − cos θY
2 + cos θY

) 1
3

, a =

(
3

π

) 1
3
(

1 − cos θY
2 + cos θY

)− 1
6
(

1 + cos θY
2 + cos θY

) 1
2

,

which coincide with the expression we obtained for h0,0 and L0 in (2.7) and (2.5),
respectively.

The capacity of a flat disc is C = 8a and the area of a spherical cap is π(a2 +h2
0).

Hence, the total energy of the charged drop is

E = π(a2 + h2
0) − (cos θY )πa2 − 1

2
CV 2

0 = π(a2 + h2
0) − (cos θY )πa2 − V 2

0 4a,

or keeping in mind the relation between a and h0, from (3.4) and the constraint
Vol. = 1,

E(h0) = π

(
2

πh0
− h2

0

3
+ h2

0

)
− (cos θY )π

(
2

πh0
− h2

0

3

)
− V 2

0 4

√
2

πh0
− h2

0

3
.

For small h0,

E′(h0) � (1 − cos θY )

(
−2

h2
0

)
+ 2

V 2
0

h
3
2
0

√
2

π
+ O(h0) = 0,

and hence

h0 ∼ π

2V 4
0

(1 − cos θY )
2
,(3.6)

a =
1

h0

(
2

π
− h3

0

3

)
∼ 4V 4

0

π2 (1 − cos θY )
2 ,(3.7)
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which gives an estimate of the radius of the drop’s base as a function of V0 and θY ,
provided V0 is small enough for (2.11) to be verified and θY is sufficiently close to zero
in order to have almost flat drops.

Next we will discuss whether or not almost flat configurations which are not discs
can be more favorable energetically than the axially symmetric configurations. This
is not surprising due to the important result of Pólya and Szegö (cf. [14]) on the effect
of Schwarz symmetrization on capacity. They proved that the process of Schwarz
symmetrization of a three-dimensional body diminishes (or leaves unchanged) the
capacity of a body. Schwarz symmetrization about an axis e replaces each cross
section of the body orthogonal to e by a circular section of the same area centered at
e. This leads to a body of revolution. In the case of a disc, one can conclude that
the capacity of a perturbed disc is larger than or equal to the capacity of the disc
of the same area. Therefore, the energy functional decreases or remains equal when
deforming a disc. We will show below that the energy, in fact, decreases.

The energy of the almost flat droplet can be approximated by

E ∼ (1 − cos θY )Asl −
1

2
CbV

2
0 ,

where we have assumed hr(r) � 1 so that one can assume that the liquid-vapor
interface has an area similar to the liquid-solid interface and the capacity of the drop
is similar to the capacity of the planar region consisting of the liquid-solid interface,
denoted by Cb.

When changing the geometry of the liquid-solid interface, the energy will experi-
ence a variation given by

δE = (1 − cos θY ) δAsl −
1

2
V 2

0 δCb.

A flat ellipsoid has capacity (cf. [14]) and area given by

Cb = 2π
b′ + b

K
(

b′−b
b′+b

) , Asl = πb′b,

where b and b′ are the length of the semiaxis of the ellipse and K(x) is the complete
elliptic integral of the first kind. If we perturb the disc into an ellipse, in such a way
that the area is preserved, by writing

b = a(1 + ε), b′ =
a

1 + ε
,

we will have

δAsl = 0, δCb =
2a + aε2

K
(
ε− 1

2ε
2
) − 8a2π ∼ 2π

2a + aε2

π
2 + π

8 ε
2
− 8a ∼ 8aε2,

and this implies δE < 0. Therefore, the flat ellipsoid is energetically favorable with
respect to a flat disc. The same result will hold true for nonplanar bodies which are
almost flat in the sense that h0 given by (3.6) is much smaller than a, given by (3.7).

Notice that (3.7) has to be combined with (2.11) in order to have consistent
almost-flat droplets. This condition requires, in addition to a given by (3.7) being
large, that

V0a =
4V 5

0

π2 (1 − cos θY )
2 < 2

√
8.848 . . . ,



140 M. A. FONTELOS AND U. KINDELÁN

which is only true if V0 is sufficiently small.
Finally, we introduce general perturbations of the flat disc in the form

r(θ) = a
1

1 + ε2

2

(1 + ε cos(nθ)),

with θ and r polar coordinates about the axis, so that

(3.8) Asl =
1

2

∫
r2(θ)dθ = a2.

When n = 2, we recover, at first order in ε, the perturbation into an ellipsoid. For
n > 2 we obtain a shape with n undulations of the disc’s boundary. Such perturbations
do not change the area by (3.8) but do change the capacity in the sense of increasing
it with increasing n, provided nε � 1. This implies that the larger n is, the more
favorable energetically is a configuration with n undulations in its boundary.

3.3. Symmetry-breaking instabilities for intermediate values of V0 and
θY . We identify values of the potential at which nonaxisymmetric solutions are en-
ergetically more favorable than the axially symmetric configurations r = a(z). We
perturb the profiles radially in the form

(3.9) r(θ, z) =
a(z)√
1 + ε2

2

(1 + ε cos(nθ)); z ∈ [0, H] , θ ∈ [0, 2π) .

In the last section, we will show that this kind of perturbation leads, for ε � 1
and provided nε � 1, to an increase of the capacity which is a nondecreasing function
of n. Since this fact follows from a lengthy calculation we postpone its proof and use
it here to conclude the existence of symmetry-breaking bifurcations.

The volume of the drop does not change, since

Vol. =

∫ H

0

z

[∫ 2π

0

(∫ a(z)√
1+ ε2

2

(1+ε cos(nθ))

0

rdr

)
dθ

]
dz

=

∫ H

0

z

[
1

2

∫ 2π

0

a2(z)

1 + ε2

2

(1 + ε cos(nθ))2dθ

]
dz = π

∫ H

0

za2(z)dz.

The lateral area (area of the liquid-vapor interface) has a value

Alv(ε) =

∫ H

0

∫ 2π

0

√
r2 + r2

θ + r2r2
zdθdz

=

∫ H

0

∫ 2π

0

(
a2

(
1 + 2ε cosnθ +

ε2

2
cos 2nθ

)
+ a2n2ε2 sin2(nθ)

+ a2a2
z(1 + 4ε cosnθ + ε2(3 cos 2nθ + 2))

) 1
2

dz + O(ε3)

= Alv(0) + ε2π

∫ H

0

n2

2 + 2a2
z√

1 + a2
z

adz + O(ε3)

= Alv(0) + ε2(c1n
2 + c2) + O(ε3),
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while the area of the solid-liquid interface remains unchanged. Hence, we can estimate
the variation of the energy under a radial perturbation:

δE = δAlv − cos θY δAsl −
1

2
δCV 2

0

= ε2

[
(c1n

2 + c2) −
1

2

(
δC/ε2

)
V 2

0

]
+ O(ε3).

Since δC/ε2 is always positive and O(1) for n > 2, as we prove in the next section,
one should always have, for

V0 > V0,n =

√
2(c1n2 + c2)

(δC/ε2)
,

instabilities with a given n. For profiles close to a sphere V0,n is increasing with n, but
this is not the case for profiles close to a disc. Given the strict monotonicity of the
capacity with n (even for profiles that are close to discs), again as we prove in the next
section, and given the fact that c1 and c2 can be made arbitrarily small for sufficiently
flat profiles (when H � 1), we can make the combination

[
(c1n

2+c2)− 1
2

(
δC/ε2

)
V 2

0

]
to decrease monotonically with n for configurations close to a disc. This would imply
that perturbations with large n are more unstable than perturbations with a small
n. Hence, one can expect the boundary to destabilize first with multiple oscillations.
In the next subsection we implement a numerical method to compute the energy of
radially perturbed equilibrium shapes and determine, for given θY , the values of the
radius of the solid-liquid interface and V0 for which instabilities with various n appear.

3.4. Numerical results.

Numerical approximation in the radially perturbed case. When dealing
with radially perturbed equilibrium shapes we lose the axially symmetric properties
and need to do a full three-dimensional (3D) approximation in order to compute area
and capacity and hence the energy given in (1.8). We use a boundary element method
that we have already implemented in [3] to compute the surface charge density by
solving the integral equation (2.14) in the profiles given by (3.9) with a unit potential
at the boundary. From the surface charge density we can obtain the total charge
integrating over the surface and that will be the capacity of the body.

Validation. In order to validate the numerical method described above we have
done two tests:

1. Comparison with the exact capacity of a perfectly conducting thin spherical
shell. The exact capacity can be obtained through

C = 4a(sinβ + β),

where a is the radius of the sphere and β is the zenithal angle of the shell; see [1].
We have compared in Figure 3.1 the capacity obtained numerically for values of

β from 0 up to π/2 (a hemispherical shell) and with two different meshes (mesh 1 and
mesh 2; see Figure 3.2), with the exact capacity. We found with mesh 1 a maximum
relative error of 0.011 and with mesh 2 a maximum relative error of 0.0058. In both
cases, the relative error is below 2%.

2. Comparison with the exact capacity of a hemisphere (a spherical cap with
β = π/2 and a lower tap representing the liquid-solid interface). The exact capacity
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Fig. 3.1. Capacity versus zenithal angle in an axisymmetric drop.

Fig. 3.2. Two 3D meshes of a spherical cap (a = 0.7, β = 0.7754). On the left, mesh 1
( 541 nodes and 1016 elements), and on the right, mesh 2 ( 2097 nodes and 4064 elements).

of a hemisphere of radius a is (see [10])

4πa

(
1 − 1√

3

)
.

In this case we compare again the results obtained with meshes 1 and 2. We
obtained a relative error of 0.00997 with mesh 1 and a relative error of 0.00253 with
mesh 2.

Results and discussion. We have used the numerical method described above
to compute the energy of profiles perturbed in the form (3.9) and compare it with the
energy of the axisymmetric profile a(z). We use mesh 2 for the numerical simulations.
In Figure 3.3 we show the perturbed drops with n = 0, 2, 3, and 4 for the case
corresponding to V = 0.6 and a = 1.16.

In Figure 3.4 we represent, together with the curves of θY as a function of a for
all axisymmetric profiles at a given potential, the approximate “bifurcation curves”
for n = 2, 3, and 4. Each of these curves, with a given value of n, delimits the regions
where the configurations of the type (3.9) with ε � 1 (that we took equal to 0.025
for our numerical computations) are energetically more favorable than configurations
with smaller value of n (including the axisymmetric profiles). Notice the tendency of
the curves to intersect for large values of a. This is in agreement with the discussion
on profiles close to a disc in the previous section.

From Figure 3.4 we can obtain two important conclusions:
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Fig. 3.3. Shape of a radially symmetric droplet with a bottom tap of radius a = 1.16 under a
potential V = 0.6 (top left). The same drop perturbed radially with n = 2 (top right), n = 3 (bottom
left), and n = 4 (bottom right).
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Fig. 3.4. Bifurcation branches in the a−θY plane. The bifurcations with n = 2 are represented
with dashed line, n = 3 with dotted line, and n = 4 with dash-dot line.

1. Drops cannot be spread indefinitely by increasing the potential V0. If we
trace a horizontal line in Figure 3.4 for a given value of θY , we find that a increases
with the potential in a superlinear manner, but only up to some limiting value where
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Fig. 3.5. Axisymmetric profiles at the bifurcation curve n = 2 for θY = 1.55, 1.26, 1.03, 0.81,
0.59, 0.43.

we meet the first bifurcation curve n = 2. At this point, an axisymmetric drop
is no longer the most favorable configuration, and drops with elliptic cross sections
will be preferred. A further increase of V0 leads to an intersection with the curves
n = 3, 4, . . . and configurations with a higher number of undulations would be more
favorable energetically. The intersection with the first bifurcation curve takes place for
relatively small values of a (in comparison with the maximum values that a may take
from the constraint established in (2.11)). In Figure 3.5 we represent the axisymmetric
profiles at the n = 2 bifurcation curve for different values of θY . Observe that all the
profiles are concave. Hence, the profiles changing concavity, like those represented in
Figure 2.4, are probably not observable in nature since nonaxisymmetric perturbations
lead to configurations which are energetically more favorable. Once a bifurcation curve
has been crossed, axisymmetric drops should destabilize. This provides an explanation
to the saturation effect in electrowetting.

2. For a given value of θY , the transition between bifurcation curves occurs
relatively fast: if we take, for instance, θY = π

4 , we can see that a only changes
approximately from 1.4 to 1.6 while crossing the bifurcation curves n = 2, 3, and 4.
This fast transition is more remarkable the smaller θY is, and for sufficiently small
values of θY the transition takes place for very flat shapes; for those shapes (see the
previous section) the first bifurcation curve we cross when increasing a may correspond
to n > 2. The quick transition between bifurcation curves provides an explanation of
the characteristic multiple-finger patterns observed in electrowetting once saturation
is reached and potential is slowly increased.

4. The capacity of radially perturbed bodies of revolution. In this section
we deduce some important results used in this paper concerning the capacity of a
radially perturbed body of revolution (including drops as a particular case). We shall
show how the breaking of axial symmetry leads to an increase in the capacity, and we
estimate this increase. By Dirichlet’s principle, the capacity of Ω can be evaluated as
(cf. [14])

C =

∫
R3�Ω0

|∇V |2 dx.

We will consider here the case of Ω being a small axial perturbation of an axisymmet-
ric domain Ω0. More precisely, we shall consider a domain described in cylindrical
coordinates (r, θ, z) by

r(θ, z) =
a(z)√
1 + ε2

2

(1 + ε cos(nθ)); z ∈ [0, H] , θ ∈ [0, 2π) ,

where r = a(z) describes the generatrix of Ω0; together with the upper and lower taps
r < {a(H)(1 + ε cos(nθ)), z = H} and r < {a(0)(1 + ε cos(nθ)), z = 0}. Notice that
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a(H) = 0 in the particular case of a drop, which is the one considered in the present
paper. Then, assuming a(z) = 0 for z < 0 and z > H, one can write

∫
R3�Ω0

|∇V |2 dx =

∫ 2π

0

∫ ∞

−∞

∫ ∞

a(z)√
1+ ε2

2

(1+ε cos(nθ))

|∇V |2 rdrdθdz.

We change variables to a new system r′ =
√

1 + ε2

2 r/(1 + ε cos(nθ)), θ′ = θ,

z′ = z, so that

∂V

∂r
=

∂V

∂r′
1

1 + ε cos(nθ′)
,

∂V

∂θ
=

∂V

∂θ′
+

∂V

∂r′
r′

εn sin(nθ′)

1 + ε cos(nθ′)
,

and hence

C =

∫
R3�Ω0

{
1

(1 + ε cos(nθ′))
2

∣∣∣∣∂V∂r′
∣∣∣∣
2

+
1

r′2 (1 + ε cos(nθ′))
2

∣∣∣∣∂V∂θ′ +
∂V

∂r′
r′εn sin(nθ′)

1 + ε cos(nθ′)

∣∣∣∣
2

+
1

1 + ε2

2

∣∣∣∣∂V∂z′
∣∣∣∣
2
}

(1 + ε cos(nθ′))
2
r′dr′dθ′dz′

=

∫
R3�Ω0

{∣∣∣∣∂V∂r′
∣∣∣∣
2

+
1

r′2

∣∣∣∣∂V∂θ′
∣∣∣∣
2

+

∣∣∣∣∂V∂z′
∣∣∣∣
2
}
r′dr′dθ′dz′

+

∫
R3�Ω0

{
2

r′
∂V

∂θ′
∂V

∂r′
εn sin(nθ′)

(1 + ε cos(nθ′))
+

1

r′2

∣∣∣∣∂V∂r′ r′ εn sin(nθ′)

1 + ε cos(nθ′)

∣∣∣∣
2

+

(
2ε cos(nθ′) + ε2 cos2(nθ′) − ε2

2

) ∣∣∣∣∂V∂z′
∣∣∣∣
2
}
r′dr′dθ′dz′ + O(ε3).

Let V0(r, z) be the potential outside Ω0 such that V0 = 1 at ∂Ω0, with C0 the
capacity of Ω0, and write

V (r′, θ′, z′) = V0(r
′, z′) + ε2V1(r

′, θ′, z′).

Then, as long as nε � 1, we can expand

C =

∫
R3�Ω0

|∇V0|2 dx′ + 2ε

∫
R3�Ω0

∇V0 · ∇V1dx
′ + ε2

∫
R3�Ω0

|∇V1|2 dx′

+ ε2

∫
R3�Ω0

{
2

r′
∂V1

∂θ′
∂V0

∂r′
n sin(nθ′) +

(
∂V0

∂r′

)2

n2 sin2(nθ′)

+
1

2
cos(2nθ′)

(
∂V0

∂z′

)2

+ 4 cos(nθ′)
∂V1

∂z′
∂V0

∂z′

}
r′dr′dθ′dz′ + O(ε3),

and since
∫

R3�Ω0
∇V0 · ∇V1dx

′ = 0 (as one can show after integration by parts and

using ΔV0 = 0 outside Ω0 and V1 = 0 at ∂Ω0) we can write

C = C0 + ε2Cn,1 + O(ε3),
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where

Cn,1 =

∫
R3�Ω0

|∇V1|2 dx′ +

∫
R3�Ω0

{(
∂V0

∂r′

)2

n2 sin2(nθ′)

+
2

r′
∂V1

∂θ′
∂V0

∂r′
n sin(nθ′) + 4 cos(nθ′)

∂V1

∂z′
∂V0

∂z′

}
r′dr′dθ′dz′.

By Dirichlet’s principle, V1 can also be characterized as the function W for which the
minimum of∫

R3�Ω0

(
|∇W |2 +

2

r′
∂W

∂θ′
∂V0

∂r′
n sin(nθ′) + 4 cos(nθ′)

∂W

∂z′
∂V0

∂z′

)
dx′

is achieved or, equivalently, the solution to the boundary value problem

2ΔV1 = − 2

r′
∂V0

∂r′
n2 cos(nθ′) − 4

∂2V0

∂z′2
cos(nθ′) in R

3
�Ω0,

V1 = 0 at ∂Ω0.

We can find the solution to this problem in the form

V1 = cos(nθ′)Φ(r′, z′),

which leads to

Cn,1 =

∫ +∞

−∞

∫ +∞

a(z′)

(
n2

2

∣∣∣∣∂V0

∂r′

∣∣∣∣
2
)
r′dr′dz′

+

∫ +∞

−∞

∫ +∞

a(z′)

(
1

2

∣∣∣∣∂Φ

∂r′

∣∣∣∣
2

+
1

2

∣∣∣∣∂Φ

∂z′

∣∣∣∣
2

+
n2

2r′2
Φ2 − n2

r′
Φ
∂V0

∂r′
+ 2

∂Φ

∂z′
∂V0

∂z′

)
r′dr′dz′.

Hence, using ΔV0 = 0, one finds

−Δ(r′,z′)Φ +
n2

r′2
Φ =

n2

r′
∂V0

∂r′
− 2

r′
∂

∂r′

(
r′
∂V0

∂r′

)
in R

3
�Ω0,(4.1)

Φ = 0 at ∂Ω0.(4.2)

We are going to show two important facts: (1) Cn,1 is strictly positive, and (2) Cn,1

is increasing with n. The first fact follows from the following calculations:

Cn,1 =

∫ +∞

−∞

∫ +∞

a(z′)

(
n2

2

∣∣∣∣∂V0

∂r′

∣∣∣∣
2
)
r′dr′dz′ +

∫ +∞

−∞

∫ +∞

a(z′)

(
1

2

∣∣∣∣∂Φ

∂z′

∣∣∣∣
2
)
r′dr′dz′

+

∫ +∞

−∞

∫ +∞

a(z′)

(
1

2

∣∣∣∣∂Φ

∂r′

∣∣∣∣
2

+
n2

2r′2
Φ2 − n2

r′
Φ
∂V0

∂r′
+ 2

∂Φ

∂z′
∂V0

∂z′

)
r′dr′dz′

>

∫ H

0

∫ +∞

a(z′)

{
n2

2

∣∣∣∣∂V0

∂r′

∣∣∣∣
2

+
1

2

∣∣∣∣∂Φ

∂r′

∣∣∣∣
2

+
n2

2r′2
Φ2 − n2

r′
Φ
∂V0

∂r′
− 2

∂Φ

∂r′
∂V0

∂r′

}
r′dr′dz′

=
u=log r

∫ H

0

[∫ +∞

log a(z′)

{
n2

2

∣∣∣∣∂V0

∂u

∣∣∣∣
2

+
1

2

∣∣∣∣∂Φ

∂u

∣∣∣∣
2

+
n2

2
Φ2 − n2Φ

∂V0

∂u
− 2

∂Φ

∂u

∂V0

∂u

}
du

]
dz′.



CHARGED DROPS OVER A SOLID SURFACE 147

By performing Fourier transform in u of this last expression we get

∫ H

0

[∫ +∞

−∞

{
n2

2
k2
∣∣∣V̂0

∣∣∣2 +
1

2
k2
∣∣∣Φ̂∣∣∣2 +

n2

2

∣∣∣Φ̂∣∣∣2 − ikn2Φ̂V̂0 + 2k2Φ̂V̂0

}
dk

]
dz′

=

∫ H

0

{∫ +∞

−∞

[
n2

2
k2
∣∣∣V̂0

∣∣∣2 +

(
1

2
k2 + n2

) ∣∣∣Φ̂∣∣∣2
+ n2k2(V̂0�Φ̂ −Φ̂�V̂0) + 2k2((�V̂0�Φ̂ + V̂0Φ̂))

]
dk

}
dz.(4.3)

Let

a = (�Φ̂,Φ̂,�V̂0,V̂0).

Then the integrand in (4.3) is aT (n, k)at with

T (n, k) =

⎛
⎜⎜⎜⎜⎝

k2+n2

2 0 k2 n2k
2

0 k2+n2

2 −n2k
2 k2

k2 −n2k
2

k2n2

2 0
n2k
2 k2 0 k2n2

2

⎞
⎟⎟⎟⎟⎠

possessing the following two double eigenvalues:

λ± =
1

4
k2n2 +

1

4
k2 +

1

4
n2 ± 1

4

√
k4n4 − 2k4n2 + 17k4 + 2k2n4 + 2k2n2 + n4.

Notice that

λ− =
k4
(
n2 − 4

)
k2n2 + k2 + n2 +

√
k4n4 − 2k4n2 + 17k4 + 2k2n4 + 2k2n2 + n4

>
k4/2

1 + k2

n2 − 4

n2 + 1

so that

Cn,1 >
n2 − 4

n2 + 1

∫ H

0

[∫ +∞

−∞

1

2

k4

1 + k2

∣∣∣V̂0

∣∣∣2 dk] dz = c′
n2 − 4

n2 + 1
.

The capacity is increasing with n:

Cn,1 =

∫ +∞

−∞

∫ +∞

a(z′)

(
1

2

∣∣∣∣∂Φ

∂r′

∣∣∣∣
2

+
1

2

∣∣∣∣∂Φ

∂z′

∣∣∣∣
2

+
n2

2

∣∣∣∣Φr′ − ∂V0

∂r′

∣∣∣∣
2

+ 2
∂Φ

∂z′
∂V0

∂z′

)
r′dr′dz′

≥
∫ +∞

−∞

∫ +∞

a(z′)

(
1

2

∣∣∣∣∂Φ

∂r′

∣∣∣∣
2

+
1

2

∣∣∣∣∂Φ

∂z′

∣∣∣∣
2

+
(n− 1)2

2

∣∣∣∣Φr′ − ∂V0

∂r′

∣∣∣∣
2

+ 2
∂Φ

∂z′
∂V0

∂z′

)
r′dr′dz′

≥ 1

2
min
Ψ

∫ +∞

−∞

∫ +∞

a(z′)

(∣∣∣∣∂Ψ

∂r′

∣∣∣∣
2

+

∣∣∣∣∂Ψ

∂z′

∣∣∣∣
2

+ (n− 1)2
∣∣∣∣Ψr′ − ∂V0

∂r′

∣∣∣∣
2

+ 4
∂Ψ

∂z′
∂V0

∂z′

)
r′dr′dz′

= Cn−1,1,

with equality if and only if

(4.4) Φ = r′
∂V0

∂r′
,
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which would imply, by (4.1),

(4.5) −Δ(r′,z′)Φ +
2

r′
∂Φ

∂r′
= 0.

Multiplying (4.5) by Φ and integrating by parts using Φ = 0 at ∂Ω, we get∫
|∇Φ|2 dx′ = 0,

which would imply Φ = 0 at almost every point, a fact that is incompatible with (4.4).
Therefore the capacity is strictly increasing with n.

The fact that the capacity is strictly increasing with n is crucial to the proof
of existence of symmetry-breaking bifurcations in section 3.3. Another important
consequence of the result proved in this section, discussed in section 3.3, is the fact
that perturbations with high order modes (large value of n) may be the most favorable
energetically if the body of revolution that we perturb is sufficiently flat. This may
lead to instabilities of the contact line in the form of numerous fingers.
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[5] D. Duft, T. Achtzehn, R. Müller, B. A. Huber, and T. Leisner, Rayleigh jets from
levitated microdroplets, Nature, 421 (2003), p. 128.

[6] L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.
[7] R. Finn, Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1986.
[8] M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of charged drops, Arch.

Ration. Mech. Anal., 172 (2004), pp. 267–294.
[9] O. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1969.

[10] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
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MATHEMATICS AND MONUMENT CONSERVATION:
FREE BOUNDARY MODELS OF MARBLE SULFATION∗
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Abstract. We introduce some free boundary problems which describe the evolution of calcium
carbonate stones under the attack of atmospheric SO2, taking into account both swelling of the
external gypsum layer and the influence of humidity. Different behaviors are described according to
the relative humidity of the environment, and in all cases reliable explicit quasi-steady approximations
are introduced under reasonable assumptions on the data. Some numerical simulations are also
performed to describe gypsum formation using experimental data, which show a good agreement with
the quasi-steady solutions. The influence of the cleaning the crust and of the change in concentration
of pollution is evaluated and discussed.
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1. Introduction. Deterioration of stones is a complex problem and one of the
main concerns for people working in the field of conservation and restoration of cul-
tural heritage. It is extremely difficult to isolate a single factor in these kinds of
processes, which are the results of the interaction of various mechanisms, many of
which also occur in natural weathering; however, atmospheric pollution can certainly
be considered as one of the most important factor of damage. In this paper we shall
introduce some free boundary models to describe damage induced by pollution.

Although in recent years air pollution in European urban areas has decreased
considerably, there still remain concentrations of pollutants such as sulfur dioxide
(SO2) from combustion of fossil fuels, and nitrogen oxides (NOx) from combustion
engines, the former being the most important factor in the deterioration of stones.
Indeed SO2 can react with any calcareous component in the stone, producing an
external layer of gypsum, which may be drained away by rain or form crusts that
eventually exfoliate. This process greatly depends on the nature of the stone and
on the presence of moisture. Since the stone is a porous material, condensation of
moisture may occur deep within the pores of the material, and it is critical to its
reactivity to pollutant. Despite the intense experimental research performed in this
area (see [5] for a large review), further studies are necessary in order to provide a
predictive tool.

The present paper will be concerned with the so-called dry deposition of SO2 on
calcium carbonate stones. Many experimental investigations (see, for instance, [7, 5])
have shown that this process, which is mainly influenced by short-range transport
of pollutants from local sources, is the main source of damage in stones, and more
precisely in very compact stones like high-quality marbles. Wet deposition, in which
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pollutants are dissolved in moisture droplets and rain, is actually considered as sec-
ondary, even if, as in areas where buildings and monuments remain wet for a long
time, it may become important.

For dry deposition the path of reaction of SO2 with calcium carbonate is revealed
by the x-ray diffraction counts, which suggest that the reaction can be approximated
by the following simplified one-step reaction [2, 7]:

(1.1) CaCO3 + SO2 +
1

2
O2 + 2H2O → CaSO4 · 2H2O + CO2.

Namely, one mole of calcium carbonate and one mole of sulfur dioxide, combined
with two moles of water, produce one mole of calcium sulfate dihydrate (gypsum)
CaSO4 · 2H2O and one of carbon dioxide CO2. In the following we will use the fact
that, on the typical time scale of the whole process, which will be one year, not only
can we neglect the intermediate steps leading to (1.1), but we may also consider this
reaction instantaneous, thus producing a sharp free boundary between gypsum and
the unreacted calcium carbonate. In stones with very low porosity, the appearance
of a sharp gypsum-marble interface has been experimentally observed in [7, 4, 8].
Moreover, according to the results in [9], this is an excellent approximation of the
finite rate regime.

In our model we will consider only a one-dimensional geometry. Actually, since
the typical thickness of the gypsum layer produced in one year in standard conditions
is 20 [μm], if the gypsum layer is not removed, then for surfaces without too high a
curvature a one-dimensional model is fully appropriate. However, a peculiar feature
of the process is that the advancement of the sulfation front depends on factors that
can change several hundreds of times during the same time scale. Such factors may
be influenced very much by local conditions, with the consequence that monuments
made of the same material, having the same age, and located in the same city not
far from each other can have a very different state of preservation. Thus, even if we
consider a small number of influencing factors, the resulting picture is not simple and
requires a rather detailed knowledge of data concerning not only the regional climatic
conditions, but also the local environment.

An additional comment about reaction (1.1) is in order. As a matter of fact, in
real processes, calcium sulfate is also produced, according to the reaction path

CaCO3 + SO2 +
1

2
H2O → CaSO3 ·

1

2
H2O + CO2.

In this regard, it has been shown that the proportion of CaSO4 and CaSO3 in a
sulfation process can be affected to a great extent not only by relative humidity,
but also by the presence of other substances like CaCl2, MnCl2, CuCl2, and FeCl3
acting as catalysts which favor one of the two reactions [7, 11]. The two reactions
generally occur simultaneously and the resulting mixed layer can have properties (e.g.,
porosity, permeability, etc.) depending on the volume fractions of the two substances,
and calcium sulfite may be converted to calcium sulfate, so that the process, including
the two reactions, is considerably more complicated. However, even if laboratory tests
show that calcium sulfite is the primary product of the reaction, in situ analysis reveals
only the presence of calcium sulfate, which can be considered as the final state reached
by the whole reaction.

In this paper we present some free boundary models, which include important
phenomena not considered in the previous mathematical papers on the subject [3, 1]:
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swelling and relative humidity. As we can see in the following, these two factors
have a deep influence in the evolution of sulfation and require specific consideration.
Using dimensional scaling we are able to build almost explicit approximations of
these models, which will be very useful in their calibration and qualitative study.
Different regimes are determined, according to the presence of relative humidity near
the stones. We also introduce some finite difference schemes to compare the results
of our asymptotic analysis and the real behavior of the solutions. A good agreement
is found in all cases, even if on the scale of 10 years the numerical schemes should
be preferred. Finally, some simulations are performed utilizing real data, which were
kindly provided by Arpalazio, the Rome regional authority for monitoring pollution.
Useful indications are derived by our elaboration of these data.

2. Swelling. The transformation of marble into gypsum is accompanied by a
volume change. The swelling rate can be calculated easily because the molar ratio in
(1.1) between CaCO3 and CaSO4 is 1 : 1. Thus, on the unit surface of the reaction
front the consumption rate of CaCO3 moles equals the production rate of CaSO4

moles. If x = σ(t) denotes the sulfation front and x = σ0(t) is the gypsum surface
exposed to air (the frame of reference is chosen so that unreacted marble is at rest),
we have the relation

(2.1) σ̇0 = −ωσ̇,

where ω = μm

μs
− 1, μm and μs being the molar density (# mol/cm3) of CaCO3 in

the marble and of CaSO4 in the gypsum, respectively. We are supposing that μm is
constant (i.e., the marble is a homogeneous material) and that μs is also constant,
meaning that gypsum is formed with some standard structure, independently of its
production rate. Under this assumption, if σ0(0) = σ(0) = 0, we may conclude that

(2.2) σ0(t) = −ωσ(t),

so that the thickness of the gypsum layer at time t is

(2.3) h(t) = (1 + ω)σ(t).

Otherwise if σ(0) > 0 and σ0(0) > 0, we obtain

(2.4) σ0(t) − σ0(0) = −ω (σ(t) − σ(0)) .

Swelling is an important phenomenon. First of all it is not small. Although the
determination of μs is not easy, it is reasonable to say that the swelling rate ω can
approach 2. The motion of gypsum influences the flow of the air and of the other
gaseous components present in the pores. We concentrate our attention on SO2 and
water vapor. On the length and time scales typical of the process, air can be considered
to move with the same speed as gypsum, i.e.,

(2.5) va = σ̇0.

This approximation will be completely justified in the appendix.

3. Sulfation: A two-regime process. Experimental researchers know that
relative humidity has a key role in regulating the speed of marble sulfation. One
could think that since SO2 is by far the most diluted among the reactants in (1.1),
it has to play a limiting role. On the contrary, this role is taken up by H2O. Indeed
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it is observed that when relative humidity exceeds some threshold, then SO2 reacts
completely. Below that threshold (which is around 75%) there is another range (down
to 45%) in which the reaction slows down and stops completely for even lower values;
see [5, 7] and the references therein. We can interpret this phenomenon as follows.

According to (1.1) a molecule of SO2 coming in contact with CaCO3 reacts if two
molecules of H2O are available at the same point (we suppose that there is always
enough O2). Such a multiple encounter has a negligibly small probability to occur
if H2O is just in the gaseous form. To make the reaction proceed at full speed it is
necessary that H2O is permanently available. This is true only if vapor condenses on
the unreacted marble surface forming a liquid film.

Condensation is made possible by the fact that marble is hygroscopic and will be
the result of a sorption-desorption process, which we assume to go through equilibrium
states. Therefore, we may interpret the limiting role of H2O by saying that the
liquid film is present if the relative humidity is above the 75% threshold, while in
the range 45%–75% there will be just humid spots on which the reaction takes place.
Accordingly only a fraction of the SO2 arriving to the front will be employed in the
reaction. For relative humidity below 45% no liquid water is present and the reaction
stops.

The two sulfation regimes (full and reduced speed) have different boundary con-
ditions on the unreacted marble surface. We will examine them separately.

4. Full sulfation speed. If temperature T and pressure p are prescribed, the
condition for full reaction speed is that the concentration of H2O in air exceeds some
value w0(T, p).

Let s denote the concentration of SO2 in the pores of gypsum. The flow of SO2

relative to air is governed by Fick’s law. Thus in the frame of reference where marble
is at rest the SO2 flux has the expression

(4.1) js = ng

(
−ds

∂s

∂x
− sωσ̇

)
,

ng denoting gypsum porosity and ds the diffusivity of SO2 in air.
We have used (2.5) and (2.1). Consistently with the assumption μs = constant,

we suppose also ng = constant.
Thus the SO2 mass balance in the gypsum layer σ0(t) < x < σ(t) is expressed by

(4.2)
∂s

∂t
− ds

∂2s

∂x2
− ωσ̇

∂s

∂x
= 0.

The value of s at the external boundary is some known function of time

(4.3) s(σ0(t), t) = sa(t).

When SO2 reacts totally at the front we have

(4.4) s(σ(t), t) = 0,

implying that the flux of SO2 at the front is purely diffusive. Hence the mass balance
in the reaction is

(4.5) −ng
ds
Ms

∂s

∂x
(σ(t), t) =

ρm
Mm

σ̇,
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where Ms, Mm are the molar weights of SO2 and of CaCO3, respectively, and ρm is
the density of the pristine marble (the ratio ρm

Mm
is nothing but the molar density μm

we have already introduced).
Thus in this region the problem for the pair (s, σ) can be formulated independently

of the evolution of other quantities.
Although the water vapor concentration w plays no role during this time, it is

important to monitor its evolution in view of the possible transition to the other
regime, since the constraint

(4.6) w(σ(t), t) ≥ w0(T, p)

must be satisfied during this stage.
The water vapor flux is

(4.7) jw = ng

(
−dw

∂w

∂x
− wωσ̇

)
(dw is the diffusivity of H2O in air), thus the H2O mass balance is

(4.8)
∂w

∂t
− dw

∂2w

∂x2
− ωσ̇

∂w

∂x
= 0.

At the outer surface w equals the external concentration (see the comment about
(4.3)).

(4.9) w(σ0(t), t) = wa(t).

On the free boundary

(4.10) −ng
dw
Mw

∂w

∂x
= 2

ρm
Mm

σ̇ + ng(1 + ω)
w

Mw
σ̇

(Mw molar weight of H2O), since two moles of H2O react with one mole of CaCO3.
The validity of (4.6) must be checked at all times. The system (4.2)–(4.5) can

be reduced to a standard Stefan problem, as we shall see, and once σ(t) is known,
problem (4.8)–(4.10) presents no difficulties.

Remark 4.1. The balance in (4.10) contains some implicit assumptions. As we
have stated, in order to trigger the reaction, water must condense as a liquid film.
The production of CaSO4 is the result of intermediate reactions occurring in the
film and producing H2SO4, which eventually reacts with CaCO3. In writing (4.10)
we neglected the film thickness and also the moisture content in the pristine marble.
Strictly speaking, the left-hand side (l.h.s.) in (4.10) must be interpreted as the feeding
rate of the water film, whose thickness we suppose to be very small in comparison with
the typical scale length of the process and constant. The first term on the right-hand
side (r.h.s.) of (4.10) is the water moles consumption rate in the reaction per unit
surface. However, if the pores of the pristine marble contain some water, this would
enter the balance with a term nmσ̇ wm

Mw
(nm marble porosity, wm water concentration

in marble pores).
If by chance marble is saturated by liquid water (wm = liquid water density), this

term may not be negligible. Moreover, the water within the marble may contribute
to keep a sufficiently high relative humidity in the gypsum for some time, even when
the relative humidity in air drops below the full speed threshold. In any case the
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fact that marble is hygroscopic is going to affect the water vapor flow within the
marble. However, in the case of stones having a very low porosity, the mass fraction
of the water possibly stored in the pores is not enough to maintain a liquid film at
the reaction front when air humidity is below threshold. In any case, the threshold
values (45% and 75%) are currently found in the literature (with some fluctuation),
but the state of the stone to which they refer is never specified. So they may already
include the effect of stored water.

5. Reduced sulfation speed. We have now w between two thresholds:

(5.1) w1(T, p) ≤ w(σ(t), t) ≤ w0(T, p).

The governing differential equations for s, w remain unchanged (i.e., (4.2), (4.8)),
as do the conditions on the external boundary (4.3), (4.9). A deep modification
intervenes on the free boundary, since the CaCO3 front is not coated by a continuous
water film, but rather covered by humid spots. We can define an efficiency factor
α(w, T, p) (which for simplicity we denote α(w) = 1

w0−w − 1
w0−w1

) for the chemical
reaction, which increases from 0 to ∞ as w goes from w1 (the no-reaction threshold)
to w0 (the full reaction threshold). The two free boundary conditions (4.4), (4.5) are
now replaced by

js
Ms

=
ρm
Mm

σ̇ + ng
s

Ms
σ̇,(5.2)

ρm
Mm

σ̇ = ngα(w)
s

Ms
.(5.3)

The first equation expresses the total molar balance of SO2, including the loss rate
due to the reaction and the advective flux due to the transport of the residual SO2

by the moving front. The second condition contains the factor α(w) specifying the
reaction efficiency (α is dimensionally a velocity). When α goes to +∞, s(σ(t), t) is
forced to tend to zero and we are back to the full speed regime. When α vanishes the
front stops and the SO2 flux vanishes too, yielding ∂s

∂x = 0.

6. Lagrangian coordinate. Before we deal with the flow of air, it is convenient
to adopt a frame of reference (ξ, t) moving with the gypsum. In the frame (x, t) we
have used so far the marble is at rest. Let us consider a gypsum particle which is
formed at the point x = ξ at a time τ(ξ). Following its motion up to the time t, we
find it at the location

(6.1) x = ξ +

∫ t

τ(ξ)

σ̇0(ϑ)dϑ = ξ − ω[σ(t) − σ(τ(ξ))] = (1 + ω)ξ − ωσ(t),

since by definition σ(τ(ξ)) = ξ. Thus ξ plays the role of a Lagrangian coordinate.
Inverting (6.1) we find

(6.2) ξ =
1

1 + ω
x +

ω

1 + ω
σ(t)

and of course x = ξ = σ(t) on the free boundary. We define

(6.3) s(ξ, t) = s(x, t),
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so that the domain σ0(t) < x < σ(t), t > 0, is mapped to 0 < ξ < σ(t), t > 0, and
(4.2)–(4.5) transform to

∂s

∂t
− ds

(1 + ω)2
∂2s

∂ξ2
= 0,(6.4)

s(0, t) = sa(t),(6.5)

s(σ(t), t) = 0,(6.6)

−ng
ds
Ms

1

1 + ω

∂s

∂ξ
=

ρm
Mm

σ̇.(6.7)

Similarly, we introduce

(6.8) w(ξ, t) = w(x, t)

and (4.8)–(4.10) become

∂w

∂t
− dw

(1 + ω)2
∂2w

∂ξ2
= 0,(6.9)

w(0, t) = wa(t),(6.10)

−ng
dw
Mw

1

1 + ω

∂w

∂ξ
= 2

ρm
Mm

σ̇ + ng(1 + ω)
w

Mw
σ̇.(6.11)

The free boundary conditions (5.2), (5.3) for the reduced speed regime take the form

− 1

Ms

( ds
1 + ω

∂s

∂ξ
+ ngωσ̇s

)
=

( ρm
Mm

+ ng
s

Ms

)
σ̇,(6.12)

ρm
Mm

σ̇ = ngα(w)
s

Ms
.(6.13)

7. Rescaling. Let σ∗, t∗ be suitable length and time scales. Set η = ξ/σ∗,
ϑ = t/t∗, δ(ϑ) = σ(t∗ϑ)/σ∗, and define

ŝ(η, ϑ) = s(ξ, t)/s∗, ŵ(η, ϑ) = w(ξ, t)/w∗.

To be specific, we take t∗ = 1 year � 3.15 · 107 sec and σ∗ = 2 · 10−3 cm. Then we
take s∗ = 14.3 · 10−12g · cm−3 as a typical yearly average of SO2 concentration in air,
and w∗ = 13 · 10−6g · cm−3 as the H2O concentration coinciding with the threshold
w0 corresponding to P0 and to a fixed temperature T = 20◦ Celsius.

7.1. Rescaling the SO2 flow problem. The system (6.4)–(6.7) rescales to

∂ŝ

∂ϑ
− 1

(1 + ω)2
Ks

∂2ŝ

∂η2
= 0,(7.1)

ŝ(0, ϑ) = ŝa(ϑ),(7.2)

ŝ(δ(ϑ), ϑ) = 0,(7.3)

−ngKs
1

1 + ω

s∗

Ms

Mm

ρm

∂ŝ

∂η
=

dδ

dϑ
,(7.4)
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where ŝa(ϑ) = sa(t
∗σ)/s∗, Ks = t∗ds

σ∗2 , and ds = 0.1 cm2sec−1. With ω � 2 we have
Ks

(1+ω)2
� 9 · 1010 � 1 and here too (7.1) simplifies to ∂2ŝ

∂η2 � 0. With ng = 0.3, the

coefficient of ∂ŝ
∂η in (7.4) is

(7.5) Ωs =
ng

1 + ω

s∗Mm

Msρm
Ks � 0.286.

Thus we may say that at each time ŝ(η, ϑ) is very well approximated by a linear
function of η,

(7.6) ŝ(η, ϑ) = ŝa(ϑ) − γ(ϑ)η,

satisfying the conditions

γ(ϑ)δ(ϑ) = ŝa(ϑ), Ωsγ(ϑ) = δ̇(ϑ).

Hence we obtain

(7.7) δ(ϑ) =
[
2Ωs

∫ ϑ

0

ŝa(τ)dτ
]1/2

, ŝ(η, ϑ) = ŝa(ϑ)
[
1 − η

δ(ϑ)

]
.

The procedure of approximating ŝ as in (7.6) is justified as long as ∂ŝ
∂ϑ is not singular,

or more precisely as long as

(7.8)
∂ŝ

∂ϑ
· 10−11 � 1

in our setting. However, if ŝa(0) is not zero, we know that (7.1)–(7.4) has an explicit
solution with dδ

dϑ ≈ 1√
ϑ

and ∂ŝ
∂ϑ ≈ 1

ϑ , which could make approximation not applicable.

Let us investigate these points more carefully. Let us consider the case ŝa(ϑ) = ŝ0 > 0.
Set A = Ks

(1+ω)2 . The explicit solution of (7.1)–(7.4) is

(7.9) ŝ(η, ϑ) =
A

Ωs
2γeγ

2

∫ γ

η

2
√

Aϑ

e−ξ2

dξ, δ(ϑ) = 2γ
√
Aϑ,

where γ is the unique solution of

(7.10)
Ωs

A
ŝ0 = 2γeγ

2

∫ γ

0

e−ξ2

dξ.

Now, we notice that Ωs/A ≈ 3·10−11, implying that γ � 1. Therefore, setting F (γ) =

2γeγ
2 ∫ γ

0
e−ξ2

dξ, since F (0) = ∂γF (0) = 0 and ∂γγF (0) = 4, we may approximate the
r.h.s. of (7.10) as F (γ) � 2γ2, and hence

(7.11) γ �
(
ŝ0

Ωs

2A

)1/2 [
� 4 · 10−6

]
,

concluding that

(7.12) δ(ϑ) �
√

2Ωsŝ0ϑ.

This is precisely formula (7.7), which is therefore justified even for small ϑ. At the
same time we conclude that

(7.13) ŝ(η, ϑ) = ŝ0

(
1 − η√

2Ωsϑŝ0

)
, 0 < η <

√
2Ωsϑŝ0.
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7.2. Rescaling the H2O flow problem. The system (6.9)–(6.11) rescales to

∂ŵ

∂ϑ
− Kw

(1 + ω)2
∂2ŵ

∂η2
= 0, Kw =

t∗dw
σ∗2 = Ks

dw
ds

� 1,(7.14)

ŵ(0, ϑ) = ŵa(ϑ) = wa(t
∗ϑ)/w∗,(7.15)

−Ωw
∂ŵ

∂η
=

[
1 +

1

2
ng(1 + ω)

w∗Mmŵ

Mwρm

] dδ
dϑ

,(7.16)

with

Ωw =
1

2

ng

1 + ω

dww
∗t∗

Mwσ∗2
Mm

ρm

=
1

2

ng

1 + ω

w∗Mm

Mwρm
Kw =

1

2

w∗

s∗
Ms

Mw

dw
ds

Ωs.

Due to the smallness of the ratio w∗

ρm
, condition (7.16) can be simplified to

(7.17) −Ωw
∂ŵ

∂η
=

dδ

dϑ
.

Then, according to the approximation ŵηη = 0,

(7.18) ŵ(η, ϑ) = ŵa(ϑ) − β(ϑ)η,

where β = −ŵη = δ̇/Ωw = Ωs

Ωw

ŝa(ϑ)
δ(ϑ) . Then

(7.19) ŵ(η, ϑ) = ŵa(ϑ) − Ωs

Ωw

ŝa(ϑ)

δ(ϑ)
η.

All the coefficients used in (7.1), (7.4), (7.14), (7.16) are displayed in Table 1. In addi-
tion, Table 2 shows the reference values of the parameters used in our considerations
as well as in the numerical simulations in the following sections.

It is useful to observe that the different order of magnitude of Ωs = 0.286 and
Ωw � 3 · 106, related to the ratio w∗

s∗ , yields a strong qualitative difference between
the transport of SO2 and H2O within gypsum.

Table 1

Rescaling.

Ks =
t∗ds
σ∗2

Kw = Ks
dw

ds

Ωs =
ng

1 + ω

s∗Mm

Msρm
Ks

Ωw =
1

2

ng

1 + ω

dwMmw∗t∗

Mwρmσ∗2
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Table 2

Values of parameters.

Parameter Meaning Dimensions value

ng Gypsum porosity nondimensional 0.3

nm Marble porosity nondimensional 0.005–0.015

Mw Molar weight (water) [g/mol] 18.0153

Mm Molar weight (marble) [g/mol] 100.087

Mm Molar weight (gypsum) [g/mol] 172.166

ds Diffusivity in gypsum (SO2) [cm2/sec] 0.1

dw Diffusivity in gypsum (H2O) [cm2/sec] 0.2178

ρm mass density of marble [g/cm3] 2.83

ρw mass density of water [g/cm3] 1

ρg mass density of gypsum [g/cm3] 1.6

ω molar density ratio nondimensional ≈ 2

σ∗ reference layer in 1 year [cm] 2 · 10−3

t∗ reference time (1 year) [sec] 3.15 · 107

s∗ reference density (SO2) [g/cm3] 14.3 · 10−12

w∗ reference density (H2O) [g/cm3] 17.3 · 10−6

7.3. Rescaling the SO2 and H2O flow in the reduced speed regime. The
rescaled version of (6.12), (6.13) is

−Ωs
∂ŝ

∂η
=

dδ

dϑ

[
1 + ng

s∗Mmŝ

ρmMs
(1 + ω)

]
,(7.20)

dδ

dϑ
= ng

s∗Mm

Msρm
α̂(ŵ)ŝ = λ1α̂(ŵ)ŝ, α̂ =

α

v∗
.(7.21)

Again we may simplify (7.20) to

(7.22) −Ωs
∂ŝ

∂η
=

dδ

dϑ
.

The solution (7.6) on the boundary η = δ(ϑ) is

(7.23) ŝ(δ, ϑ) = ŝa(ϑ) − dδ

dϑ

δ(ϑ)

Ωs
;

substituting (7.21) in (7.23), we get

(7.24) ŝ(δ, ϑ) =
ŝa(ϑ)(

1 +
λ1

Ωs
α̂δ(ϑ)

) .

Then, using (7.24) in (7.21), we have

(7.25)
dδ

dϑ
= λ1α̂

ŝa(ϑ)(
1 +

λ1

Ωs
α̂δ(ϑ)

) ;
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finally, from (7.6) and (7.18)

ŝ(η, ϑ) = ŝa(ϑ) − dδ

dϑ

η

Ωs
,(7.26)

ŵ(η, ϑ) = ŵa(ϑ) − dδ

dϑ

η

Ωw
.(7.27)

The initial condition depends on when the reduced speed regime is started. Note
that when α̂ becomes large, (7.25) reduces to δ̇δ = Ωsŝa(ϑ), i.e., the full speed law of
advancement.

Remark 7.1. A possible variation in time of the water film thickness would imply
an additional term. This is not a trivial change. Suppose, for instance, that the
water film thickness is ε(w) with ε = 0 below the lower threshold, ε = εmax above
the upper threshold, and dε

dt > 0 in between. In the range of w where ε varies the
additional water molar flux created by the variation of the water film thickness is
ng

dε
dt

ρw

Mw
, where ρw is the density of liquid water. This means that the term to be

added on the r.h.s. of (4.10) is

ng
ρw
Mw

dε

dt

(∂w
∂t

+ σ̇
∂w

∂x

)
,

which makes the problem of finding w much more difficult. However, we point out that
performing the rescaling so far adopted, the influence of this effect can be neglected.

Remark 7.2. We remark that in (7.1) and (7.14), the coefficients Ks and Kw

play the same role as the nondimensional number (Ste)−1 in phase change problems.
With Ste we indicate the Stefan number; see, for instance, [6]. Our approximation
corresponds to the case Ste � 1 (latent heat dominant with respect to the so-called
sensible heat) and makes the quasi-steady approach feasible. We refer to [6] for some
results for small and large Stefan numbers.

8. Numerical schemes. As we have seen, the quasi-steady approximations pro-
vide a simple way of constructing solutions; however, it is advisable to set up a numer-
ical scheme capable of dealing with the complete equations (i.e., including the inertia
terms). The reason is twofold:

1. Although we have limited our attention to a one-year period (which is the
time for which data were available to us), in practical cases one could be
interested in predictions extended over a period of ten years or more. We will
see that for the cases here examined the discrepancy between the full model
and the quasi-steady approximation ranges between 2%–4%, but errors may
accumulate over the years. Also, if we used data with higher frequency and
amplitude, we could obtain a greater relative error.

2. It may happen that the SO2 concentration and/or relative humidity undergo
sudden changes (for instance, due to a massive air replacement in the region
where the monument is situated). This event may not be correctly described
on the basis of the quasi-steady approximation.

These arguments motivate the numerical scheme we are going to present in this
section. The quasi-steady approximation will be useful anyway in providing a reliable
starting point.

Consider equations (7.1), (7.2), (7.3), (7.4), (7.14), (7.15), (7.17), and (7.21).
This is a problem with a moving boundary given by δ(ϑ). We prefer to change
coordinates, and so obtain a fixed boundary. To this purpose, we introduce (y, τ)
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such that y = η/δ(ϑ) and τ = ϑ, the domain changes to 0 ≤ y ≤ 1, supposing
δ(0) > 0.

Equations change to

∂ŝ

∂τ
− yδ̇(τ)

δ(τ)

∂ŝ

∂y
− 1

(1 + ω)2(δ(τ))2
Ks

∂2ŝ

∂y2
= 0,(8.1)

ŝ(y = 0, τ) = ŝa(τ),(8.2)

−Ωs
1

δ(τ)

∂ŝ

∂y
=

dδ

dτ
at y = 1,(8.3)

ŝ(y = 1, τ) = 0 (full speed),(8.4)

or

dδ

dτ
= ng

s∗Mm

Msρm
α̂(ŵ)ŝ, α̂ =

α

v∗
(reduced speed),(8.5)

∂ŵ

∂τ
− yδ̇(τ)

(δ(τ))2
∂ŵ

∂y
− Kw

(1 + ω)2δ(τ)2
∂2ŵ

∂y2
= 0,(8.6)

ŵ(y = 0, τ) = ŵa(τ),(8.7)

− Ωw

δ(τ)

∂ŵ

∂y
=

[
1 +

1

2
ng(1 + ω)

w∗Mmŵ

Mwρm

]
dδ

dτ
≈ dδ

dτ
.(8.8)

8.1. Finite difference scheme. From now on, for the sake of simplicity, we
write all the notation without the hat symbol.

Consider (8.1) and (8.6). We note that the diffusion coefficients are Ki/(1+ω)2 ≈
1011, where i = s, w and δ ≈ 1. For this reason we use an implicit numerical scheme—
which is stable, monotone, and even uses large time steps—to solve our system.

8.1.1. Full speed case. We assume that j = 1, . . . , J (space index) and n =
1, . . . , N (time index), and we indicate w(x, t) and s(x, t) by the numerical approxi-
mations Wn

i and Sn
j . We discretize (8.3) by

(8.9)
δn+1 − δn

Δτ
= −Ωs

δn
3Sn

J − 4Sn
J−1 + Sn

J−2

2Δy
,

and (8.1) by

(8.10)
Sn+1
j − Sn

j

Δτ
= yj

δ̇n

δn
Sn
j+1 − Sn

j−1

2Δy
+

Ks

(1 + ω)2(δn+1)2
Sn+1
j+1 − 2Sn+1

j + Sn+1
j−1

(Δy)2
,

where yj = Δy(j − 1). Boundary conditions are given by

Sn
1 = Sn

a , Sn
J = 0.

The first system is explicit. System (8.10) is implicit but driven by a standard tridi-
agonal matrix, and then it is solved by standard methods.

In the same way we solve problem (8.6) by the scheme

Wn+1
j −Wn

j

Δτ
= yj

δ̇n

δn
Wn

j+1 −Wn
j−1

2Δy
+

Kw

(1 + ω)2(δn+1)2
Wn+1

j+1 − 2Wn+1
j + Wn+1

j−1

(Δy)2
,



FREE BOUNDARY MODELS OF MARBLE SULFATION 161

with the boundary conditions given by

Wn+1
1 = Wn

a , Wn+1
J =

4

3
Wn+1

J−1 − 1

3
Wn+1

J−2 +
Ωs

Ωw

(
3Sn+1

J − 4Sn+1
J−1 + Sn+1

J−2

)
.

This yields another algebraic system, based on a tridiagonal matrix, and hence solvable
with a low computational cost.

8.1.2. Reduced speed case. If we are in the reduced speed case, we have
different boundary conditions for S; see (8.3) and (8.5). This means that we set

(8.11) α =
t∗

σ∗

(
1

W0 −Wn
J

− 1

W0 −W1

)
,

and we first compute

(8.12) δn+1 = δn + Δτng
Mms∗

ρmMs
αSn

J .

Now, we again have to solve a system like (8.10). However, to obtain the unknown
boundary value Sn+1

J , we first observe that (8.12) and (8.5) yield

(8.13) −Ωs
1

δ(τ)

∂s

∂y
= ng

Mms∗

ρmMs
α (w) s.

Therefore, we can discretize this equation, preserving the second order accuracy, by
the relation

(8.14) −Ωs
1

δn+1

(
3Sn+1

J − 4Sn+1
J−1 + Sn+1

J−2

)
2Δy

= ng
Mms∗

ρmMs
αSn+1

J .

8.2. Initial conditions. Our numerical procedure requires δ(0) �= 0. If we have
to deal with the case δ(0) = 0, then we can obtain a quite reasonable guess of the
location of the interface and of the SO2 distribution in the gypsum at some sufficiently
small time Δt proceedings as follows. We distinguish two cases: (a) sa(0) > 0;
(b) sa(0) = s0

a = 0.
(a) From formulas (7.12), (7.13) we know that δ(Δt) =

√
2Ωss0

aΔt, s(η,Δt) =
sa

(
1 − η

Δt

)
.

(b) Here we assume that ṡa(0) = c > 0. Then the slope of the free boundary will
be finite and can be obtained from the continuity of sη, sϑ in the origin and
the equations

−Ωssη(δ, t) = δ̇, sη δ̇ + sϑ = 0.

For t ↓ 0 and sϑ → c we derive

δ̇(0) =
√

Ωsc.

Hence we may take

δ(Δt) �
√

ΩscΔt,

s(η,Δt) � c

(
1 − η

δ(Δt)

)
Δt.



162 F. CLARELLI, A. FASANO, AND R. NATALINI

Fig. 1. Temperature (upper left), relative humidity (upper right), and SO2 concentration
(lower) during 2006 at Villa Ada.

In a realistic situation case (a) is the one of interest. Then we use as initial
conditions the solutions of quasi-steady case (7.7) and (7.19) obtained for a time
period of one day.

We can note that for each initial condition s(x, 0) and w(x, 0) chosen, these con-
ditions have a completely negligible influence on our solutions after one year of simu-
lations.

9. Numerical simulations. In this section we present some simulations which
have been performed using SO2, humidity, and temperature experimental data de-
tected by Arpalazio, the Roman Regional Authority for air monitoring, every hour
during 2006 at Villa Ada in Rome, Italy, a public park with a low level of pollution.
Let us also notice that although we simulated the growth of the gypsum crust by our
model, we have no experimental data on the real behavior of marble in the same time
and under the same conditions. This comparison is beyond the aims of the present
work and will be the object of a future work. However, we do have a full agreement
between our results and the laboratory tests in [4, 8, 7].

In Figure 1 are shown the temperature (upper left), the relative humidity (upper
right), and the distribution of pollutant SO2 detected at Villa Ada. We get the
saturated vapor density (SVD in [g/m3]) as function of temperature T [◦C] using the
following relation [10]:

(9.1) SVD(T ) = 5.018 + 0.32321T + 8.184710−3T 2 + 3.1243 ∗ 10−4T 3,
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Fig. 2. Simulated gypsum evolution at Villa Ada.

Fig. 3. Simulated gypsum formation, with and without clearing.

from which we can obtain the density of vapor in [g/cm3].

Now, under the conditions detected during 2006 at Villa Ada, we compute marble
degradation, starting with σ0 = 0. Using our mathematical model with Δt = 10−5

and Δx = 10−1, we show in Figure 2 the simulated total thickness of gypsum at the
end of 2006. To understand the effect of restoration techniques, let us suppose the
gypsum is removed on July 2. We obtain the following simulated gypsum development
with and without clearing, shown in Figure 3.

10. Comparison with the quasi-steady solutions. Here, we want to see
what happens using quasi-steady solutions, motivated by the fact that the coefficients
Ks,Kw are very large. If we assume to have s(0, t) = sa = const. and w(0, t) = wa =
const., we can observe that the solutions s(x, t) and w(x, t) can be approximated very
well by a function linear in x. For this reason, if the fluctuations of boundary values
are sufficiently slow, then we can approximate our model by stationary solutions.
Here, we want to estimate the error between numerical solutions of the full model and
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Fig. 4. Comparison between steady state and numerical solutions at Villa Ada.

the quasi-steady approximations.
In the full speed case, the system is given by (7.3), (7.7), (7.17), and (7.19). We

introduce a new space variable y = η/δ, where y ∈ [0, 1], and obtain

δ̇ = sa(ϑ)
Ωs

δ(ϑ)
, s(η, ϑ) = sa(ϑ) (1 − y) , w(η, ϑ) = wa(ϑ) − Ωs

Ωw
sa(ϑ)y.

In the reduced speed case, we obtain the analogous equations

δ̇(τ) = λ1α
sa(τ)(

1 +
λ1

Ωs
αδ(τ)

) , s(y, τ) = sa(τ)− δ̇(τ)

Ωs
yδ(τ), w(y, τ) = wa(τ)− δ̇(τ)

Ωw
yδ(τ).

To have a quantitative idea of the difference between stationary solutions and numer-
ical solutions, we use the experimental data of Villa Ada. We obtain the behavior of
the two fronts of advancement (full model and quasi-stationary solutions), shown on
the left of Figure 4. We note that the maximum relative error

(σ−σsteady

σ

)
obtained is

about 2.2%. Therefore this is a case in which it would have been safe to use directly
the quasi-steady approximation.

11. Contributions to the front advancement.

11.1. Front advancement as a function of SO2. In the wake of the latter
calculation we decided to investigate the influence of SO2 by a factor c, that is to say,
we replace s(0, t) by c · s(0, t), where c is a given constant. We used the Villa Ada
data and multiplied the SO2 concentration by c = 1/9, 1/4, 1, 2, 4, 6, 9. We can see
the result in Figure 5. The results obtained show that the thickness of the front σ,
after one year, varies as

√
c. In order to better visualize this fact, in Figure 6 we have

reported σ = σ(
√
c), obtaining a clearly linear graph, consistently with the nature of

the quasi-steady approximation.

11.2. Front advancement as a function of time. For the same reason the
average growth of σ is close to a

√
t behavior, strengthening the conclusion reported



FREE BOUNDARY MODELS OF MARBLE SULFATION 165

0  2 4 6 8 10  12 14
Jan

May

Sep

   

Front advancement [μm]

(1/16x) S
(1/4x) S
(1x) S
(2x) S
(4x) S
(6x) S
(9x) S

Marble 

Fig. 5. Front advancement as a function of SO2 data.

Fig. 6. Marble wasted after one year for different values of
√
c.

in [3]. We used the Villa Ada data, and we have repeated the experimental data of
the first year (2006) for the next 8 years. This way, we obtained σ(1 year) ≈ 4 μm,
after 4 years σ(4 years) ≈ 8.2 μm, and after 9 years σ(9 years) ≈ 12.5 μm. Figure 7
show oscillations around a parabolic behavior.

11.3. Order of accuracy of numerical schemes and extrapolation re-
sults. Since we do not have the exact solution of the problem, we give an approximate
estimate of the order of the numerical method using the following standard relations:

1. accuracy in L1 norm:

(11.1) γ1 = log2

(
‖u(h) − u(h/2)‖1

‖u(h/2) − u(h/4)‖1

)
;

2. accuracy in L∞ norm:

(11.2) γ∞ = log2

(
maxx |u(h) − u(h/2)|

maxx |u(h/2) − u(h/4)|

)
.

Using the simulations of the Villa Ada case, with h = 0.1, we obtain the results shown
in Table 3, which are in good agreement with the formal truncation error of the implicit
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Fig. 7. Front advancement in 9 years at Villa Ada.

Table 3

Approximate order of accuracy of the numerical schemes.

Norm γs γw

L1 0.89 0.84

L∞ 0.90 0.84

scheme, which is just order 1. Finally further consideration can be done regarding σ
obtained after 1 year at Villa Ada. Using h∗ = 0.1 we found σh∗ = 3.960 μm, with
h∗/2, σh∗/2 = 3.971 μm, and with h∗/4, σh∗/4 = 3.977 μm. Making an extrapolation
as h → 0, we obtained an estimate for the real value, namely, σexact = 3.983. This
way we can estimate that our numerical relative error, in terms of the gypsum front,
is about 0.5%.

12. Conclusions. We have proposed a quantitative model to predict the growth
of the gypsum crust on marble stones by using environmental data, i.e., temperature,
relative humidity, and pollution concentration. For this model we have identified a
quasi-steady asymptotic regime, in good agreement with laboratory data [4, 8, 7] and
numerical simulations. Thanks to this model we are now able to quantify how the
influence of the evolution of local conditions, or even the cleaning of the stone surface,
can change the thickness of the crust, and so the total waste of marble. These results
will be useful in the optimal design of future conservation strategies.

Appendix. The flow of air. So far we have used the approximation (2.5), which
has yet to be justified, studying the flow of air through gypsum. In this appendix, we
use directly the Lagrangian coordinates, introduced in section 6, to deal with the air
pressure p(x, t) = P (ξ, t). In isothermal conditions the air density ρa(ξ, t) is a known
function of pressure that we can linearize around a reference pressure P0 (typically
1 Atm.):

(A.1) ρa = ρ0 + λ(P − P0)

(ρ0 = ρa(P0)). The volumetric flow of air relative to gypsum can be described by
Darcy’s law,

(A.2) ngv
R
a = −ka

1

1 + ω

∂P

∂ξ
,
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where vRa is the average molecular velocity in the Lagrangian reference frame, and for
hydraulic conductivity of air we take the linear approximation ka = k0 + χ(P − P0).

In this same frame the air mass balance can be written as

(A.3)
∂ρa
∂t

+
1

1 + ω

∂

∂ξ
(vRa ρa) = 0,

yielding the equation governing the evolution of pressure

λ
∂P

∂t
− 1

(1 + ω)2
[k0ρ0 + (k0λ + ρ0χ)(P − P0)]

∂2P

∂ξ2

− 1

(1 + ω)2
{λ[k0 + χ(P − P0)] + χ[ρ0 + λ(P − P0)]}

(∂P
∂ξ

)2

= 0,

(A.4)

where we have neglected the terms with (P −P0)
2, consistently with the linearization

already performed.
In conditions of still external air the value of P at ξ = 0 can be set equal to the

value in the atmosphere (the wind can alter the air pressure at the gypsum surface):

(A.5) P (0, t) = Pa(t).

In order to write down the mass balance of air on the reaction front ξ = σ(t), we sup-
pose that marble pores are filled with air having a prescribed density ρ0 (for instance,
ρ0 = ρ0), and we impose that the air flux supplies the amount of air (ngρa − nmρ0)σ̇
per unit time and unit surface of the front (nm is the marble porosity). Performing
the usual linearization we obtain

− 1

1 + ω
[k0ρ0 + (k0λ + ρ0χ)(P − P0)]

∂P

∂ξ
(A.6)

= ng[ρ0 + λ(P − P0)](1 + ω)σ̇ − nmρ0σ̇.

The justification of (2.5) now comes from rescaling, as we shall see next.

Rescaling the air flow problem. Rescaling P , following the indications in
section 7, we get P̂ (η, ϑ) = P (ξ, t)/P0. In the new variables (A.4) is written as

(A.7)
∂P̂

∂ϑ
− [1 + (A + B)(P̂ − 1)]

(1 + ω)2
Ka

∂2P̂

∂η2
=

[A + B + 2AB(P̂ − 1)]

(1 + ω)2
Ka

(∂P̂
∂η

)2

,

containing the nondimensional coefficients A = P0
λ
ρ0

, B = P0
χ
k0

, Ka = t∗k0ρ0

λσ∗2 . We

remark that t0 = k0ρ0 has the dimension of time and that λ−1/2 = vλ is the reference
value of the speed of sound in air (340 m/sec). Thus the constant Ka can be written
as

(A.8) Ka =
v2
λ

v∗2
t0
t∗
,

with v∗ = σ∗

t∗ representing a typical mean velocity of the reaction front.
Let us derive the nondimensional version of the balance equation (A.6), noting

that σ̇ = σ∗

t∗
dδ
dϑ = v∗ dδ

dϑ and that P0t0
ρ0v∗σ∗ = AKa:

(A.9) − [1 + (A + B)(P̂ − 1)]

(1 + ω)2
AKa

∂P̂

∂η
= ng

dδ

dϑ

[
1 + A(P̂ − 1) − 1

1 + ω

nm

ng

ρ0

ρ0

]
.
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Since A � 1, if Ka � 1 the air motion is quasi steady and Q = ∂P̂
∂η obeys

[1 + (A + B)(P̂ − 1)]
∂Q

∂η
+ [A + B + 2AB(P̂ − 1)]Q2 = 0,

with the condition Q(δ(ϑ)) � 0, implying ∂P̂
∂η � 0 throughout the gypsum.

Therefore, if Ka � 1, the pressure field is flat. To check this property, we observe

that v2
λ � (3.4 · 104cm · sec−1)2, v∗2 =

(
2·10−3cm
3.15·107sec

)2
, and hence

v2
λ

v∗2 � 2.5 · 1028,

t0 � 10−13sec since k0 � 10−10g−1cm3sec and ρ0 � 10−3g·cm−3, and thus t0
t∗ � 10−20

3 .
So finally Ka � 108 and formula (2.5) is largely justified.
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Abstract. Previous asymptotic analyses of binary neural associative networks of Willshaw
or Steinbuch type relied on a binomial approximation of the neurons’ dendritic potentials. This
approximation has been proven to be good only if the stored patterns are extremely sparse, for
example, when the mean number of active units k per pattern vector scales with the logarithm of
the vector size n. Recent promising results concerning storage capacity and retrieval efficiency for
larger pattern activities k > logn have been doubted because here the binomial approximation can
lead to a massive overestimation of performance. In this work I compute and characterize the exact
Willshaw–Palm distribution of the dendritic potentials for hetero-association, auto-association, and
fixed and random pattern activity. Comparing the raw and central moments of the Willshaw–Palm
distribution to the moments of the corresponding binomial probability reveals that, asymptotically,
the binomial approximation becomes exact for almost any sublinear pattern activity, including k =
O(n/ log2 n). This verifies, for large networks, the existence of a wide high-performance parameter
range as predicted by the approximative theory.
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tolerance
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1. Introduction. Associative memories are systems that contain information
about a finite set of associations between pattern vector pairs {(uμ �→ vμ) : μ =
1, . . . ,M}, where uμ and vμ are called address and content patterns, respectively [28].
Given a possibly noisy address pattern ũ the problem is to find a content pattern vμ

for which the corresponding address pattern uμ is most similar to ũ. This is a variant
of the best match problem in [31], and efficient solutions have widespread applications,
including object recognition and information retrieval [28, 36, 40, 3, 13, 20, 32, 42].

In neural network implementations the information about the associations is
stored in the synaptic connectivity of one or more neuron populations [46, 16, 17, 37].
Besides the potential for technical applications, neural associative memories also play
an important role in many brain theories (e.g., [14, 30, 5, 35, 16, 17, 11, 12, 27, 10, 15]),
where the patterns correspond to attractors in the brain’s neuronal state space.

One of the most efficient networks is the so-called Willshaw or Steinbuch model
with binary neurons and synapses [44, 46, 34, 33, 8, 43]. In particular, it has been
shown that the Willshaw model has a very high asymptotic storage capacity of
C = 0.7 bits per synapse which exceeds the capacity of most alternative models.
For example, the original Hopfield model achieves only C = 0.14 bits per synapse
[16, 1, 2]. In general the classical work points out that high capacities can be ob-
tained only if the stored patterns are extremely sparse, for example, when the mean
number of active units k per pattern vector scales logarithmic with the vector size n.

For a number of reasons, a regime of larger pattern activity with k/ log n → ∞ has
recently gained increased attention: First, logarithmic k = log n is simply too sparse
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for many applications of distributed representations [41, 45, 42]. Second, activity
patterns with extremely sparse activity k ∼ log n appear inconsistent with neuro-
physiology because they are difficult to stabilize in a noisy regime where neurons have
high rates of spontaneous activity [29]. Third, it has been argued that k/ log n → ∞
can actually lead to a massive increase in storage capacity and retrieval efficiency if
the network structures are adequately compressed ([22]; see also [18, 19, 20]). Fourth,
k/ log n → ∞ allows an efficient inhibitory implementation of the Willshaw model
which implies new interpretations for inhibitory circuits in the brain [22, 24].

However, the viability of this regime with moderately sparse patterns, k/ log n →
∞, has been doubted. On the one hand, here the established theories on Willshaw-
or Steinbuch-type networks with fixed connectivity structure predict only a very low
performance, for example, zero storage capacity per synapse, such that both tech-
nical applicability and biological relevance seem unlikely. On the other hand, the
extended theory considering structural changes and inhibitory implementations pre-
dicts high performance but, similar to the established theories, relied on a binomial
approximation of the neurons’ dendritic potentials (e.g., [46, 34, 37, 33, 4, 43, 20]).
This approximation may be inaccurate for large pattern activities k � log n and thus
the corresponding high-performance regime illusory. Indeed, the convergence of the
binomial approximation to the true potential distribution and thus the asymptotic
correctness of the theory has been demonstrated only for some special cases involving
very sparse activity patterns, where a binary pattern vector of n neurons contains
only k = log n or k ≤ n1/3 active units [34, 38]. Another analysis showed that the
binomial approximation becomes very inaccurate for linear k ∼ n [19, 21]. However,
it remained unclear for precisely which k(n) the binomial approximation converges to
the true potential distribution.

In this work I have solved this problem. Section 2 gives an overview of the Will-
shaw model and the analysis employing the binomial approximation of the dendritic
potentials. Section 3 then defines and computes the exact Willshaw–Palm distribu-
tion of the dendritic potentials which can be used to determine exact retrieval error
probabilities and storage capacity. Section 4 characterizes the Willshaw–Palm prob-
ability by computing the raw and central moments. Finally, section 5 compares the
Willshaw–Palm probability to the binomial probability and determines asymptotic
conditions when the two probability distributions become identical.

2. Binary associative networks.

2.1. Learning and retrieving patterns. An attractive model of neural asso-
ciative memory both for biological modeling and applications is the so-called Willshaw
or Steinbuch model with binary neurons and synapses [46, 44, 34, 33, 37, 7, 4, 43, 20]
illustrated in Figure 2.1. Each address pattern uμ is a binary vector of length m
containing k one-entries and m− k zero-entries. Similarly, each content pattern vμ is
a binary vector of length n containing l one-entries and n− l zero-entries. Typically,
the patterns are sparse, i.e., k � m and l � n. For our analysis of storage capacity
we will further assume that each pattern is randomly drawn from the sets of the

(
m
k

)
potential address patterns and the

(
n
l

)
potential content patterns.

The M pattern pairs are stored hetero-associatively in a binary memory matrix
A ∈ {0, 1}m×n with

(2.1) Aij = min

(
1, Ãij +

M∑
μ=1

uμ
i · vμj

)
∈ {0, 1} ,
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Fig. 2.1. Example of the binary Willshaw associative memory for hetero-association. Left:
During learning, M associations between address patterns uμ and content patterns vμ are stored in
the binary memory matrix A representing binary synaptic weights of the connection from neuron
population u to v. Initially all synapses are inactive (p̃1 = 0). During learning of pattern associa-
tions, the synapses are activated according to Hebbian coincidence learning (equation (2.1)). Right:
For retrieval an address pattern ũ is propagated through the network. Vector-matrix multiplication
yields the dendritic potentials x = ũA. To obtain the retrieval result v̂ (here equal to v1) a threshold
Θ is applied. For pattern part retrieval with ũ ⊆ uμ we can simply choose the Willshaw threshold
Θ = |ũ|. Then the retrieval output is a superset of the original pattern, v̂ ⊇ vμ, which means v̂
contains no miss-errors.

where Ã is a binary noise matrix with each component being active independently
with probability p̃1.

The neural interpretation is that of two neuron populations, an address population
u consisting of m neurons and a content population v consisting of n neurons. The
patterns uμ and vμ describe the activity states of the two populations at time μ,
and Aij is the strength of the Hebbian learned synaptic connection from neuron ui

to neuron vj . Positive p̃1 can be used to model noisy synaptic potentiation (e.g., the
synapses that are already active before learning starts), noisy synaptic transmission,
or incomplete connectivity [22, 23, 24].

Besides the feed-forward interpretation, the Willshaw model can also be used
to model auto-association or pattern completion where address population content
population are identical, u = v, and consequently also uμ = vμ. Here the memory
matrix A describes the recurrent synaptic connectivity within the neuron population.

For independently generated random patterns, there is a simple relation between
the number M of stored associations and the so-called memory load p1 defined as the
fraction of one-entries in the memory matrix. The probability that a synapse is not
activated by the association of one pattern pair is 1−kl/mn; therefore, after learning
M pattern associations,

p1 = 1 − (1 − p̃1)

(
1 − kl

mn

)M

≥ p̃1,(2.2)

M =
ln 1−p1

1−p̃1

ln(1 − kl/mn)
≈ −mn

kl
ln

1 − p1

1 − p̃1
,(2.3)

where the approximation is valid for kl � mn. As we will see, the memory load p1
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will play an important role both for the exact analysis of the Willshaw model and for
the binomial approximative analysis.

After learning, the stored information can be retrieved by applying an address
pattern ũ. Vector-matrix multiplication yields the dendritic potentials x = ũA of the
content neurons, and imposing a threshold Θ gives the (one-step) retrieval result v̂,

(2.4) v̂j =

{
1, xj = (

∑m
i=1 ũiAij) ≥ Θ,

0 otherwise.

Choosing Θ = z :=
∑m

i=1 ũi will be referred to as the Willshaw threshold and plays
an important role both for more realistic spiking neuron networks [26, 19] and also
for pattern part retrieval with ũ ⊆ uμ as analyzed in section 2.3.

2.2. Retrieval errors and storage capacity. We have retrieval errors if the
retrieval result v̂μ is not identical to the originally learned pattern vμ. For a closer
analysis we can divide the neurons of the content population into two groups: The
lo-units, which correspond to the n − l zero-entries of vμ, and the hi-units, which
correspond to the l one-entries of vμ. For an error-free retrieval result v̂μ the potentials
x of lo- and hi-units must be separable; i.e., the largest potential of a lo-unit must
be smaller than the smallest potential of a hi-unit. If the two potential distributions
have overlap, two kinds of retrieval errors can occur. An add-error occurs if the
potential of a lo-unit is above threshold Θ, and a miss-error occurs if the potential
of a hi-unit is below threshold. If the probability distribution of a lo-unit i is known,
we can compute the probability p01 of an add-error. Similarly, for a hi-unit j we can
compute the probability p10 of a miss-error. With z = |ũ| being the activity of the
address pattern, we have

p01 = pr(v̂i = 1|vμi = 0) =

z∑
x=Θ

pr[xi = x],(2.5)

p10 = pr(v̂j = 0|vμj = 1) =

Θ−1∑
x=0

pr[xj = x].(2.6)

Thus, the expected Hamming distance h(vμ, v̂μ) :=
∑n

j=1 |v
μ
j − v̂μj | between learned

and retrieved patterns is

(2.7) Eh(vμ, v̂μ) = (n− l)p01 + lp10.

To enforce retrieval quality we bound the expected Hamming distance to be no more
than a fraction ε of the content pattern activity l. Thus, we require

(2.8) (n− l)p01 + lp10 ≤ εl,

where retrieval quality parameter ε is typically a small positive constant (e.g., ε =
0.01). Because the minimal Hamming distance (optimizing Θ) is obviously increasing
with M , we can finally define the pattern capacity Mε,

(2.9) Mε := max{M : (n− l)p01 + lp10 ≤ εl},

being the maximal number of storable pattern associations fulfilling the retrieval qual-
ity requirement (2.8). Considering the Shannon information of individual content
patterns, we get the normalized network storage capacity in bits per synapse,

(2.10) Cε :=
MεT (vμ; v̂μ)

mn
,
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where T (vμ; v̂μ) is the transinformation (or mutual information) between learned
and retrieved content patterns [9]. From the network capacity we can derive further
performance measures such as information capacity CI and synaptic capacity CS ,
making use of the compressibility of the memory matrix for a memory load p1 = 0.5
(see section 2.4; for more details see [18, 19, 20, 22]).

2.3. Sketch of the binomial approximative analysis for random pat-
terns. The approximative analysis of the Willshaw model relies on the assumption
that the one-entries in the memory matrix are generated independently of each other.
Although obviously not true for distributed patterns, this assumptions leads to semi-
nal insights into the Willshaw model and, at least for certain parameter ranges, quite
good approximations of the actual storage capacity (see section 3 and [22]).

Let us again assume that the retrieval address pattern ũ contains c = λk cor-
rect and f = κk false one-entries of address pattern uμ previously used for learning
(0 < λ ≤ 1, κ ≥ 0). Assuming pr[Aij = 1] = p1 independently of i, j, the dendritic
potentials xlo of a lo-unit and xhi of a hi-unit are binomially distributed (equation
(A.2)),

pr[xlo = x] = pB(x; c + f, p1), x = 0, 1, . . . , c + f,(2.11)

pr[xhi = x] = pB(x− c; f, p1), x = c, c + 1, . . . , c + f.(2.12)

For purposes of clarity, in the following we restrict the analysis to the case of pattern
part retrieval where the address pattern contains no add-noise, that is, f = 0. For the
general analysis see [43]. Here one can apply the Willshaw threshold Θ = c, which
will limit the retrieval errors to add-noise. Thus, the retrieval error probabilities are

(2.13) p01 = p(v̂i = 1|vμi = 0) ≈ p1
λk

and p10 = 0. To enforce retrieval quality as described above (see (2.8)) we have to
bound the error probability p01 by p01ε,

(2.14) p01 ≤ p01ε :=
εl

n− l
.

The number of patterns that can be stored is limited to the point where p01 = p01ε

or, equivalently, where the memory load reaches

(2.15) p1ε ≈
(

εl

n− l

) 1
λ·k

(
⇔ k ≈

ld εl
n−l

λ ld p1ε

)
.

From (2.3) we obtain the maximal number of stored patterns or pattern capacity

(2.16) Mε ≈ −λ2 · (ld p1ε)
2 · ln 1 − p1ε

1 − p̃1
· k
l
· mn

(ld n−l
ε·l )2

.

With this result we can also estimate the network capacity (equation (2.10))

(2.17) Cε =
MεT (l/n, p01ε, 0)

m
≈ λ · ld p1ε · ln

1 − p1ε

1 − p̃1
· η,

where T (p, p01, p10) is the transinformation (or mutual information) of a binary chan-
nel (see (A.1), [9]) and

(2.18) η :=
T
(

l
n ,

εl
n−l , 0

)
− l

n ld εl
n−l

≈ 1

1 + ln ε
ln(l/n)

.
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The approximation is valid for small ε, l/n � 1 when T ≈ −(l/n) ld(l/n): In that
case η → 1 for large n → ∞. For p1ε = 0.5 and p̃1 = 0 we therefore have Cε →
ln 2 ≈ 0.69 bits per synapse, the asymptotic storage capacity of the Willshaw model
[46, 34, 43, 22]. Note that Cε increases by factor 1/(1 − p̃1) if 1 − p̃1 is interpreted
as network connectivity (i.e., the chance that a potential synapse is actually realized;
see [22, 8, 4]).

2.4. The asymptotic regimes of sparse and dense potentiation. The main
conclusions from the binomial approximative analysis are that a very high storage
capacity of almost 0.7 bits per synapse can be achieved for sparse patterns with
k ∼ log n and memory load p1 = 0.5. Then we can store on the order of M ∼
mn/(log n)2 pattern associations with high retrieval quality. From (2.15), (2.17) it is
easy to see that asymptotically

(2.19) Cε > 0 ⇔ k ∼ log n ⇔ 0 < p1ε < 1.

Thus, the analysis suggests that neural associative memory is efficient (Cε > 0)
only for logarithmically sparse patterns. For sublogarithmic sparse patterns with
k/ log n → 0 we have p1ε → 0, and for supralogarithmic sparseness with k/ log n → ∞
we have p1ε → 1, both cases implying vanishing network storage capacity Cε → 0.
These results bear importance for both technical and biological applications, in par-
ticular with respect to the sparseness of postulated Hebbian cell assemblies in the
brain [14, 5, 35]. In the following we will refer to the three cases p1ε → 0/c/1 as
sparse, balanced, and dense synaptic potentiation, respectively.

I have argued elsewhere that these conclusions may be biased by the definition of
network storage capacity, and that alternative definitions of storage capacity consid-
ering the compressibility of the network lead to different conclusions [18, 19, 20, 22].
For example, in technical implementations of the Willshaw model the memory ma-
trix can be compressed for p1 → 0/1 and the storage capacity improves by factor
I(p1) := −p1 ld p1− (1−p1) ld(1−p1). Similar arguments hold for biological networks
where “compression” could be realized by synaptic pruning and structural plasticity
(see [22] for more details). This has led to the definition of information capacity
CI

ε := Cε/I(p1ε) and synaptic capacity CS
ε := Cε/min(p1ε, 1 − p1ε). Interestingly,

and in contrast to network capacity Cε, optimizing CI
ε and CS

ε reveals highest capac-
ities for p1ε → 0 and p1ε → 1. Here, presuming the validity of the binomial theory,
technical implementations could fully exploit the physical memory by storing CI

ε → 1
bit information per memory bit. Similarly, biological networks could improve storage
capacity to arbitrary large values CS

ε ∼ log n → ∞ bits per synapse. By these re-
sults, the regimes with ultrasparse and moderately sparse patterns (or cell assemblies)
have gained increased attention. However, the convergence of the binomial approxi-
mations towards the exact values is questionable since this has been strictly proven
only for some special conditions including k ∼ log n [34, 38]. In particular, for dense
potentiation with p0ε = 1 − p1ε → 0, supralogarithmic sparseness, k/ log n → ∞, and

(2.20) p1ε =

(
εl

n− l

)1/λk

= e
ln(εl/(n−l))

λk ≈ 1 −
ln n−l

εl

λk
,

numerical simulations of the Willshaw model reveal that the real capacities can be
massively overestimated by the binomial approximative analysis [22]. Therefore, in
the following we conduct an exact analysis of the Willshaw model based on the ex-
act potential distributions, and investigate conditions when the binomial probability
distribution becomes a good approximation of the Willshaw–Palm distribution.
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3. The Willshaw–Palm distribution of the dendritic potentials. For an
exact analysis of the Willshaw model we have to compute the distribution of the
neurons’ dendritic potentials, i.e., the probability pr[X = x] that the potential X
of a given hi- or lo-unit equals a certain value x (see (2.5), (2.6)). This probability
distribution is also called Willshaw–Palm distribution for random pattern associations
and random retrieval address pattern. In the following more formal definition we take
into account different ways to generate random patterns.

Definition 3.1 (Willshaw–Palm probability). Let A be the memory matrix of a
Willshaw associative memory after learning M random pattern associations and with
synaptic noise p̃1 as described in section 2.1. The associations are between address
patterns uμ with size m and mean activity k, and content patterns vμ with size n and
mean activity l (μ = 1, 2, . . . ,M). Further let ũ be a binary random address pattern
with activity z = |ũ|. Then we define the Willshaw–Palm probability as the probability
pr[(ũA)j = x] that a given content neuron vj has potential x when retrieving with
ũ. We distinguish between four relevant versions of the Willshaw–Palm probability
depending on the generation of the random patterns:

1. pPh(x; k, l,m, n,M, p̃1, z) for fixed address activity and hetero-association.
2. pPa(x; k, n,M, p̃1, z, σ) for fixed address activity and auto-association.
3. pWh(x; k, l,m, n,M, p̃1, z) for random address activity and hetero-association.
4. pWa(x; k, n,M, p̃1, z, σ) for random address activity and auto-association.

Auto-association means that address patterns and content patterns are identical, uμ =
vμ. Fixed address activity means that each address pattern has exactly k active
units. Random address activity means that a component of an address pattern is
active, uμ

i = 1, with probability k/m independently of other components. For the
hetero-associative cases, the content patterns can have either fixed activity l or ran-
dom activity with mean l. The auto-associative cases require an additional parameter
σ := pr[j ∈ ũ] denoting the probability that neuron j is among the z active address
units.

We sometimes denote pW briefly as the Willshaw probability since pWh has first
been determined by Buckingham and Willshaw [7, 6]. Similarly, we denote pP briefly
as the Palm probability since some special cases of pPh have first been determined by
Palm [34]. Note that the difference between the two variants is that the Palm model
has address patterns with fixed activity and the Willshaw model has address patterns
with fixed mean.

Theorem 3.2. The four Willshaw–Palm probabilities pPh, pPa, pWh, pWa are
given by (3.22), (3.34), (3.39), (3.41), respectively.

The proof of the theorem follows in the next four subsections, each determining
one version of the Willshaw–Palm probability and the corresponding retrieval error
probabilities.

3.1. Fixed pattern activity and hetero-association. Here we will determine
the Willshaw–Palm probability pPh(x; k, l,m, n,M, z) of Definition 3.1. For brevity
we identify patterns with sets of one-entries, e.g., u = 011001 is identified with the
index set u = {2, 3, 6}. Generalizing Palm’s definition of a predicate or condition C
(see appendix 1 in [34]) for index sets Y,N (“yes!” and “no!”) let

(3.1) C(Y,N, j) := [∀i ∈ Y : Aij = 1] ∩ [∀i ∈ N : Aij = 0];

i.e., condition C(Y,N, j) means that content neuron j receives inputs from the subset
Y of address pattern ũ, but no input from subset N . We further assume that Y and
N are disjunct random sets unrelated to the M stored pattern pairs. For Y equal to
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a further (M + 1)th address pattern, i.e., Y = uM+1, the condition C(Y, ∅, j) would
coincide with the definition of C in the appendix of [34]. Then C would be equivalent
to the occurrence of an add-error at lo-unit j for retrieval with the noise-free address
pattern ũ = uM+1. We first compute the probability that C(Y, ∅, j) holds after
storing M pattern associations. Contrary to [34] we assume that Y ⊆ {1, . . . ,m} is
an arbitrary subset of address units unrelated to the M stored pattern associations.

pr(C(Y, ∅, j)) = pr([∀i ∈ Y : Aij = 1]) = 1 − pr([∃i ∈ Y : Aij = 0])(3.2)

= 1 − pr

(⋃
i∈Y

[Aij = 0]

)
= 1 − pr

⎛
⎝ |Y |⋃

i=1

[Aij = 0]

⎞
⎠(3.3)

= 1 −
|Y |∑
s=1

(−1)s+1
∑

1≤i1<···<is≤|Y |
pr

(
s⋂

h=1

[Aihj = 0]

)
(3.4)

= 1 −
|Y |∑
s=1

(−1)s+1

(
|Y |
s

)
pr

(
s⋂

i=1

[Aij = 0]

)
.(3.5)

For (3.4) we used the formula of Sylvester–Poincaré equation (A.6). Note that for
random patterns the probabilities that a given subcolumn of A has at least one zero-
entry (equation (3.3)) or only zero-entries (see (3.5)) depend only on the subcolumn’s
size, but not on the specific indices. The latter probability is written as

pr

(
s⋂

i=1

[Aij = 0]

)
= pr

(
s⋂

i=1

[Ãij = 0] ∩
M⋂
μ=1

[1, . . . , s /∈ uμ ∨ j /∈ vμ]

)
(3.6)

= (1 − p̃1)
s(pr[1, . . . , s /∈ u1 ∨ j /∈ v1])M ,(3.7)

where we used the facts that the entries of the noise matrix Ã and the address patterns
are generated independently of each other, and the probability that all entries of a
subcolumn remain zero during learning of the μth pattern pair is independent of μ.
The latter probability is written as

pr[1, . . . , s /∈ u1 ∨ j /∈ v1](3.8)

= pr([1, . . . , s /∈ u1]) + pr([j /∈ v1]) − pr([1, . . . , s /∈ u1 ∧ j /∈ v1])(3.9)

=

(
m−s
k

)(
m
k

) +

(
n−1
l

)(
n
l

) −
(
m−s
k

)(
n−1
l

)(
m
k

)(
n
l

)(3.10)

= B(m, k, s) + B(n, l, 1) −B(m, k, s)B(n, l, 1) = 1 − l(1 −B(m, k, s))

n
,(3.11)

where B(a, b, c) :=
(
a−b
c

)
/
(
a
c

)
=

∏c−1
i=0 (a−b− i)/(a− i) = B(a, c, b); see [34] and (A.8)

in the appendix. Thus

(3.12) pr(C(Y, ∅, j)) =

|Y |∑
s=0

(p̃1 − 1)s
(
|Y |
s

)(
1 − l

n
(1 −B(m, k, s))

)M

.
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With this result we can finally compute the general case with arbitrary, but disjunct,
Y,N = {N1, N2, . . .} ⊆ {1, . . . ,m}, Y ∩N = ∅:

pr(C(Y,N, j)) = pr(C(Y, ∅, j)) − pr

⎛
⎝|N |⋃

i=1

C(Y ∪ {Ni}, ∅, j)

⎞
⎠(3.13)

= pr(C(Y, ∅, j)) −
|N |∑
t=1

(−1)t+1
∑

1≤i1<···<it≤|N |
pr

(
t⋂

h=1

C(Y ∪ {Nih}, ∅, j)
)

(3.14)

= pr(C(Y, ∅, j)) −
|N |∑
t=1

(−1)t+1

(
|N |
t

)
pr(C(Y ∪ {N1, . . . , Nt}, ∅, j))(3.15)

=

|N |∑
t=0

(−1)t
(
|N |
t

) |Y |+t∑
s=0

(−1)s
(
|Y | + t

s

)
(1 − p̃1)

s

(
1 − l

n
(1 −B(m, k, s))

)M

(3.16)

=

|Y |+|N |∑
s=0

(1 − p̃1)
s

(
1 − l(1 −B(m, k, s))

n

)M |N |∑
t=max(0,
s−|Y |)

(−1)s+t

(
|Y | + t

s

)(
|N |
t

)
(3.17)

=

|Y |+|N |∑
s=|N |

(−1)s−|N |
(

|Y |
s− |N |

)
(1 − p̃1)

s

(
1 − l

n
(1 −B(m, k, s))

)M

,(3.18)

where for (3.14) we used again (A.6) (Sylvester–Poincaré), and for the last equation
we used (A.7). Thus, the (Willshaw–)Palm probability for hetero-association is

pPh(x; k, l,m, n,M, z) = pr

⎛
⎝ ⋃

Y⊆ũ, |Y |=x,N=ũ−Y

C(Y,N, j)

⎞
⎠(3.19)

=

(
z

x

)
pr(C({1, . . . , x}, {x + 1, . . . , z}, j))(3.20)

=

(
z

x

) z∑
s=z−x

(−1)s−z+x

(
x

s− z + x

)
(1 − p̃1)

s

(
1 − l

n
(1 −B(m, k, s))

)M

(3.21)

=

(
z

x

) x∑
s=0

(−1)s
(
x

s

)
(1 − p̃1)

s+z−x

(
1 − l

n
(1 −B(m, k, s + z − x))

)M

(3.22)

for 0 ≤ x ≤ z and B as defined below (3.11).
Now we are able to compute exact retrieval error probabilities when addressing

with noisy patterns. For example, when addressing with a single address pattern
containing c correct and f false one-entries and retrieving with threshold Θ, then
the exact retrieval error probabilities p01 of a false one-entry and p10 of a missing
one-entry are

p01(Θ) =

c+f∑
x=Θ

pPh(x; k, l,m, n,M − 1, p̃1, c + f),(3.23)

p10(Θ) =

Θ−1∑
x=c

pPh(x− c; k, l,m, n,M − 1, p̃1, f).(3.24)
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Note that the situation is as if only M−1 patterns were stored since, as a precondition,
the pattern to be retrieved affects neither any of the synapses of a 0-neuron nor any
of the synapses connecting add-noise to a 1-neuron.

3.2. Fixed pattern activity and auto-association. The analysis for hetero-
association in section 3.1 can be extended to auto-association where address and
content population are identical, i.e., m = n, k = l, and uμ = vμ (see also appendix 1
in [34]). Here the diagonal matrix elements Ajj have a much higher probability,

(3.25) p̄1 = 1 − (1 − p̃1)(1 − k/n)M ,

of being activated than nondiagonal elements (cf. (2.2)). We use again C(Y,N, j) as
defined in (3.1), but now we have to care whether j is contained in Y or N . We first
compute the special case N = ∅ and j /∈ Y . The analysis for pr(C(Y, ∅, j /∈ Y )) starts
the same way as for the hetero-associative case (see (3.2)–(3.7)). Instead of (3.8)–
(3.11) we have to write pr([1, . . . , s /∈ u1∨j /∈ u1]) = pr([1, . . . , s /∈ u1])+pr([j /∈ u1])−
pr([1, . . . , s, j /∈ u1]) = B(n, k, s)+B(n, k, 1)−B(n, k, s+1) = 1− k

n (1− n
n−sB(n, k, s))

and therefore

(3.26) pr(C(Y, ∅, j /∈ Y )) =

|Y |∑
s=0

(p̃1 − 1)s
(
|Y |
s

)(
1 − k

n

(
1 − n

n− s
B(n, k, s)

))M

.

With this result we can again compute the general case with arbitrary, but disjunct,
Y,N = {N1, N2, . . .} ⊆ {1, . . . ,m}, Y ∩N = ∅, but j /∈ Y ∪N (cf. (3.13)–(3.18)):

pr(C(Y,N, j /∈ Y ∪N))

=

|Y |+|N |∑
s=|N |

(−1)s−|N |
(

|Y |
s− |N |

)
(1 − p̃1)

s

(
1 − k

n

(
1 − nB(n, k, s)

n− s

))M

.(3.27)

If we presume N = ∅ and j ∈ Y , then (3.3) becomes pr(C(Y, ∅, j ∈ Y )) = 1 −
pr(

⋃|Y |−1
i=1 [Aij = 0]) − pr[Ajj = 0](1 − pr(

⋃|Y |−1
i=1 [Aij = 0]|[Ajj = 0])). Here the first

probability on the right side evolves as before except for replacing |Y | by |Y | − 1.

The conditional probability is 1− pr(
⋂|Y |−1

i=1 [Aij = 1]|[Ajj = 0]) = 1− p̃
|Y |−1
1 because

Ajj = 0 implies that the other synapses of neuron j can be activated only by noise.
Thus with pr[Ajj = 0] = 1 − p̄1 we obtain

(3.28) pr(C(Y, ∅, j ∈ Y )) = pr(C(Y − {j}, ∅, j)) − (1 − p̄1)p̃
|Y |−1
1 .

This can be generalized to N = ∅ analogously to (3.13)–(3.18). Equation (3.15)
becomes

(3.29) pr(C(Y,N, j ∈ Y )) =

|N |∑
t=0

(−1)t
(
|N |
t

)
pr(C(Y ∪ {N1, . . . , Nt}, ∅, j ∈ Y )).

Inserting (3.28) yields two components. The first component equals (3.27) except for

replacing |Y | by |Y |−1. The second component is
∑|N |

t=0 (−1)t
(|N |

t

)
(1− p̄1)p̃

|Y |−1+t
1 =

(1 − p̄1)p̃
|Y |−1
1 (1 − p̃1)

|N | and therefore

pr(C(Y,N, j ∈ Y )) = −(1 − p̄1)p̃
|Y |−1
1 (1 − p̃1)

|N |

+

|Y |+|N |−1∑
s=|N |

(−1)s−|N |
(
|Y | − 1

s− |N |

)
(1 − p̃1)

s

(
1 − k

n

(
1 − nB(n, k, s)

n− s

))M

.(3.30)
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We will also need the case j ∈ N . This case implies Ajj = 0, and therefore any other
synapse of neuron j can only be activated by noise. Thus simply

(3.31) pr(C(Y,N, j ∈ N)) = (1 − p̄1)p̃
|Y |
1 (1 − p̃1)

|N |−1.

With this we can finally determine the Palm probability for auto-association. If neuron
j does not belong to the z address units, then we can proceed as in (3.19)–(3.22) and
obtain

pPa(x; k, n,M, z, 0)

=

(
z

x

) x∑
s=0

(−1)s
(
x

s

)
(1 − p̃1)

s+z−x

(
1 − k

n

(
1 − nB(n, k, s + z − x)

n− z + x− s

))M

.(3.32)

If neuron j is among the z address units, we have to split the union of (3.19) into
two disjunct components,

⋃
Y⊆ũ, |Y |=x,N=ũ−Y, j∈Y C and

⋃
Y⊆ũ, |Y |=x,N=ũ−Y, j∈N C.

Then we can proceed again with transformations similar to (3.19)–(3.22). With (3.30),
the first union corresponds to pPa(x−1; k, n,M, z−1, 0)−

(
z−1
x−1

)
(1−p̄1)p̃

x−1
1 (1−p̃1)

z−x.

With (3.31), the second union becomes
(
z−1
x

)
(1− p̄1)p̃

x
1(1− p̃1)

z−x−1. Adding the two
components yields

pPa(x; k, n,M, p̃1, z, 1) = pPa(x− 1; k, n,M, p̃1, z − 1, 0)

+ (1 − p̄1) (pB(x; z − 1, p̃1) − pB(x− 1; z − 1, p̃1)) ,(3.33)

and thus the general Palm probability for auto-association is

pPa(x; k, n,M, p̃1, z, σ)

= (1 − σ)pPa(x; k, n,M, p̃1, z, 0) + σpPa(x; k, n,M, p̃1, z, 1).(3.34)

When addressing with a single address pattern containing c correct and f false one-
entries then σ = f/(n − k) for a lo-unit, while σ = 0 for the f noisy inputs to the
hi-units. Thus, retrieving with threshold Θ, the exact retrieval error probabilities p01

of a false one-entry and p10 of a missing one-entry are

p01(Θ) =

c+f∑
x=Θ

pPa(x; k, n,M − 1, p̃1, c + f, f/(n− k)),(3.35)

p10(Θ) =

Θ−1∑
x=c

pPa(x− c; k, n,M − 1, p̃1, f, 0).(3.36)

3.3. Random pattern activity and hetero-association. For technical ap-
plications, the patterns to be stored have often fixed pattern activities k and l (e.g.,
see [34, 41, 17, 42]). However, for the biological interpretation we identify the pattern
activities with the size of cell assemblies [14, 5, 35], and it seems not very plausible
to assume that all cell assemblies have exactly the same size. Here it might be more
realistic to assume that an address pattern component is 1 with probability k/m inde-
pendently of each other (and similarly l/n for the content patterns). Then the mean
assembly sizes are still k and l, but the size of a given cell assemblies is a binomially
distributed random variable.
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The analysis can be conducted in analogy to section 3.1. Due to independently
generated pattern components, (3.8) simplifies to

pr[1, . . . , s /∈ u1 ∨ j /∈ v1] = 1 − l

n
+

(
l

n

)(
1 − k

m

)s

(3.37)

= 1 − l

n

(
1 −

(
1 − k

m

)s)
.(3.38)

Thus in the further analysis of section 3.1 we can simply replace B(m, k, s) by (1 −
k/m)s. From (3.22) we finally obtain the Willshaw probability for hetero-association:

pWh(x; k, l,m, n,M, p̃1, z)

=

(
z

x

) x∑
s=0

(−1)s
(
x

s

)
(1 − p̃1)

s+z−x

(
1 − l

n

(
1 −

(
1 − k

m

)s+z−x
))M

(3.39)

=

M∑
i=0

pB(i;M, l/n)pB

(
x; z, 1 − (1 − p̃1)

(
1 − k

m

)i
)

(3.40)

for 0 ≤ x ≤ z. The retrieval error probabilities p01 and p10 are as in (3.23), (3.24), re-
placing pPh by pWh. The second formula, (3.40), results from an alternative approach
to obtain the Willshaw probability for random pattern activities (see [7, 6]). Here
the first binomial is the probability that the considered content neuron has unit-usage
i, i.e., that it has been activated i times during the learning of the M associations.
Given unit usage i the term 1 − (1 − p̃1)(1 − k/m)i is the probability that a given
synapse on the content neuron has been potentiated or activated by noise. Thus,
the second binomial is the probability that a content neuron receives x out of the z
random inputs given a unit usage of i.

Equation (3.40) for p̃1 = 0 was found in 1991 by Buckingham and Willshaw [7, 6],
while (3.39) for p̃1 = 0 was derived from (3.40) in 1999 by Sommer and Palm [43].
For numerical evaluations (3.39) is particularly useful if z is small and M is large,
while evaluating (3.40) is more efficient for small M and large z. In cases where both
M and z are large, evaluating the Willshaw probability can be computationally very
expensive [22, 23].

Unfortunately, we do not know a formula for the exact Palm probability (3.22)
that is analogous to (3.40). Thus, evaluating the exact error probabilities for the
model variant with fixed assembly size is computationally cheap only for cases with
small z. However, numerical investigations suggest that pW quickly converges to pP

for large m, n, and z and that the resulting retrieval error probabilities for fixed
assembly sizes are smaller than for random assembly size [22].

3.4. Random pattern activity and auto-association. In analogy to the
previous sections we can also investigate the auto-associative case with binomially
distributed pattern activities where each pattern component is active with probabil-
ity k/n independently of other components. Here pr(C(Y,N, j /∈ Y ∪ N)) can be
obtained in the same way as done in section 3.3 for hetero-association with k = l
and m = n. This corresponds to σ = 0 and leads to pWa(x; k, n,M, p̃1, z, 0) =
pWh(x; k, n, k, n,M, p̃1, z). The remaining subtleties concerning autapses having a
much higher activation probability p̄1 than other synapses (see (3.25)) can be han-
dled in the same way as done in section 3.2 for fixed pattern activity. Thus, simply
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replacing pPa(x; k, n,M, p̃1, z, 0) by pWh(x; k, n, k, n,M, p̃1, z) we obtain from (3.34)

pWa(x; k, n,M, p̃1, z, σ) = (1 − σ)pWh(x; k, n, k, n,M, p̃1, z)

+ σpWh(x− 1; k, n, k, n,M, p̃1, z − 1)

+ σ(1 − p̄1) (pB(x; z − 1, p̃1) − pB(x− 1; z − 1, p̃1)) .(3.41)

When addressing with a single address pattern containing c correct and f false one-
entries then the error probabilities for threshold Θ can be computed similarly as in
section 3.2,

p01(Θ) =

c+f∑
x=Θ

pWa(x; k, n,M − 1, p̃1, c + f, σ̄),(3.42)

p10(Θ) =

Θ−1∑
x=c

pWa(x− c; k, n,M − 1, p̃1, f, 0)(3.43)

for 0 ≤ x ≤ z. For the lo-units σ has to be averaged over the constrained range of pos-
sible pattern activities k′ with c ≤ k′ ≤ n−f ; thus, σ̄ := (

∑n−f
k′=c pB(k′;n, k/n)f/(n−

k′))/(
∑n−f

k′=c pB(k′;n, k/n)). Note that computing the expected Hamming distance
(see (2.8)) requires a similar adjustment. Note also that p10 is the same as for hetero-
association with the corresponding parameters (see section 3.3).

3.5. Probabilities of add-errors for pattern part retrieval. For the par-
ticular case of pattern part retrieval, c = λk and f = 0 with 0 < λ ≤ 1, we can use
the Willshaw threshold Θ = λk. Then the probability of miss-errors in the retrieval
outputs is generally p10 = 0. For fixed pattern activity the probability of an add-error
is

p01,Ph =

λk∑
s=0

(p̃1 − 1)s
(
λk

s

)[
1 − l

n
(1 −B(m, k, s))

]M−1

,(3.44)

p01,Pa =

λk∑
s=0

(p̃1 − 1)s
(
λk

s

)[
1 − k

n

(
1 − n

n− s
B(n, k, s)

)]M−1

(3.45)

for hetero-association and auto-association, respectively. For random pattern activity,
the corresponding error probabilities are

p01,Wh =

λk∑
s=0

(p̃1 − 1)s
(
λk

s

)[
1 − l

n
(1 − (1 − k/m)s)

]M−1

(3.46)

=
M−1∑
i=0

pB(i;M − 1, l/n)(1 − (1 − p̃1)(1 − k/m)i)λk(3.47)

≥ [1 − (1 − p̃1)(1 − kl/mn)M−1]λk = pλk1 ,(3.48)

p01,Wa = p01,Wh|l=k,m=n,(3.49)

where pB is again the binomial probability (see below (2.12)). Here the error prob-
abilities are essentially the same for auto-association and hetero-association with
k = l, m = n. Equation (3.48) corresponds to the binomial approximation equation
(2.13) as used in section 2.3. The bound can be obtained from Jensen’s inequality
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Ef(y) ≥ f(Ey) (see, e.g., [9]) for convex f(y) := (1 − y)λk with random variable
y := (1 − p̃1)(1 − k/m)i. Here the expectation Ey = 1 − p1 can be computed from
(A.9) using J = 1.

Although I could not prove this strictly, numerical experiments suggest p01,Pa ≤
p01,Ph ≤ p01,Wh = p01,Wa [22]. The binomial approximation equation (3.48) can
strongly underestimate p01. Palm and Sommer [34, 38] give some asymptotic condi-
tions when the true potential distribution converges to the corresponding binomial
distribution, but only for relatively small k ∼ log n and k ≤ n1/3, respectively. In
section 5 we will see that the parameter range of convergence is actually much larger.

3.6. Numerical evaluations. Theorem 3.2 and the resulting retrieval error
probabilities have been verified by extensive numerical simulations of the Willshaw
model [22]. Some data are shown in Table 3.1.

Table 3.1

Results from numerical simulations of retrieval in the Willshaw model with m = 10, k = 3,
M = 5, p̃1 = 0.1 when addressing with patterns containing c = 2 correct and f = 2 false one-entries.
Upper rows (S) show results for “symmetric” networks with n = m and l = k (cf. Figure 3.1, left
panel). Lower rows (A) show results for “asymmetric” networks with n = 11 and l = 2. The
columns show optimal retrieval threshold Θ, output noise ε, and the error probabilities p01 and
p10 for add-noise and miss-noise as well as the corresponding average values (mean) and standard
errors (s.e.) from the simulation experiments (evaluating N ≈ 108 retrievals in each case). The
experimental values closely match the theoretical values and thus verify Theorem 3.2.

Θ ε p01 mean s.e. p10 mean s.e.

S pPh 3 0.871142 0.200514 0.200473 0.000040 0.403276 0.403387 0.000049
pPa 3 0.824469 0.149855 0.149827 0.000036 0.474807 0.474726 0.000050
pWh 3 0.937330 0.223047 0.223043 0.000045 0.416887 0.416905 0.000054
pWa 4 0.974194 0.067171 0.067197 0.000027 0.817462 0.817423 0.000042

A pPh 3 1.023875 0.107831 0.107822 0.000031 0.538635 0.538590 0.000050
pWh 3 1.121372 0.127232 0.127211 0.000036 0.548828 0.548834 0.000057
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Fig. 3.1. Examples of the Willshaw–Palm distributions (see Theorem 3.2) and the correspond-
ing binomial approximation (equation (2.11)) for a small network (left panel) and a larger network
(right panel). The plots show the distribution of the lo-units when addressing with c correct and
f false units in symmetric networks (m = n and k = l). The plots indicate that the binomial
approximation can be very inaccurate.

Figure 3.1 gives examples for the Willshaw–Palm distribution illustrating the dif-
ferences between the four probability versions and the binomial approximation. For
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small networks the difference between the four versions of the Willshaw–Palm dis-
tribution is significant. In comparison to the binomial approximation the Willshaw–
Palm probability can have a much larger variance and oscillatory modulations [19,
21]. The difference in variance is computed in section 5.2 (see (5.5)), and con-
ditions where the variances and higher-order moments become identical are com-
puted in section 5.4. The oscillatory modulations can be understood from (3.40)
writing pWh as a superposition of M + 1 binomials. They occur if the binomials
pB(x; z, 1− (1− p̃1)(1− k/m)i) around mean unit usage i ≈ Ml/n have a small stan-
dard deviation

√
z(1 − p̃1)(1 − k/m)i(1 − (1 − p̃1)(1 − k/m)i) compared to the mean

distance z(1 − p̃1)((1 − k/m)i − (1 − k/m)i+1) between two neighboring binomials,
i.e., if

(3.50) (1 − p̃1)
zk2

m2

(
1 − k

m

)Ml/n

� 1.

4. Expectation, variance, and higher-order moments of the Willshaw–
Palm distribution. In this section we investigate the moments of the Willshaw–
Palm probability distribution. Here we will focus on the more simple case of random
pattern activity, i.e., on the Willshaw probabilities pWh and pWa (see Definition 3.1
and Theorem 3.2). The analysis for fixed pattern activity is more difficult, but it is
plausible to assume that the basic (asymptotic) properties for the Palm probabilities
pPh, pPa are similar to pWh, pWa. At least the expectation values of Willshaw and
Palm probabilities are the same: Because the dendritic potential is xj =

∑
i∈ũ Aij ,

the expectation for hetero-association is identical to the corresponding binomial ex-
pectation (see section 2.3),

EpWh
(xj) = EpPh

(xj) = EpB
(xj) = zp1,(4.1)

EpWa(xj) = EpPa(xj) = zp1 + σ(p̄1 − p1),(4.2)

where p1 is the memory load equation (2.2). The expectation for auto-association
follows similarly from EpWa(xj) = (z−1)p1+σp̄1+(1−σ)p1, where σ is the probability
that j is among the z active units of address pattern ũ, and p̄1 is the probability that
Ajj is active (see (3.25)).

In the following text we will sometimes write p0 := 1 − p1, p̄0 := 1 − p̄1, and
p̃0 := 1 − p̃1 for the sake of brevity.

4.1. Moment generating functions. The moment generating function of a
random variable X with probability function p is defined by Gp(t) := Ep(e

tX) (e.g.,
see [39]). The following theorem shows that the moment generating functions of the
Willshaw–Palm probabilities for random pattern activity k can be obtained from the
generating function of the binomial probability (equation (A.3)).

Theorem 4.1. The moment generating functions GpWh
(t; k, l,m, n,M, p̃1, z)

and GpWa(t; k, n,M, p̃1, z, σ) of the Willshaw probability functions pWh for hetero-
association (equation (3.39)) and pWa for auto-association (equation (3.41)) are

GpWh
(t) =

M∑
i=0

pB(i;M, l/n)GpB
(t; z, 1 − p̃0(1 − k/m)i),(4.3)

GpWa(t; . . . , z, σ) = (1 − σ)GpWh
(t; . . . , z) + σetGpWh

(t; . . . , z − 1)

+ σp̄0(1 − et)GpB
(t; z − 1, p̃1).(4.4)
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Proof. By definition it is GpWh
(t) := EpWh

etX =
∑z

x=0 e
tx
∑M

i=0 pB(i;M, l/n) ·
pB(x; z, 1 − p̃0(1 − k/m)i) =

∑M
i=0 pB(i;M, l/n)

∑z
x=0 e

txpB(x; z, 1 − p̃0(1 − k/m)i).
Here the second sum is the moment generating function of a binomial equation (A.3)
with N = z and P = 1− (1−k/m)i. This shows (4.3). Similarly, the auto-associative
moment generating function GpWa

(t) follows with (3.41) because moment generating
functions Gp(x)(t) are linear in p(x) and have the shifting property Gp(x−1)(t) =∑

x p(x− 1)etx =
∑

x p(x)et(x+1) = etGp(x)(t).

4.2. Higher order moments. The dth raw moment of a random variable X
with probability function p is defined by the expectation EpX

d and can be computed
from the moment generating function Gp(t) := Ep(e

tX), where the dth derivative

G
(d)
p (t) at t = 0 yields the dth moment (see, e.g., [39]). Then the dth central moment

(or moment about the mean) is defined by the expectation Ep(X − μ)d, where μ :=
EpX is the mean value. The following theorem computes the moments of the Willshaw
probabilities from the moments of the binomial probability.

Theorem 4.2. Let pWh(x; k, l,m, n,M, p̃1, z) be the Willshaw probability for
hetero-association (equation (3.39)) and pB(x; z, 1 − p0) the corresponding binomial
approximation with p0 := 1 − p1 (see (A.2), (2.2)). Then the raw and central mo-
ments of the Willshaw probability can be computed from the binomial moments (see

(A.4)–(A.5)) by formally substituting powers pj0 by numbers p
(j)
0 defined as

(4.5) p
(j)
0 := p̃j0

(
1 − l

n

(
1 −

(
1 − k

m

)j
))M

,

where p̃0 := 1 − p̃1. For example, the raw and central Willshaw moments for hetero-
association, mr,pWh

(d; k, l,m, n,M, p̃1, z) and mc,pWh
(d; k, l,m, n,M, p̃1, z), can be ob-

tained from

(4.6) EpWh
(X − μ)d =

d∑
j=0

p
(j)
0 (−1)j

(
z

j

) j∑
i=0

(−1)i
(
j

i

)
(z − μ− i)d,

which is true for an arbitrary offset μ. The raw and central moments follow with
μ = 0 and μ = zp1, respectively.

Similarly, the raw and central Willshaw moments for the auto-associative probabil-
ity pWa (see (3.41)), mr,pWa

(d; k, n,M, p̃1, z, σ) and mc,pWa
(d; k, n,M, p̃1, z, σ), follow

from

EpWa(X − μ)d =

d∑
j=0

p
(j)
0 (−1)j

(
z

j

)(
1 − σj

z

) j∑
i=0

(−1)i
(
j

i

)
(z − μ− i)d

+ σp̄0

d∑
j=0

p̃j0(−1)j
(
z − 1

j

) j∑
i=0

(−1)i
(
j

i

)
((z − μ− i− 1)d − (z − μ− i)d))(4.7)

using μ = 0 and μ = zp1 − σ(p̄1 − p1), respectively.

Proof. The dth raw moment EpWh
Xd equals the dth derivative G

(d)
pWh(t) at t = 0.

From (4.3) we obtain

G(d)
pWh

(0) =

M∑
i=0

pB(i;M, l/n)G(d)
pB

(0; z, 1 − p̃0(1 − k/m)i),
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where G
(d)
pB (0;N, 1 − Q) = mr,pB

(d,N, 1 − Q) =
∑d

j=0 c
(d)
j (N)Qj is the dth raw mo-

ment of the binomial probability (see (A.5)). For brevity we have defined coefficients

c
(d)
j (N) := (−1)j

(
N
j

)∑j
k=0 (−1)k

(
j
k

)
(N − k)d. Applying (A.9) we obtain

EpWa
Xd =

M∑
i=0

pB(i;M, l/n)

d∑
j=0

c
(d)
j (z)p̃j0(1 − k/m)ij

=

d∑
j=0

c
(d)
j (z)p̃j0

M∑
i=0

pB(i;M, l/n)(1 − k/m)ij =

d∑
j=0

c
(d)
j (z)p

(j)
0 .

This proves the formulae for the raw moments mr,pWh
, for example, (4.6) for μ = 0.

The general moment equation (4.6) with arbitrary offset μ follows then from inserting

the raw moments into E(X − μ)d =
∑d

i=0

(
d
i

)
(−μ)d−iEXi, where we used the bino-

mial sum (see below (A.9)) and the linearity of the expectation operator. Inserting
μ = zp1 (see (4.1)) finally yields the central moments mc,pWh

for the hetero-associative
Willshaw probability (see also (A.5); cf. [25]).

Similarly, the general moment equation (4.7) for auto-association follows with
(3.41) because moments Ep(x)(X−μ)d are linear in p(x) and have the shifting property

Ep(x−1)(X−μ)d =
∑

x p(x−1)(x−μ)d =
∑

x p(x)(x−μ+1)d = Ep(x)(X−(μ−1))d. In
particular, summing the two Willshaw terms in (3.41) leads to the factor (1 − σ)

(
z
j

)
+

σ
(
z−1
j

)
=

(
z
j

)
(1− σj

z ) in (4.7). The raw and central moments mr,pWa and mc,pWa then

follow from inserting μ = 0 and μ = EpWaX (see (4.2)).

The following lemma gives a more detailed characterization of the numbers p
(j)
0

that have been used to compute the moments of the Willshaw probability.

Lemma 4.3. Let p
(j)
0 be as defined in Theorem 4.2. For 0 < P < 1 we have

Rj(P ) :=
1

P

j∑
i=2

(
j

i

)
(−P )i =

(1 − P )j − 1 + Pj

P
≥ 0,(4.8)

p0 := 1 − p1 = p̃0

(
1 − kl

mn

)M

,(4.9)

p
(j)
0 := p̃j0

(
1 − l

n

(
1 −

(
1 − k

m

)j
))M

= p̃j0

(
1 − kl

mn

(
j −Rj

(
k

m

)))M

≈ pj0.

(4.10)

For j = 0, 1 we have Rj(P ) = 0 and p
(j)
0 = pj0. For j ≥ 2 we have Rj(P ) > 0. For

sufficiently small P → 0 the bound Rj(P ) <
(
j
2

)
P becomes true. Furthermore, for

j ≥ 2 we have the bounds

pj0 < p
(j)
0 < p

j−Rj(k/m)
0 ,(4.11)

0 <
p
(j)
0 − pj0
pj0

< p
−Rj(k/m)
0 − 1 < −(e− 1)Rj(k/m) ln p0,(4.12)

where the latter bound in (4.12) is true only for −Rj(k/m) ln p0 < 1. In particular,

the relative difference between p
(j)
0 and pj0 vanishes for Rj(k/m) ln p0 → 0. Finally, let

p := k/m → 0, q := l/n, M = ln p0/ ln(1−pq) (see (2.3)). Then for j2p(1−ln p0) → 0,
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fixed p̃1, and using the asymptotic Θ notation as defined in the appendix, we have

(4.13) p
(j)
0 − pj0 = −

(
j

2

)
p(1 − q)pj0 ln p0 + Θ(j3p2pj0(1 − j ln p0) ln p0).

Proof. Equation (4.8) follows from the binomial sum (see below (A.9)). Equation
(4.9) is simply rewriting (2.2) with p̃0 := 1− p̃1 for the sake of completeness. Equation
(4.10) follows from simple transformations of the definitions (4.5), (4.8). The claims
for j = 0, 1 follow trivially. Rj(P ) > 0 for j ≥ 2 follows from (1 − P )j > (1 − Pj)
(see (A.11)). Rj(P ) <

(
j
2

)
P for P → 0 follows directly from the definition of Rj .

The lower bound in (4.11) follows from (1− kl/mn)j = 1− (kl/mn)(j −Rj(kl/mn))
because Rj(P ) is monotonically increasing for 0 < P < 1. The upper bound in (4.11)
follows from (1−pq(j−Rj)) < (1−pq)j−Rj (see (A.11) with j−Rj > j−Rj(1) = 1).
Equation (4.12) follows from (4.11) and (A.12). We finally prove the asymptotic
approximation equation (4.13): For p → 0, M = ln p0/ ln(1 − pq) (see (2.3)) we have
with (A.13)–(A.14)

M =
− ln p0

pq + Θ(p2q2)
=

− ln p0

pq

1

1 + Θ(pq)
=

− ln p0

pq
(1 + Θ(pq)),(4.14)

Mpq = − ln p0 + Θ(pq ln p0),(4.15)

Rj(p) =

(
j

2

)
p−

(
j

3

)
p2 + · · · =

(
j

2

)
p + Θ(j3p2) → 0 for j2p → 0.(4.16)

The final purpose of this is to find a close approximation for

(4.17) p
(j)
0 − pj0 = pj0

(
p
(j)
0

pj0
− 1

)
with

p
(j)
0

pj0
= eM(ln(1−pq(j−Rj))−j ln(1−pq)).

For Rj → 0 the term in the outer brackets of the exponential is written as ln(1−pq(j−
Rj))−j ln(1−pq) = −pq(j−Rj)− p2q2(j−Rj)

2

2 +Θ(p3q3j3)−j(−pq− p2q2

2 +Θ(p3q3)) =

pqRj− p2q2

2

(
(j−Rj)

2−j
)
+Θ(p3q3j3). Here we have (j−Rj)

2−j = j2−j+Θ(jRj) =
j2 − j + Θ(j3p) and therefore

p
(j)
0

pj0
= eM(pqRj−0.5p2q2(j2−j)+Θ(p3q2j3))(4.18)

= eM(p2q(j
2)(1−q)+Θ(p3qj3)) = eMpq(p(j

2)(1−q)+Θ(p2j3))(4.19)

= e(− ln p0+Θ(pq ln p0))(p(j
2)(1−q)+Θ(p2j3)) = e−(j

2)p(1−q) ln p0+Θ(j3p2 ln p0)(4.20)

= 1 −
(
j

2

)
p(1 − q) ln p0 + Θ(j4p2 ln2 p0 − j3p2 ln p0)(4.21)

= 1 −
(
j

2

)
p(1 − q) ln p0 + Θ(j3p2 ln p0(1 − j ln p0)).(4.22)

4.3. Variance. Applying Theorem 4.2, we can easily compute the second raw
and central moments of the Willshaw probability from the well-known second moments
of the corresponding binomial probability pB(x; z, 1−p0) (see also (A.4)–(A.5)). Thus,

replacing pj0 by p
(j)
0 in

(4.23) EpB(x;z,1−p0)
X2 = zp0(1 − p0) + z2(1 − p0)

2 = z2 + p0(z − 2z2) + p2
0(z

2 − z)
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gives us immediately the second moment and variance of the Willshaw probability
pWh for hetero-association,

EpWh
X2 = z2 + p0(z − 2z2) + p

(2)
0 (z2 − z)(4.24)

= z2(1 − 2p0 + p
(2)
0 ) + z(p0 − p

(2)
0 ),(4.25)

VarpWh
X = EpWh

X2 − E2
pWh

X = z2(p
(2)
0 − p2

0) + z(p0 − p
(2)
0 ),(4.26)

where p
(2)
0 = p̃2

0(1−(kl/mn)(2−k/m))M . Note that in (4.25), (4.26) all coefficients of

z are positive since with (4.11) we have p0 > p
2−k/m
0 > p

(2)
0 > p2

0 and 1− 2p0 + p
(2)
0 >

(1 − p0)
2 > 0 for 0 < k/m, l/n < 1. Thus, the variance increases monotonically

with z. Indeed, the variance of the Willshaw probability scales with z2, while the
corresponding binomial variance scales only with z [21]. Applying (4.7) with d = 2, we
easily obtain the second moments of the Willshaw probability pWa for auto-association,

EpWa
(X − μ)2 = (z − μ)2 − (2(z − μ) − 1)(zp0 − σ(p0 − p̄0))

+ (z − 1)((z − 2σ)p
(2)
0 + 2σp̄0p̃0),(4.27)

VarpWa
X = z2(p

(2)
0 − p2

0) + z(p0 − p
(2)
0 − 2σ(p

(2)
0 − p2

0 − p̄0(p̃0 − p0)))

− σ(p0 − 2p
(2)
0 + σ(p0 − p̄0)

2 + p̄0(2p̃0 − 1)),(4.28)

= VarpWh
X − 2σz(p

(2)
0 − p2

0 − p̄0(p̃0 − p0))

− σ(p0 − 2p
(2)
0 + σ(p0 − p̄0)

2 + p̄0(2p̃0 − 1)).(4.29)

Here (4.27) is true for any offset μ. In particular, the second raw moment follows with
μ = 0, and the variance equation (4.28) follows with μ = EpWa

X = z−zp0+σ(p0− p̄0)
(see (4.2)).

4.4. Auto-association vs. hetero-association. As long as the dendritic po-
tential distribution has a Gaussian shape, the variance determines retrieval quality,
i.e., the larger the variance, the larger the error probabilities (e.g., see (3.42)). Thus,
in order to answer the question whether retrieval quality is better for auto-association
or hetero-association (with k = l and m = n), the following lemma investigates the
asymptotic behavior of the variances difference δVarWaWh

:= VarpWa
X −VarpWh

X. To
obtain general results, we fix the memory load p1 = p1ε to its maximum under quality
constraint ε, as discussed in section 2.3 (see (2.15)).

Lemma 4.4. For p = k/n → 0, σ/p ∼ 1, z ∼ k, p ln p ln k → 0, z ∼ k, fixed p̃1,
and “hifi” memory load 1 − p0 = p1ε = (εp)1/z as in (2.15), we have

δVarWaWh
≈ 2σzpp2

0 ln p0 − σ(p0 − 2p2
0)(4.30)

≈
{

+σ, p0 → 1,
−σp0, p0 → 0.

(4.31)

Proof. We can apply (4.13) because p ln p ln k → 0 implies p ln p0 → 0 even for
p0 → 0 with p0 ≈ − ln(εp)/z (see (2.20)). Thus, (4.30) follows from (4.29) because

p0 − 2p
(2)
0 ∼ −pp2

0 ln p0 dominates over p̄0 ∼ e−Mp = e(ln p0)/p = p
n/k
0 even for sparse

potentiation with p0 → 1 and p̄0 ∼ (1 − (εk/n)1/z)n/k ∼ exp(−(εk/n)1/z(n/k)), and

similarly, p0 − 2p
(2)
0 ≈ p0 − 2p2

0 dominates over σ(p0 − p̄0)
2 + p̄0(2p̃0 − 1).

Equation (4.31) follows because for sparse potentiation with p0 → 1 we have
p2
0 ln p0 → 0 and zp ∼ k2/n → 0 (see (2.19)). Similarly, for dense potentiation with
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p0 → 0 we have −σ(p0 − 2p2
0) ≈ −σp0, and for p0 ≈ − ln(εp)/z (see (2.20)) we have

0 > 2σzpp2
0 ln p0 ≈ 2σp0(−p ln(εp) ln z).

Thus, the auto-associative variance VarpWa
X becomes larger than VarpWh

X for
sparse potentiation with p1 → 0, but smaller for dense potentiation with p1 → 1.
However, remember from sections 3.4 and 3.2 that pattern part retrieval with f = 0
(i.e., no add-errors in the address pattern) implies σ = 0 and thus identical distri-
butions for auto-association and hetero-association. Also, the following lemma shows
that in general the differences between hetero-associative and auto-associative mo-
ments vanish asymptotically.

Lemma 4.5. For fixed d, p = k/n → 0, σ/p ∼ 1, z ∼ k, zp1 ≤ μ ≤ z, p ln p0 → 0,
and “hifi” memory load 1 − p0 = p1ε = (εp)1/z as in (2.15), we have

(4.32) EpWh
(X − μ)d − EpWa(X − μ)d → 0.

Proof. The difference is identical to (4.7) (cf. (4.6)) except that the factor (1− σj
z )

in the first double sum becomes simply σj
z ∼ j

n . Thus, with (A.10) the absolute value
of the first double sum becomes zero because∣∣∣∣∣∣

d∑
j=0

p
(j)
0 (−1)j

σj

z
zj

d∑
i=j

(
i

j

)
bdi(z − μ− j)i−j

∣∣∣∣∣∣
≤

d∑
j=0

p
(j)
0

σj

z
zj

d∑
i=j

(
i

j

)
Sdi(zp0)

i−j ∼ (zp0)
d

n
→ 0.

The inequality is true for large enough z with d < z−μ ≤ z− zp1 = zp0. The asymp-

totic approximations remain true even for small constant z where we used p
(j)
0 ∼ pj0

(see (4.12)). Note here that z = O(log n) implies sparse or balanced potentiation with
1 ≥ p0 → 0, while larger z implies dense potentiation with p0 → 0 and zp0 = O(log n)
(see (2.19), (2.20)). We still have to show that also the second double sum in (4.7)
becomes zero:∣∣∣∣∣∣σp̄0

d∑
j=0

p̃j0(−1)j
(
z − 1

j

) j∑
i=0

(−1)i
(
j

i

)
((z − μ− i− 1)d − (z − μ− i)d))

∣∣∣∣∣∣
∼ O

(
p̄0z

2d+1

n

)
→ 0.

This is obvious for sparse and balanced potentiation when z ∼ k ∼ O(log n) (see
(2.19)), but follows also for dense potentiation (p0 = O((log n)/z) → 0; see (2.20))

since here p̄0 ∼ e−Mp = e(ln p0)/p = p
n/k
0 quickly approaches zero.

5. Comparison of Willshaw–Palm to binomial distribution. In this sec-
tion we compare the Willshaw–Palm probability distribution of the dendritic poten-
tials (see Definition 3.1) to the corresponding binomial approximation pB(x; z, p1),
which assumes independently generated memory matrix entries (see section 2.3). In
particular, we are interested in asymptotic conditions when the two probability dis-
tributions, as judged by their moments, become identical for maximal memory load
(i.e., p1 = p1ε and M = Mε as estimated by (2.15), (2.16)). This corresponds to cor-
rectness conditions for many previous results that rely on the binomial approximation
equation (2.13) (see, e.g., [46, 34, 33, 37, 7, 38, 4, 43, 20]).
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5.1. Difference in moments. For the difference Δ
(d)
Wh between the dth mo-

ments of the hetero-associative Willshaw probability pWh and the corresponding bi-
nomial probability pB(x; z, 1−p0) (see section 2.3), we obtain from (4.6), (A.5), (A.10)

Δ
(d)
Wh(μ) := EpWh

(X − μ)d − EpB(x;z,1−p0)(X − μ)d(5.1)

=

d∑
j=2

(p
(j)
0 − pj0)(−1)j

(
z

j

) j∑
i=0

(−1)i
(
j

i

)
(z − μ− i)d(5.2)

=

d∑
j=2

(p
(j)
0 − pj0)(−1)jzj

d∑
i=j

(
i

j

)
Sdi(z − μ− j)i−j ,(5.3)

where μ is again an arbitrary offset (e.g., μ = 0 for the raw moments and μ = zp1 for

the central moments). Thus, Δ
(d)
Wh has the same form as the dth binomial moment,

written as a polynomial in p0, but where powers pj0 have been replaced by p
(j)
0 − pj0

(see Theorem 4.2). Also note that p
(j)
0 = pj0 for j = 0, 1 (see Lemma 4.3). The

corresponding difference Δ
(d)
Wa(μ) := EpWa(X − μ)d − EpB(x;z,1−p0)(X − μ)d for the

auto-associative Willshaw probability pWa can be obtained in a similar way from
(4.7).

5.2. Difference in variance. A particularly interesting case is variance (d = 2):
As long as the overall distribution of dendritic potentials resembles a Gaussian (which
is often true, but see [19, 21, 23]), the retrieval error probabilities are essentially de-
termined by the first two moments, i.e., expectation (d = 1) and variance (d = 2).
Thus, it seems plausible to assume that a necessary condition for convergence of
the Willshaw–Palm distribution towards a binomial is that expectation and vari-
ance become identical. For hetero-association, the expectations are already identical
(equation (4.1)). Thus, it is sufficient to investigate conditions when the difference
δWhB between the two variances vanishes. From (4.26), (4.23) we obtain for hetero-
association

δWhB := VarpWh
X − VarpB

X = z2(p
(2)
0 − p2

0) + z(p0 − p
(2)
0 ) − zp0(1 − p0)(5.4)

= (z2 − z)(p
(2)
0 − p2

0) > 0.(5.5)

Note that δWhB is always positive (see (4.11)). Thus, the binomial approximation
always underestimates the variance of the dendritic potentials. Therefore the bino-
mial approximation generally underestimates the probabilities of retrieval errors and
overestimates storage capacity, at least if the Willshaw distribution comes close to a
Gaussian, which is often true (cf. (3.48) for pattern part retrieval; but see [19, 21, 23]).
With (4.12), (4.13) we obtain

(5.6) δWhB ≤ (z2 − z)p2
0(p

−k/m
0 − 1) ≈ −(z2 − z)

k

m

(
1 − l

n

)
p2
0 ln p0,

where the approximation is true for (k/m)(1− ln p0) → 0 (see also (2.20)). Note that
(5.6) can become zero for a very large parameter range under maximal memory load
(see (2.19), (2.20)).

The analysis for auto-association is similar. The difference δWaB := VarpWa
(X)−

VarpB
(X) can be obtained from (5.5) and (4.29). It is easy to see from (4.32) that

in general δWaB vanishes asymptotically with δWhB . In the following two sections we
generalize our asymptotic considerations to higher-order moments.
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5.3. Convergence of the raw moments. The following lemma determines
asymptotic conditions when the dth raw moment of the Willshaw–Palm probability
pWh becomes identical to the dth raw moment of the corresponding binomial prob-

ability pB(x; z, 1 − p0), i.e., conditions when the difference Δ
(d)
Wh(0) := EpWh

Xd −
EpB(x;z,1−p0)X

d becomes zero.
Lemma 5.1. For fixed d and (k/m) ln p0 → 0 the following bounds become asymp-

totically true:

|Δ(d)
Wh(0)| ≤

d∑
j=2

(p
(j)
0 − pj0)z

j
d∑

i=j

(
i

j

)
Sdi(z − j)i−j(5.7)

≤ −(e− 1)
k

m

d∑
j=2

(
j

2

)
zjpj0 ln p0

d∑
i=j

(
i

j

)
Sdi(z − j)i−j(5.8)

≤ −d2 k

m
zdp2

0 ln p0

d∑
j=2

d∑
i=j

(
i

j

)
Sdi ∼

k

m
zdp2

0 ln p0 ≤ kzd

m
.(5.9)

Proof. The lemma follows from (5.3), (4.12), and Rj(k/m) <
(
j
2

)
(k/m) (see

Lemma 4.3).
Thus, the raw moments of the Willshaw–Palm probability pWh and the corre-

sponding binomial probability pB(x; z, 1− p0) become identical if the address pattern
activities k := |uμ| and z := |ũ| grow at most polynomial in the logarithm logm of
the address population size m.

In the following section we will see that even for larger k(m) the two proba-
bility distributions can still become essentially identical as judged by the difference
of the central moments. The reason for this effect can be easily explained: Con-
sider two probability distributions pA and pB with zero mean values and δ(x) :=
pA(x) − pB(x) → 0 and also δ(x)/pA(x) → 0 and δ(x)/pA(x) → 0 for any x. Then
assume that the dth (central) moments converge, i.e.,

∑
xdε(x) → 0. Then it is still

possible that the corresponding distributions p′A and p′B with mean μ > 0 have di-
verging moments because

∑
(x + μ)dε(x) can grow arbitrarily with μ. This is the

motivation to have a closer look at the convergence of the central moments in the
following section.

5.4. Convergence of the central moments. Here we determine asymptotic
conditions when the dth central moments of the Willshaw–Palm probabilities pWh

and pWa become identical to the dth central moment of the corresponding binomial

probability pB(x; z, 1 − p0), i.e., conditions when Δ
(d)
Wh(μ) and Δ

(d)
Wa(μ) become zero

(see section 5.1).
Lemma 5.2. For fixed d, (k/m) ln p0 → 0, and d < z − μ ≤ z − zp1 = zp0 the

following bounds become asymptotically true:

|Δ(d)
Wh(μ)| ≤

d∑
j=2

(p
(j)
0 − pj0)z

j
d∑

i=j

(
i

j

)
Sdi(z − μ− j)i−j(5.10)

≤ −(e− 1)
k

m

d∑
j=2

(
j

2

)
zjpj0 ln p0

d∑
i=j

(
i

j

)
Sdi(zp0)

i−j(5.11)

≤ −(e− 1)
k

m

d∑
j=2

(
j

2

)
ln p0

d∑
i=j

(
i

j

)
Sdi(zp0)

i(5.12)
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≤ −d2 k

m
(zp0)

d ln p0

d∑
j=2

d∑
i=j

(
i

j

)
Sdi ∼

−k(zp0)
d ln p0

m
.(5.13)

Proof. The lemma follows from (5.3), (4.12), and Rj(k/m) <
(
j
2

)
(k/m) (see

Lemma 4.3).
With this we can easily find asymptotic convergence conditions for maximal mem-

ory load as approximately analyzed in section 2.3.
Theorem 5.3. For maximal memory load as estimated by the binomial approxi-

mation (2.13), i.e., for p1 = p1ε and M = Mε as estimated by (2.15), (2.16), the dth
central moment of the Willshaw–Palm probability pWh becomes identical to the dth
central moment of the corresponding binomial probability pB(x; z, p1ε), i.e.,

(5.14) Δ
(d)
Wh(zp1ε) → 0 if

k(ln n
εl )

d ln z

m
→ 0.

Thus, for n polynomial in m the dth central moments converge at least for k =
O(m/ logd+2 m). In particular, the variances converge at least for k = O(m/ log4 m).
Moreover, all central moments converge, and therefore the Willshaw probability pWh

becomes identical to the binomial approximation, at least for k = O(mP ) with fixed
P < 1.

Proof. For zp0ε → ∞ with p0ε := 1−p1ε, the theorem follows from Lemma 5.2 by
using zp0ε ∼ log(n/(εl)) (see (2.20)). For smaller (e.g., constant) z the convergence
of the central moments follows already from the convergence of the raw moments (see
Lemma 5.1).

A particular case are “symmetric” networks with m = n and k = l, for example,
for auto-association. It turns out that for such networks the range of convergence
is even larger: Assume k = n/ lnP n. Then the convergence condition in (5.14)
becomes (k/n)(ln((lnP n)/ε))d lnn → 0. Thus, here the central moments converge
at least for k = O(n/ log2 n). Note that the results for hetero-association apply
also to auto-association due to Lemma 4.5. Together these considerations suggest
that the theoretical results on neural associative networks apply to a much larger
range than assumed previously [34, 38, 19]. This includes large portions of the dense
potentiation regime with k/ log n → ∞ (see section 2.4). Here previous analyses
relying on the binomial approximation have suggested the potential for very efficient
computer implementations and new biological hypotheses about the roles of structural
plasticity and inhibitory neurons [22, 24].

5.5. Numerical evaluations. The results of this section are verified by Fig-
ure 5.1, which shows data from numerical experiments testing how well the binomial
theory approximates exact values. In fact, the reliability of the binomial approxima-
tion depends both on the network size (n) and the pattern activity (k). In general,
the binomial theory becomes better for larger n and smaller k. The approximations
of pattern capacity Mε (equation (2.16)) and network capacity Cε (equation (2.17))
are comparably reliable and, even for linear k = n/2 and small n, overestimate the
true values by less than a factor of two (Figure 5.1a).

However, the derived “compression capacities” CI and CS depend on the max-
imal memory load p1ε (or 1 − p1ε; see sections 2.2 and 2.4), which can be strongly
overestimated by the binomial theory (Figure 5.1b). For linear k ∼ n the relative
error seems to grow without bound, implying CI → 0 and possibly CS → 0. Never-
theless, for smaller k the binomial approximation is much better already for realistic
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Fig. 5.1. Numerical experiments comparing the binomial approximative analysis to the exact
theory for m = n, k = l, p̃1 = 0, ε = 0.01, and pattern part retrieval with half addresses (λ = 0.5).
(a) Relative approximation error for network storage capacity, Cε/C

approx
ε (see (2.10), (2.17)). Each

curve corresponds to a particular pattern activity function k(n) growing with the neuron number n
(log-scale) as indicated in the plots. Relative errors for pattern capacity Mε are virtually identical.
(b) Relative approximation error for the memory load p1ε at maximal pattern load Mε (see (2.9),
(2.2)), similar to panel (a). More exactly, the plots show min(p1ε, 1−p1ε)/min(papprox

1ε , 1−papprox
1ε ),

where papprox
1ε is the approximation (2.15). The corresponding approximation errors for the related

compression capacities CI
ε and CS

ε (see section 2.4) look qualitatively very similar (cf. [23]). (c) Rel-
ative approximation error (log-scale) for the retrieval error probability p01 (see (2.13), (3.47)) when
storing Mε patterns approximated by (2.16). Each curve corresponds to a particular function k(n)
with k(105) = 50000. Each case was evaluated for increasing n until a maximal computation time
was reached (about 50h per data point on a 2.4GHz AMD Opteron processor evaluating relevant
summands of (3.47) with computing precision 1000bit (see [23] for further details). The plots indi-
cate convergence pλk1 /p01 → 1 for k = O(n/ log2 n), but divergence for k ∼ n/ logn, thus verifying
the theoretical results of section 5.4. (d) Actual pattern activities k/n (log-scale) corresponding to
panel (c).

network sizes. For example, for n = 105 the information capacity CI is about 100%
of the binomial estimate for constant k = 4, 95% for k = n1/2, 70% for k = n2/3,
and still 40% for k = n3/4 (similar values for CS ; data not shown). Interestingly, the
binomial approximations first become worse with growing n until a turning point is
reached (e.g., n = 104 for k = n3/4), and only then approach finally the exact values.

Figure 5.1c, d shows results for very large network size n and comparably large
pattern activities k(n). For near linear k(n) the turning points are reached only for n
too large to be useful for applications or relevant for biology. Nevertheless, for smaller
pattern activities, for example, k = O(n0.8), the convergence is much faster. Turning
points as described above are still visible for k = O(n/ log2 n), but seem absent for
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k ∼ n/ log n. Thus, the numerical experiments are consistent with the theoretical
bound derived at the end of section 5.4.

6. Conclusions. Theories on neural associative networks with binary synapses
often use a binomial approximation of the dendritic potential distribution to esti-
mate retrieval error probabilities and performance measures such as storage capacity
or retrieval speed [46, 34, 37, 33, 4, 43, 20]. However, for finite network size n or
patterns with a relatively large number of active units k this approximation can be
very inaccurate. So far, the convergence of the binomial approximation to the true
potential distribution and thus the asymptotic correctness of the classical theory has
been demonstrated only for some special cases involving very sparse activity pat-
terns, where a binary pattern vector of n neurons contains on average only k = log n
or k ≤ n1/3 active units [34, 38]. This appeared sufficient because it was believed
that neural associative networks would be efficient only for extreme sparseness any-
way [34, 43]. In contrast, recent applications of the theory to problems requiring less
sparse patterns has gained increased attention for a number of reasons described in
the introduction. For example, theoretical analyses based on the binomial approxi-
mation suggest that associative networks can operate very efficiently for large pattern
activities with k/ log n → ∞ (or equivalently “dense potentiation” with memory load
p1 → 1) if the synaptic matrix is adequately compressed [18, 19, 20, 22]. However,
the correctness of these results has been doubted because it remained unclear whether
the binomial approximation is sufficiently good for large pattern activity k(n).

Here I have solved this problem. For this it was necessary to compute general
expressions for the true potential distribution by defining different versions of the
Willshaw–Palm probability including hetero-association, auto-association, and fixed
and random pattern activities (see section 3). I then focused on the characterization of
the probability distributions for random pattern activities. This involved computation
of the raw and central moments of the Willshaw–Palm probability (section 4) from the
corresponding moments of the binomial probability [25]. Finally, I have investigated
the convergence of the two probabilities by determining conditions when the moments
become identical. The analysis reveals that the moments become identical for almost
any sublinear sparseness, for example, k = O(n/(log n)2) (see section 5.4), and thus
verifies the theory on associative networks for large pattern activities.

Appendix. Lemmas. The following lemmas are required to prove the claims
in this work. Proofs of the lemmas can be found in a technical report [23, 25] or in
the standard literature of information theory, combinatorics, analysis, and probability
theory (see, e.g., [9, 39]).

Let X ∈ {0, 1} be a binary random variable with p := pr[X = 1] and infor-
mation I(p) := −p ld p − (1 − p) ld(1 − p). Further let Y be the result of trans-
mitting X over a binary memoryless channel with transmission error probabilities
p01 := pr[Y = 1|X = 0] and p10 := pr[Y = 0|X = 1]. Then the transinformation
between X and Y is

(A.1) T (X;Y ) = T (p, p01, p10) := IY (p, p01, p10) − IY |X(p, p01, p10),

where IY (p, p01, p10) := I (p (1 − p10) + (1 − p) p01) is the information (or entropy) of
Y and IY |X(p, p01, p10) := p · I(p10) + (1− p) · I(p01) is the information of Y given X.

Now let X ∈ {0, 1, . . . , N} be a binomially distributed random variable with
parameters N and P . Then X has expectation EpB

X = NP , and the probability and
moment generating functions are
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pr[X = x] = pB(x;N,P ) :=

(
N

x

)
P x(1 − P )N−x,(A.2)

GpB
(t;N,P ) := EpB

etX = (Pet + (1 − P ))N .(A.3)

Furthermore, substituting Q := 1 − P , it has been proven in [25] that the dth raw
and central moments of X can be written as polynomials in Q,

mr,pB
(d,N, P ) := EpB

Xd =

d∑
j=0

(−Q)j
d∑

i=j

(
i

j

)
SdiN

i with(A.4)

EpB
(X − μ)d =

d∑
j=0

(−Q)j
(
N

j

) j∑
k=0

(−1)k
(
j

k

)
(N − μ− k)d,(A.5)

where N i := N(N − 1) · · · (N − i + 1) denotes a falling factorial, Sdi ≥ 0 are Stirling
numbers of the second kind, and μ is an arbitrary offset. For μ = NP , (A.5) yields
the dth central moment mc,pB

(d,N, P ) of the binomial probability. For μ = 0, (A.5)
becomes identical to the raw moment equation (A.4) [25]. The following lemma is the
sieve formula of Sylvester and Poincaré:

(A.6) pr

(
n⋃

k=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

pr

(
k⋂

h=1

Aih

)
.

The following combinatorial equations are true:(
Y

s−N

)
=

N∑
t=0

(−1)N+t

(
Y + t

s

)(
N

t

)
,(A.7)

(
n

m

)(
m

p

)
=

(
n

p

)(
n− p

m− p

)
=

(
n

m− p

)(
n−m + p

p

)
,(A.8)

M∑
i=0

pB(i;M,Q) · (1 − P )Ji = (1 −Q(1 − (1 − P )J))M ,(A.9)

(
N

j

) j∑
i=0

(−1)i
(
j

i

)
(n− μ− i)d = N j

d∑
i=j

(
i

j

)
Sdi(N − μ− j)i−j .(A.10)

Equation (A.8) implies B(a, b, c) = B(a, c, b) or
(
a
b

)(
a−b
c

)
=

(
a
c

)(
a−c
b

)
. Equation (A.9)

is a variant of the binomial sum (A+B)M =
∑M

i=0

(
M
i

)
AiBM−i. For a proof of (A.10)

see Lemma 3.1 in [25]. Here N i denotes again a falling factorial, and Sdi ≥ 0 denotes
Stirling numbers of the second kind.

Then we have used the bounds

(1 − pq)>
< (1 − p)q for p ∈ (0; 1) and q ∈

/∈ (0; 1),(A.11)

1 + x ≤ ex ≤ 1 + (e− 1)x for 0 ≤ x ≤ 1,(A.12)

where the first bound in (A.12) is true for any x. Finally, the following asymptotic
equations are true for n → ∞ with |x(n)|, |y(n)| → 0:

ex = 1 + x + Θ(x2), ln(1 + x) = x + Θ(x2),(A.13)

ex+Θ(y) = 1 + x + Θ(x2) + Θ(y),
1

1 + x
= 1 − x + Θ(x2),(A.14)

where for a function f(n) we write f(n) = Θ(g(n)) iff there are constants c1, c2, n0

such that for any n > n0 we have c1g(n) < f(n) < c2g(n).
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Abstract. This work develops closed-form expressions for the raw and central moments of the
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1. The binomial probability and its moments. A random variable X is
called binomially distributed with parameters n and p if the random variable takes
value x ∈ {0, 1, 2, . . . , n} with probability

pB(x;n, p) =

(
n

x

)
px(1 − p)n−x.(1.1)

The moment generating function GB(s) := EpB
esX of the binomial probability can

then be computed using the binomial sum (a + b)n =
∑n

k=0

(
n
k

)
akbn−k,

GB(s;n, p) =

n∑
x=0

(
n

x

)
(pes)

x
(1 − p)n−x = (pes + 1 − p)n.(1.2)

The dth raw moment EpB
Xd equals the dth derivative of the generating function

GB(s) at s = 0 (e.g., [14]). For example, the mean value is μ := EpB
X = n(pes +

1 − p)n−1pes|s=0 = np and the second raw moment is EpB
X2 = np((n − 1)(pes +

1 − p)n−2pes + (pes + 1 − p)n−1es)|s=0 = np(np + 1 − p). Higher-order moments for
larger d can be computed, in principle, by continuing this procedure, but computing
higher-order derivatives of GB(s) becomes tedious with increasing d. In the following,
we aim to find a recursive formula without referring to higher-order derivatives of
GB(s) (see also [2] for a related approach).

2. Recursive formulae. To compute the higher-order derivatives of the mo-
ment generating function GB(s) for larger d, we can define auxiliary functions

Hd(s) := (pes)d with derivative H ′
d(s) = dHd(s),(2.1)

Fd(s) := ndGB(s;n− d, p) with derivative(2.2)

F ′
d(s) = nd+1(pes + 1 − p)n−d−1H1(s) = Fd+1(s)H1(s), and(2.3)

Kd(s) := Fd(s)Hd(s) with derivative(2.4)

K ′
d(s) = F ′

d(s)Hd(s) + dFd(s)Hd(s) = Kd+1(s) + dKd(s),(2.5)
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http://www.siam.org/journals/siap/69-1/70002.html
†Honda Research Institute Europe, Carl-Legien-Strasse 30, D-63073 Offenbach/Main, Germany

(andreas.knoblauch@honda-ri.de).

197



198 ANDREAS KNOBLAUCH

where nd = n(n− 1) · · · (n−d+1) denotes a falling factorial or Pochhammer symbol.
Since GB(s) = K0(s), we can obtain the higher-order derivatives of the moment

generating function GB(s) recursively from (2.5), for example, G
(0)
pB = K0, G

(1)
pB = K1,

G
(2)
pB = K2 +K1, G

(3)
pB = K3 + 2K2 +K2 +K1 = K3 + 3K2 +K1. Thus, we can prove

the following.

Lemma 2.1. The dth derivative G
(d)
B of the moment generating function GB(s)

of the binomial probability pB(x;n, p) can be written as a weighted sum of functions
Ki(s):

G(d)
pB

(s) =

d∑
i=0

bdiKi(s)(2.6)

for appropriate coefficients bdi. The coefficients can be computed recursively from

b0i = δi0,(2.7)

bdi = ibd−1,i + bd−1,i−1,(2.8)

where δij is the usual Kronecker symbol (1 for i = j, and 0 otherwise). For conve-
nience, we further define bdi = 0 for d < 0, i < 0, or i > d.

Proof. Equation (2.7) follows from G
(0)
B = K0 (see (2.4)). Equation (2.8) can

then be shown inductively using (2.6) with (2.5):

G(d+1)
pB

(s) =

d∑
i=0

bdi(Ki+1 + iKi) =

d+1∑
i=1

bd,i−1Ki +

d∑
i=0

bdiiKi

=

d+1∑
i=0

(ibdi + bd,i−1)Ki.

From this lemma and Ki(0) = nipi, we can give recursive formulae for the raw
and central moments as summarized by the following theorem.

Theorem 2.2. The dth raw and central moment of a binomially distributed
random variable X with pr[X = x] = pB(x;n, p), expectation μ := np, and q := 1 − p
are

EpB
Xd =

d∑
i=0

bdip
ini(2.9)

=

d∑
j=0

(−q)j
d∑

i=j

(
i

j

)
bdin

i,(2.10)

EpB
(X − μ)d =

d∑
i=0

(
d

i

)
(−μ)d−iEpB

Xi.(2.11)

Equations (2.10), (2.11) can be obtained from the binomial sum (see section 1).
Equation (2.10) is written as polynomial in q, which is useful for some applications
(see section 5). The first few values of the coefficients bdi are shown in Table 2.1.
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Table 2.1

Values of the binomial moment coefficients bdi for 0 ≤ d, i ≤ 10. These coefficients can be
used to compute the moments of the binomial probability (see (2.9)) and are identical to the Stirling
numbers of the second kind (see section 3).

bdi i = 0 1 2 3 4 5 6 7 8 9 10
d = 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0 0 0
5 0 1 15 25 10 1 0 0 0 0 0
6 0 1 31 90 65 15 1 0 0 0 0
7 0 1 63 301 350 140 21 1 0 0 0
8 0 1 127 966 1701 1050 266 28 1 0 0
9 0 1 255 3025 7770 6951 2646 462 36 1 0

10 0 1 511 9330 34105 42525 22827 5880 750 45 1

3. Relation to Stirling numbers of the second kind. The coefficients bdi
for computing the binomial moments (2.9) are actually Stirling numbers of the second
kind: The Stirling number of the second kind S(d, i) is defined as the number of ways
of partitioning a set of d elements into i nonempty sets, and one can show that S(d, i)
obeys the same recurrence relations (2.7), (2.8) as bdi (e.g., [1, 17, 9]). Closed formulae
for the Stirling numbers of the second kind are well known, for example,

bdi = S(d, i) =
(−1)i

i!

i∑
k=0

(−1)k
(
i

k

)
kd.(3.1)

Thus, inserting this into the formulae of Theorem 2.2 gives us already closed-form
expressions for the moments of the binomial probability. However, these formulae can
still be simplified using a generalization of the following generating function (e.g., see
[17]):

nd =

d∑
i=0

bdin
i.(3.2)

The generalization is given by the following lemma.
Lemma 3.1.

d∑
i=j

(
i

j

)
bdin

i =

(
n

j

) j∑
k=0

(−1)k
(
j

k

)
(n− k)d.(3.3)

Proof. Instead of (3.3), we prove the equivalent equation

C(d, j, n) :=

d∑
i=j

ijbdin
i = nj

j∑
k=0

(−1)k
(
j

k

)
(n− k)d(3.4)

by induction over j. For j = 0, the lemma is identical to (3.2). For larger j, we
compute, using ibdi = bd+1,i − bd,i−1 (see (2.8)),

C(d, j + 1, n) =

d∑
i=j+1

ij+1bdin
i =

d∑
i=j+1

ijibdin
i − j

d∑
i=j+1

ijbdin
i

=

d∑
i=j+1

ijbd+1,in
i −

d∑
i=j+1

ijbd,i−1n
i − j

d∑
i=j+1

ijbdin
i.
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The three sums can be written individually:

S1 :=

d∑
i=j+1

ijbd+1,in
i = C(d + 1, j, n) − j!bd+1,jn

j − (d + 1)jnd+1,

S2 :=

d∑
i=j+1

ijbd,i−1n
i

= n

d∑
i=j+1

(i− 1)jbd,i−1(n− 1)i−1 + jn

d∑
i=j+1

(i− 1)j−1bd,i−1(n− 1)i−1

= n

d−1∑
i=j

ijbd,i(n− 1)i + jn

d−1∑
i=j

ij−1bd,i(n− 1)i

= nC(d, j, n− 1) − ndj(n− 1)d

+ jnC(d, j − 1, n− 1) − jn(j − 1)j−1bd,j−1(n− 1)j−1 − jndj−1(n− 1)d,

S3 := j

d∑
i=j+1

ijbdin
i = jC(d, j, n) − jjjbdjn

j ,

where we used bdd = 1 for d ≥ 0. For the second sum, S2, we used ij = ((i − j) +
j)(i−1)j−1. Fortunately, in S1−S2−S3 all the non-C terms cancel out: The b terms
cancel out because with bd+1,j = jbd,j + bd,j−1 from (2.8), we have

−j!njbd+1,j + j!njbd,j−1 + jj!njbdj = j!nj(−bd+1,j + bd,j−1 + jbdj) = 0.

The remaining non-C and non-b terms cancel out because

−(d + 1)jnd+1 + djnd+1 + jdj−1nd+1 = nd+1dj−1(−(d + 1) + (d− j + 1) + j) = 0.

Thus, using the induction hypothesis, we have simply

C(d, j + 1, n) = C(d + 1, j, n) − nC(d, j, n− 1) − jnC(d, j − 1, n− 1) − jC(d, j, n)

= nj

j∑
k=0

(
j

k

)
(−1)k(n− k)d+1

−n(n− 1)j
j∑

k=0

(
j

k

)
(−1)k(n− (k + 1))d

− jn(n− 1)j−1

j−1∑
k=0

(
j − 1

k

)
(−1)k(n− (k + 1))d

− jnj

j∑
k=0

(
j

k

)
(−1)k(n− k)d

=

j+1∑
k=0

ak(n− k)d.

In the last line we have simply summed over the (n − k)d terms. Thus, our proof is
finished if we can show that ak = nj+1

(
j+1
k

)
(−1)k for k = 0, 1, . . . , j + 1. The highest



MOMENTS OF THE BINOMIAL PROBABILITY 201

coefficient aj+1 gets contributions only from the second sum:

aj+1 = −nj+1(−1)j(n− (j + 1))d = nj+1

(
j + 1

j + 1

)
(−1)k.

The lowest coefficient a0 gets contributions only from the first and fourth sums:

a0 = njn− jnj = nj+1 = nj+1

(
j + 1

0

)
(−1)0.

The remaining intermediary coefficients ak for k = 1, 2, . . . , j get contributions from
all four sums:

ak = nj

(
j

k

)
(−1)k(n− k) − nj+1

(
j

k − 1

)
(−1)k−1

− jnj

(
j − 1

k − 1

)
(−1)k−1 − jnj

(
j

k

)
(−1)k

= (−1)knj

(
j

k

)(
(n− k) + (n− j)

k

j − k + 1
+ j

k

j
− j

)

= (−1)knj

(
j

k

)
(n− j)(j + 1)

j − k + 1
= nj+1

(
j + 1

k

)
(−1)k.

Thus, we have proven (3.4).
A useful variant of Lemma 3.1, including an offset μ, is(

n

j

) j∑
k=0

(−1)k
(
j

k

)
(n− μ− k)d = nj

d∑
i=j

(
i

j

)
bdi(n− μ− j)i−j .(3.5)

4. Closed formulae. The following theorem summarizes the main results of
this work.

Theorem 4.1. Let X be a binomially distributed random variable with probability
function pB(x;n, p) (see (1.1)). Further, let q := 1− p and let bdi be Stirling numbers
of the second kind (see Table 2.1 and (2.7), (2.8), and (3.1)). Then the dth raw
moment of the binomial probability pB can be written as

EpB
Xd =

d∑
i=0

bdip
ini(4.1)

=

d∑
i=0

(−p)i
(
n

i

) i∑
k=0

(−1)k
(
i

k

)
kd(4.2)

=

d∑
j=0

(−q)j
d∑

i=j

(
i

j

)
bdin

i(4.3)

=

d∑
j=0

(−q)j
(
n

j

) j∑
k=0

(−1)k
(
j

k

)
(n− k)d.(4.4)

For the dth raw moment, the following bounds are true:

(np)d ≤ EpB
Xd ≤ nd.(4.5)
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For an arbitrary offset μ, we have

EpB
(X − μ)d =

d∑
i=0

(
d

i

)
(−μ)d−iEpB

Xi(4.6)

=

d∑
j=0

(−p)j
(
n

j

) j∑
k=0

(−1)k
(
j

k

)
(k − μ)d(4.7)

=

d∑
j=0

(−q)jnj
d∑

i=j

(
i

j

)
bdi(n− μ− j)i−j(4.8)

=

d∑
j=0

(−q)j
(
n

j

) j∑
k=0

(−1)k
(
j

k

)
(n− μ− k)d.(4.9)

In particular, for μ = EpB
X = np, we obtain the dth central moment of the binomial

probability pB. For z − d ≥ μ ≥ EpB
X, the following bound is true:

|EpB
(X − μ)d| ≤

d∑
j=0

d∑
i=j

(
i

j

)
bdi(nq)

i (∼ (nq)d for fixed d and nq → ∞).(4.10)

Proof. Equations (4.1), (4.2) follow from (2.9), (3.1). Equations (4.3), (4.4)
follow from (2.10), (3.3). The bounds of (4.5) follow simply from pd ≤ pi ≤ 1 and
(3.2) because (4.1) is obviously a sum of nonnegative numbers. Equation (4.6) is
(2.11). Equation (4.7) follows by inserting (4.2) into (4.6) and applying the binomial
sum (see section 1). Similarly, (4.9) follows from inserting (4.4) into (4.6). Equation
(4.8) follows from (4.9) with (3.5). Equation (4.10) follows from (4.8) because nj ≤ nj

and (n− μ− j)i−j ≤ (nq)i−j for n ≥ μ + d and μ ≥ EpB
X = np.

5. Related work and application to the analysis of neural associative
networks. Computing the higher-order moments of a binomially distributed random
variable is rarely emphasized. Standard textbooks give expressions for the moment
generating function (1.2) and some lower-order moments such as mean, variance, and,
perhaps, skewness and kurtosis, but higher-order moments are usually neglected (e.g.,
see [14, 16]). For some applications it may be sufficient to approximate a binomial
random variable by either a Gaussian or a Poissonian where closed-form expressions
for higher-order moments are known. For example, for large variance np(1 − p) →
∞, according to the DeMoivre–Laplace theorem, the binomial probability becomes
similar to a Gaussian with the same mean and variance. Likewise, for n → ∞ and
finite np → λ < ∞, the binomial becomes Poissonian. However, for applications as
described below, these approximations are not appropriate, and it is necessary to find
an exact formula.

A previous attempt [2] to compute the higher-order moments of the binomial
distribution revealed recursive expressions similar to those developed in section 2,
but was restricted to the special case p = 0.5. Moreover, the recursive form was not
appropriate for efficient computation or application in further analyses. In contrast to
[2], this work provides general recursive and nonrecursive (or closed-form) expressions
for the higher-order moments of the binomial distribution.

My main motivation to obtain a closed formula for the binomial moments comes
from analyzing storage capacity and retrieval error probabilities in neural associative
memory networks [21, 12, 4, 18, 6]. Associative memories are systems that contain
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information about a finite set of associations between pattern vector pairs {(uμ �→
vμ) : μ = 1, . . . ,M} [10]. Given a possibly noisy address pattern ũ, the problem is
to find a target pattern vμ for which the corresponding address pattern uμ is most
similar to ũ.

Neural associative networks have wide applications for both artificial intelligence
(e.g., visual object recognition [10, 15]) and modeling the brain (e.g., [13, 6, 22, 5, 19,
20]). In neural implementations the associations are stored in a matrix A describing
the synaptic connections between two cell populations u and v. Here the retrieval
result v̂μ may differ from the original pattern vμ. This is due to retrieval noise being
an increasing function of the memory load or the number of stored associations. In
general, the probability of a retrieval error can be computed from the neuron potential
distribution as obtained by propagating the address pattern ũ through the synaptic
matrix A.

One of the most efficient models is the so-called Willshaw network with binary
neurons and synapses [21]. Here the synaptic matrix is simply A = ∨M

μ=1u
μ,Tvμ, and

the retrieval error probabilities can be computed from the so-called Willshaw–Palm
distribution of neuron potentials x = ũTA. Since the Willshaw–Palm distribution is
more difficult to formulate, many analyses of neural associative memory actually rely
on a binomial approximation (e.g., [21, 12, 11, 3, 18]). However, it is unclear for which
network parameters this approximation is sufficiently accurate. In a further paper [8]
(see also [7]), I will compute the moments of the Willshaw–Palm distribution from
the binomial moments. For this it is sufficient to replace qj in (4.4), (4.9) by some
more complex term q(j). With this it will be possible to compare the exact potential
distribution to the binomial approximation and determine asymptotic conditions when
they become identical.
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ABSOLUTE STABILITY AND COMPLETE SYNCHRONIZATION IN
A CLASS OF NEURAL FIELDS MODELS∗

OLIVIER FAUGERAS† , FRANÇOIS GRIMBERT† , AND JEAN-JACQUES SLOTINE‡

Abstract. Neural fields are an interesting option for modeling macroscopic parts of the cortex
involving several populations of neurons, like cortical areas. Two classes of neural field equations are
considered: voltage- and activity-based. The spatio-temporal behavior of these fields is described by
nonlinear integro-differential equations. The integral term, computed over a compact subset of R

q ,
q = 1, 2, 3, involves space and time varying, possibly nonsymmetric, intracortical connectivity kernels.
Contributions from white matter afferents are represented as external input. Sigmoidal nonlinearities
arise from the relation between average membrane potentials and instantaneous firing rates. Using
methods of functional analysis, we characterize the existence and uniqueness of a solution of these
equations for general, homogeneous (i.e., independent of the spatial variable), and spatially locally
homogeneous inputs. In all cases we give sufficient conditions on the connectivity functions for the
solutions to be absolutely stable, that is to say, asymptotically independent of the initial state of
the field. These conditions bear on some compact operators defined from the connectivity kernels,
the maximal slope of the sigmoids, and the time constants used in describing the temporal shape of
the postsynaptic potentials. Numerical experiments are presented to illustrate the theory. To our
knowledge this is the first time that such a complete analysis of the problem of the existence and
uniqueness of a solution of these equations has been obtained. Another important contribution is the
analysis of the absolute stability of these solutions—more difficult but more general than the linear
stability analysis which it implies. The reason we have been able to complete this work is our use of
the functional analysis framework and the theory of compact operators in a Hilbert space which has
allowed us to provide simple mathematical answers to some of the questions raised by modelers in
neuroscience.

Key words. neural fields, integro-differential equations, compact operators, Hilbert space,
absolute stability, complete synchronization, Lyapunov function, neural masses, cortical columns

AMS subject classifications. 34G20, 34L30, 47B15, 47G10, 47G20, 47J05, 82C32, 92B20,
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1. Introduction. We model neural fields as continuous networks of cortical
units and investigate the ability of these units to completely synchronize, i.e., to
produce the same output when receiving the same input independently of their ini-
tial state. We therefore emphasize the dynamics and the spatio-temporal behavior of
these networks.

Cortical units are built from a local description of the dynamics of a number of
interacting neuron populations, called neural masses [15], where the spatial struc-
ture of the connections is neglected. These “vertically” built units can be thought
of as cortical columns [29, 30, 3]. Probably the most well-known neural mass–based
column model is that of Jansen and Rit [21] based on the original work of da Silva,
Van Rotterdam, and colleagues [25, 26, 38]. A complete analysis of the bifurcations
of this model can be found in [18]. More realistic models can be derived from experi-
mental connectivity studies, such as the one shown in Figure 1. This figure, adapted
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L2/3-E

L5-E

L4-E

L5-I

L4-I

L2/3-I

Fig. 1. A simplified model of local cortical interactions based on six neuron populations. This
local connectivity graph can be seen as a model of a cortical column composed of six interacting
neural masses. There are three layers corresponding to cortical layers II/III, IV, and V and two
types of neurons (excitatory ones in black and inhibitory ones in red) in each of these layers. The
size of the arrows gives an idea of the average strength of the postsynaptic potentials elicited by the
presynaptic neurons; see section 2.1.1. This figure is adapted from [19].

from [19], is based on the work of Thomson and Bannister [37]. It shows the local
connectivity graph of six populations of neurons and can be thought of as a model of
a column comprising six interacting neural masses.

Such columns are then assembled spatially to form the neural field, which is
meant to represent a macroscopic part of the neocortex, e.g., a visual area such
as V1. Connections between columns are intracortical (gray matter) connections.
Connections made via white matter with, e.g., such visual areas as the LGN or V2
are also considered in our models but are treated as input/output quantities.

There are at least three reasons why we think this is the relevant granularity to
do modeling:

• Realistic modeling of a macroscopic part of the brain at the scale of the neuron
is still difficult for obvious complexity reasons. Starting from mesoscopic
building blocks like neural masses, described by the average activity of their
neurons, is therefore a reasonable choice.

• While MEG and scalp EEG recordings mostly give a bulk signal of a cortical
area, multielectrode recordings, in vitro experiments on pharmacologically
treated brain slices, and new imaging techniques like extrinsic optical imaging
can provide a spatially detailed description of neural masses dynamics in a
macroscopic part of the brain like an area.

• The column/area scales correspond to available local connectivity data. In-
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deed, these are obtained by averaging over local populations of neurons we
can think of as neural masses. Besides, local (intracolumnar) connectivity is
supposed to be spatially invariant within an area.

We now present a general mathematical framework for neural field modeling that
agrees with the ideas of using average descriptions of neuronal activity and spatial
invariance of the local connectivity across the field. This framework uses the elegant
tools of functional analysis with the advantage of providing simple characterizations
of some important properties of neural field equations.

In section 2 we describe the local and spatial models of neural masses and derive
the equations that govern their spatio-temporal variations. In section 3 we analyze
the problem of the existence and uniqueness of the smooth general and homogeneous
solutions of these equations. In section 4 we study the absolute stability of these
solutions, i.e., their robustness to arbitrary perturbations caused by changes of the
initial conditions. In section 5 we extend this analysis to the absolute stability of the
homogeneous, i.e., independent of space, solutions when they exist. A consequence
of the absolute stability is the ability of the network to completely synchronize. In
section 6 we revisit the functional framework of our analysis and extend our results
to nonsmooth functions with the effect that we can discuss the existence and absolute
stability of locally homogeneous solutions. We also propose another extension of the
model by generalizing the previous results to higher order synaptic responses. In
section 7 we present a number of numerical experiments to illustrate the theory and
conclude in section 8.

2. The models. We discuss local and spatial models.

2.1. The local models. We consider n interacting populations of neurons such
as those shown in Figure 1. The following derivation is built after Ermentrout’s
review [10]. We consider that each neural population i is described by its average
membrane potential Vi(t) or by its average instantaneous firing rate νi(t), the relation
between the two quantities being of the form νi(t) = Si(Vi(t)) [16, 8], where Si is
sigmoidal. The functions Si, i = 1, . . . , n, satisfy the properties introduced in the
following definition.

Definition 2.1. For all i = 1, . . . , n, Si and S′
i are positive and bounded (S′

i

is the derivative of the function Si). We note Sim = supx Si(x), Sm = maxi Sim,
S′
im = supx S

′
i(x), and DSm = maxi S

′
im. Finally, we define DSm as the diagonal

matrix diag(S′
im).

Neurons in population j are connected to neurons in population i. A single action
potential from neurons in population j is seen as a postsynaptic potential PSPij(t−s)
by neurons in population i, where s is the time of the spike hitting the synapse and t
the time after the spike. We neglect the delays due to the distance traveled down the
axon by the spikes.

Assuming that the postsynaptic potentials sum linearly, the average membrane
potential of population i is

Vi(t) =
∑
j,k

PSPij(t− tk),

where the sum is taken over the arrival times of the spikes produced by the neurons in
population j. The number of spikes arriving between t and t+dt is νj(t)dt. Therefore,
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we have

Vi(t) =
∑
j

∫ t

t0

PSPij(t− s)νj(s) ds =
∑
j

∫ t

t0

PSPij(t− s)Sj(Vj(s)) ds

or, equivalently,

(2.1) νi(t) = Si

⎛
⎝∑

j

∫ t

t0

PSPij(t− s)νj(s) ds

⎞
⎠ .

The PSPijs can depend on several variables in order to account for adaptation, learn-
ing, etc.

There are two main simplifying assumptions that appear in the literature [10],
and they yield two different models.

2.1.1. The voltage-based model. The assumption, made in [20], is that the
postsynaptic potential has the same shape no matter which presynaptic population
caused it; the sign and amplitude may vary, though. This leads to the relation

PSPij(t) = WijPSPi(t).

PSPi represents the unweighted shape of the postsynaptic potentials and Wij is the
average strength of the postsynaptic potentials elicited by neurons of type j on neurons
of type i. In biophysical connectivity models, like the one presented in Figure 1, the
Wijs should be chosen proportionally to the number of presynaptic cells, the average
amplitude of postsynaptic potentials, and the probability of connection between the
considered neuron species [17, 13]. In particular, if Wij > 0, the population j excites
population i, whereas it inhibits it when Wij < 0.

Finally, if we assume that PSPi(t) = e−t/τiY (t) (where Y is the Heaviside distri-
bution) or, equivalently, that

(2.2) τi
dPSPi(t)

dt
+ PSPi(t) = τiδ(t),

we end up with the system of ordinary first order differential equations

(2.3)
dVi(t)

dt
+

Vi(t)

τi
=
∑
j

WijSj(Vj(t)) + Iiext(t),

which describes the dynamic behavior of a cortical column. We have added an external
current Iext(t) to model the nonlocal connections of population i.

The approach developed in this article generalizes easily to the case of more sophis-
ticated postsynaptic potentials models resulting in higher order differential equations,
as shown in section 6.3.

We introduce the n× n matrix W = (Wij)i,j and the function S: R
n → R

n such

that S(x) is the vector of coordinates Si(xi). We rewrite (2.3) in vector form and
obtain the system of n ordinary differential equations

(2.4) V′ = −LV + WS(V) + Iext,

where L is the diagonal matrix L = diag(1/τi).
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2.1.2. The activity-based model. The assumption is that the shape of a post-
synaptic potential depends only on the nature of the presynaptic cell, that is,

PSPij(t) = WijPSPj(t).

As above, we suppose that PSPi(t) satisfies the differential equation (2.2) and define
the activity to be

Aj(t) =

∫ t

t0

PSPj(t− s)νj(s) ds.

A similar derivation yields the following set of n ordinary differential equations:

dAi(t)

dt
+

Ai(t)

τi
= Si

⎛
⎝∑

j

WijAj(t) + Iiext(t)

⎞
⎠ , i = 1, . . . , n.

We rewrite this in vector form as

(2.5) A′ = −LA + S(WA + Iext).

We introduce the following definition.
Definition 2.2. We denote τmax the maximum of the decay time constants τi,

i = 1, . . . , n:

τmax = max
i

τi.

2.2. Neural fields models. We now combine these local models to form a
continuum of columns, e.g., in the case of a model of a significant part Ω of the cortex.
From now on we consider a compact subset Ω of R

q, q = 1, 2, 3. This encompasses
several cases of interest.

When q = 1 we deal with one-dimensional neural fields. Even though this appears
to be of limited biological interest, it is one of the most widely studied cases because
of its relative mathematical simplicity and because of the insights one can gain on the
more realistic situations.

When q = 2 we discuss properties of two-dimensional neural fields. This is perhaps
more interesting from a biological point of view since Ω can be viewed as a piece of
cortex where the third dimension, its thickness, is neglected. This case has received far
less attention than the previous one, probably because of the increased mathematical
difficulty.

Finally, q = 3 allows us to discuss properties of volumes of neural masses, e.g.,
cortical sheets where their thickness is taken into account [22, 4].

The results that are presented in this paper are independent of q. Nevertheless,
we have a good first approximation of a real cortical area with q = 2, and cortical
depth given by the index i = 1, . . . , n of the considered cortical population, following
the idea of a field composed of columns or, equivalently, of interconnected cortical
layers.

We denote V(r, t) (resp., A(r, t)) the n-dimensional state vector at the point r of
the continuum and at time t. We introduce the n×n matrix function W(r, r′, t), which
describes how the neural mass at point r′ influences that at point r at time t. More
precisely, Wij(r, r

′, t) describes how population j at point r′ influences population i
at point r at time t. We call W the connectivity matrix function. Neglecting, as in
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the local case above, the delays due to the distance between the neural masses, we
extend (2.4) to

(2.6) Vt(r, t) = −LV(r, t) +

∫
Ω

W(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t)

and (2.5) to

(2.7) At(r, t) = −LA(r, t) + S

(∫
Ω

W(r, r′, t)A(r′, t) dr′ + Iext(r, t)

)
.

Vt (resp., At) stands for the partial derivative of the vector V (resp., A) with respect
to the time variable t. A special case which will be considered later is when W is
translation invariant: W(r, r′, t) = W(r − r′, t). We give below sufficient conditions
on W and Iext for (2.6) and (2.7) to be well defined and study their solutions.

3. Existence and uniqueness of a solution. In this section we deal with the
problem of the existence and uniqueness of a solution to (2.6) and (2.7) for a given
set of initial conditions. Unlike previous authors [12, 5, 28], we consider the case of
a neural field with the effect that we have to use the tools of functional analysis to
characterize their properties.

We start with the assumption that the state vectors V and A are differentiable
(resp., continuous) functions of the time (resp., the space) variable. This is certainly
reasonable in terms of the temporal variations because we are essentially modeling
large populations of neurons and do not expect to be able to represent time transients.
It is far less reasonable in terms of the spatial dependency since one should allow neural
mass activity to be spatially distributed in a locally nonsmooth fashion with areas
of homogeneous cortical activity separated by smooth boundaries. A more general
assumption is proposed in section 6. But it turns out that most of the groundwork
can be done in the setting of continuous functions.

Let F be the set Cn(Ω) of the continuous functions from Ω to R
n. This is a

Banach space for the norm ‖V‖n,∞ = max1≤i≤n supr∈Ω |Vi(r)|; see section A.1. We
denote by J a closed interval of the real line containing 0.

We will need the following lemma several times.
Lemma 3.1. We have the following inequalities for all x,y ∈ F and r′ ∈ Ω:

‖S(x(r′)) − S(y(r′))‖∞ ≤ DSm‖x(r′) − y(r′)‖∞ and

‖S(x) − S(y)‖n,∞ ≤ DSm‖x − y‖n,∞.

Proof. S is smooth so we can perform a zeroth-order Taylor expansion with
integral remainder [9] and write

S(x(r′)) − S(y(r′)) =

(∫ 1

0

DS(y(r′) + ζ(x(r′) − y(r′))) dζ

)
(x(r′) − y(r′)),

and, because of Lemma A.1 and Definition 2.1

‖S(x(r′))− S(y(r′))‖∞ ≤
∫ 1

0

‖DS(y(r′) + ζ(x(r′)− y(r′)))‖∞ dζ ‖x(r′)− y(r′)‖∞

≤ DSm‖x(r′) − y(r′)‖∞.

This proves the first inequality. The second follows immediately.
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3.1. General solution. A function V(t) is thought of as a mapping V : J → F .
This means that V(t) is now a function defined in Ω. Equations (2.6) and (2.7) are
formally recast as an initial value problem (see, e.g., [11]):

(3.1)

{
V′(t) = f(t,V(t)),
V(0) = V0,

where V0 is an element of F and the function f from J×F is equal to fv defined by
the right-hand side of (2.6):

(3.2) fv(t,x)(r) = −Lx(r) +

∫
Ω

W(r, r′, t)S(x(r′)) dr′ + Iext(r, t) ∀x ∈ F ,

or to fa defined by the right-hand side of (2.7):

(3.3) fa(t,x)(r) = −Lx(r) + S

(∫
Ω

W(r, r′, t)x(r′) dr′ + Iext(r, t)

)
∀x ∈ F .

We have the following proposition.
Proposition 3.2. If the following two hypotheses are satisfied:
1. the connectivity function W is in C(J;Cn×n(Ω × Ω)) (see section A.2),
2. the external current Iext is in C(J;Cn(Ω)),

then the mappings fv and fa are from J×F to F , continuous, and Lipschitz continuous
with respect to their second argument, uniformly with respect to the first (Cn×n(Ω×Ω)
and Cn(Ω) are defined in section A.1).

Proof. Let t ∈ J and x ∈ F . We introduce the mapping

(3.4) Fv : (t,x) → Fv(t,x) such that Fv(t,x)(r) =

∫
Ω

W(r, r′, t)S(x(r′)) dr′.

Fv(t,x) is well defined for all r ∈ Ω because, thanks to the first hypothesis, it is the
integral of the continuous function W(r, ., t)S(x(.)) on a compact domain. For all r′ ∈
Ω, W(., r′, t)S(x(r′)) is continuous (first hypothesis again) and we have (Lemma A.1)

‖W(r, r′, t)S(x(r′))‖∞ ≤ ‖W(., ., t)‖n×n,∞‖S(x(r′))‖∞.

Since ‖S(x(.))‖∞ is bounded, it is integrable in Ω, and we conclude that Fv(t,x) is
continuous on Ω. Then it is easy to see that fv(t,x) is well defined and belongs to F .

Let us prove that fv is continuous:

fv(t,x) − fv(s,y) = −L(x − y) +

∫
Ω

(W(·, r′, t)S(x(r′)) − W(·, r′, s)S(y(r′))) dr′

+ Iext(·, t) − Iext(·, s)

= −L(x − y) +

∫
Ω

(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′

+

∫
Ω

W(·, r′, s)(S(x(r′)) − S(y(r′))) dr′ + Iext(·, t) − Iext(·, s).

It follows from Lemma 3.1 that

‖fv(t,x) − fv(s,y)‖n,∞ ≤ ‖L‖∞ ‖x − y‖n,∞ + |Ω|Sm‖W(·, ·, t) − W(·, ·, s)‖n×n,∞

+ |Ω| ‖W(·, ·, s)‖n×n,∞DSm ‖x − y‖n,∞ + ‖Iext(·, t) − Iext(·, s)‖n,∞.

Because of the hypotheses we can choose |t − s| small enough so that ‖W(·, ·, t) −
W(·, ·, s)‖n×n,∞ and ‖Iext(·, t)−Iext(·, s)‖n,∞ are arbitrarily small. Similarly, since W
is continuous on the compact interval J, it is bounded there and ‖W(·, ·, s)‖n×n,∞ ≤
w > 0 for all s ∈ J. This proves the continuity of fv.
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It follows from the previous inequality that

‖fv(t,x) − fv(t,y)‖n,∞ ≤ ‖L‖∞ ‖x− y‖n,∞ + |Ω| ‖W(·, ·, t)‖n×n,∞DSm ‖x− y‖n,∞,

and because ‖W(·, ·, t)‖n×n,∞ ≤ w > 0 for all ts in J, this proves the Lipschitz
continuity of fv with respect to its second argument, uniformly with respect to the
first.

A very similar proof applies to fa.
We continue with the proof that there exists a unique solution to the abstract

initial value problem (3.1) in the two cases of interest.
Proposition 3.3. Subject to the hypotheses of Proposition 3.2 for any element

V0 (resp., A0) of F there is a unique solution V (resp., A), defined on a subinterval
of J containing 0 and continuously differentiable, of the abstract initial value problem
(3.1) for f = fv (resp., f = fa).

Proof. All conditions of the Picard–Lindelöf theorem on differential equations in
Banach spaces [9, 2] are satisfied; hence the proposition is proved.

This solution, defined on the subinterval J of R can in fact be extended to the
whole real line, and we have the following proposition.

Proposition 3.4. If the following two hypotheses are satisfied:
1. the connectivity function W is in C(R;Cn×n(Ω × Ω)),
2. the external current Iext is in C(R;Cn(Ω)),

then for any function V0 (resp., A0) in F there is a unique solution V (resp., A),
defined on R and continuously differentiable, of the abstract initial value problem (3.1)
for f = fv (resp., f = fa).

Proof. In Theorem B.1, we prove the existence of a constant τ > 0 such that
for any initial condition (t0,V0) ∈ R × F , there is a unique solution defined on the
closed interval [t0 − τ, t0 + τ ]. We can then cover the real line with such intervals and
finally obtain the global existence and uniqueness of the solution of the initial value
problem.

3.2. Homogeneous solution. A homogeneous solution to (2.6) or (2.7) is a
solution U that does not depend upon the space variable r for a given homogeneous
input Iext(t) and a constant initial condition U0. If such a solution U(t) exists, then
it satisfies

U′(t) = −LU(t) +

∫
Ω

W(r, r′, t)S(U(t)) dr′ + Iext(t)

in the case of (2.6) and

U′(t) = −LU(t) + S

(∫
Ω

W(r, r′, t)U(t) dr′ + Iext(t)

)

in the case of (2.7). The integral
∫
Ω

W(r, r′, t)S(U(t)) dr′ is equal to
(∫

Ω
W(r, r′, t) dr′

)
·S(U(t)). The integral

∫
Ω

W(r, r′, t)U(t) dr′ is equal to
(∫

Ω
W(r, r′, t) dr′

)
U(t).

They must be independent of the position r. Hence a necessary condition for the
existence of a homogeneous solution is that

(3.5)

∫
Ω

W(r, r′, t) dr′ = W(t),

where the n× n matrix W(t) does not depend on the spatial coordinate r.
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In the special case where W(r, r′, t) is translation invariant, W(r, r′, t) ≡ W(r−
r′, t), the condition is not satisfied in general because of the border of Ω. In all cases,
the homogeneous solutions satisfy the differential equation

(3.6) U′(t) = −LU(t) + W(t)S(U(t)) + Iext(t)

for (2.6) and

(3.7) U′(t) = −LU(t) + S
(
W(t)U(t)) + Iext(t)

)
for (2.7), with initial condition U(0) = U0, a vector of R

n. The following theorem
gives a sufficient condition for the existence of a homogeneous solution.

Theorem 3.5. If the external current Iext(t) and the connectivity matrix W(t)
are continuous on some closed interval J containing 0, then for all vectors U0 of R

n,
there exists a unique solution U(t) of (3.6) or (3.7) defined on a subinterval J0 of J
containing 0 such that U(0) = U0.

Proof. The proof is an application of Cauchy’s theorem on differential equations.
Consider the mapping fhv : R

n × J → R
n defined by

fhv(x, t) = −Lx + W(t)S(x) + Iext(t).

We have

‖fhv(x, t) − fhv(y, t)‖∞ ≤ ‖L‖∞‖x − y‖∞ + ‖W(t)‖∞‖S(x) − S(y)‖∞.

It follows from Lemma 3.1 that ‖S(x) − S(y)‖∞ ≤ DSm‖x − y‖∞, and, since W is
continuous on the compact interval J, it is bounded there by w > 0 and

‖fhv(x, t) − fhv(y, t)‖∞ ≤ (‖L‖∞ + wDSm)‖x − y‖∞

for all x,y of R
n and all t ∈ J. A similar proof applies to (3.7), and the conclusion of

the proposition follows.
As in Proposition 3.4, this existence and uniqueness result extends to the whole

time real line if I and W are continuous on R.
This homogeneous solution can be seen as describing a state where the columns

of the continuum are synchronized: they receive the same input Iext(t) and produce
the same output U(t).

3.3. Some remarks about the case Ω = R
q. A significant amount of work

has been done on equations of the type (2.6) or (2.7) in the case of a one-dimensional
infinite continuum, Ω = R, or a two-dimensional infinite continuum, Ω = R

2. The
reader is referred to the review papers by Ermentrout [10] and by Coombes [6] as well
as to [33, 14, 35].

Aside from the fact that an infinite cortex is unrealistic, the case Ω = R
q raises

some mathematical questions. Indeed, the choice of the functional space F is problem-
atic. A natural idea would be to choose F = L2

n(Rq), the space of square-integrable
functions with values in R

n; see section A.1. If we make this choice, we immediately
encounter the problem that the homogeneous solutions (constant with respect to the
space variable) do not belong to that space. A further difficulty is that S(x) does not
in general belong to F if x does. As shown in this article, these difficulties vanish if
Ω is compact.
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4. Absolute stability of the general solution. We investigate the absolute
stability of a solution to (2.6) and (2.7) for a given input Iext. Proposition 3.4 guar-
antees that for a given initial condition there exists a unique solution to (2.6) or (2.7)
defined for all times.

In order to investigate its absolute stability we choose a different initial condition,
which is a way to perturb the solution (in effect the only way because of the existence
uniqueness proposition, Proposition 3.4), and look for sufficient conditions for the
new solution to converge toward the original one. Absolute stability implies linear
stability, which is studied by perturbing the solution by adding to it a small function
and performing a first-order Taylor expansion of the equations, thereby obtaining
a perturbed equation. One then usually has to make some assumptions about the
spatio-temporal form of the perturbation, e.g., that it is separable in time and space,
ending up with a nontrivial eigenvalue problem which has to be solved in order to find
sufficient conditions for the perturbation to converge to 0, up to first-order [6, 10, 12,
14, 28, 33, 34, 24, 35].

This is also the case of [1] and [7]; those authors study the convolution case for
n = q = 1 but incorporate propagation delays. Linear stability is local because it
is derived for a particular solution. The functional analysis approach that we use in
this paper allows us to find simple sufficient conditions for the absolute stability of
the system, and hence for all its solutions, regardless of the initial condition or input.
In this sense it is a global approach. This is achieved by constructing a Lyapunov
function measuring some distance between two state vectors at each time instant.
This function has a single minimum corresponding to the equality of the states. One
then finds sufficient conditions for the time derivative of this function to be strictly
negative, thereby guaranteeing the asymptotic equality of the states. This approach
has been followed by fewer people. In [23] the authors study the case where W(r, r′)
is symmetric with respect to the space variables r and r′ for n = q = 1 for a finite
interval and add the translation invariance assumption when the interval is infinite.
They do not study the case of general time-varying input currents.

Absolute stability is a relevant concept for systems of neurons. Indeed, absolutely
stable systems forget their initial state exponentially fast but do not forget their
input. Hence such systems can differentiate distinct stimuli by converging to the
corresponding states without being influenced by their initial state. This property is
desirable, for example, in modeling visual perception: different forms elicit different
percepts, but the percepts should not depend on the initial state of the visual system.
We first look at the general case and then at the convolution case.

4.1. The general case. We define a number of matrices and linear operators
that are useful in what follows.

Definition 4.1. Let

Wcm = WDSm, Wmc = DSmW.

Consider also the linear operators, noted g, gm, and hm, defined on F :

g(x)(r, t) =

∫
Ω

W(r, r′, t)x(r′) dr′ ∀x ∈ F ,

gm(x)(r, t) =

∫
Ω

Wcm(r, r′, t)x(r′) dr′ ∀x ∈ F ,
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and

hm(x)(r, t) =

∫
Ω

Wmc(r, r
′, t)x(r′) dr′ ∀x ∈ F .

We start with a lemma.
Lemma 4.2. With the hypotheses of Proposition 3.2, the operators g, gm, and

hm are compact operators from F to F for each time t ∈ J.
Proof. This is a direct application of the theory of Fredholm’s integral equa-

tions [9]. We prove it for g.
Because of hypothesis 1 in Proposition 3.2, at each time instant t in J, W is con-

tinuous on the compact set Ω × Ω; therefore, it is uniformly continuous. Hence,
for each ε > 0 there exists η(t) > 0 such that ‖r1 − r2‖ ≤ η(t) implies that
‖W(r1, r

′, t) − W(r2, r
′, t)‖∞ ≤ ε for all r′ ∈ Ω, and, for all x ∈ F ,

‖g(x)(r1, t) − g(x)(r2, t)‖∞ ≤ ε|Ω|‖x‖n,∞.

This shows that the image g(B) of any bounded subset B of F is equicontinuous.
Similarly, if we set w(t) = ‖W(., ., t)‖n×n,∞, we have ‖g(x)(r, t)‖∞ ≤ w(t)|Ω|‖x‖n,∞.

This shows that for every r ∈ Ω, the set {y(r), y ∈ g(B)} is bounded in R
n and hence

relatively compact. From the Arzelà–Ascoli theorem, we conclude that the subset
g(B) of F is relatively compact for all t ∈ J. And so the operator is compact.

The same proof applies to gm and hm.
To study the absolute stability of the solutions of (2.6) and (2.7), it is convenient

to use an inner product on F . It turns out that the natural inner product will pave
the way for the generalization in section 6. We therefore consider the pre-Hilbert
space G defined on F by the usual inner product

〈x, y〉 =

∫
Ω

x(r)Ty(r) dr.

We denote ‖x‖n,2 as the corresponding norm to distinguish it from ‖x‖n,∞; see sec-
tion A.1. It is easy to show that all previously defined operators are also compact
operators from G to G. We have the following lemma.

Lemma 4.3. g, gm, and hm are compact operators from G to G for each time
t ∈ J.

Proof. We give the proof for g.
The identity mapping x → x from F to G is continuous since ‖x‖n,2 ≤

√
n|Ω| ‖x‖n,∞.

Consider now g as a mapping from G to F . As in the proof of Lemma 4.2, for each ε > 0
there exists η(t) > 0 such that ‖r1−r2‖ ≤ η(t) implies ‖W(r1, r

′, t)−W(r2, r
′, t)‖∞ ≤

ε for all r′ ∈ Ω. Therefore, the ith coordinate gi(x)(r1, t) − gi(x)(r2, t) satisfies
(Cauchy–Schwarz inequalities)

|gi(x)(r1, t) − gi(x)(r2, t)| ≤
∑
j

∫
Ω

|Wij(r1, r
′, t) −Wij(r2, r

′, t)| |xj(r
′)| dr′

≤ ε
∑
j

∫
Ω

|xj(r
′)| dr′ ≤ ε

√
|Ω|

∑
j

(∫
Ω

|xj(r
′)|2 dr′

)1/2

≤ ε
√
n |Ω|‖x‖n,2,

and the image g(B) of any bounded set B of G is equicontinuous. Similarly, if we set
w(t) = ‖W(., ., t)‖n×n,∞ in Ω × Ω, we have |gi(x)(r, t)| ≤ w(t)

√
n |Ω| ‖x‖n,2. The
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same reasoning as in Lemma 4.2 shows that the operator x → g(x) from G to F is
compact, and since the identity from F to G is continuous, x → g(x) is compact from
G to G.

The same proof applies to gm and hm.
We proceed with the following lemma.
Lemma 4.4. The adjoint g∗ of the operator g of G is the operator defined by

g∗(x)(r, t) =

∫
Ω

WT (r′, r, t)x(r′) dr′.

It is a compact operator. Similar results apply to g∗m and h∗
m.

Proof. The adjoint, if it exists, is defined by the condition 〈g(x),y〉 = 〈x, g∗(y)〉
for all x,y in G. We have

〈g(x), y〉 =

∫
Ω

y(r)T
(∫

Ω

W(r, r′, t)x(r′) dr′
)

dr

=

∫
Ω

x(r′)T
(∫

Ω

WT (r, r′, t)y(r) dr

)
dr′,

from which the conclusion follows. Since G is not a Hilbert space, the adjoint of a
compact operator is not necessarily compact. But the proof of compactness of g in
Lemma 4.3 extends easily to g∗.

We finally prove two useful lemmas that will complete our toolbox for the proof
of the main results of this section.

Lemma 4.5. Given a diagonal matrix D = diag(d1, . . . , dn), with d1, . . . , dn ∈
L∞(Ω) and a function x ∈ G, we have

‖Dx‖n,2 ≤ max
i

(‖di‖∞)‖x‖n,2.

Proof.

‖Dx‖2
n,2 =

∫
Ω

x(r)TD2(r)x(r) dr =
∑
i

∫
Ω

d2
i (r)x

2
i (r) dr ≤

∑
i

‖di‖2
∞

∫
Ω

x2
i (r) dr,

from which the result follows.
Lemma 4.6. ‖g‖G, ‖gm‖G, and ‖hm‖G satisfy the inequalities

‖gm‖G ≤ DSm ‖g‖G and ‖hm‖G ≤ DSm ‖g‖G ,

where DSm is defined in Definition 2.1.
Proof. By definition

‖gm‖G = sup
‖x‖n,2≤1

‖gm(x)‖n,2
‖x‖n,2

= sup
‖x‖n,2≤1

‖g(DSmx)‖n,2
‖x‖n,2

.

Let y = DSmx. Since {x ∈ G, ‖x‖n,2 ≤ 1} ⊂ {x ∈ G, ‖DSmx‖n,2 ≤ DSm}
(Lemma 4.5),

‖gm‖G ≤ sup
‖y‖n,2≤DSm

‖g(y)‖n,2
‖DS−1

m y‖n,2
= sup

‖y‖n,2≤1

‖g(y)‖n,2
‖DS−1

m y‖n,2

≤ sup
‖y‖n,2≤1

‖g(y)‖n,2
‖y‖n,2

· sup
‖y‖n,2≤1

‖y‖n,2
‖DS−1

m y‖n,2
≤ ‖g‖G DSm.



STABILITY AND SYNCHRONIZATION IN NEURAL FIELDS 217

The last inequality is also obtained from Lemma 4.5, which is used again to prove the
inequality for hm: hm = DSmg and ‖DSmg(x)‖n,2 ≤ DSm‖g(x)‖n,2 for all x ∈ G,
from which the result follows.

We show in Appendix D a table summarizing the main notation introduced so
far for future reference.

We now state an important result of this section.
Theorem 4.7. A sufficient condition for the absolute stability of a solution to

(2.6) is

(4.1) DSmτmax ‖g‖G < 1,

where ‖.‖G is the operator norm.
Proof. Let us denote S as the function DS−1

m S and rewrite (2.6) as

Vt(r, t) = −LV(r, t) +

∫
Ω

Wcm(r, r′, t)S(V(r′, t)) dr′ + Iext(r, t).

Let U be its unique solution with initial conditions U(0) = U0, an element of G. Let
also V be the unique solution of the same equation with different initial conditions
V(0) = V0, another element of G. We introduce the new function X = V−U which
satisfies

(4.2) Xt(r, t) = −LX(r, t) +

∫
Ω

Wcm(r, r′, t)H(X,U)(r′, t) dr′

= −LX(r, t) + gm(H(X,U))(r, t),

where the vector H(X,U) is given by H(X,U)(r, t)) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional (Lyapunov function)

V (X) =
1

2

〈
X, L−1X

〉
,

where the symmetric positive definite matrix L can be seen as defining a metric on
the state space. Its time derivative is

〈
X, L−1Xt

〉
. We replace Xt by its value from

(4.2) in this expression to obtain

dV (X)

dt
= −〈X, X 〉 +

〈
X, L−1gm(H(X,U))

〉
.

We consider the second term on the right-hand side of this equation:

(4.3) |
〈
X, L−1gm(H(X,U))

〉
|≤ ‖X‖n,2 ‖L−1gm(H(X,U))‖n,2

≤ τmax‖X‖n,2 ‖gm(H(X,U))‖n,2 ≤ τmax‖X‖n,2 ‖gm‖G‖H(X,U)‖n,2.

Using a zeroth-order Taylor expansion with integral remainder, as in the proof of
Lemma 3.1, we write H(X,U) = DmX, where Dm is a diagonal matrix whose diagonal
elements are continuous functions with values between 0 and 1:

Dm(r, t) =

∫ 1

0

DS(U(r, t) + ζ(V(r, t) − U(r, t))) dζ.

Hence, according to Lemma 4.5,

‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2.
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We use this result and Lemma 4.6 in (4.3) to obtain

|
〈
X, L−1gm(H(X,U))

〉
|≤ τmaxDSm ‖g‖G ‖X‖2

n,2,

and the conclusion follows.
An identical sufficient condition holds for the stability of a solution to (2.7).
Theorem 4.8. A sufficient condition for the absolute stability of a solution to

(2.7) is

DSmτmax ‖g‖G < 1.

Proof. Let U be the unique solution of (2.7) with an external current Iext(r, t)
and initial conditions U(0) = U0. As in the proof of Theorem 4.7, we introduce the
new function X = V − U, where V is the unique solution of the same equation with
different initial conditions. We have

(4.4) Xt(r, t) = −LX(r, t) + S

(∫
Ω

W(r, r′, t)V(r′, t) dr′ + Iext(r, t)

)

− S

(∫
Ω

W(r, r′, t)U(r′, t) dr′ + Iext(r, t)

)
.

Using a zeroth-order Taylor expansion, as in the proof of Lemma 3.1, this equation
can be rewritten as

Xt(r, t) = −LX(r, t) +

(∫ 1

0

DS

(∫
Ω

W(r, r′, t)U(r′t) dr′ + Iext(r, t)

+ ζ

∫
Ω

W(r, r′, t)X(r′, t) dr′

)
dζ

)(∫
Ω

W(r, r′, t)X(r′, t) dr′
)
.

We use the same functional as in the proof of Theorem 4.7:

V (X) =
1

2

〈
X, L−1X

〉
.

Its time derivative is readily obtained with the help of (4.4),

(4.5)
dV (X)

dt
= −〈X, X 〉 +

〈
X, L−1Dmhm(X)

〉
,

where Dm is defined by

Dm(U,X, r, t)

=

∫ 1

0

DS

(∫
Ω

W(r, r′, t)U(t) dr′ + Iext(r, t) + ζ

∫
Ω

W(r, r′, t)X(r′, t) dr′
)

DS−1
m dζ,

a diagonal matrix whose diagonal elements are continuous functions with values be-
tween 0 and 1. We consider the second term on the right-hand side of (4.5) and use
the property of matrix Dm and Lemma 4.6 to obtain

|
〈
X, L−1Dmhm(X)

〉
|≤ ‖X‖n,2‖L−1Dmhm(X)‖n,2

≤ τmax‖X‖n,2 ‖hm(X)‖n,2 ≤ τmax DSm ‖g‖G ‖X‖2
n,2,

from which the result follows.
Note that ‖g‖G = ‖g‖L2 by density of G in L2 (see section 6). In Appendix A, we

show how to compute such operator norms.
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4.2. The convolution case. In the case where W is translation invariant, we
can obtain a slightly easier to exploit sufficient condition for the stability of the so-
lutions than in Theorems 4.7 and 4.8. We first consider the case of a general com-
pact Ω and then the case where Ω is an interval. Translation invariance means that
W(r + a, r′ + a, t) = W(r, r′, t) for all a such that a + r ∈ Ω and a + r′ ∈ Ω,
so we can write W(r, r′, t) = W(r − r′, t). Hence W(r, t) must be defined for all

r ∈ Ω̂ = {r − r′, with r, r′ ∈ Ω}, and we suppose it to be continuous on Ω̂ for each t.

Ω̂ is a symmetric with respect to the origin, compact subset of R
q.

4.2.1. General Ω. We denote 1A as the characteristic function of the subset A

of R
q and M∗ = M

T
as the conjugate transpose of the complex matrix M.

We prove the following theorem.
Theorem 4.9. If the eigenvalues of the Hermitian matrix

(4.6) W̃∗(f , t)W̃(f , t)

are strictly less than (τmaxDSm)−2 for almost all f ∈ R
q and t ∈ J, then the system

(2.6) is absolutely stable.1 W̃(f , t) is the Fourier transform with respect to the space
variable r of 1Ω̂(r)W(r, t),

W̃(f , t) =

∫
Ω̂

W(r, t)e−2iπr·f dr.

Proof. We recall that

‖g‖2
G = sup

‖x‖n,2≤1

‖g(x)‖2
n,2

‖x‖2
n,2

.

We then note that, by definition,

‖g(x)‖n,2 = ‖(1Ω̂W) ⊗ (1Ωx)‖Rq, n, 2,

where ⊗ indicates the convolution over R
q. Parseval’s theorem gives

‖(1Ω̂W) ⊗ (1Ωx)‖2
Rq, n, 2 =

∫
Rq

x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df ,

where x̃ is the Fourier transform of 1Ωx.
As a Hermitian matrix, W̃∗(f , t)W̃(f , t) can be rewritten as U∗(f , t)D(f , t)U(f , t),

with U∗U = Idn and D real and diagonal. In particular, U preserves length (‖Uv‖2 =

‖v‖2). Besides, W̃∗W̃ is positive because for any complex vector v,

v∗W̃∗W̃v = ‖W̃v‖2
2 ≥ 0.

So, all values of D are positive, and if the hypothesis of the theorem is satisfied,
Lemma 4.5 yields∫

Rq

x̃∗(f , t)W̃∗(f , t)W̃(f , t)x̃(f , t) df = ‖
√

DUx̃‖2
Rq, n, 2

≤ (τmaxDSm)−2‖Ux̃‖2
Rq, n, 2 = (τmaxDSm)−2‖x̃‖2

Rq, n, 2 = (τmaxDSm)−2‖x‖2
n,2;

1Note that since W̃ is continuous with respect to f , some eigenvalues of the Hermitian matrix
may be equal to (τmaxDSm)−2 on a domain of measure 0 of the f -plane.
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hence ‖g‖G < (τmaxDSm)−1, and Theorem 4.7 applies.
Since the sufficient condition for the absolute stability of the solution of the

activation-based model is identical, we have the following theorem.
Theorem 4.10. If the eigenvalues of the Hermitian matrix

W̃∗(f , t)W̃(f , t)

are strictly less than (τmaxDSm)−2 for almost all f and t ∈ J, then the system (2.7)

is absolutely stable. W̃(f , t) is the Fourier transform of 1Ω̂(r)W(r, t) with respect to
the space variable r.

These two theorems are somewhat unsatisfactory since they replace a condition
that must be satisfied over a countable set, the spectrum of a compact operator, as
in Theorems 4.7 and 4.8, by a condition that must be satisfied over a continuum, i.e.,
R

q. Nonetheless, one may consider that the computation of the Fourier transforms
of the matrix W, extended by zeros outside Ω̂, is easier than that of the spectrum of
the operator g, for which a method is given in section A.3.

4.2.2. Ω is an interval. In the case where Ω is an interval, i.e., an interval of
R (q = 1), a parallelogram (q = 2), or a parallelepiped (q = 3), we can state different
sufficient conditions. We can always assume that Ω is the q-dimensional interval [0, 1]q

by applying an affine change of coordinates. The connectivity matrix W is defined
on J× [−1, 1]q and extended to a q-periodic function of periods 2 on J×R

q, reflecting
periodic boundary conditions. Similarly, the state vectors V and A as well as the
external current Iext defined on J× [0, 1]q are extended to q-periodic functions of the
same periods over J×R

q by padding them with zeros in the complement in the interval
[−1, 1]q of the interval [0, 1]q. G is now the space L2

n(2) of the square-integrable q-
periodic functions of periods 2 with values in R

n.
We define the functions ψm(r) ≡ e−πi(r1m1+···+rqmq) for m ∈ Z

q and consider the

matrix W̃(m, t) whose elements are given by

W̃ij(m, t) =

∫
[0,2]q

Wij(r, t)ψm(r) dr, 1 ≤ i, j ≤ n.

We recall the following definition.
Definition 4.11. The matrix W̃(m) is the mth element of the Fourier series

of the periodic matrix function W(r).
Theorems 4.9 and 4.10 can be stated in this framework.
Theorem 4.12. If the eigenvalues of the Hermitian matrix

(4.7) W̃∗(m, t)W̃(m, t)

are strictly less than (τmaxDSm)−2 for all m ∈ Z
q and all t ∈ J, then the system

(2.6) (resp., (2.7)) is absolutely stable. W̃(m, t) is the mth element of the Fourier
series of the q-periodic matrix function W(r, t) with periods 2 at time t.

5. Absolute stability of the homogeneous solution. We next investigate
the absolute stability of a homogeneous solution to (2.6) and (2.7). As in the previous
section, we distinguish the general and convolution cases.

5.1. The general case. The homogeneous solutions are characterized by the
fact that they are spatially constant at each time instant. We consider the subspace
Gc of G of the constant functions. We have the following lemma.
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Lemma 5.1. Gc is a complete linear subspace of G. The orthogonal projection
operator PGc

from G to Gc is defined by

PGc(x) = x =
1

|Ω|

∫
Ω

x(r) dr.

The orthogonal complement G⊥
c of Gc is the subset of functions of G that have a zero

average. The orthogonal projection2 operator PG⊥
c

is equal to Id−PGc
. We also have

(5.1) PG⊥
c
Mx = MPG⊥

c
x ∀x ∈ G, M ∈ Mn×n.

Proof. The constant functions are clearly in G. Any Cauchy sequence of constants
is converging to a constant; hence Gc is closed in the pre-Hilbert space G. Therefore,
there exists an orthogonal projection operator from G to Gc which is linear, continuous,
of unit norm, positive, and self-adjoint. PGc(x) is the minimum with respect to the
constant vector a of the integral

∫
Ω
‖x(r)−a‖2 dr. Taking the derivative with respect

to a, we obtain the necessary condition∫
Ω

(x(r) − a) dr = 0

and hence amin = x. Conversely, x − amin is orthogonal to Gc since
∫
Ω
(x(r) −

amin)b dr = 0 for all b ∈ Gc.
Let y ∈ G,

∫
Ω

xy(r) dr = x
∫
Ω

y(r) dr = 0 for all x ∈ Gc if and only if y ∈ G⊥
c .

Finally,

PG⊥
c
Mx = Mx − Mx = Mx − Mx = M(x − x) = MPG⊥

c
x.

We are now ready to prove the theorem on the absolute stability of the homoge-
neous solutions to (2.6).

Theorem 5.2. If W satisfies (3.5), a sufficient condition for the absolute sta-
bility of a homogeneous solution to (2.6) is that the norm ‖g∗‖G⊥

c
of the restriction to

G⊥
c of the compact operator g∗ be less than (τmaxDSm)−1 for all t ∈ J.

Proof. This proof is inspired by [31]. Note that G⊥
c is invariant by g∗ and hence

by g∗m. Indeed, from Lemma 4.4 and (3.5) we have

g∗(x) = WT (t)x = 0 ∀x ∈ G⊥
c .

Let Vp be the unique solution of (2.6) with homogeneous input Iext(t) and initial
conditions Vp(0) = Vp0 ∈ G, and consider the initial value problem

(5.2)

{
X′(t) = PG⊥

c

(
fv(t,PG⊥

c
X + PGcVp)

)
,

X(0) = X0.

X = PG⊥
c
Vp is a solution with initial condition X0 = PG⊥

c
Vp0, since P2

G⊥
c

= PG⊥
c

,

and PG⊥
c
Vp + PGc

Vp = Vp. But X = 0 is also a solution with initial condition
X0 = 0. Indeed Gc is flow-invariant because of (3.5), that is, fv(t,Gc) ⊂ Gc, and hence
PG⊥

c
(fv(t,Gc)) = 0. We therefore look for a sufficient condition for the system (5.2)

to be absolutely stable at X = 0.

2To be accurate, this is the projection on the closure of G⊥
c in the closure of G, which is the

Hilbert space L2
n(Ω).
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We consider again the functional V (X) = 1
2

〈
X, L−1X

〉
with time derivative

dV (X)
dt =

〈
X, L−1Xt

〉
. We substitute Xt with its value from (5.2) which can be

rewritten as

Xt = PG⊥
c

(
−L(PG⊥

c
X + PGcVp) +

∫
Ω

W(r, r′, t)S(PG⊥
c
X(r′, t) + PGcVp(r

′, t)) dr′

)
.

Because of Lemma 5.1 this yields

Xt = −LPG⊥
c
X + PG⊥

c

(∫
Ω

Wcm(r, r′, t)S(PG⊥
c
X(r′, t) + PGc

Vp(r
′, t)) dr′

)
.

Using a zeroth-order Taylor expansion, as in the proof of Lemma 3.1, we write

S(PG⊥
c
X + PGcVp) = S(PGcVp) +

(∫ 1

0

DS(PGcVp + ζPG⊥
c
X) dζ

)
PG⊥

c
X,

and since S(PGc
Vp) ∈ Gc, and because of (3.5),

PG⊥
c

(∫
Ω

Wcm(r, r′, t)S(PG⊥
c
X(r′, t) + PGc

Vp(r
′, t)) dr′

)

= PG⊥
c

(∫
Ω

Wcm(r, r′, t)

(∫ 1

0

DS(PGcVp(r
′, t)+ζPG⊥

c
X(r′, t)) dζ

)
PG⊥

c
X(r′, t) dr′

)
.

We use (5.1) and the fact that PG⊥
c

is self-adjoint and idempotent to write

dV (X)

dt
= −〈PG⊥

c
X, PG⊥

c
X〉 +

〈
PG⊥

c
X, L−1

∫
Ω

Wcm(r, r′, t)

·
(∫ 1

0

DS(PGcVp(r
′, t) + ζPG⊥

c
X(r′, t)) dζ

)
PG⊥

c
X(r′, t) dr′

〉
.

Let us denote by Dv(r
′, t) the diagonal matrix

∫ 1

0
DS(PGcVp(r

′, t)+ζPG⊥
c
X(r′, t)) dζ.

Its diagonal elements are continuous functions with values between 0 and 1. Letting
Y = PG⊥

c
X, we rewrite the previous equation in operator form, introducing the

operator gm (Definition 4.1), as

dV (X)

dt
= −〈Y, Y〉 +

〈
Y, L−1gm(Dv Y)

〉
.

By definition of the adjoint〈
Y, L−1gm(Dv Y)

〉
=
〈
g∗m

(
L−1Y

)
, Dv Y

〉
.

Using the Cauchy–Schwarz inequality and Lemma 4.5∣∣〈g∗m (
L−1Y

)
, Dv Y

〉∣∣ ≤ ∥∥g∗m (
L−1Y

)∥∥
n,2

‖Dv Y‖n,2 ≤
∥∥g∗m (

L−1Y
)∥∥

n,2
‖Y‖n,2 ,

and since∥∥g∗m (
L−1Y

)∥∥
n,2

≤ ‖g∗m‖G⊥
c

∥∥L−1Y
∥∥
n,2

≤ τmaxDSm‖g∗‖G⊥
c
‖Y‖n,2 ,
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the conclusion follows.

Note that ‖g∗‖G⊥
c

= ‖g∗‖L2
0

by density of G⊥
c in L2

0, where L2
0 is the subspace of

L2 of zero mean functions. We show in Appendix A how to compute this norm.

We prove a similar theorem in the case of (2.7).

Theorem 5.3. If W satisfies (3.5), a sufficient condition for the stability of a
homogeneous solution to (2.7) is that the norm ‖g‖G⊥

c
of the restriction to G⊥

c of the

compact operator g be less than (τmaxDSm)−1 for all t ∈ J.

Proof. The proof is similar to that of Theorem 5.2. We consider Ap the unique
solution to (2.7) with homogeneous input Iext(t) and initial conditions Ap(0) = Ap0,
and we consider the initial value problem

(5.3)

{
A′(t) = PG⊥

c

(
fa(t,PG⊥

c
A + PGcAp)

)
,

A(0) = A0.

A = PG⊥
c
Ap is a solution with initial conditions A0 = PG⊥

c
Ap0 since PG⊥

c
Ap +

PGcAp = Ap. But A = 0 is also a solution with initial conditions A0 = 0. Indeed, Gc

is flow-invariant because of (3.5), that is, fa(t,Gc) ⊂ Gc, and hence PG⊥
c

(fa(t,Gc)) = 0.
We therefore look for a sufficient condition for the system (5.3) to be absolutely stable
at A = 0.

Consider again the functional V (A) = 1
2

〈
A, L−1A

〉
with time derivative dV (A)

dt =〈
A, L−1At

〉
. We substitute At with its value from (5.3) which, using (3.5), can be

rewritten as

At = PG⊥
c

(
−L(PG⊥

c
A + PGcAp)

+ S

(∫
Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′ + W(t)PGcAp + Iext(t)

))
.

We perform a first-order Taylor expansion with integral remainder of the S term and
introduce the operator hm (Definition 4.1):

S

(∫
Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′ + W(t)PGc

Ap + Iext(t)

)
=

S
(
W(t)PGcAp + Iext(t)

)
+

(∫ 1

0

DS

(
W(t)PGcAp + Iext(t) + ζ

∫
Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′

)
dζ

)
hm(PG⊥

c
A)(r, t).

Let us define

Da(r, t) =

∫ 1

0

DS

(
W(t)PGcAp + Iext(t) + ζ

∫
Ω

W(r, r′, t)PG⊥
c
A(r′, t) dr′

)
dζ,

a diagonal matrix whose diagonal elements are continuous functions with values be-
tween 0 and 1. Letting Y = PG⊥

c
A, we write

dV (A)

dt
= −〈Y, Y〉 +

〈
Y, L−1Da hm(Y)

〉
,
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and the conclusion follows from the Cauchy–Schwarz inequality and Lemmas 4.5
and 4.6:

∣∣〈Y, L−1Da hm(Y)
〉∣∣ ≤≤ ‖Y‖n,2

∥∥L−1Da hm(Y)
∥∥
n,2

≤ τmax ‖Y‖n,2 ‖hm(Y)‖n,2 ≤ τmaxDSm ‖g‖G⊥
c

‖Y‖2
n,2 .

5.2. The convolution case. As W is translation-invariant,
∫
Ω

W(r− r′, t) dr′

is in general a function of r, unless Ω has no border. In our framework, this case
occurs only when Ω is an interval with periodic conditions and we have the following
theorem.

Theorem 5.4. A sufficient condition for the stability of a homogeneous solution
to (2.6) (resp., (2.7)) is that the eigenvalues of the Hermitian matrices

W̃∗(m, t)W̃(m, t)

are strictly less than (τmax DSm)−2 for all m �= 0 ∈ Z
q and all t ∈ J. W̃(m, t) is

the mth element of the Fourier series of the q-periodic matrix function W(r, t) with
respect to the space variable r.

The only difference from Theorem 4.12 is that there are no constraints on the
Fourier coefficient m = 0. This is due to the fact that we “look” only at the subspace
of G of functions with zero spatial average.

5.3. Complete synchronization. The property of absolute stability of the so-
lution that is characterized in Theorems 5.2, 5.3, and 5.4 can be seen as the ability
for the neural masses in the continuum to synchronize. By synchronization we mean
that the state vectors at all points in the continuum converge to a unique state vector
that is a function only of the common input Iext and not of the initial states of the
neural masses. The state vector is the homogeneous solution of (2.6) and (2.7). This
effect is called complete synchronization [32].

6. Extending the theory. We have developed our analysis of (2.6) and (2.7) in
the Banach space F of continuous functions of the spatial coordinate r even though
we have used a structure of pre-Hilbert space G on top of it. But there remains
the fact that the solutions that we have been discussing are smooth, i.e., continuous
with respect to the space variable. It may be interesting to also consider nonsmooth
solutions, e.g., piecewise continuous solutions that can be discontinuous along curves
of Ω. A natural setting, given the fact that we are interested in having a structure
of Hilbert space, is L2

n(Ω), the space of square-integrable functions from Ω to R
n; see

Appendix A. It is a Hilbert space and G is a dense subspace, G = L2
n(Ω), where A

indicates the topological closure of the set A.

6.1. Existence, uniqueness, and stability of a solution. The theory devel-
oped in the previous sections can be readily extended to L2

n(Ω): the analysis of the
stability of the general and homogeneous solutions has been done using the pre-Hilbert
space structure of G, and all the operators that have been shown to be compact in
G are also compact in its closure L2

n(Ω) [9]. The only point that has to be reworked
is the problem of existence and uniqueness of a solution addressed in Propositions
3.2 and 3.3. This allows us to relax the rather stringent spatial smoothness hypothe-
ses imposed on the connectivity function W and the external current Iext, thereby
bringing in more flexibility to the model. We have the following proposition.

Proposition 6.1. If the following two hypotheses are satisfied:
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1. the mapping W is in C(J;L2
n×n(Ω × Ω)),

2. the external current Iext is in C(J;L2
n(Ω)),

then the mappings fv and fa are from J×L2
n(Ω) to L2

n(Ω), continuous, and Lipschitz
continuous with respect to their second argument, uniformly with respect to the first.

Proof. Because of the first hypothesis, the fact that S(x) is in L2
n(Ω) for all

x ∈ L2
n(Ω), and because of Lemma A.2, fv is well defined. Let us prove that it is

continuous. As in the proof of Proposition 3.2, we write

fv(t,x) − fv(s,y) = −L(x − y) +

∫
Ω

(W(·, r′, t) − W(·, r′, s))S(x(r′)) dr′

+

∫
Ω

W(·, r′, s)(S(x(r′)) − S(y(r′))) dr′ + Iext(·, t) − Iext(·, s),

from which we obtain, using Lemma A.2,

‖fv(t,x) − fv(s,y)‖n,2 ≤ ‖L‖F ‖x − y‖n,2 +
√
n|Ω|Sm‖W(·, ·, t) − W(·, ·, s)‖F

+ DSm‖W(·, ·, s)‖F ‖x − y‖n,2 + ‖Iext(·, t) − Iext(·, s)‖n,2,

and the continuity follows from the hypotheses. ‖ ‖F is the Frobenius norm; see
Appendix A. Note that since W is continuous on the compact interval J, it is bounded
and ‖W(·, ·, t)‖F ≤ w for all t ∈ J for some positive constant w. The Lipschitz
continuity with respect to the second argument uniformly with respect to the first
one follows from the previous inequality by choosing s = t.

The proof for fa is similar.
From this proposition we deduce the existence and uniqueness of a solution over

a subinterval of R.
Proposition 6.2. Subject to the hypotheses of Proposition 6.1 for any element

V0 of L2
n(Ω) there is a unique solution V, defined on a subinterval of J containing 0

and continuously differentiable, of the abstract initial value problem (3.1) for f = fv
and f = fa such that V(0) = V0.

Proof. All conditions of the Picard–Lindelöf theorem on differential equations
in Banach spaces (here a Hilbert space) [9, 2] are satisfied; hence the proposition is
proved.

We can also prove that this solution exists for all times, as in Proposition 3.4.
Proposition 6.3. If the following two hypotheses are satisfied:
1. the connectivity function W is in C(R;L2

n×n(Ω × Ω)),
2. the external current Iext is in C(R;L2

n(Ω)),
then for any function V0 in L2

n(Ω) there is a unique solution V, defined on R and
continuously differentiable, of the abstract initial value problem (3.1) for f = fv and
f = fa.

Proof. The proof is similar to that of Proposition 3.4.
The absolute stability of the solution can be studied exactly as in Theorems 4.7

and 4.8. Since G is dense in L2
n(Ω), we have ‖g‖G = ‖g‖L2

n(Ω) and similar relations
for all the other operators. We have the following theorem.

Theorem 6.4. If the compact operator g satisfies the condition of Theorem 4.7,
the solution of the abstract initial value problem (3.1) for f = fv and f = fa is
absolutely stable.

6.2. Locally homogeneous solutions. An application of the previous exten-
sion is the following. Consider a partition of Ω into P subregions Ωi, i = 1, . . . , P .
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We assume that the Ωis are closed, hence compact, subsets of Ω intersecting along
finitely many piecewise regular curves. These curves form a set of 0 Lebesgue measure
of Ω. We consider locally homogeneous input current functions

(6.1) Iext(r, t) =

P∑
k=1

1Ωk
(r)Ikext(t),

where the P functions Ikext(t) are continuous on some closed interval J containing 0.
On the border between two adjacent regions, the value of Iext(r, t) is undefined. Since
this set of borders is of 0 measure, the functions defined by (6.1) are in L2

n(Ω) at each
time instant.

6.2.1. Existence and uniqueness. We are interested in the existence of solu-
tions to the abstract initial value problem (3.1) that are homogeneous in each subre-
gion Ωi, i = 1, . . . , P . We call them locally homogeneous solutions.

We assume that the connectivity matrix W satisfies the following conditions:

(6.2)

∫
Ωk

W(r, r′, t) dr′ =

P∑
i=1

1Ωi(r)Wik(t), k = 1, . . . , P.

These conditions are analogous to (3.5). A locally homogeneous solution of (2.6) or
(2.7) can be written as

V(r, t) =

P∑
i=1

1Ωi(r)Vi(t),

where the functions Vi satisfy the system of ordinary differential equations

(6.3) V′
i(t) = −LVi(t) +

P∑
k=1

Wik(t)S(Vk(t)) + Iiext(t)

for the voltage-based model and

(6.4) V′
i(t) = −LVi(t) + S

(
P∑

k=1

Wik(t)Vk(t) + Iiext(t)

)

for the activity-based model. The conditions for the existence and uniqueness of a
locally homogeneous solution are given in the following theorem, analogous to Theo-
rem 3.5.

Theorem 6.5. If the external currents Ikext(t), k = 1, . . . , P , and the connec-
tivity matrices Wik(t), i, k = 1, . . . , P , are continuous on some closed interval J
containing 0, then for all sets of P vectors Uk

0 , k = 1, . . . , P , of R
n, there exists a

unique solution (U1(t), . . . ,UP (t)) of (6.3) or (6.4) defined on a subinterval J0 of J
containing 0 such that Uk(0) = Uk

0 , k = 1, . . . , P .
Proof. The system (6.3) can be written in the form

(6.5) V ′(t) = −LV(t) + W(t)S(V(t)) + Iext(t),

where V is the nP -dimensional vector⎛
⎜⎝

V1

...
VP

⎞
⎟⎠ , Iext =

⎛
⎜⎝

I1
ext
...

IPext

⎞
⎟⎠ ,S(X ) =

⎛
⎜⎝

S(X1)
...

S(XP )

⎞
⎟⎠ ,
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W is the block matrix (Wik)i,k, and L is the block diagonal matrix whose diagonal
elements are all equal to L. Then we are dealing with a classical initial value problem
of dimension nP , and the proof of existence and uniqueness is similar to that of
Theorem 3.5. A similar proof can be written in the case of system (6.4).

Again, if Iext and W are continuous on R, the existence and uniqueness result
extends to the whole time line R.

6.2.2. Absolute stability. Having proved the existence and uniqueness of a
locally homogeneous solution, we consider the problem of characterizing its absolute
stability. The method is the same as in section 5. We consider the subset, noted GP

c ,

of the functions that are constant in the interior
◦
Ωi of each region Ωi, i = 1, . . . , P

(the interior
◦
A of a subset A is defined as the biggest open subset included in A). We

have the following lemma that echoes Lemma 5.1.
Lemma 6.6. GP

c is a complete linear subspace of L2
n(Ω). The orthogonal projec-

tion operator PGP
c

from L2
n(Ω) to GP

c is defined by

PGP
c

(x)(r) = xP =

P∑
k=1

1Ωk
(r)

1

|Ωk|

∫
Ωk

x(r′) dr′.

The orthogonal complement GP ⊥
c of GP

c is the subset of functions of L2
n(Ω) that have

a zero average in each Ωi, i = 1, . . . , P . The orthogonal projection operator PGP ⊥
c

is
equal to Id − PGP

c
. We also have

(6.6) PGP ⊥
c

Mx = MPGP ⊥
c

x ∀x ∈ L2
n(Ω), M ∈ Mn×n.

Proof. The proof of this lemma is similar to that of Lemma 5.1.
We have the following theorem, corresponding to Theorems 5.2 and 5.3.
Theorem 6.7. If W satisfies (6.2), a sufficient condition for the absolute stabil-

ity of a locally homogeneous solution to (2.6) (resp., (2.7)) is that the norm ‖g∗‖GP ⊥
c

(resp., ‖g‖GP ⊥
c

) of the restriction to GP ⊥
c of the compact operator g∗ (resp., g) be less

than (τmax DSm)−1 for all t ∈ J.
Proof. The proof strictly follows the lines of the ones of Theorems 5.2 and

5.3.
Note that the condition on the operator norm in Theorems 4.7 and 4.8 is stronger

than the one of Theorems 5.2 and 5.3 which is in turn stronger than the one of
Theorem 6.7; therefore, we have the following proposition.

Proposition 6.8. If the operator g satisfies the condition of Theorem 4.7 or if
g∗ (resp., g) satisfies the condition of Theorem 5.2 (resp., of Theorem 5.3), then for
every partition of Ω, corresponding locally homogeneous current, and W satisfying
(6.2), the locally homogeneous solution of (2.6) (resp.,(2.7)) is absolutely stable.

Proof. Since all spaces are contained in L2
n(Ω), the first part of the proposition is

proved. Next, it is clear that Gc ⊂ GP
c ; therefore, GP ⊥

c ⊂ G⊥
c and ‖g∗‖GP ⊥

c
≤ ‖g∗‖G⊥

c

(resp., ‖g‖GP ⊥
c

≤ ‖g‖G⊥
c

).
Condition (6.2) depends on the partition of Ω. It is therefore unrealistic since one

expects this partition to change over time with the external currents. In this context
it is interesting to define the notion of a pseudo–locally homogeneous solution.

Definition 6.9. A pseudo–locally homogeneous solution of (2.6) (resp., (2.7))
corresponds to a locally homogeneous input current (verifying (6.1)) when the connec-
tivity function satisfies the condition of Proposition 6.3 (existence and uniqueness of
a solution) but not necessarily conditions (6.2).
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How much a pseudo–locally homogeneous solution differs from a locally homoge-
neous solution obviously depends upon how poorly the connectivity function satisfies
the conditions (6.2). But since pseudo–locally homogeneous solutions are solutions,
they enjoy the following property.

Proposition 6.10. If the operator g satisfies the condition of Theorem 4.7, the
unique pseudo–locally homogeneous solution of (2.6) (resp., of (2.7)) corresponding to
a locally homogeneous input current is absolutely stable.

A numerical example of pseudo–locally homogeneous solution is given in section 7
(Figures 17 and 18).

6.2.3. Complete local synchronization. The property of absolute stability
of the solution that is characterized in Theorem 6.7 can be seen as the ability for
the neural masses in the continuum to synchronize locally within each region Ωi,
i = 1, . . . , P . By local synchronization we mean that the state vectors at all points
of each region Ωi converge to a unique state vector that is a function only of the
common input Iiext within Ωi and not of the initial states of the neural masses. The
state vector is the locally homogeneous solution of (2.6) and (2.7). This effect is called
complete local synchronization.

6.3. Higher order postsynaptic potentials. We now show how the theory
developed so far can be extended to accomodate more complicated time variations
of the postsynaptic potentials than the decaying exponential that we adopted so far
with the advantage that we had only to deal with a first-order differential equation.
We show how to proceed only in the case of a second-order differential equation; going
to a higher order does not bring in new difficulties. We also treat only the case of the
voltage-based model, the case of the activity-based model being similar.

We therefore assume that, with the notation of section 2.1.1, we have PSPi(t) =
te−t/τiY (t) or, equivalently, that

d2PSPi(t)

dt2
+

2

τi

dPSPi(t)

dt
+

1

τ2
i

= δ(t).

The analogue of (2.4) is

(6.7) V′′ = −2LV′ − L2V + WS(V) + Iext.

We rewrite this as a first order system of differential equations by introducing the
vector V =

[
V
V′
]
:

V ′ = −LV +

[
0

WS(V)

]
+

[
0

Iext

]
, L =

[
0 −Id
L2 2L

]
.

The dynamic system V ′ = −LV is globally asymptotically stable since all the eigen-
values of the 2n × 2n matrix L have a strictly positive real part, as can be easily
verified.3 This has the following consequence [36, 27] that is used below and that we
cite without proof.

Theorem 6.11 (Lyapunov). The symmetric positive definite matrix

M =

∫ ∞

0

e−LT t e−Lt dt

3In fact, the eigenvalues of L are those of L, 1/τis, with multiplicity 2.
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satisfies

(6.8) ML + LTM = Id2n,

where Id2n is the 2n× 2n identity matrix.
The analogue of (2.6) is readily found to be

(6.9) Vt(r, t) = −LV(r, t) +

[
0∫

Ω
W(r, r′, t)S(V(r′, t)) dr′

]
. +

[
0

Iext

]
.

The state is now 2n-dimensional, the corresponding functional space is L2
2n(Ω), and

the operator g is defined on the subspace L2
n(Ω) of L2

2n(Ω). It keeps all its previous
properties. All proofs of the existence and uniqueness of a solution to (2.6) extend
mutatis mutandis to this new setting.

Let us now examine the problem of the absolute stability of the solution, the
analogue of Theorem 4.7.

Theorem 6.12. A sufficient condition for the solution of (2.6) to be absolutely
stable is

2λmax DSm ‖g‖L2
n(Ω) < 1,

where λmax is the largest eigenvalue of the 2n×2n matrix M defined in Theorem 6.11.
Proof. We consider the equation

Vt(r, t) = −LV(r, t) +

[
0∫

Ω
Wcm(r, r′, t)S(V(r′, t)) dr′

]
+

[
0

Iext

]
,

where V is the vector composed of the first n components of vector V (the same
convention will be used in the following for subvectors of U and X ). Let U be its
unique solution with initial condition U(0) = U0, an element of L2

2n(Ω). Let also V be
the unique solution of the same equation with different initial conditions V(0) = V0,
another element of L2

2n(Ω). We introduce the new function X = V−U which satisfies

(6.10) X t(r, t) = −LX (r, t) +

[
0∫

Ω
Wcm(r, r′, t)H(X,U)(r′, t) dr′

]

= −LX (r, t) +

[
0

gm(H(X,U))(r, t)

]
,

where the vector H(X,U) is given by H(X,U)(r, t) = S(V(r, t)) − S(U(r, t)) =
S(X(r, t) + U(r, t)) − S(U(r, t)). Consider now the functional

V (X ) =
1

2
〈X , MX 〉 ,

where the symmetric positive definite matrix M can be seen as defining a metric on
the state space. Its time derivative is 〈X , MX t 〉. We replace X t by its value from
(6.10) in this expression to obtain

dV (X )

dt
= −1

2

〈
X , (LTM + ML)X

〉
+

〈
X , M

[
0

gm(H(X,U))

]〉
.

Using the property (6.8) of M, we obtain

dV (X )

dt
= −1

2
〈X , X 〉 +

〈
X , M

[
0

gm(H(X,U))

]〉
.
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We consider the second term on the right-hand side of this equation. Since M is
symmetric,

(6.11)

∣∣∣∣
〈
X , M

[
0

gm(H(X,U))

]〉∣∣∣∣ =

∣∣∣∣
〈
MX ,

[
0

gm(H(X,U))

]〉∣∣∣∣
≤ ‖MX‖2n,2 ‖gm(H(X,U))‖n,2 ≤ λmax‖X‖2n,2 ‖gm(H(X,U))‖n,2

≤ λmax ‖X‖2n,2 ‖gm‖L2
n
‖H(X,U)‖n,2.

The inequality ‖MX‖2n,2 ≤ λmax‖X‖2n,2 is obtained using the spectral properties
of the symmetric positive definite matrix M and Lemma 4.5.

Using the idea in the proof of Lemma 3.1, we write H(X,U) = DmX, where Dm

is a diagonal matrix whose diagonal elements are continuous functions with values
between 0 and 1. Hence, because of Lemma 4.5,

‖H(X,U)‖n,2 = ‖DmX‖n,2 ≤ ‖X‖n,2 ≤ ‖X‖2n,2.

We use this result and Lemma 4.6 in (6.11) to obtain∣∣∣∣∣
〈
X , M

[
0

gm(H(X,U))

]〉∣∣∣∣∣ ≤ λmax DSm ‖g‖L2
n
‖X‖2

2n,2,

and the conclusion follows.
All other theorems in sections 4, 5, and 6 and in this section can be similarly

extended to this more general setting. More information about M and λmax can be
found in Appendix C.

7. Numerical examples. We consider two (n = 2) one-dimensional (q = 1)
populations of neurons, population 1 being excitatory and population 2 inhibitory.
The set Ω is the closed interval [0, 1]. We denote x as the spatial variable and f
as the spatial frequency variable. We consider Gaussian functions, denoted Gij(x),
i, j = 1, 2, from which we define the connectivity functions. Hence we have Gij =
G(0, σij). We consider three cases. In the first case, section 7.1, we assume that
the connectivity matrix is translation invariant (see sections 4.2 and 5.2). In the
second case, section 7.2, we relax this assumption and study the stability of the
homogeneous solutions. The third case, finally, section 7.3, covers the case of the
locally homogeneous solutions and their stability. In this section we have S1(x) =
S2(x) = 1/(1 + e−x). Therefore,

DSm =

[
1
4 0
0 1

4

]
;

hence DSm = 1/4. We also choose τ1 = τ2 = 4; therefore, τmax = 4, and the product
DSm τmax is equal to 1.

7.1. The convolution case. We define Wij(x, x
′) = ±αij Gij(x − x′), where

the αij ’s are positive weights and the sign determines whether population j excites
(+) or inhibits (−) population i. As explained in section 4.2, W(r) is defined on the

closed interval Ω̂ = [−1, 1]. For simplicity we use the approach described in section
4.2.1 and approximate the Fourier transform of 1Ω̂(x)W(x) by that of W(x) for which
we have an analytical formula. This approximation is good as long as the σij ’s are
small with respect to 1.
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The connectivity functions and their Fourier transforms are then given by

Wij(x) = ± αij√
2πσ2

ij

e
− x2

2σ2
ij , W̃ij(f) = ±αije

−2π2f2σ2
ij .

The matrices W(x) and W̃(f) can be written

W(x) =

⎡
⎢⎢⎣

α11√
2πσ2

11

e
− x2

2σ2
11 − α12√

2πσ2
12

e
− x2

2σ2
12

α21√
2πσ2

21

e
− x2

2σ2
21 − α22√

2πσ2
22

e
− x2

2σ2
22

⎤
⎥⎥⎦ ,

W̃(f) =

[
α11e

−2π2f2σ2
11 −α12e

−2π2f2σ2
12

α21e
−2π2f2σ2

21 −α22e
−2π2f2σ2

22

]
.

Therefore, we have, with the notation of Theorem 4.9,

W̃∗(f)W̃(f)
def
= X(f) =

[
A C
C B

]
.

It can be easily verified that

A = τ1

(
α2

11τ1e
−4π2σ2

11f
2

+ α2
21τ2e

−4π2σ2
21f

2
)
,

B = τ2

(
α2

22τ2e
−4π2σ2

22f
2

+ α2
12τ1e

−4π2σ2
12f

2
)
,

and

C = −√
τ1τ2

(
α21α22τ2e

−2π2(σ2
21+σ2

22)f
2

+ α12α11τ1e
−2π2(σ2

12+σ2
11)f

2
)
.

By construction the eigenvalues of the matrix X are positive (it is Hermitian), the
largest one, λmax, being given by

λmax =
1

2

(
A + B +

√
(A−B)2 + 4C2

)
.

Introducing the parameters A1 = (τ1α11)
2, A2 = (τ2α22)

2, r = τ1/τ2, x1 = α21/α11,
and x2 = α12/α22, we can rewrite A, B, and C as

A = A1

(
e−4π2σ2

11f
2

+
x2

1

r
e−4π2σ2

21f
2

)
, B = A2

(
e−4π2σ2

22f
2

+ rx2
2e

−4π2σ2
12f

2
)
,

and

C = −
√
A1A2

(
x1√
r
e−2π2(σ2

21+σ2
22)f

2

+ x2

√
re−2π2(σ2

12+σ2
11)f

2

)
.

The necessary and sufficient condition that the two eigenvalues are less than 1 for all
f is therefore λmax < 1 or

(7.1) c(f)
def
= 2 −A−B −

√
(A−B)2 + 4C2 > 0 ∀f.
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Fig. 2. The two coordinates of the input Iext(t) are realizations of independent standard Brown-
ian/Wiener processes. Time runs along the horizontal axis.
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Fig. 3. An illustration of the fact that when the connectivity matrix is translation invariant there
does not exist in general a homogeneous solution: The state vectors of different neural masses follow
different trajectories even when the input and the initial condition are homogeneous (independent
of the location x). Top graph: The time variation of the first coordinate of the solution at points of
coordinates 0.1 (continuous line) and 1 (dotted line) of the interval [0, 1]. Bottom graph: Same for
the second coordinate. The initial condition is 0 in both cases.
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Fig. 4. The function c(f) defined in (7.1) is positive for all spatial frequencies f : The system
is absolutely stable.

The function c(f) depends on the spatial frequency f and the nine parameters A1,
A2, x1, x2, r, and σ, the 2 × 2 matrix σij , i, j = 1, 2.

We have solved (2.6) on Ω = [0, 1]. We have sampled the interval with 100
points corresponding to 100 neural masses. The input Iext is equal to [W1(t),W2(t)]

T ,
where the Wi(t)’s, i = 1, 2, are realizations of independent standard Brownian/Wiener
processes shown in Figure 2. We know that the solution is not homogeneous because
W is translation-invariant. This is illustrated in Figure 3. The initial conditions are
homogeneous and equal to (0, 0) for all neural mass state vectors V.

7.1.1. Absolute stability of the solution. Let us now study the absolute
stability of the solutions. According to Theorem 4.9 and the previous analysis, a
sufficient condition for absolute stability is that c(f) > 0 for all frequencies f . As
shown in Figure 4, the following choice of the parameters α and σ produces a curve
c(f) that is positive for all frequencies:

α =

[
2 1.414

1.414 2

]
, σ =

[
1 0.1

0.1 1

]
.

We can check that this is indeed the case in Figure 5, which shows the absolute
stability of the solution at the point of coordinate 0.5 of the interval [0, 1].

7.1.2. Loss of absolute stability. The following choice of the parameters α
and σ produces a curve c(f) that is not positive for all frequencies (see Figure 6):

α =

[
565.7 565.7
565.7 565.7

]
, σ =

[
0.01 0.01
0.1 0.1

]
.

Therefore, absolute stability is not guaranteed. We show in Figure 7 that this is
indeed the case.

7.2. Homogeneous solutions. In the previous case the translation invariance
of the connectivity matrix forbids the existence of homogeneous solutions. We can
obtain a connectivity matrix satisfying condition (3.5) by defining

Wij(x, x
′) = ±ααij

Gij(x− x′)∫ 1

0
Gij(x− y) dy

, i, j = 1, 2,
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Fig. 5. An illustration of the absolute stability of the solution: Independently of the choice of the
initial condition, the trajectories of the state vector converge to a single trajectory. Results are shown
for the neural mass of spatial coordinate 0.5. Top: The first coordinate of the state vector. Bottom:
The second coordinate. Initial condition (0, 0), continuous curves. Initial condition (1,−1), dotted
line.
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Fig. 6. The function c(f) defined in (7.1) is not positive for all spatial frequencies f : The
system may lose its absolute stability.
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Fig. 7. An illustration of the lack of absolute stability of the solution: Different initial conditions
result in different trajectories of the state vectors. Results are shown for the neural mass of spatial
coordinate 0.5. Top: the first coordinate of the state vector. Bottom: the second coordinate. Initial
condition (0, 0), continuous curves. Initial condition (1,−1), dotted curves.

where α and the αij ’s are connectivity weights. These functions are well defined
since the denominator is never equal to 0 and the resulting connectivity matrix is in
L2

2×2([0, 1] × [0, 1]). It is shown in Figure 8. The values of the parameters are given
in (7.2). Proposition 6.3 guarantees the existence and uniqueness of a homogeneous
solution for an initial condition in L2

2(Ω). According to Theorem 5.2 and our choice
for the values of τmax and DSm, a sufficient condition for this solution to be absolutely
stable is that ‖g∗‖G⊥

c
< 1.

7.2.1. Absolute stability. The values of the parameters

(7.2) α =

[
5.20 5.20
2.09 2.09

]
, σ =

[
0.1 0.1
1 1

]
, τ1 = τ2 = 1, α = 1/20

yield ‖g∗‖G⊥
c

� 0.01; hence the homogeneous solutions are absolutely stable. All
operator norms have been computed using the method described in section A.3.

The initial conditions are drawn randomly and independently from the uniform
distribution on [−2, 2]. The input Iext(t) is equal to [W1(t),W2(t)]

T , where the Wi(t)’s,
i = 1, 2, are realizations of independent standard Brownian/Wiener processes shown
in Figure 2.
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Fig. 8. The four elements of the matrix W(x, y) in the homogeneous case. Upper left:
W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right: −W22(x, y).

We show in Figure 9 the complete synchronization of four (numbers 10, 36, 63,
and 90) of the hundred neural masses that results from the absolute stability of the
homogeneous solution.

7.2.2. Loss of absolute stability. If we increase the value of α, it has the
effect of increasing ‖g∗‖G⊥

c
. The sufficient condition will eventually not be satisfied,

and we may lose the absolute stability of the homogeneous solution and hence the
complete synchronization of the solution. Such a case is shown in Figure 10 for α = 15,
corresponding to an operator norm ‖g∗‖G⊥

c
� 2.62.

7.3. Locally homogeneous solutions. We partition Ω = [0, 1] into Ω1 =
[0, 1/2[ and Ω2 = [1/2, 1]; hence with the notation of section 6.2, P = 2. We can
obtain a connectivity matrix satisfying condition (6.2) by defining

Wij(x, x
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

±ααij(x, x
′)

Gij(x− x′)∫ 1/2

0

Gij(x− y) dy

, x′ ∈ Ω1,

±ααij(x, x
′)

Gij(x− x′)∫ 1

1/2

Gij(x− y) dy

, x′ ∈ Ω2,

with αij(x, x
′) = αkl

ij , x ∈ Ωk, x
′ ∈ Ωl, k, l = 1, 2.

The resulting connectivity matrix is in L2
2×2([0, 1]×[0, 1]). It is shown in Figure 11.

The input Iext(t) is equal to [W1(t),W2(t)]
T in Ω1 and to [W3(t),W4(t)]

T in Ω2, where
the Wi(t)’s, i = 1, . . . , 4, are realizations of independent standard Brownian/Wiener
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Fig. 9. The absolute stability of the homogeneous solution results in the complete synchroniza-
tion of the neural masses. This is shown for four out of the hundred (coordinates 0.1, 0.36, 0.63,
and 0.9). The input is shown in Figure 2. The initial conditions are drawn independently from the
uniform distribution on [−2, 2]. Top: The first components of the four state vectors. Bottom: The
second components.

processes shown in Figure 12. Hence it is homogeneous in Ω1 (resp., in Ω2) but not
in Ω = Ω2 ∪ Ω2. According to Proposition 6.3, there exists a unique solution to (2.6)
for a given initial condition in L2

2(Ω). This solution is locally homogeneous if the
initial condition is locally homogeneous (Theorem 6.5), given the fact that the input
is locally homogeneous.

7.3.1. Absolute stability. The parameters

α11 =

[
5.21 0.23
0.23 5.21

]
, α12 =

[
4.98 0.34
0.34 4.98

]
,

α21 =

[
4.75 0.45
0.45 4.75

]
, α22 =

[
5.39 0.13
0.13 5.39

]
,

σ =

[
0.05 0.075
0.1 0.03

]

result in an operator norm ‖g∗‖G2 ⊥
c

� 0.23. Therefore, according to Theorem 6.7, the
locally homogeneous solutions are absolutely stable, resulting in the complete local
synchronization of the neural masses (within Ω1 and Ω2).

We show in Figure 13 (resp., Figure 14) the complete synchronization of two
neural masses (numbers 10 and 36) in Ω1 (resp., two neural masses (numbers 63
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Fig. 10. The loss of the absolute stability of the homogeneous solution results in the loss of
the complete synchronization of neural masses when the sufficient condition of Theorem 5.2 is not
satisfied. This is shown for four out of the hundred (coordinates 0.1, 0.36, 0.63, and 0.9). The
input is the same as in the previous example. Top: The first components of the four state vectors.
Middle: The second components of the four state vectors for 0 ≤ t ≤ 60s. Bottom: Zoom on the
second components of the four state vectors for 10 ≤ t ≤ 60s.

and 90) in Ω2). The initial conditions are drawn randomly and independently from
the uniform distribution on [−10, 10] and [−2, 2] for Ω1 and on [−20, 20] and [−2, 2]



STABILITY AND SYNCHRONIZATION IN NEURAL FIELDS 239

0

0.2

0.4

0.6

0.8

1

x
0

0.2
0.4

0.6
0.8

1y

0

20

40

60

80

W11

0

0.2

0.4

0.6

0.8

1

x

0
0.2

0.4
0.6

0.8
1y

0

10

20

30

40

50

-W12

0

0.2

0.4

0.6

0.8

1

x0
0.2

0.4
0.6

0.8
1y

0

5

10

15

20

25

30

35

W21

0

0.2

0.4

0.6

0.8

1

x

0
0.2

0.4
0.6

0.8
1

y

0

20

40

60

80

100

120

140

-W22

Fig. 11. The four elements of the matrix W(x, y) in the locally homogeneous case. Upper left:
W11(x, y). Upper right: −W12(x, y). Lower left: W21(x, y). Lower right: −W22(x, y).
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Fig. 12. The two coordinates of the input Iext(t) in Ω1 and Ω2 are realizations of four inde-
pendent Wiener processes (W1 and W2 are identical to those shown in Figure 2).

for Ω2.

7.3.2. Loss of absolute stability. If we increase the value of α, it has the effect
of increasing ‖g∗‖G2,⊥

c
. The sufficient condition for absolute stability will eventually

not be satisfied, and we may lose the absolute stability of the locally homogeneous
solution and hence the complete local synchronization of the solution. This is shown
in Figures 15 and 16 for α = 10, corresponding to an operator norm ‖gL ∗

m ‖G2 ⊥
c

� 2.3.
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Fig. 13. The complete synchronization of two neural masses in Ω1 of coordinates 0.1 and 0.36.
The input is shown in Figure 12. Top: The first components of the two state vectors. Bottom: The
second components of the two state vectors.

7.4. Pseudo–locally homogeneous solutions and their absolute stability.
As mentioned at the end of section 6.2.2, even if the connectivity function does not
satisfy condition (6.2) and the operator g∗ satisfies only the condition of Theorem 4.7
but not that of Theorem 6.7, the existence of locally homogeneous solutions is not
guaranteed, but the absolute stability of the solution is, because of Proposition 6.8.
As shown in Figures 17 and 18, these solutions can be very close to being locally
homogeneous and thus enjoy the property of complete local synchronization. This
is potentially very interesting from the application viewpoint since one may say that
if the system admits homogeneous solutions and if they are absolutely stable, it can
have locally homogeneous solutions without “knowing” the partition, and they are
absolutely stable.

8. Conclusion. We have studied the existence, uniqueness, and absolute sta-
bility of a solution of two examples of nonlinear integro-differential equations that
describe the spatio-temporal activity of sets of neural masses. These equations in-
volve space- and time-varying, possibly nonsymmetric, intracortical connectivity ker-
nels. The time dependency of the connectivity kernels opens the door to the study, in
this framework, of plasticity and learning. Contributions from white matter afferents
are represented by external inputs. Sigmoidal nonlinearities arise from the relation
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Fig. 14. The complete synchronization of two neural masses in Ω2 of coordinates 0.63 and 0.9.
The input is shown in Figure 12. Top: The first components of the two state vectors. Bottom: The
second components of the two state vectors.

between average membrane potentials and instantaneous firing rates.

The intracortical connectivity functions have been shown to naturally define com-
pact operators of the functional space of interest. Using methods of functional analy-
sis, we have given sufficient conditions for the existence and uniqueness of a solution
of these equations for general, homogeneous (i.e., independent of the spatial variable),
and locally homogeneous inputs. In all cases we have provided sufficient conditions
for the solutions to be absolutely stable, that is to say, independent of the initial
state of the neural field. These conditions involve the connectivity functions and the
maximum slopes of the sigmoids as well as the time constants used to described the
time variation of the postsynaptic potentials. They are very relevant to neuroscience,
where dynamical neuronal systems that “recognize” a given input regardless of their
initial state are quite common.

To our knowledge this is the first time that such a complete analysis of the problem
of the existence and uniqueness of a solution of these equations has been obtained. An
important contribution also is the analysis of the absolute stability of these solutions
which had been considered as much more difficult to perform than the linear stability
analysis which it implies.

The reason we have been able to complete this work is our use of the functional
analysis framework and the theory of compact operators in a Hilbert space with the
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Fig. 15. The loss of the absolute stability of the locally homogeneous solution results in the loss
of the complete local synchronization of neural masses when the sufficient condition of Theorem 6.7
is not satisfied. This is shown for two out of the fifty (coordinates 0.1, 0.36) neural masses in Ω1.
The input is the same as in the previous example. Top: The first components of the two state
vectors. Bottom: The second components of the two state vectors.

effect of providing simple mathematical answers to some of the questions raised by
modelers in neuroscience.

Future work includes adding delays to account for the distance traveled by the
spikes down the axons and taking into account specific forms of the time variation of
the connectivity matrices in the context of neural plasticity.

Appendix A. Notation and background material.

A.1. Matrix norms and spaces of functions. We denote Mn×n as the set
of n× n real matrices. We consider the matrix norm

‖M‖∞ = max
i

∑
j

|Mij |.

We denote Cn×n(Ω) as the set of continuous functions from Ω to Mn×n with the
infinity norm. This is a Banach space for the norm induced by the infinity norm on
Mn×n. Let M be an element of Cn×n(Ω); we denote and define ‖M‖n×n,∞ as

‖M‖n×n,∞ = sup
r∈Ω

max
i

∑
j

|Mij(r)| = max
i

sup
r∈Ω

∑
j

|Mij(r)|.
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Fig. 16. The loss of the absolute stability of the locally homogeneous solution results in the loss
of the complete local synchronization of neural masses when the sufficient condition of Theorem 6.7
is not satisfied. This is shown for two out of the fifty (coordinates 0.63, 0.9) neural masses in Ω2.
The input is the same as in the previous example. Top: The first components of the two state
vectors. Bottom: The second components of the two state vectors.

We also denote Cn(Ω) as the set of continuous functions from Ω to R
n with the

infinity norm. This is also a Banach space for the norm induced by the infinity norm
of R

n. Let x be an element of Cn(Ω); we denote and define ‖x‖n,∞ as

‖x‖n,∞ = sup
r∈Ω

‖x(r)‖∞ = sup
r∈Ω

max
i

|xi(r)| = max
i

sup
r∈Ω

|xi(r)|.

We can similarly define the norm ‖.‖n×n,∞ (resp., ‖.‖n,∞) for the space Cn×n(Ω×Ω)
(resp., Cn(Ω × Ω)).

We have the following lemma.
Lemma A.1. Given x ∈ Cn(Ω) and M ∈ Cn×n(Ω), we have

‖Mx‖n,∞ ≤ ‖M‖n×n,∞ ‖x‖n,∞.

More precisely, we have for all r ∈ Ω

‖M(r)x(r)‖∞ ≤ ‖M(r)‖∞‖x(r)‖∞.

The same results hold for Ω × Ω instead of Ω.
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Fig. 17. The connectivity function satisfies condition (3.5) but not condition (6.2), and the
operator g∗ satisfies the condition of Theorem 5.2 but not that of Theorem 6.7. The input is locally
homogeneous, as in Figures 13 and 14. The solution is absolutely stable, because of Theorem 5.2,
and almost locally homogeneous. Something very close to complete local synchronization is observed.
This is shown for two out of the fifty (coordinates 0.1, 0.2) neural masses in Ω1. Top: The first
components of the two state vectors. Bottom: The second components of the two state vectors.

Proof. Letting y = Mx, we have

yi(r) =
∑
j

Mij(r)xj(r),

and therefore

|yi(r)| ≤
∑
j

|Mij(r)| |xj(r)| ≤
∑
j

|Mij(r)| ‖x(r)‖∞,

so, taking the maxi,

‖y(r)‖∞ ≤ ‖M(r)‖∞ ‖x(r)‖∞,

from which the first statement easily comes.
We also consider the Frobenius norm on Mn×n

‖M‖F =

√√√√ n∑
i,j=1

M2
ij
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Fig. 18. Same as in Figure 17. The complete local synchronization is shown for two out of the
fifty (coordinates 0.5, 0.6) neural masses in Ω2.

and consider the space L2
n×n(Ω × Ω) of the functions from Ω × Ω to Mn×n, whose

Frobenius norm is in L2(Ω × Ω). If W ∈ L2
n×n(Ω × Ω), we denote ‖W‖2

F =∫
Ω×Ω

‖W(r, r′)‖2
F dr dr′. Note that this implies that each element wij , i, j = 1, . . . , n

is in L2(Ω × Ω). We denote L2
n(Ω) as the set of square-integrable mappings from Ω

to R
n and ‖x‖n,2 = (

∑
j ‖xj‖2

2)
1/2 as the corresponding norm. We have the following

lemma.

Lemma A.2. Given x ∈ L2
n(Ω) and W ∈ L2

n×n(Ω × Ω), we define y(r) =∫
Ω

W(r, r′)x(r′) dr′. This integral is well defined for almost all r, y is in L2
n(Ω), and

we have

‖y‖n,2 ≤ ‖W‖F ‖x‖n,2.

Proof. Since each wij is in L2(Ω×Ω), wij(r, .) is in L2(Ω) for almost all r, thanks
to Fubini’s theorem. So wij(r, .)xj(.) is integrable for almost all r from our deduction
that y is well defined for almost all r. Next, we have

|yi(r)| ≤
∑
j

∣∣∣∣
∫

Ω

wij(r, r
′)xj(r

′) dr′
∣∣∣∣
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and (Cauchy–Schwarz)

|yi(r)| ≤
∑
j

(∫
Ω

w2
ij(r, r

′) dr′
)1/2

‖xj‖2,

from which it follows that (Cauchy–Schwarz again, discrete version)

|yi(r)| ≤

⎛
⎝∑

j

‖xj‖2
2

⎞
⎠

1/2 ⎛
⎝∑

j

∫
Ω

w2
ij(r, r

′) dr′

⎞
⎠

1/2

= ‖x‖n,2

⎛
⎝∑

j

∫
Ω

w2
ij(r, r

′) dr′

⎞
⎠

1/2

,

from which it follows that y is in L2
n(Ω) (thanks again to Fubini’s theorem) and

‖y‖2
n,2 ≤ ‖x‖2

n,2

∑
i,j

∫
Ω×Ω

w2
ij(r, r

′) dr′ dr = ‖x‖2
n,2 ‖W‖2

F .

A.2. Banach space-valued functions. A useful viewpoint that is used in this
article is to consider the state vector of the neural field as a mapping from a closed
time interval J containing the origin 0 into one of the spaces discussed in the previous
section. We denote C(J;Cn(Ω)) as the set of continuous mappings from J to the
Banach space Cn(Ω) and C(J;L2

n(Ω)) as the set of continuous mappings from J to
the Hilbert (hence Banach) space L2

n(Ω); see, e.g., [11].

A.3. Computation of operator norms. We give a method to compute the
norms ‖g‖G and ‖g∗‖G⊥

c
for an operator g of the form

g(x)(r) =

∫
Ω

W(r, r′)x(r′) dr′.

Since G (resp., G⊥
c ) is dense in the Hilbert space L2(Ω) (resp., L2

0(Ω), the subspace
of L2(Ω) of functions with zero mean), we have ‖g‖G = ‖g‖L2 and ‖g∗‖G⊥

c
= ‖g∗‖L2

0
.

We consider the compact self-adjoint operators

G = g∗g : L2 → L2

and

G⊥
c = g∗Pg : L2

0 → L2
0,

where P is the orthogonal projection on L2
0. We compute the norms of the two

self-adjoint positive operators G and G⊥
c and use the relations

‖G‖L2 = ‖g‖2
L2

and

‖G⊥
c ‖L2

0
= ‖g∗P∗Pg‖L2

0
= ‖g∗P∗‖2

L2
0

= ‖g∗‖2
L2

0
.



STABILITY AND SYNCHRONIZATION IN NEURAL FIELDS 247

Let T be a compact self-adjoint positive operator on a Hilbert space H. Its largest
eigenvalue is λ = ‖T‖H. Let x ∈ H. If x /∈ Ker(λId − T )⊥, then, according to, e.g.,
[9],

lim
n→∞

‖Tnx‖H/‖Tn−1x‖H = λ.

This method can be applied to gm and hm and generalized to the computation of the
‖.‖GP ⊥

c
norm.

Appendix B. Global existence of solutions. In this appendix, we complete
the proof of Proposition 3.4 by computing the constant τ > 0 such that for any
initial condition (t0,V0) ∈ R×F , the existence and uniqueness of the solution V are
guaranteed on the closed interval [t0 − τ, t0 + τ ].

We refer the reader to [2] and exploit the following theorem.
Theorem B.1. Let F be a Banach space and c > 0. We consider the initial

value problem {
V′(t) = f(t,V(t)),
V(t0) = V0

for |t − t0| < c, where V0 is an element of F and f : [t0 − c, t0 + c] × F → F is
continuous. Let b > 0. We define the set Qb,c ≡ {(t,X) ∈ R × F , |t − t0| ≤ c and
‖X − V0‖ ≤ b}. Assume the function f : Qb,c → F is continuous and uniformly
Lipschitz continuous with respect to its second argument, i.e.,

‖f(t,X) − f(t,Y)‖ ≤ Kb,c‖X − Y‖,

where Kb,c is a constant independent of t.
Let Mb,c = supQb,c

‖f(t,X)‖ and τb,c = min{b/Mb,c, c}.
Then the initial value problem has a unique continuously differentiable solution

V(.) defined on the interval [t0 − τb,c, t0 + τb,c].
In our case, f = fv and all the hypotheses of the theorem hold, thanks to Propo-

sition 3.2 and the hypotheses of Proposition 3.4, with

Kb,c = ‖L‖∞ + |Ω|DSm sup
|t−t0|≤c

‖W(·, ·, t)‖n×n,∞,

where the sup is well defined (continuous function on a compact domain).
We have

Mb,c ≤ ‖L‖∞ (‖V0‖n,∞ + b) + |Ω|Sm W + I,

where W = sup|t−t0|≤c ‖W(·, ·, t)‖n×n,∞ and I = sup|t−t0|≤c ‖Iext(·, t)‖n,∞.
So

b/Mb,c ≥
1

‖L‖∞ +
‖L‖∞ ‖V0‖n,∞+|Ω|Sm W+I

b

.

Hence, for c ≥ 1
2‖L‖∞

and b big enough, we have τb,c ≥ 1
2‖L‖∞

, and we can set

τ = 1
2‖L‖∞

.

A similar proof applies to the case f = fa and that of Proposition 6.3.
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Appendix C. More on M and λmax. Expressing the exponential as a power
series in the definition of M and computing the powers of the block matrix L, we
easily find a block expression of M depending on L:

M =

(
L/4 + 5L−1/4 L−2/2

L−2/2 L−1/4 + L−3/4

)
.

M is diagonalizable, as a symmetric positive definite matrix, and has at most 2n
distinct eigenvalues. More precisely, these eigenvalues are the roots of the second-
order polynomials

λ2 −
(

1

4 τi
+

3 τi
2

+
τ3
i

4

)
λ +

1

16
+

3 τ2
i

8
+

τ4
i

16
, 1 ≤ i ≤ n.

The largest eigenvalue of each of these polynomials is

λ(τi) =
1

8 τi

(
1 + 6 τ2

i + τ4
i +

√
1 + 8 τ2

i + 14 τ4
i + 8 τ6

i + τ8
i

)
,

so that λmax is simply maxi λ(τi). Note that since the function λ(τ) is not monotonous,
λmax is not necessarily equal to λ(τmax).

Appendix D. Summary of important notation. Table D.1 summarizes some
notation which is introduced in the article and is used in several places.

Table D.1

Summary of some important definitions.

Matrix Definition Where defined Operators
functions (if applicable) (if applicable)

L diagonal matrix (2.4)
of the inverse synaptic

time constants
τmax largest time constant Definition 2.2
DSm Definition 2.1
W (3.2), fv , fa, gv

(3.3), (3.4)
Wcm WDSm Definition 4.1 gm
Wmc DSmW Definition 4.1 hm
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TURING PATTERN FORMATION IN THE BRUSSELATOR MODEL
WITH SUPERDIFFUSION∗

A. A. GOLOVIN† , B. J. MATKOWSKY† , AND V. A. VOLPERT‡

Abstract. The effect of superdiffusion on pattern formation and pattern selection in the Brus-
selator model is studied. Our linear stability analysis shows, in particular, that, unlike the case of
normal diffusion, the Turing instability can occur even when diffusion of the inhibitor is slower than
that of the initiator. A weakly nonlinear analysis yields a system of amplitude equations, analysis
of which predicts parameter regimes where hexagons, stripes, and their coexistence are expected.
Numerical computations of the original Brusselator model near the stability boundaries confirm
the results of the analysis. In addition, further from the stability boundaries, we find a regime of
self-replicating spots.

Key words. pattern formation, Brusselator, anomalous diffusion, superdiffusion, Turing insta-
bility

AMS subject classifications. 35K57, 35Q99, 37G99

DOI. 10.1137/070703454

1. Introduction. Reaction-diffusion systems are ubiquitous in many branches
of science and engineering and have attracted the attention of scientists, engineers,
and mathematicians for decades; see, e.g., [4,9]. Since the groundbreaking discoveries
of Turing [49], who showed that diffusion in a mixture of chemically reacting species
could cause instability of a spatially uniform state leading to the formation of spatial
patterns, and Belousov and Zhabotinskii [61, 62], who discovered oscillating chemi-
cal reactions, reaction-diffusion systems have become paradigms for spatio-temporal
pattern formation in systems far from thermodynamic equilibrium [11,31,54], includ-
ing living organisms [33]. Experimental observations of such fascinating structures
as spiral waves [58], spatially regular, stationary patterns with different symmetries
(hexagonal, striped, etc.) [21, 22, 39], as well as the theoretical description of chem-
ical turbulence [19], have made reaction-diffusion systems the subject of numerous
ongoing investigations.

A characteristic feature of most of the reaction-diffusion systems that have been
studied to date is that diffusion is normal, i.e., at the molecular level it is the result
of independent random jumps, e.g., nearest neighbor jumps, at regularly spaced time
increments. In fact, the molecules can wait between successive jumps and can also
execute not just nearest neighbor jumps, but rather long jumps. However, both
the waiting time distribution and jump size distribution must have finite moments.
In some cases, however, these conditions are not met, in that the molecules may
undergo anomalous diffusion [3, 13, 16, 29, 30, 45]. Unlike normal diffusion, which is
characterized by the dependence of the mean square displacement of a randomly
walking particle on time 〈(Δr)2〉 ∼ t, anomalous diffusion is characterized by the
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more general dependence

(1) 〈(Δr)2〉 = 2dKγt
γ ,

where d is the (embedding) spatial dimension, Kγ is a generalized diffusion constant,
and the exponent γ is not necessarily an integer. For γ = 1, anomalous diffusion
reduces to normal diffusion, with K1 = D being the ordinary diffusion coefficient. For
γ < 1 (γ > 1), the diffusion process is slower (faster) than normal diffusion and is
called “subdiffusive” (resp., “superdiffusive”). Both types of anomalous diffusion pro-
cesses have been recognized as playing important roles in various physical, chemical,
biological, and geological processes. For example, subdiffusion, which corresponds to
molecules waiting for long times before jumping, i.e., with a waiting time distribution
having infinite moments, often occurs in gels (especially bio-gels [53,55]), porous me-
dia [8], and polymers [1]. An important limiting case of superdiffusion corresponds
to Lévy flights [30], which occur in systems in which there are long jumps of par-
ticles, i.e., with a jump size distribution having infinite moments. It is typical of
some processes in plasmas and turbulent flows [6, 12, 47], surface diffusion [25, 42],
diffusion in porous media with flow [8], surfactant diffusion along polymer chains [2],
cosmic ray propagation [57], charge carrier transfer in semiconductors [43], motion of
animals [44, 48, 52], as well as in geophysical and geological processes, including the
dispersion of nuclear waste in soil [37] (see also [3, 13, 16, 29, 30, 45] for reviews and
numerous other examples).

An important property of Lévy flights is that in the continuum limit, in one dimen-
sion, they are described by means of a partial differential equation with a fractional
derivative, which is, in fact, defined as a nonlocal, integrodifferential equation,

(2) ut = Kμ ∂μ

∂|x|μu,

where (for 1 < μ < 2)

(3a)
dμu

d|x|μ = − 1

2 cos(πμ/2)
(Dμ

+u + Dμ
−u),

(3b) Dμ
+u =

1

Γ(2 − μ)

d2

dx2

∫ x

−∞

u(ξ, t) dξ

(x− ξ)μ−1
,

(3c) Dμ
−u =

1

Γ(2 − μ)

d2

dx2

∫ ∞

x

u(ξ, t) dξ

(ξ − x)μ−1
,

or in a form defined by its action in Fourier space, F [∂μu/∂|x|μ](k) = −|k|μF [u](k).
For μ = 1, (3) reduces to the derivative of the Hilbert transform of u. In higher
dimensions, the Laplacian is replaced by the operator ∇β ≡ −(−∇2)β/2(1 < β < 2),
defined by its action in Fourier space, F [∇βu](k) = −|k|βF [u](k). The derivation of
this macroscopic description from an appropriate continuous time random walk model
at the microscopic (i.e., molecular) level can be found in [29].

Although many aspects of anomalous diffusion have been extensively studied
(see [30] for the most recent review), nonlinear dynamic and pattern formation as-
pects were the subject of only a very limited number of works. The propagation of
reaction-diffusion fronts governed by anomalous diffusion and nonlinear kinetics (sim-
ilar to the Kolmogorov–Petrovsky–Piskunov problem [18]) was investigated both for
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the subdiffusive case [27, 59] and the superdiffusive case [7, 26]. It was shown that
superdiffusion leads to a significant increase of the front speed. It was also shown
that the effects of fluctuations could be important [5].

Several papers study pattern formation in reaction-diffusion systems with anoma-
lous diffusion [10, 14, 15, 20, 56]. The formation of Turing patterns in the subdiffusive
case was studied in [56], where it was shown that subdiffusion suppresses pattern
formation. In [23] it was also shown that, in one-dimensional systems, anomalous dif-
fusion leads to anomalous heat conduction that may be very important for reaction-
diffusion dynamics coupled to heat release, as in combustion. In [14,15], linear stability
analysis that predicts Turing instabilities is performed, and the results are supported
by numerical simulations. The nonlinear dynamics of oscillating reaction-diffusion
patterns that can lead to the formation of spiral waves and chemical turbulence in
systems with Levy flights has been recently studied in [34]. At the same time, im-
portant aspects of nonlinear dynamics and pattern formation in reaction-diffusion
systems, such as pattern selection in the presence of anomalous diffusion, have not
been studied.

It is well known that the diffusivities in systems of reaction-diffusion equations
with normal diffusion play a decisive role in the development of instabilities leading
to spatio-temporal pattern formation. For example, this is the case if the diffusivities
differ significantly from one another. How much more so is this expected to be the
case when one or more of the diffusivities is anomalous, where the diffusivities differ
not only quantitatively, but qualitatively as well. In experiments, an efficient way to
control the nature of diffusion and the dynamical regimes of chemical reactions in a
liquid phase, including those generated by instabilities, is by stirring [17,24,28,35,36,
38, 41, 51, 63]. In catalytic systems with surface chemical reactions, the anomaly of
the reactant surface diffusion can be controlled, for example, by turbulent flow in the
adjacent gas phase.

The Brusselator is a well-known paradigm for the study of nonlinear reaction-
diffusion systems. In this paper we study Turing pattern formation in the Brusselator
model with superdiffusion, namely, Lévy flights. We focus on pattern selection in the
formation of hexagons and stripes and compare the cases of normal and superdiffusion.
In section 2 we formulate the mathematical model that we consider. It exhibits a
solution corresponding to a homogeneous, stationary state. In section 3 we consider
the linear stability of this state, while in section 4 we present a weakly nonlinear
analysis to derive a set of coupled amplitude equations. These equations are analyzed
in section 5, where we describe hexagonal and striped patterns and their stability. In
section 6 we present the results of numerical computations of the original model. In
addition to verifying the results of our analysis by computing hexagonal and striped
patterns near the neutral stability boundaries, we also present new patterns, not
described by our analysis, corresponding to the regions where hexagons and stripes are
unstable. Specifically, we compute solutions corresponding to self-replicating spots.
Finally, in section 7 we present conclusions of our analysis.

2. Mathematical model. The mathematical model that we consider is the
standard Brusselator model (see, e.g., [50] and the references therein),

(4a)
∂X

∂τ
= DX∇αX + A− (B + 1)X + X2Y,

(4b)
∂Y

∂τ
= DY ∇βY + BX −X2Y,
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with the only exception that the Laplacians with respect to the spatial variables
are replaced by ∇α and ∇β , the operators that represent superdiffusion as discussed
earlier. The system is considered in the entire plane −∞ < ξ, ζ < ∞, and we are
interested in bounded solutions. We do not impose initial conditions in the analysis,
as we are interested in stable steady solutions of the problem rather than in transient
behaviors. We remark that the reaction terms in the equations are taken to be
“normal,” i.e., the same as in the normal diffusion Brusselator model. This does
not have to be the case—anomalous diffusion may affect the form of the reaction
terms [20,46,59,60].

The critical point of the system (4), corresponding to a homogeneous stationary
solution, is

X = A, Y =
B

A
.

It is convenient to rewrite the system of equations in terms of the deviation of the
solution from the critical point by introducing

U = X −A, V = Y − B

A
,

which yields

(5a)
∂U

∂τ
= DX∇αU + (B − 1)U + A2V +

B

A
U2 + 2AUV + U2V,

(5b)
∂V

∂τ
= DY ∇βV −BU −A2V − B

A
U2 − 2AUV − U2V.

Finally, we rescale (5), using

U = u∗u, V = v∗v, τ = t∗t, ξ = 	∗x, ζ = 	∗y

with

u∗ =
√
DY /(DX)β/α, v∗ = 1/u∗, 	∗ = D

1/α
X , t∗ = 1

to obtain

(6a)
∂u

∂t
= ∇αu + (B − 1)u + Q2v +

B

Q
u2 + 2Quv + u2v,

(6b) η2 ∂v

∂t
= ∇βv −Bu−Q2v − B

Q
u2 − 2Quv − u2v,

where

(7) η =
√

(DX)β/α/DY , Q = Aη.

The critical point is now given by u = v = 0.
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3. Linear stability analysis. To study the linear stability of the solution u =
v = 0, we substitute the normal mode solution(

u
v

)
=

(
a
b

)
eσt+ikxx+ikyy,

where σ is the growth rate of the perturbation and (kx, ky) is its wave vector, into (6)
to obtain the dispersion relation

(8) η2σ2 + M1σ + M2 = 0,

M1 = Q2 + kβ − η2(B − 1 − kα), M2 = BQ2 − (B − 1 − kα)(Q2 + kβ),

where k is the wavenumber of the perturbation, k = (k2
x + k2

y)
1/2. The problem

exhibits both Turing and oscillatory instabilities. We are particularly interested in
the Turing stability boundary, which corresponds to σ = 0. The neutral stability
curve, which can be written in the form

B =
1

kβ
(1 + kα)(Q2 + kβ),

has a single minimum (kcr, Bcr) which depends on the value of Q. It can be found
parametrically as

(9) Bcr =
(1 + x)2

1 + (1 − s)x
, Q2 =

sx1+1/s

1 + (1 − s)x
, kcr = x1/α,

where s = α/β. The quantity s varies between 1/2 and 2 since both α and β are
between 1 and 2. The range of variation of the parameter x depends on s:

0 < x < ∞ if
1

2
< s ≤ 1, 0 < x <

1

s− 1
if 1 < s < 2,

so that Bcr and Q2 are positive in (9). Figure 1 demonstrates stability regions in the
(Q2, B) plane for selected values of the parameter s that are parametrically given by
(9). Instability regions are located above the respective curves. We see that, except
for very small Q, the general trend is that increasing s broadens the stability regions.
In the weakly nonlinear analysis of the next section we will need the eigenvector (a, b)
for σ = 0, k = kcr, and B = Bcr. It is given by(

a
b

)
=

(
x1/s

−(1 + x)

)
.

The trivial steady state is unstable for B > Bcr. Whether it is stable for B < Bcr

depends on the location of the oscillatory instability boundary. This boundary is
obtained by setting the coefficient M1 in the dispersion relation (8) equal to zero
under the condition that the coefficient M2 is positive. Thus, oscillatory instability
occurs at

B = 1 +
Q2

η2
if 1 +

Q2

η2
< Bcr.
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Fig. 1. Stability boundaries in the (Q2, B) plane. The instability region lies above the curve.
Curve (1) Turing stability boundary for s = 2; curve (2) Turing stability boundary for s = 1; curve
(3) oscillatory stability boundary, η = 0.877; curve (4) Turing stability boundary for s = 0.5.

In order for Turing instability to occur prior to oscillatory instability as B increases,
we need Bcr < 1 + Q2/η2, which can be interpreted as a condition on η,

(10) η2 <
Q2

Bcr − 1
=

sx1/s

x + 1 + s
.

The Turing mechanism of pattern formation, which is due to diffusion-induced
instability of the homogeneous steady state, requires that the ratio of the diffusion
coefficient of the inhibitor (in our problem, the inhibitor is Y ) to that of the activator
(X) be sufficiently large in “normal” reaction-diffusion systems. This corresponds
to DY being sufficiently greater than DX or, equivalently, η being sufficiently small.
Based on this result obtained for the Brusselator problem with normal diffusion, one
might expect that if the fractional derivative order β for the inhibitor Y is larger than
α, the fractional derivative order for the activator X, i.e., if the inhibitor diffuses
slower than the activator, s < 1, then no Turing instability will be observed. As can
be seen from the above results, this is not necessarily true. Indeed, let us first discuss
in greater detail the case of normal diffusion, in which s = 1. It is convenient to
return to the original parameters A and B instead of Q and B. From (10), using (7)
and (9), we get

Aη2 + 2η −A < 0,

so that

(11) η =

√
DX

DY
<

√
1

A2
+ 1 − 1

A
≡ F1(A).
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Fig. 2. The function F (A) for selected values of s. Curve (1) s = 2; curve (2) s = 1; curve (3)
s = 0.7; curve (4) s = 0.5.

The function F1(A) is a monotonically increasing function that is zero at A = 0
and goes to one as A goes to infinity. This means that if η is greater than one,
i.e., the diffusion coefficient of the inhibitor is too small, then Turing instability of
the homogeneous stationary solution cannot occur because it is always preceded by
the oscillatory instability. If η < 1, then for the supply rate A sufficiently large,
specifically, for A > 2η/(1 − η2), Turing instability does occur as B increases.

In the general case of s not necessarily equal to one, condition (11) is replaced by

η2 =
D

1/s
X

DY
< 21−1/ss

[
√

[A2(s− 1) + (s + 1)]2 + 4A2 −A2(s− 1) − (s + 1)]1/s√
[A2(s− 1) + (s + 1)]2 + 4A2 −A2(s− 1) + (s + 1)

≡ F (A),

(12)

the derivation of which also uses (7), (9), and (10). If this condition is satisfied,
then by increasing B we reach the Turing instability boundary. If this condition
is not satisfied, then increasing B results in oscillatory instability. We remark that
increasing B necessarily results in an instability because the term without σ in the
dispersion relation (8) becomes negative for B sufficiently large, so that the dispersion
relation has a positive root. The function F (A) in (12) is a monotonically increasing
function of A with F (0) = 0 for any s of interest, i.e., for 1/2 ≤ s ≤ 2. The behavior
of this function is, however, different for 1/2 ≤ s < 1 and 1 ≤ s ≤ 2. In the first case
the function increases without bound as A → ∞, while in the second case it remains
finite with

lim
A→∞

F (A) =
1

s
(s− 1)1−1/s.

The behavior of this function is illustrated in Figure 2. These results are somewhat
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counterintuitive because not only can Turing instability occur in the case s < 1, when
it is not expected because diffusion of the inhibitor in this case is slower than diffusion
of the initiator, but it may also occur for any value of η provided that A is sufficiently
large, while the case of normal diffusion carries the restriction η < 1.

4. Weakly nonlinear analysis: Stripes and hexagons. We now perform a
weakly nonlinear analysis of the system (6) near the instability threshold in order to
study pattern formation. Specifically, we are interested in the formation of hexagons
and stripes.

We introduce the slow time T = ε2t and expand both unknowns u and v as well
as the bifurcation parameter B as

u ∼ εu1 + ε2u2 + ε3u3 + · · · ,

(13) v ∼ εv1 + ε2v2 + ε3v3 + · · · ,

B = Bcr + ε2μ.

Here uj and vj (j = 1, 2, 3), which correspond to the long time solution behavior after
all transients have decayed, are functions of T , x, and y.

Substituting the expansions (13) into the system of equations (6) and collecting
like powers of ε, we obtain at orders εj (j = 1, 2, 3) the sequence of problems

O(ε) : Lu(u1, v1) ≡ ∇αu1 + (Bcr − 1)u1 + Q2v1 = 0,

Lv(u1, v1) ≡ ∇βv1 −Bcru1 −Q2v1 = 0,
(14)

(15) O(ε2) : Lu(u2, v2) = −R2, Lv(u2, v2) = R2,

(16) O(ε3) : Lu(u3, v3) =
∂u1

∂T
−R3, Lv(u3, v3) = η2 ∂v1

∂T
+ R3,

where

R2 =
Bcr

Q
u2

1 + 2Qu1v1, R3 = 2
Bcr

Q
u1u2 + 2Q(u1v2 + u2v1) + u2

1v1 + μu1.

As before, the problems are considered in the entire plane −∞ < x, y < ∞.
We wish to describe the appearance of both hexagons and stripes as well as their

interactions. Therefore, at O(ε) we seek solutions of the linearized system in the form

(17)

(
u1

v1

)
=

(
a
b

)
E,

where

E = L1e1 + L2e2 + L3e3 + c.c.,

(18) e1 = exp(ikcrx), e2,3 = exp

[
ikcr

(
−x

2
±

√
3

2
y

)]
,
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and c.c. denotes complex conjugate terms. Here, the amplitudes L1, L2, L3 are
functions of the slow time T .

Next, we turn to the O(ε2) problem. The right-hand side R2 can be written in
the form

R2 = PE2, P ≡ Bcr

Q
a2 + 2Qab,

and can be represented as

R2 = (E1 + E2 + 2E3 + 2E4)P,

where

E1 = L2
1e

2
1 + L2

2e
2
2 + L2

3e
2
3 + c.c.,

E2 = 2(|L1|2 + |L2|2 + |L3|2),

E3 = L1L
∗
2e1e

∗
2 + L1L

∗
3e1e

∗
3 + L2L

∗
3e2e

∗
3 + c.c.,

E4 = L1L2e
∗
3 + L1L3e

∗
2 + L2L3e

∗
1 + c.c.,

and the asterisk denotes the complex conjugate. We remark that the terms propor-
tional to E4 are secular terms that appear in the O(ε2) problem due to the resonant
interaction of the modes (18). As in [54] these secular terms are considered to be
small, so that they contribute to the solvability condition at O(ε3).

Then the solution of the O(ε2) problem is given by(
u2

v2

)
=

[
E1

(
u21

v21

)
+ E2

(
u22

v22

)
+ 2E3

(
u23

v23

)]
P,

where the coefficients u2j , v2j are

u21 =
2βkβcr

(1 + 2αkαcr)(Q
2 + 2βkβcr) − 2βkβcrBcr

,

v21 =
−1 − 2αkαcr

(1 + 2αkαcr)(Q
2 + 2βkβcr) − 2βkβcrBcr

,

u22 = 0,

v22 = − 1

Q2
,

u23 =
3β/2kβcr

(1 + 3α/2kαcr)(Q
2 + 3β/2kβcr) − 3β/2kβcrBcr

,

v23 =
−1 − 3α/2kαcr

(1 + 3α/2kαcr)(Q
2 + 3β/2kβcr) − 3β/2kβcrBcr

.
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We now turn to the O(ε3) problem. Substituting the solutions u1, u2, v1, v2 into
R3 yields

R3 = 2PK1EE1 + 2PK2EE2 + 4PK3EE3 + a2bE3 + μaE,

where

K1 =
Bcr

Q
au21 + Qav21 + Qbu21,

K2 =
Bcr

Q
au22 + Qav22 + Qbu22,

K3 =
Bcr

Q
au23 + Qav23 + Qbu23.

The secular terms in the above products EE1, EE2, and so on are given as follows:

in EE1 : L1|L1|2e1 + L2|L2|2e2 + L3|L3|2e3 + c.c. ≡ E0,

in EE2 : 2EF, F = |L1|2 + |L2|2 + |L3|2,

in EE3 : EF − E0,

in E3 : 6EF − 3E0.

Thus, the secular terms in R3 are

μaE + a
∂E

∂T
+ E0(2PK1 + 4PK2 + 3a2b) + (EF − E0)(4PK2 + 4PK3 + 6a2b).

Elimination of secular terms in the O(ε3) problem results in the following system of
equations for the leading order amplitudes L1, L2, L3:

(19a) C0
dL1

dT
= μC1L1 + C2L

∗
2L

∗
3 + C3L1|L1|2 + C4L1(|L2|2+ |L3|2),

(19b) C0
dL2

dT
= μC1L2 + C2L

∗
1L

∗
3 + C3L2|L2|2 + C4L2(|L1|2+ |L3|2),

(19c) C0
dL3

dT
= μC1L3 + C2L

∗
1L

∗
2 + C3L3|L3|2 + C4L3(|L1|2+ |L2|2).

The coefficients Ck, k = 0, 1, 2, 3, 4, are given by

C0 =
a(1 + x) + η2bsx

1 + (1 − s)x
=

(1 + x)(x1/s − η2sx)

1 + (1 − s)x
,

C1 = a = x1/s > 0,
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(20) C2 = 2P =
2(1 + x)[1 + (1 − 2s)x]x2/s[
s[1 + (1 − s)x]x1+1/s

]1/2 ,

C3 = 2PK1 + 4PK2 + 3a2b =
(1 + x)x2/s

s x2

C3 n

C3 d
,

C4 = 4PK2 + 4PK3 + 6a2b =
(1 + x)x2/s

s x2

C4 n

C4 d
,

where

C3 n =
[
(−6 + 11s− 4s2)2β + (6s− 9s2)2α + (4 − 9s + 5s2)2α+β

]
x3

+
[
(−14 + 13s + s2)2β + 6 s 2α + (8 − 9s) 2α+β + 6s− 9s2

]
x2

+
[
(−10 + 2s)2β + 4 · 2α+β + 6s

]
x− 21+β ,

C3 d =
[
2β + (s− 1)2α+β − s 2α

]
x + (1 + s)2β − 2α+β − s,

C4 n =
[
(−8 + 14s− 8s2) 3β/2 + (4 − 6s + 2s2) 3(α+β)/2 + (8s− 10s2) 3α/2

]
x3

+
[
(−20 + 22s− 6s2) · 3β/2 + (8 − 6s)3(α+β)/2 + 8 s 3α/2 + 8s− 10s2

]
x2

+
[
(8s− 16)3β/2 + 4 · 3(α+β)/2 + 8 s

]
x− 4 · 3β/2,

C4 d =
[
(−1 + s)3(α+β)/2 + 3β/2 − s 3α/2

]
x− 3(α+β)/2 + (s + 1)3β/2 − s.

We note that both C0 and C1 are positive. Indeed, upon simple manipulations that
use (10), we obtain

C0 =
(1 + x)sx

1 + (1 − s)x

[
x1/s

sx
− η2

]

>
(1 + x)sx

1 + (1 − s)x

[
x1/s

sx
− sx1/s

x + 1 + s

]
=

x1/s(1 + s)(1 + x)

1 + x + s
> 0.

The fact that C0 and C1 are positive will be used in the next section.
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5. Analysis of the amplitude equations: Stripes and hexagons. We con-
sider steady states of the system (19); specifically, we are interested in the steady
states that describe hexagons and stripes in the original system. We briefly list below
well-known general results concerning these patterns [54] and then relate these results
to the problem at hand. Hexagonal patterns correspond to

L1 = L2 = L3 = Lh,

where Lh is a solution of the quadratic equation

(21) (C3 + 2C4)L
2
h + C2Lh + μC1 = 0.

Stripes parallel to the y-axis correspond to

L1 = Ls, L2 = L3 = 0, Ls =

√
−μC1

C3
.

We first discuss the stripes. The linear stability analysis of the system (19) in the
case of stripes results in the following values for the growth rate σ of perturbations:

C0σ1 = −2μC1, σ2 = 0, C0σ3,4 = C2Ls − (C3 − C4)L
2
s,

C0σ5,6 = −C2Ls − (C3 − C4)L
2
s.

Since the coefficients C0 and C1 are always positive, we conclude that supercritical
stripes exist if C3 < 0. They are stable if C3 − C4 > 0 and the amplitude Ls is
sufficiently large, Ls > |C2|/(C3 − C4).

The linear stability analysis of the system (19) in the case of hexagons results in
the following values for the growth rate σ of perturbations:

C0σ1 = C2Lh + 2(C3 + 2C4)L
2
h, C0σ2,3 = 2[−C2Lh + (C3 − C4)L

2
h],

C0σ4 = −3C2Lh, σ5,6 = 0.

Again, keeping in mind that C0 > 0, C1 > 0, we conclude that a necessary condition
for stable hexagons to exist is C3 + 2C4 < 0. This condition is not sufficient. If, in
addition to this condition, C3−C4 < 0, then the entire increasing branch of hexagons
is stable. If the necessary condition is satisfied but C3 − C4 > 0, hexagons can still
be stable. Specifically, they are stable if C3 + C4 < 0, but in this case only part of
the increasing hexagon branch is stable. The hexagons in this case will coexist with
stripes if C3 < 0. Finally, we remark that in all of the above cases the hexagons may
be either positive, which corresponds to Lh > 0 and is the case when C2 > 0, or
negative, which corresponds to Lh < 0 (for C2 < 0).

In order to illustrate the effect of superdiffusion on Turing pattern formation, we
consider three values of the superdiffusion exponents α and β, namely, 1, 3/2, and
2, and consider all possible combinations. In each case we plot the Turing instability
boundary in the (Q2, B) parameter plane and mark different parts of the boundary
according to the different scenarios predicted by the weakly nonlinear analysis. The
results are presented in Figure 3. Different parts of the stability boundaries are
marked by different numbers in the figure. Crossing the boundary corresponding to
different numbers as B increases leads to the appearance of different spatial patterns.
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Fig. 3. Stability boundaries in the (Q2, B) plane; see text.

Positive hexagons bifurcate when the part of the boundary marked by (1) is crossed;
(2) indicates coexistence of positive hexagons and stripes, (3) shows the coexistence
of negative hexagons and stripes; and finally, (4) corresponds to negative hexagons.
There are parts of the boundaries that are not marked, which means that neither
hexagons nor stripes are observed as these boundaries are crossed. This may occur,
e.g., when both hexagons and stripes are unstable.

As Figure 3 illustrates, most of the differences between the normal diffusion and
superdiffusion cases are quantitative rather than qualitative. This can be explained by
the fact that in the case of a shortwave instability, the local structure of the dispersion
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Fig. 4. Bifurcation diagrams for hexagonal patterns. In both figures α = β = 1; x = 0.9 in (a),
x = 0.8 in (b). See text.

curve near the instability threshold (parabola) remains the same as in the case of the
normal diffusion. Therefore, the effect of the anomalous diffusion reduces to changing
characteristic diffusion times, which leads to the renormalization of the coefficients
in the amplitude equations. All types of bifurcating regimes are present in the three
cases when β = 1, while larger β, e.g., β = 2, demonstrates the presence of “preferred”
regimes. Another observation is that for α > β the bifurcations occur in the range of
Q significantly smaller than in the case α < β.

We now return to the discussion of the quadratic terms in the amplitude equations.
The way the terms were treated, though commonly used [54], can by no means be
claimed systematic. There is, however, a systematic way to deal with the quadratic
terms. Indeed, if we consider the distinguished limit in which

(22) x− 1

2s− 1
= O(ε),

then C2 = O(ε) (see the expression (20) for C2). In this case the quadratic terms
become O(ε3), so that they are shifted to the O(ε3) problem, and the amplitude equa-
tions (19) arise in a systematic way due to solvability conditions applied to the O(ε3)
problem. Not only is this approach more systematic, but also the results obtained
under the condition (22) are expected to be more accurate. This is illustrated by
comparing numerical and analytical bifurcation curves in Figure 4. Shown are nu-
merically (circles) and analytically (solid lines) computed amplitude of u, denoted by
Δu, as a function of supercriticality B−Bcr. The numerical solution was obtained for
the original nondimensional problem (6) with parameter values given by (9) (details
of our numerical approach are in the next section), with

Δu = max
(x,y)

u− min
(x,y)

u.

To obtain the analytical amplitude Δu, we used the leading order analytical solution,
so that

Δu = Lha

[
max
(x,y)

(e1 + e2 + e3 + c.c.) − min
(x,y)

(e1 + e2 + e3 + c.c.)

]
,
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Fig. 5. Numerical solutions of the system (6) in the case of superdiffusion (α = β = 1.5, η =
0.2) showing positive hexagons ((a) shows u, (d) shows v, x = 0.55, ε = 0.1), negative hexagons ((b)
shows u, (e) shows v, x = 1.5, ε = 0.1), and stripes ((c) shows u, (f) shows v, x = 1.5, ε = 1.0).

with Lh computed from the quadratic equation (21) as

Lh =
1

2(C3 + 2C4)

(
−C2 −

√
C2

2 − 4(C3 + 2C4)(B −Bcr)

)
.

Since α = β = 1 is used for the calculations shown in the figure, (22) reduces to
x − 1 = O(ε). For x = 0.9 the figure illustrates almost perfect agreement between
the analytical and numerical results. For x = 0.8 the accuracy is acceptable. For x
farther away from 1, the difference between the numerical and analytical calculations
increases. However, there still is a qualitative agreement between the two, and this is
why the amplitude equations (19) may be useful even if (22) is not satisfied.

6. Numerical computation of patterns. We have performed numerical com-
putations of the system (6) by means of a pseudospectral method, with time integra-
tion in Fourier space, using a Crank–Nicolson scheme for the linear operator and an
Adams–Bashforth scheme for the nonlinear operator. Periodic boundary conditions
and small-amplitude random initial data have been used.

Our numerical computations confirmed the results of the weakly nonlinear anal-
ysis summarized in Figure 3. Figure 5 shows examples of positive hexagons (Figure
5(a),(d)), negative hexagons (Figure 5(b),(e)), and stripes (Figure 5(c),(f)) for the
anomalous diffusion case. Note that in the hexagonal patterns several penta-hepta
defects are clearly visible, while in the stripe patterns typical defects such as dislo-
cations and disclinations are present. The defects can be described analytically as
solutions of equations which generalize our equations (19) to the case when spatial
modulations are present, i.e., Ginzburg–Landau equations. These defects gradually
disappear as time goes on, so that the resulting final patterns will be perfect hexagons
or stripes.

We also performed numerical computations of a regime where neither hexagons
nor stripes are stable. The most interesting is a regime of self-replicating spots, first
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Fig. 6. Numerical solutions of the system (6) in the case of normal diffusion (α = β = 2.0,
η = 0.2, x = 0.1, ε = 0.1) showing the formation of self-replicating spots for the v-component.
Different figures correspond to different moments of time.

discovered in [40] for the case of normal diffusion. Figure 6 shows this regime for the
case of normal diffusion. One can see that the spots appear from small perturbations
of the homogeneous state and then start self-replicating until the average distance
between the spots reaches a particular value. After that the spots move slowly, re-
pelling each other, until they form a hexagonal pattern corresponding to a “Wigner
crystal” [40] (not shown here).

In the case of anomalous diffusion, this regime exhibits slightly different dynamics.
Namely, a single spot that appears from a small fluctuation first forms a ring which in
turn becomes unstable and disintegrates into spots that continue to self-replicate. The
ring radius at which it becomes unstable and the instability mode depend on the Lévy
flight exponents α and β. Figure 7 shows the formation of a ring and its subsequent
disintegration into localized spots in the case of Lévy flights with α = β = 1.5.
One can see that the instability occurs when the ring radius is still quite small, and
the instability mode corresponds to the superposition of two modes with azimuthal
numbers m = 2 and m = 4. As a result each ring produces four spots.

We have observed that the number of spots resulting from the instability of a ring
depends on the anomalous diffusion exponents. The farther the anomalous diffusion
exponents are from the normal diffusion case, the more spots are produced from
each ring. Figure 8 shows the results of the corresponding numerical simulations for
different values of α and β. One can see that for α = β = 1.8 there are two rings that
disintegrate into two and three spots. For α = β = 1.35 the rings develop into four
and five spots. Disintegration into five and seven spots can be seen for α = β = 1.3.
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Fig. 7. Numerical solutions of the system (6) in the case of superdiffusion (α = β = 1.5,
η = 0.2, x = 0.1, ε = 0.1) showing the formation of rings that decay into localized spots. The
component u is shown. Different figures correspond to different moments of time.

For α = β = 1.2 the ring instability results in the formation of 13 spots. This behavior
may be attributed to the nonlocal character of Lévy flights: with the decrease of the
anomalous exponents, different parts of the ring are “communicating” with each other
more easily, which causes the ring to disintegrate into a larger number of spots.

Figure 9 shows the same type of instability in the case α = β = 1.0. One can
see that the ring radius at which instability occurs is much larger, and the instability
mode number is much larger as well. Note too that the spots that result from the
ring instability self-replicate at a later time. Finally, we note that the ring formation
can be observed not only for equal Lévy exponents, as shown in Figures 7–9, but also
when α and β are different but sufficiently smaller than 2.0.

7. Conclusion. The Turing mechanism of pattern formation, which is due to
diffusion-induced instability of the homogeneous steady state, requires that the ratio
of the diffusion coefficient of the inhibitor to that of the activator be sufficiently large
in “normal” reaction-diffusion systems. One might expect, based on this result for the
Brusselator problem with normal diffusion, that if the fractional derivative order β for
the inhibitor Y is larger than α, the fractional derivative order for the activator (i.e.,
the inhibitor diffuses slower than the activator, s < 1), then no Turing instability can
be observed. In fact, the result is quite the opposite. Not only can Turing instability
occur in the case s < 1, which is unexpected because diffusion of the inhibitor in this
case is slower than diffusion of the initiator, but it may also occur for any values of
the diffusion coefficients provided that the “supply” parameter A is sufficiently large.
These are the most striking qualitative differences between normal and anomalous
diffusion.

The remaining results derived from the weakly nonlinear analysis indicate that
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Fig. 8. Numerical solutions of the system (6) in the case of superdiffusion (η = 0.2, x =
0.1, ε = 0.1) for different values of α and β showing the result of a ring instability leading to
different numbers of localized spots. The component u is shown.

most of the differences between normal diffusion and superdiffusion are quantitative
rather than qualitative. That is, the value of the transition point changes as normal
diffusion is replaced by anomalous diffusion. This can be explained by the fact that
in the case of a short-wave instability the local structure of the dispersion curve
near the instability threshold is the same in both cases of normal and anomalous
diffusion. The anomalous diffusion in this case just leads to the change in coefficients
characterizing the parabolic character of the dispersion curve due to the change of the
characteristic diffusion times. A more profound, qualitative effect of the anomalous
diffusion can be expected in the case of a long-wave instability when the anomalous
diffusion qualitatively changes the relation between characteristic slow spatial and
time scales [34]. The analysis of this case is, however, beyond the scope of the present
paper. All types of bifurcating regimes, i.e., positive and negative hexagons and
regions of coexistence of these hexagons and stripes, are present when β = 1, while
larger β, e.g., β = 2, demonstrates the presence of “preferred” regimes. Another
observation is that for α > β the bifurcations occur in the range of A significantly
smaller than in the case α < β.

Our numerical computations confirmed the results of the weakly nonlinear analy-
sis. In addition, a regime of localized, self-replicating spots has been found. We have
observed that, unlike the case of normal diffusion, in the case of Lévy flights, the spots
result from the instability of localized rings. We have exhibited the initial breakup
of the rings into different numbers of spots depending on the anomalous diffusion
exponents. The spots resulting from a ring instability may later self-replicate. We
have observed that the number of spots resulting from the ring instability increases
with the decrease of the Lévy flight exponent. This can be attributed to the increase
of the nonlocal character of the superdiffusion in this case, i.e., the increase of the
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Fig. 9. Numerical solutions of the system (6) in the case of superdiffusion (α = β = 1.0,
η = 0.2, x = 0.1, ε = 0.1) showing the formation of rings that decay into localized spots. Six rings
are clearly seen. The component v is shown. Different figures correspond to different moments of
time increasing from left to right and from top to bottom.

characteristic “communication” distance between the structures.
Finally, we note that it would be interesting to investigate the means to experi-

mentally control the anomalous diffusion exponents in superdiffusive reaction-diffusion
systems. In a system where superdiffusion is caused by, say, turbulent mixing, a possi-
ble way to control the anomalous exponents would be to vary the mixing intensity [63].
For a reaction-diffusion system in a porous medium, the control can be achieved by
changing the velocity of the gas flowing through the medium. For, say, a catalytic
system governed by surface diffusion and reactions, when the reactants can perform
long jumps along the catalytic surface, the parameters of the surface diffusion could
possibly be controlled by irradiation of the catalyst. Note that feedback control of
catalytic patterns by light has been attracting a great deal of attention [32]. Another
possibility would be to affect the characteristics of the anomalous surface diffusion
by changing the parameters of a turbulent gas flow in the adjacent gas phase. The
investigation of ways to control reaction-diffusion systems with anomalous diffusion,
as well as possible feedback control mechanisms to stabilize certain desired patterns,
will be considered in future studies.
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PROPAGATION OF LOCAL DISTURBANCES IN REACTION
DIFFUSION SYSTEMS MODELING QUADRATIC AUTOCATALYSIS∗

XINFU CHEN† AND YUANWEI QI‡

Abstract. This article studies the propagation of initial disturbance in a quadratic autocat-
alytic chemical reaction in one-dimensional slab geometry, where two chemical species A, called the
reactant, and B, called the autocatalyst, are involved in the simple scheme A + B → 2B. Exper-
iments demonstrate that chemical systems for which quadratic or cubic catalysis forms a key step
can support propagating chemical wavefronts. When the autocatalyst is introduced locally into an
expanse of the reactant, which is initially at uniform concentration, the developing reaction is often
observed to generate two wavefronts, which propagate outward from the initial reaction zone. We
show rigorously that with such an initial setting the spatial region is divided into three regions by
the two wavefronts. In the middle expanding region, the reactant is almost consumed so that A ≈ 0,
whereas in the other two regions there is basically no reaction so that B ≈ 0. Most of the chemical
reaction takes place near the wavefronts. The detailed characterization of the concentrations is given
for each of the three zones.

Key words. quadratic autocatalysis, traveling wave, propagation of local disturbance, reaction-
diffusion
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1. Introduction. In this paper we consider an isothermal autocatalytic chemical
reaction step governed by the quadratic reaction relation

A + B → 2B with rate kab.

Here, k > 0 is the reaction rate, and a and b are the concentrations of reactant A and
autocatalyst B, respectively.

Well documented in the literature, the quadratic reaction relation has appeared
in several important models of real chemical reactions, e.g., the Belousor–Zhabotinskii
reaction and also gas-phase radical chain branching, oxidation reactions, such as the
carbon-monoxide-oxygen reaction, and hydrogen-oxygen systems [13].

Experimental observations demonstrate the existence of propagating chemical
wave fronts in unstirred chemical systems for which quadratic or cubic catalysis forms
a key step [15], [25]. These wavefronts, or travelling waves, arise due to the interaction
of reaction and diffusion. Quite often when a quantity of autocatalyst is added locally
into an expanse of reactant, which is initially at uniform concentration, the ensuing
reaction is observed to generate wavefronts which propagate outward from the initial
reaction zone, consuming fresh reactant ahead of the wavefront as it propagates. This
is the phenomenon to be addressed in this paper.
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We study the following system for u = u(x, t), v = v(x, t):⎧⎨
⎩

ut −Duxx = −uv in R × (0,∞),
vt − vxx = uv in R × (0,∞),
u(·, 0) = u0(·), v(·, 0) = v0(·) on R × {0}.

(1.1)

It is the result of simple scaling of the standard system

at = DAaxx − kab, bt = DBbxx + kab,

with D = DA/DB .
Our basic assumptions are the following:
(A1) D ∈ (0, 1];
(A2) u0(x) = 1 for all x ∈ R; and
(A3) v0 is a continuous nonnegative function having compact support, v0(0) > 0.
Our main result is the following.
Theorem 1.1. Assume (A1)–(A3) and let (u, v) be the solution of (1.1). Set

m(t) = 2t− 3(log[3 + t] − log 3).(1.2)

Then for each t > 0 and x ∈ [−m(t),m(t)], we have (u, v) ≈ (0, 1) in the following
sense:

u(x, t) ≤ e−μ[m(t)−|x|],
∣∣∣1 − v(x, t)

∣∣∣ ≤ C√
1 + m(t) − |x|

.(1.3)

On the other hand, when x ∈ (−∞,−m(t)]∪ [m(t),∞), we have (u, v) ≈ (1, 0) in
the sense that ∣∣∣1 − u(x, t)

∣∣∣ + v(x, t) ≤ C
{

1 + |x| −m(t)
}
em(t)−|x|.(1.4)

A result somewhat similar to ours is obtained by Billingham and Needham [7]
using formal asymptotic and numerical computation. There, instead of a Cauchy
initial problem, an initial-boundary value problem on (0,∞) is considered, with a
homogenous Newmann condition at x = 0. The proof we give here is rigorous.

It will be interesting to see how to generalize our result to the cubic autocatalysis
reaction with nonlinear reaction term uv2. But a number of technical difficulties need
to be overcome, not least of which is a result similar to that of Bramson on the
traveling speed of a scalar equation with nonlinearity u(1 − u)2.

The organization of this paper is as follows. Section 2 contains the analysis of u
behind the reaction front. In section 3 the estimate of the front location is provided.
The behavior of (u, v) after the reaction has taken place is shown in section 4.

We note in passing that unlike the single equation case, of which many excellent
results have been proved in the last 30 years as exemplified by the works of Aronson
and Weinberger [2], Fife and McLeod [10], Sattinger [21], and Chen and Guo [8] (the
survey paper of Xin [24] provides a more detailed account on recent progress), there
are very limited results on the study of traveling waves and their effect on global
dynamics for parabolic systems. With the recent progress of proving the existence
of traveling waves in [9] and [20], we hope to spur interest in such problems since
many mathematical models in biology, most of which are reaction-diffusion systems,
are deeply linked to traveling wave phenomena. We also note that systems similar to
ours appear in the study of thermal-diffusive flows with advection; see [4], [16], [17],
[18], [19], and [23].
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2. Exponential decay of a reactant behind a reaction front. Whenever an
autocatalyst presents, the chemical reaction takes place very fast; as a result, the re-
actant is consumed quickly and therefore experiences an exponential decay (in time).
The central issue here is to find the spreading speed of the autocatalyst. Mathemati-
cally, by assuming D ∈ (0, 1] (i.e., the reactant diffuses no faster than the autocatalyst
does), we are able to find a good comparison to pin down the autocatalyst’s spreading
speed.

2.1. A comparison.
Lemma 2.1. Assume that D ∈ (0, 1] and u0(x) ≥ 0, v0(x) ≥ 0, u0(x) + v0(x) ≥ 1

for every x ∈ R. Then the solution of (1.1) satisfies

v(x, t) ≥
√
D Φ(x, t) ∀(x, t) ∈ R × (0,∞),

where Φ is the solution of the initial value problem of the Fisher KPP (Kolmogorov–
Petrovskii–Piskuno) equation

Φt − Φxx = Φ − Φ2 in R × (0,∞), Φ(·, 0) = v0(·) on R × {0}.(2.1)

Proof. Denote by K(x, t) the fundamental solution to the heat operator,

K(x, t) := (4πt)−1/2e−x2/(4t).

Then the solution of (1.1) can be decomposed as

u = u0 − u1, v = v0 + v1,

where

u0(x, t) =

∫
R

K(x− y,D t) u0(y) dy,

v0(x, t) =

∫
R

K(x− y, t) v0(y) dy,

u1(x, t) =

∫ t

0

∫
R

K(x, y,D(t− s) ) f(y, s) dyds,

v1(x, t) =

∫ t

0

∫
R

K(x− y, t− s) f(y, s) dyds,

f(x, t) = u(x, t) v(x, t).

Here u0 and v0 are the concentrations of the reactant and the autocatalyst, respec-
tively, before chemical reaction is initiated. The quantity u1 is the amount of reactant
consumed and v1 is the amount of autocatalyst produced in the reaction.

By the maximum principle, we know that u ≥ 0 and v ≥ 0, and so f := uv ≥ 0.
Upon noticing that

K(x,Dt) := (4πDt)−1/2e−x2/(4Dt) ≤ (4πDt)−1/2e−x2/(4t) = D−1/2K(x, t),

we see that

u1(x, t) ≤ D−1/2 v1(x, t) ∀ (x, t) ∈ R × [0,∞).

This implies that

u = u0 − u1 ≥ u0 − v1

√
D

= u0 − v − v0

√
D

=

(
u0 +

v0

√
D

)
− v√

D
.
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Note that

u0(x, t) +
v0(x, t)√

D
=

∫
R

K(y,Dt)u0(x− y)dy +
1√
D

∫
R

K(y, t)v0(x− y)dy

=
1√
π

∫
R

{
e−η2

u0(x− 2η
√
Dt ) + e−Dη2

v0(x− 2η
√
Dt )

}
dη

≥ 1√
π

∫
R

e−η2
{
u0(x− 2η

√
Dt ) + v0(x− 2η

√
Dt )

}
dη

≥ 1√
π

∫
R

e−η2

dη = 1.

Thus, (
v√
D

)
t

−
(

v√
D

)
xx

= u
v√
D

≥
(

1 − v√
D

)
v√
D
.

A simple comparison then gives Φ ≤ v/
√
D.

2.2. Bramson’s result. We denote by W the minimum speed traveling wave
profile of the Fisher equation

2W ′ + W ′′ + W −W 2 = 0 on R,

W (−∞) = 1, W (0) = 1/2, W (∞) = 0.

The following result can be derived from Bramson’s work [3].
Lemma 2.2. Assume that v0 is a nonnegative continuous function on R with

compact support and v0(0) > 0. Let Φ be the solution of (2.1). Then there exist
constants z+ and z− such that

lim
t→∞

sup
x>0

∣∣∣Φ(x, t) −W ([x− z+ −m(t)])
∣∣∣ = 0,

lim
t→∞

sup
x<0

∣∣∣Φ(x, t) −W ([m(t) + z− − x])
∣∣∣ = 0,

where

m(t) := 2t− 3[log(3 + t) − log 3] ∀ t > 0.

2.3. The exponential decay of u in the reaction zone.
Theorem 2.3. Assume that D ∈ (0, 1], u0 ≥ 0, v0 ≥ 0, u0+v0 ≥ 1, and v0(0) > 0.

Let (u, v) be the solution of (1.1). Then there exists a positive constant k such that

v > k in Q := {(x, t) | t > 0, |x| < m(t)}.(2.2)

Consequently, with μ = [
√

1 + kD − 1]/D, there holds

u(x, t) ≤ ū(x, t) := eμ[x−m(t)] + e−μ[m(t)+x] ∀ t ≥ 0, x ∈ R.

Proof. First, applying the comparison lemma, Lemma 2.1, and Bramson’s result,
Lemma 2.2, we see that v > k in Q.
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Since u ≤ 1, we need only consider the function u in the set Q. When (x, t) ∈ Q,
we use v ≥ k to calculate

ūt −Dūxx + vū ≥ ūt −Dūxx + kū

= ū

{
k −Dμ2 − 2μ +

3μ

3 + t

}
≥ ū[k −Dμ2 − 2μ] = 0.

Since ū > 1 ≥ u on the parabolic boundary of Q, the assertion of the lemma thus
follows from the parabolic comparison principle.

3. Location of the reaction front. The comparison of v with the solution of
the Fisher equation shows that the reaction front is at least as far as ±(2t − 3 log t)
from the origin for large t. Here we show that the reaction front is located exactly in
a vicinity of ±(2t− 3 log t).

For this, we denote

û(x, t) = min
{

1, eμ[x−m(t)] + e−μ[m(t)+x]
}
.

Then u ≤ û. Consequently,

vt − vxx = uv ≤ ûv in R × (0,∞).

Hence, by Green’s formula,

0 ≤ v(x, t) ≤
∫

R

G(x, t; y, 0) v0(y) dy,

where for each (x, t) ∈ R × (0,∞), G(x, t; ·, ·) is the fundamental solution of

Gs + Gyy = û(y, s) G(x, t, y, s) ∀ y ∈ R, s ∈ [0, t),

G(x, t; y, t) = δ(x− y) ∀ y ∈ R.

Here δ is the Dirac measure. Using Bramson’s technique [3, Chapters 6 and 7], one
can derive that

G(x, y, t, 0) ≤ C(μ) et−|x−y|2/(4t)
√

4πt
(1 − e−|y| [|x|−m(t)+1]/t).

Since v0 has compact support, by following calculations illustrated in [3] we obtain
the following.

Lemma 3.1. There exists a positive constant C1 such that

v(±[m(t) + z], t) ≤ C1[1 + |z|]e−z ∀z ∈ R, t > 0.

Note that when u0 ≡ 1, we have u0 ≡ 1 so that

|u− 1| = u1 ≤ D−1/2v1 ≤ D−1/2v.

The estimate (1.4) thus follows from the above lemma.

4. Autocatalyst generated after reaction. We know that the two reaction
fronts are near m(t) and −m(t). In the reaction zone [−m(t),m(t)], the reactant is
consumed very quickly. As the autocatalyst is assumed to diffuse no slower than the
reactant, it is expected that v ≈ 1 inside the reaction zone when reaction is completed.
This section is devoted to proving this expectation.
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4.1. An L∞ estimate of v.
Lemma 4.1. There exists a positive constant C2 such that

v(x, t) ≤ C2, |ux| ≤ C2e
−μ||x|−m(t)|] ∀x ∈ R, t > 0.

Proof. Set

K = max

{
1

4
,

1

(μ2 + 2μ)

}
.

Let t0 be the constant such that

Ke−m(t0) =
1

4
.

Consider the function

v̄(x, t) = 1 −Kū = 1 −Keμ[x−m(t)] −Ke−μ[x+m(t)](4.1)

in the set

Q(t0) := {(x, t) | t > t0, |x| < m(t) −m(t0)}.

Since u < ū in Q(t0), we have

v̄t − v̄xx − uv̄ ≥ v̄t − v̄xx − ūv̄ ≥ Kū2 > 0.

Then we have v̄ ≥ 1/2 on the parabolic boundary of Q(t0). Hence, by comparison,

v ≤ M v̄ in Q(t0), M := sup
∂Q(t0)

v ≤ C1[1 + m(t0)]e
m(t0).

This estimate, together with Lemma 3.1, implies that v is uniformly bounded.
Once we know the boundedness of v, we can obtain the estimate for ux by applying

the local parabolic estimate. For each x ∈ R and t ≥ 2,

‖ux‖L∞(Q1) ≤ C(D)
{
‖f‖L∞(Q2) + min{‖u‖L∞(Q2), ‖u− 1‖L∞(Q2)}

}
,

where

Q1 = (x− 1, x + 1) × (max{t− 1, 0}, t], Q2 := (x− 2, x + 2) × (max{t− 2, 0}, t].

Here we used, for simplicity, the assumption that u0 ≡ 1 is a smooth function.

4.2. The equilibrium state after reaction. Now we show that v ≈ 1 in
(−m(t),m(t)) for large t. For this purpose, we consider the function

w = u + v − u0 − v0.

Note that u0 ≡ 1; then

‖v0(·, t)‖L∞(R) =

∥∥∥∥
∫

R

K(· − y, t)v0(y)dy

∥∥∥∥
L∞(R)

= O

(
1√
t

)
,

|u(x, t)| ≤ e−μ|m(t)−x| + e−μ[x+m(t)].
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We see that

|v − 1| ≤ |w| + |u| + |v0|.

The assertion (1.3) thus follows from the following.
Lemma 4.2. There exists a constant C2 > 0 such that

|w(x, t)| ≤ C2√
m(t) − |x|

∀x ∈ (−m(t),m(t)), t > 0.

Proof. Note that w satisfies

wt − wxx = (D − 1)uxx in R × (0,∞), w(·, 0) = 0.

Hence,

w(x, t) = (D − 1)

∫ t

0

∫
R

K(x− y, t− s)uyy(y, s)dyds

= (D − 1)

∫ t

0

∫
R

Kx(x− y, t− s)uy(y, s)dyds.

It then follows that

|w(x, t)| ≤ C(1 −D)
{
J(x, t) + J(−x, t)

}
,

where

J(x, t) =

∫ t

0

∫
R

|Kx(x− y, t− s)|e−μ|y−m(s)|dyds

=

∫ t

0

∫
R

|Kx(x− y −m(t− s), s)| e−μ|y|dyds.

To complete the proof, it suffices to show the following:

J(m(t) − z, t) ≤ C√
z

∀ z > 0.

Let z > 0 and t > 0 be arbitrary. Note that

J(m(t) − z, t) =

∫ t

0

∫
R

|Kx(m(t) −m(t− s) − z − y, s)| e−μ|y|dyds,

Kx(x, s) = −xe−x2/(4s)

4
√
πs3/2

.

We divide the integral in s into the following three intervals.
(i) s ∈ [z/4, 2z]. For each fixed y ∈ R, we have

∫ 2z

z/4

|Kx(m(t) −m(s) − z − y, s)|ds

≤
∫ 2z

z/4

|m(t) −m(t− s) − y − z|
4
√
π[z/4]3/2

e−|m(t)−m(t−s)−y−z|2/(4z)ds.
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We use the change of variable from s to η defined by

η =
m(t) −m(t− s) − z − y

z
, dη =

m′(t− s)

z
ds =

2 − 3
3+(t−s)

z
ds ≥ ds

z
.

We find that∫ min{2z,t}

z/4

|Kx(m(t) −m(t− s) − z − y, s)|ds ≤ 2√
πz

∫
R

ηe−η2

dη =
2√
πz

.

It then follows that∫ min{2z,t}

z/4

∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dsdy ≤ 2√
πz

∫
R

e−μ|y|dy ≤ 4

μ
√
πz

.

(ii) s > 2z. We write∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dy =

∫
|y|>s/6

+

∫
|y|<s/6

.

For the first integral,∫
|y|>s/6

≤ e−μs/6

∫
R

|Kx(m(t) −m(t− s) − z − y, s|dy

= 2e−μs/6K(0, s) =
e−μs/6

√
πs

.

For the second integral, we first notice that |m(t)−m(t−s)| ≥ s (since 1 ≤ m′ < 2
on [0,∞)). Hence, when |y| < s/6,

|m(t) −m(t− s) − z − y| ≥ |m(t) −m(t− s)| − z − y ≥ s− s

2
− s

6
=

s

3
.

Consequently,∫
|y|<s/6

|Kx|e−μ|y|dy ≤
∫
|x|>s/3

|Kx(x, s)|dx = 2K
(s

3
, s
)

=

√
3e−s/36

√
πs

.

Thus, ∫ t

z

∫
R

|Kx(m(t) −m(t− s) − z − y, s)| e−μ|y|dyds

≤
∫ ∞

z

(
e−μs/6

√
πs

+

√
3e−s/36

√
πs

)
ds = O(e−z/36) + O(e−μz/6).

(iii) 0 < s < z/4. We write∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dy =

∫
|y|>z/4

+

∫
|y|<z/4

.

The first integral is easy to estimate:∫
|y|>z/4

≤ e−μz/4

∫
R

|Kx|dy =
e−μz/4

√
πs

.
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For the second integral, we notice that |m(t)−m(t−s)| ≤ 2s ≤ z/2, so that when
|y| ≤ z/4, we have

|m(t) −m(t− s) − z − y| ≥ z − |m(t) −m(t− s)| − |y| ≥ z − z/2 − z/4 = z/4.

Also, |m(t) −m(t− s) − z − y| < 2z. Hence,

|Kx(m(t) −m(t− s) − z − y, s)| ≤ ze−z2/(64s)

2
√
πs3/2

.

It follows that∫
|y|<z/4

|Kx|e−μ|y|dy ≤ ze−z2/(64s)

2
√
πs3/2

∫
R

e−μ|y| =
ze−z2/(64s)

μ
√
πs3/2

.

Thus,∫ min{z/4,t}

0

∫
R

|Kx|e−μ|y|dy ≤
∫ z/4

0

ze−z2/(64s)ds

μ
√
πs3/2

+

∫ z

0

e−μz/4ds√
πs

=

∫ ∞

√
z/8

4

μ
√
π
e−η2

dη +

√
ze−μz/4

√
π

= O(e−μz/8).

Combining all these estimate, we then obtain the assertion of the lemma.
Proof of Theorem 1.1. The theorem follows directly from the results of Theorem

2.3 and Lemmas 4.1 and 4.2.
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A THERMAL ELASTIC MODEL FOR DIRECTIONAL CRYSTAL
GROWTH WITH WEAK ANISOTROPY∗

JINBIAO WU† , C. SEAN BOHUN‡ , AND HUAXIONG HUANG§

Abstract. In this paper we present a semi-analytical thermal stress solution for directional
growth of type III–V compounds with small lateral heat flux and weak anisotropy. Both geometric
and material anisotropy are considered, and our solution can be applied to crystals grown by various
growth techniques such as the Czochralski (Cz) method. The semi-analytical nature of the solution
allows us to compute thermal stress in crystals with weak anisotropic effects much more efficiently,
compared to a full 3D simulation. Examples are given for crystals pulled in a variety of seed orien-
tations. Our results show that the geometric effect is the dominant one while the effect of material
anisotropy on thermal stress is secondary.

Key words. crystal growth, asymptotic expansion, anisotropy, facet formation, thermal stress,
Czochralski technique

AMS subject classifications. 74A10, 74E10, 74F05, 74H10, 80A22, 82D25, 82D37
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1. Introduction. Directional growth techniques such as the Czochralski (Cz)
method are frequently used to produce high quality single crystals. By dipping a small
seed crystal into a pool of molten material in the crucible and carefully controlling
the heat balance inside the grower, a large crystal can be grown by pulling the crystal
away from the melt in a slow and steady fashion. The pulling rod and the crucible
are normally rotated in opposite directions during the growth period. For a more
detailed account of the Cz and other techniques, we refer the readers to the extremely
informative handbooks by Hurle [5]. Almost perfectly cylindrical crystals are grown
for silicon and other semiconductor materials despite their internal structure and
material anisotropy. For these crystals, the effect of material anisotropy on thermal
stress has been investigated by assuming an axisymmetric cylindrical shape [3, 9, 11,
12]. On the other hand, anisotropic effects such as facets are often visible on the
surface of binary compound semiconductor crystals grown by these methods [8]. The
effect of a noncylindrical shape on the thermal stress is therefore of practical interest.

In a previous paper, we developed a thermal stress model for directional growth
of crystals with facets [13]. For constrained growth such as that of the Cz method,
a lateral growth model consistent with the lattice structure of type III–V crystals
was proposed. This model is capable of predicting facet formation on the lateral
surface, which qualitatively resembles experimental observations [8] of indium anti-
monide (InSb) crystals. Furthermore, under the assumptions of weak lateral heat flux,
we have derived perturbation solutions for temperature and related thermal stress for
faceted crystals by neglecting material anisotropy.
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The effect of material anisotropy on thermal stress, on the other hand, could
be significant for cylindrical crystals with an underlying cubic lattice structure, as
shown in [11, 12]. It is, however, not clear whether the conclusions in [11, 12] hold
for InSb crystals grown in a noncylindrical shape, especially those with facets forming
on the lateral surface. The purpose of this paper is to investigate the combined effect
of the geometric and material anisotropy on thermal stress inside the conic crystals
considered in [13]. We start with the description of the mathematical model and the
thermal problem in section 2. Since the growth model and temperature solution are
identical to those in [13], they are presented without detailed derivation.

The main results of this paper are given in section 3, where the detailed derivation
of the thermal stress with anisotropic elastic constants is presented. We show that
the thermal stress can be expanded into an asymptotic series with respect to ω, a
measure of the material anisotropy, and in Appendix A we prove that the series
converges. As a result, a systematic approach can be devised to compute thermal
stress to arbitrary order with the zeroth order solution corresponding to the case
of isotropic material constants. In section 4, we present computational results for
crystals pulled in a variety of seeding orientations. The results show that the effect
of material anisotropy could be significant when the geometric effect is absent. The
geometric effect, when it is present, usually dominates.

2. Model. The basic assumptions of our model are that the lateral heat flux is
small and the material and geometric anisotropic effects are weak, following [1, 13].
To simplify the discussion, we assume that lateral heat transfer from the crystal to the
background is known. We also assume that the heat flux from the melt is fixed while
the pull rate can be adjusted in order to grow a crystal with a desirable lateral profile,
e.g., a conic crystal. In principle, we could incorporate the effect of the melt flow by
coupling the heat transfer process in the crystal with that in the melt. However, to
focus on the thermal stress in the crystal, we neglect the effect of the melt flow and
assume that the axial heat flux from the melt at the crystal/melt interface does not
vary in the cross-sectional (radial and circumferential) directions.

2.1. Thermal problem. Within the crystal Ω, the temperature T (x, t) satisfies
the heat equation,

(2.1a) ρscs
∂T

∂t
= ∇ · (κs∇T ) , x ∈ Ω, t > 0,

where ρs, cs, and κs are the density, specific heat, and thermal conductivity of the
crystal, respectively. The boundary conditions on the crystal/gas interface Γg, and
the chuck (holding the seed), are,

−κs
∂T

∂n
= hgs(T − Tg) + hF (T 4 − T 4

b ), x ∈ Γg,(2.1b)

κs
∂T

∂z
= hch(T − Tch), z = 0,(2.1c)

where hgs and hch represent the heat transfer coefficients of the crystal/gas and crys-
tal/chuck interfaces; hF is the radiation heat transfer coefficient; and Tg, Tch, and Tb

denote the ambient gas temperature, the chuck temperature, and background tem-
perature, respectively.

The crystal/melt interface is denoted ΓS and is where T = Tm, which is the
melting temperature. Explicitly we denote the melting isotherm by

(2.1d) z − S(x, t) = 0, x ∈ ΓS ,
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with S denoting the crystal/melt interface. The motion of the interface of the phase
transition is governed by the Stefan condition,

(2.1e) ρsL|vn| = κs
∂T

∂n

∣∣∣∣
z→S−

− ql,n, |vn| = vn =
∂S

∂t
k · n,

where L is the latent heat, |vn| is the speed of the interface in the direction of its
outward normal n, ql,n is the heat flux from the melt normal to the interface, and
∂S/∂t is the speed of the interface S in the k direction.

2.2. Crystal shape. For the purpose of computing thermal stress, we assume
that the shape of the crystal is self-similar in that the crystal radius R(φ, z) scales
with its angular average R̄(z). Such crystals are indeed seen experimentally [8], and
representing the angular dependence with a truncated Fourier series gives

(2.2a) R(φ, z) = R̄(z)

(
1 + ε

m∑
k=1

βk cos (nkφ + δk)

)
= R̄(z) (1 + ελ(φ)) .

In this expression 2πR̄(z) =
∫ π

−π
R(φ, z) dφ, m, n1 < n2 < · · · < nm are positive

integers (m = 1, n1 = 4 for fourfold symmetry); the δk ∈ [0, 2π) are chosen to ensure
that βk > 0. Note that only those nk corresponding to βk > 0 are represented in the
series. The parameter ε ≥ 0 is a measure of the anisotropy, and choosing the βk so
that

∑m
k=1 β

2
k = 1 yields the expression

(2.2b) ε2 =
1

πR̄(z)2

∫ π

−π

(
R(φ, z) − R̄(z)

)2
dφ.

We will assume that ε < 1, which will certainly1 be the case if maxφ R(φ, z) < 3
2 R̄(z).

The βk, δk, and ε values for the cross sections used in section 4 can be found in [13].
Of particular interest are the angular integrals

Ii,j(ε) =

∫ 2π

0

(1 + ελ)
i
(
(1 + ελ)

2
+ (ελ′)

2
)j/2

dφ(2.2c)

= 2π +
π

2

[
(i + j)(i + j − 1) + j

m∑
k=1

n2
kβ

2
k

]
ε2 + O(ε3),(2.2d)

where i, j ∈ Z and λ′ = dλ/dφ. Both the enclosed area (A) and circumference (s)
of R will be utilized in what follows. For any fixed z it is an easy exercise to verify
A(z) = R̄2I2,0/2 and s(z) = R̄I0,1.

2.3. Nondimensionalization. For simplicity, we assume that the gas temper-
ature Tg is constant. Defining the Biot number by

(2.3) Bi =
h̄gsR̃

κs
,

where R̃ is a characteristic radius of the crystal and h̄gs is the mean value of hgs, we
adopt the following scalings:

r = R̃r̂, R(φ, z) = R̃R̂(φ̂, ẑ), Bi1/2 z = R̃ẑ, Bi1/2 S(r, φ, t) = R̃Ŝ(r̂, φ̂, t̂),

St =
L

csΔT
, ΔT = Tm − Tg, T = Tg + ΔTΘ, t =

St R̃2ρscs
κs Bi

t̂,

1This is simply a consequence of the positivity of R and the mean value theorem applied to
(2.2b).
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with φ = φ̂. Here variables with hats (ˆ) are the nondimensional ones. In terms of
these variables, the heat equation (2.1a) becomes (after dropping hats)

(2.4a)
Bi

St
Θt =

1

r
(rΘr)r +

1

r2
Θφφ + Bi Θzz, x ∈ Ω, t > 0,

and boundary conditions (2.1b)–(2.1d) under the nondimensional scaling become

−Θr +
1

R2
RφΘφ + BiRzΘz = BiF (Θ)

(
1 +

R2
φ

R2
+ BiR2

z

)1/2

, x ∈ Γg,(2.4b)

Θz(0, φ, t) = δ (Θ(0, φ, t) − Θch) ,(2.4c)

Θ = 1, x ∈ ΓS ,(2.4d)

where Θch = (Tch − Tg)/ΔT and

F (Θ) =
hF (T 4

g − T 4
b )

h̄gsΔT
+

(
β(z) +

4hF

h̄gs
T 3
g

)
Θ +

hF

h̄gs
ΔT (6T 2

g + 4TgΔTΘ + ΔT 2Θ2)Θ2,

β(z) = hgs/h̄gs, and δ = Bi1/2 hch/h̄gs. The crystal/melt interface advances according
to the Stefan condition (2.1e), which in nondimensional coordinates becomes

Θz −
1

Bi
SrΘr −

1

Bi r2
SφΘφ = γ + St, γ =

qlR̃

Bi1/2 κsΔT
,(2.4e)

where γ (ql) is the nondimensional (resp., dimensional) heat flux in the liquid across
the crystal/melt interface in the axial direction.

2.4. Temperature solution. Equations (2.4a) and (2.4b) strongly suggest that
the temperature Θ is independent of r and φ to leading order. If true, then the crys-
tal/melt interface S is also independent of r and φ to leading order. These observations
motivate the following approximates:

Θ ∼ Θ0(z, t) + Bi Θ1(r, φ, z, t) + Bi2 Θ2(r, φ, z, t) + · · · ,
S ∼ S0(t) + BiS1(r, φ, t) + Bi2 S2(r, φ, t) + · · · .

(2.5)

We substitute them into the scaled model, expand in powers of Bi, and simplify and
collect terms of the same orders.

The zeroth order problem is given by2

1

St
Θ0,t − Θ0,zz =

2

R̄

(
R̄′Θ0,z −

I0,1
I2,0

F (Θ0)

)
, 0 < z < S0(t), t > 0,(2.6a)

Θ0,z(0, t) = δ(Θ0(0, t) − Θch), t ≥ 0,(2.6b)

Θ0(S0(t), t) = 1, t ≥ 0,(2.6c)

S′
0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0, t > 0.(2.6d)

The first order solution is given by

(2.7a) Θ1(r, φ, z, t) = Θa
1(z, t) + r2Θb

1(z, t) + εΘc
1(r, φ, z, t) + O(ε2),

2For weak anisotropy, I0,1/I2,0 = 1 + O(ε2).
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where, keeping only those terms to O(ε),

Θb
1(z, t) =

1

2R̄

(
R̄′Θ0,z − F (Θ0)

)
,(2.7b)

Θc
1(r, φ, z, t) = R̄F (Θ0)

m∑
k=1

βk

nk

( r

R̄

)nk

cos(nkφ + δk).(2.7c)

These last two terms are completely determined by Θ0 and R̄. The first term Θa
1(z, t)

can be found in [13] and is not repeated here since it is not relevant to the stress
computation.

3. Thermal stress. We now turn our attention to thermal stress. In the fol-
lowing, the general case in 3D space is discussed first, followed by a more detailed
discussion using the plane-strain assumption.

3.1. Thermoelasticity equations for solids with cubic anisotropy. We
consider a 3D elasticity problem for a crystal with cubic symmetry as in [6]. In this
case the stresses σ = (σxx, σyy, σzz, σyz, σxz, σxy)

T and strains e = (exx, eyy, ezz, 2eyz,
2exz, 2exy)

T are related through

(3.1) σ = Ce, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We denote the displacement vector by w and the related strain by e = S(w) so
that the related stress tensor is given by σ = DS(w). For an anisotropic material,
the quantity H = 2C44 − C11 + C12 �= 0. By defining C = C0 − Ca, where Ca =
H/4 × diag(2, 2, 2,−1,−1,−1), the matrix

(3.2a) C0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

C0
11 C0

12 C0
12

C0
12 C0

11 C0
12

C0
12 C0

12 C0
11

C0
44

C0
44

C0
44

⎞
⎟⎟⎟⎟⎟⎟⎠

is isotropic and the quantities E and ν in terms of C0
ij are given by [10]

(3.2b) E =
(C0

11 + 2C0
12)(C

0
11 − C0

12)

C0
11 + C0

12

, ν =
C0

12

C0
11 + C0

12

.

By adopting the scaling in section 2.3 for r and T in addition to (α is the thermal
expansion coefficient)

w = R̃αΔT ŵ, σij =
αΔTE

1 − ν
σ̂îĵ , eij = αΔT êîĵ ,

we set

Cij =
E

1 − ν
Ĉîĵ , H =

E

1 − ν
Ĥ
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and obtain (after dropping hats)

C0
11 =

(1 − ν)2

(1 + ν)(1 − 2ν)
, C0

12 =
ν(1 − ν)

(1 + ν)(1 − 2ν)
, C0

44 =
1

2
(C0

11 − C0
12),(3.2c)

C11 + 2C12 =
1 − ν

1 − 2ν
− H

2
.(3.2d)

According to C = C0−Ca, we have the splitting of the operator D, D = D0−Da.
With this notation, the linear operators ∇ · σ and σ · n take the form

L := ∇ · (DS) = ∇ · (D0S) −∇ · (DaS) = L0 − La,

B := (DS) · n = (D0S) · n − (DaS) · n = B0 − Ba,

and the thermoelastic boundary value problem can be stated in the form

L(w) = F, x ∈ Ω, t > 0,(3.3a)

B(w) = g, r = R(φ, z),(3.3b)

where

F = (C11 + 2C12)∇Θ =

(
1 − ν

1 − 2ν
− H

2

)
∇Θ, g =

(
1 − ν

1 − 2ν
− H

2

)
Θn,

with n denoting the outward normal of the surface r = R(φ, z). The total stress
contains an extra diagonal term related to the scaling with respect to the isotropic
quantities E and ν so that

(3.4) σtot,aniso
ij = σij −

(
1 − ν

1 − 2ν
− H

2

)
Θδij .

We assume that the displacement w can be written as
∑n

k=0 wk. The following
procedure defines the wk under the assumption that wk+1 = Nwk for some linear
operator N . To solve for w(x) in (3.1) we begin by finding the displacement w0 given
by

L0(w0) = F, x ∈ Ω, t > 0,(3.5a)

B0(w0) = g, r = R(φ, z),(3.5b)

which is the displacement found in [13], multiplied by a factor of μ = 1 − H
2

1−2ν
1−ν .

Having defined w0, we denote by wk+1 = Nwk, with k ≥ 0, the solution to

L0(wk+1) = La(wk), x ∈ Ω, t > 0,(3.6a)

B0(wk+1) = Ba(wk), r = R(φ, z).(3.6b)

Continuing this process, we have for w(x) in (3.1)

(3.7) w = w0 + Nw0 + N 2w0 + · · · + Nnw0 + · · · .

Since ‖N‖ ≤ ω in a suitable norm, where ω = |H|/2
C11−C12+H/2 = |2C44−C11+C12|

2C44+C11−C12
< 1 is

an anisotropic factor, the series converges and an error can be estimated when (3.7)
is replaced by a finite sum; cf. Appendix A. For typical cubic anisotropic materials,
ω ≈ 1/3 [2].
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Vigdergauz and Givoli [11, 12] have discussed the fourfold symmetry case (corre-
sponding to the [001] pulling direction in our case) for a given symmetric temperature
field. However, their splitting is not optimal and is valid only for crystals with weak
cubic anisotropy. Our procedure can be applied to elastic stress computations with
cubic anisotropy under a relatively general setting for a wide variety of materials.

Converting the stress-strain relationship to polar coordinates, we note that C0

will not change, so we will concern ourselves only with Ca. Corresponding to (3.1) we
let σcyc = (σrr, σφφ, σzz, σφz, σrz, σrφ)T, ecyc = (err, eφφ, ezz, 2eφz, 2erz, 2erφ)T. The
components of Ccyc are given by

Ccyc,ijkl =
H

2
(ai1aj1ak1al1 + ai2aj2ak2al2 + ai3aj3ak3al3) −

H

4
(ai2aj3ak2al3

+ ai2aj3ak3al2 + ai3aj2ak2al3 + ai3aj2ak3al2 + ai1aj3ak1al3 + ai1aj3ak3al1

+ ai3aj1ak1al3 + ai3aj1ak3al1 + ai1aj2ak1al2 + ai1aj2ak2al1 + ai2aj1ak1al2

+ ai2aj1ak2al1)

with aij the cosine of the angle between x′
i (new axes) and xj (old axes) [10]. Further-

more, the first two and last two suffixes are abbreviated into a single suffix according
to the scheme 11 → 1; 22 → 2; 33 → 3; 23, 32 → 4; 13, 31 → 5; 12, 21 → 6. For
example, Ccyc,1111 ≡ Ccyc,11 and Ccyc,1231 ≡ Ccyc,65.

For the [001] pulling direction, we choose the z-direction as [001], and the direc-
tions [100] and [010] correspond to φ = 0 and φ = π/2, respectively, so that

a
[001]
ij =

⎛
⎝ cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎞
⎠ .

For the [1̄1̄1̄] pulling direction, the z-direction is [1̄1̄1̄] and we choose φ = 0 and
φ = π/2 to correspond to [21̄1̄] and [01̄1], respectively. In this case,

a
[1̄1̄1̄]
ij =

⎛
⎜⎝

2√
6

cosφ − 1√
6

cosφ− 1√
2

sinφ − 1√
6

cosφ + 1√
2

sinφ

− 2√
6

sinφ 1√
6

sinφ− 1√
2

cosφ 1√
6

sinφ + 1√
2

cosφ

− 1√
3

− 1√
3

− 1√
3

⎞
⎟⎠ .

Finally, for the [2̄11] pulling direction, the z-direction is [2̄11], φ = 0 corresponds to
[111], and φ = π/2 corresponds to [011̄] yielding

a
[2̄11]
ij =

⎛
⎜⎝

1√
3

cosφ 1√
3

cosφ + 1√
2

sinφ 1√
3

cosφ− 1√
2

sinφ

− 1√
3

sinφ − 1√
3

sinφ + 1√
2

cosφ − 1√
3

sinφ− 1√
2

cosφ

− 2√
6

1√
6

1√
6

⎞
⎟⎠ .

Each of these transformations changes the form of Ccyc, and in general we have
the form Ccyc =

∑
k Ccyc,k, where each matrix with subscript k consists of only

elements ck = cos(kφ), sk = sin(kφ) and zero. The detailed expressions are given
in Appendix B. Since the anisotropic part of the constitutive relation Ca

cyc can be
decomposed into components Ca

cyc,k consisting of only sk and ck, we can systematically
construct higher order approximations. This is accomplished by first determining the
solution for a generic Ca

cyc,k, and then computing an appropriate linear combination
of all the solutions for a particular pulling direction. To illustrate the procedure, we
now discuss a simpler problem, where we use the plane-strain assumption.
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3.2. Plane-strain thermal stress for solids with cubic anisotropy. As
in [13], we assume that the displacement is only in the (r, φ) plane so that ecyc =
(err, eφφ, 0, 0, 0, 2erφ)T. We will also reintroduce the notation (Ck,Sk) = (cos(nkφ +

δk), sin(nkφ + δk)) and its generalizations (C,S) and (C̃k, S̃k) with the k suffix sup-
pressed, and ñk replacing nk, respectively.

Starting with the isotropic case, where w0 is the solution of (3.5), when ε is small
it is shown in [13] that w0 can be approximated by

(3.8) w0 ∼
(
rD

(1)
r + r3D

(3)
r

0

)
+ rnk−1

(
D−

r Ck
D−

φ Sk

)
+ rnk+1

(
D+

r Ck
D+

φ Sk

)
,

where

D(1)
r = μ

(
1 + ν

1 − ν

)
C1(1 − 2ν), D(3)

r = μ

(
1 + ν

1 − ν

)
C1

R̄2
,(3.9a)

D−
r = μ

(
1 + ν

1 − ν

)
C1εβk

R̄nk−2
nk, D−

φ = −μ

(
1 + ν

1 − ν

)
C1εβk

R̄nk−2
nk,(3.9b)

D+
r = μ

(
1 + ν

1 − ν

)
C1εβk

R̄nk
(2 − 4ν − nk) +

4μ(1 + ν)

nk(nk + 1)

C2εβk

R̄nk
,(3.9c)

D+
φ = μ

(
1 + ν

1 − ν

)
C1εβk

R̄nk
(4 − 4ν + nk) +

4μ(1 + ν)

nk(nk + 1)

C2εβk

R̄nk
,(3.9d)

where μ = 1 − H
2

1−2ν
1−ν (see section 3.1).

Having determined w0, w is given by the expansion (3.7). Each of the terms in
the expansion is a solution of the boundary value problem (3.6). To illustrate the
procedure, in the following we construct w1 = Nw0.

Due to the linearity of the equilibrium equation, we can pick a representative
v = (Drr

k cos(nφ+ δ), Dφr
k sin(nφ+ δ))T with n ≥ 0, k ≥ 1. From this v, the strain

S(v) =

⎛
⎝ err

eφφ
2erφ

⎞
⎠ =

⎛
⎝ kDrr

k−1C
(Dr + nDφ)rk−1C

(kDφ −Dφ − nDr)r
k−1S

⎞
⎠ ,

and the stress due to the anisotropy in the material parameters is given by Ca
cycS(v),

where the exact form of Ca
cyc depends on the orientation of the crystal. Expressions

(B.1)–(B.3) show that Ca
cyc is a sum of terms, Ca

cyc,m, characterized by cosmφ and
sinmφ. Therefore, Ca

cyc,mS(v) can be expressed as a sum with terms of the form

rk−1(cos(ñφ + δ), cos(ñφ + δ), sin(ñφ + δ))T, ñ = n±m. So, we need only consider
the problem

∂σrr

∂r
+

1

r

∂σrφ

∂φ
+

σrr − σφφ

r
= frr

k−2C̃, r < R̄(z),(3.10a)

∂σrφ

∂r
+

1

r

∂σφφ

∂φ
+

2σrφ

r
= fφr

k−2S̃, r < R̄(z),(3.10b)

with integers ñ ≥ 0, k ≥ 1, and

σrr = grr
k−1C̃, r = R̄(z),(3.11a)

σrφ = gφr
k−1S̃, r = R̄(z),(3.11b)

corresponding to (3.6) with the higher order terms omitted.
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To determine the solution to (3.10)–(3.11) we take a two-step approach. We begin
by finding a particular solution wp which satisfies (3.10) but not necessarily (3.11).
Next, we find wh which solves the homogeneous version of (3.10) and the modified
boundary condition

σh
rr = grr

k−1C̃ − σp
rr := g̃rr

k−1C̃, r = R̄(z),(3.12a)

σh
rφ = gφr

k−1S̃ − σp
rφ := g̃φr

k−1S̃, r = R̄(z),(3.12b)

where σp
rr and σp

rφ are stress components corresponding to wp. Accordingly, we find

(3.13a) wp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+ν
(1−ν)2

(
arr

kC̃
aφr

kS̃

)
, (k ± ñ)2 �= 1,

1+ν
(1−ν)2

(
(br + bφζ ln r)rkC̃

(bφr
k ln rS̃)

)
, (k ± ñ)2 = 1,

where

ar =
((1 − 2ν)(k2 − 1) − 2ñ2(1 − ν))fr + ñ(3 − 4ν − k)fφ

((k − ñ)2 − 1)((k + ñ)2 − 1)
,(3.13b)

aφ =
ñ(3 − 4ν + k)fr + (2(1 − ν)(k2 − 1) − (1 − 2ν)ñ2)fφ

((k − ñ)2 − 1)((k + ñ)2 − 1)
,(3.13c)

br =

⎧⎨
⎩

− (3−4ν)(ñ−1)(fr+fφ)+(fr−fφ)
8ñ(ñ−1) , k = ñ− 1,

(3−4ν)ñ2(fr+fφ)+8(1−ν)(1−2ν)(ñ+1)(fr−fφ)
8ñ(ñ+1)(ñ+4−4ν) , k = ñ + 1,

(3.13d)

bφ =

⎧⎨
⎩
− (ñ−1)(fr+fφ)+(3−4ν)(fr−fφ)

8(ñ−1) , k = ñ− 1,

(ñ+4−4ν)(fr+fφ)
8(ñ+1) , k = ñ + 1,

(3.13e)

ζ =

{
−1, k = ñ− 1,

− ñ−2+4ν
ñ+4−4ν , k = ñ + 1.

(3.13f)

The special case when ñ = 0 and k = 1 takes the form wp = 1+ν
2(1−ν)2 r ln r ×

((1 − 2ν)fr cos δ, 2(1 − ν)fφ sin δ)T. Corresponding to wp are the stress components

(3.14a)

⎛
⎜⎜⎜⎝
σp
rr

σp
φφ

σp
rφ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1−ν
(1+ν)(1−2ν) ((k − kν + ν)ar + νñaφ)rk−1C̃
1−ν

(1+ν)(1−2ν) ((1 − ν + kν)ar + (1 − ν)ñaφ)rk−1C̃
1−ν

2(1+ν) (−ñar + (k − 1)aφ)rk−1S̃

⎞
⎟⎟⎟⎠

for (k ± ñ)2 �= 1 and

(3.14b)

⎛
⎜⎜⎜⎝
σp
rr

σp
φφ

σp
rφ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
(1−ν)(1−2ν)crrr

k−1C̃
1

(1−ν)(1−2ν)cφφr
k−1C̃

1
2(1−ν)crφr

k−1S̃

⎞
⎟⎟⎟⎠
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for (k ± ñ)2 = 1, where

crr = (k − kν + ν)(br + bφζ ln r) + bφ((1 − ν)ζ + νñ ln(r)),(3.14c)

cφφ = (1 − ν + kν)(br + bφζ ln r) + bφ(νζ + (1 − ν)ñ ln(r)),(3.14d)

crφ = −ñ(br + bφζ ln r) + bφ(1 + (k − 1) ln r).(3.14e)

For the special case when ñ = 0 and k = 1, we have

(σp
rr, σ

p
φφ, σ

p
rφ)T =

1

2(1 − ν)
(fr(ln r + 1 − ν) cos δ, fr(ln r + ν) cos δ, fφ(1 − ν) sin δ)T.

Using the technique described in [13], we can find wh which solves the homoge-
neous version of (3.10) and the boundary condition (3.12),

(3.15) wh =
1 + ν

2(1 − ν)

⎛
⎜⎝
(

(2−ñ−4ν)(g̃r+g̃φ)rñ+1

(ñ+1)R̄ñ +
(ñg̃r+(ñ−2)g̃φ)rñ−1

(ñ−1)R̄ñ−2

)
C̃(

(4+ñ−4ν)(g̃r+g̃φ)rñ+1

(ñ+1)R̄ñ − (ñg̃r+(ñ−2)g̃φ)rñ−1

(ñ−1)R̄ñ−2

)
S̃

⎞
⎟⎠ .

The corresponding stress components are given by

(3.16)

⎛
⎜⎜⎜⎝
σh
rr

σh
φφ

σh
rφ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
(2−ñ)(g̃r+g̃φ)rñ

2R̄ñ +
(ñg̃r+(ñ−2)g̃φ)rñ−2

2R̄ñ−2

)
C̃(

(2+ñ)(g̃r+g̃φ)rñ

2R̄ñ − (ñg̃r+(ñ−2)g̃φ)rñ−2

2R̄ñ−2

)
C̃(

ñ(g̃r+g̃φ)rñ

2R̄ñ − (ñg̃r+(ñ−2)g̃φ)rñ−2

2R̄ñ−2

)
S̃

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the special case when ñ = 0 (or ñ = 1), we require g̃φ = 0 (or g̃r = g̃φ) for the
homogeneous elasticity problem to be well-posed. The solution and the corresponding
stress components are given by (3.15) and (3.16) without the term related to rñ−1

and rñ−2, respectively.
In the following we find the explicit form of the expression w1 = Nw0 for the

[1̄1̄1̄] pulling direction. This expression generates the first order corrections to the
stress of an anisotropic cubic crystal. The outline of the procedure is also given for
the [001] and [2̄11] seeding orientations.

3.2.1. [1̄1̄1̄] pulling direction. To treat this case systematically we decompose
w0 into five separate quantities given by

w0,A =

(
D

(1)
r r
0

)
, w0,B =

(
D

(3)
r r3

0

)
, w0,C = D−

r r
k

(
Ck
−Sk

)
,

w0,D =
D+

r + D+
φ

2
rk

(
Ck
Sk

)
, w0,E =

D+
r −D+

φ

2
rk

(
Ck
−Sk

)
.

For w0,C , k = nk − 1, while for both w0,D and w0,E , k = nk + 1. What characterizes
the [1̄1̄1̄] direction is the anisotropic stiffness given by Ca. From (B.1), we have in
the case of plane-strain Ca = Ca

0 , where

Ca,[1̄1̄1̄] =
H

12

⎛
⎝0 2 0

2 0 0
0 0 −1

⎞
⎠ ,
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and as a result ñ = n for the [1̄1̄1̄] direction.
For the first component, w0,A, we find from (3.6a) and (3.10) that

(3.17a) La(w0,A) = ∇ · Ca,[1̄1̄1̄]S(w0,A) =

(
0
0

)
= rk−2

(
frC
fφS

)
,

and for the boundary condition, (3.6b) and (3.11) give

(3.17b) Ba(w0,A) = Ca,[1̄1̄1̄]S(w0,A) · n =
H

6

(
D

(1)
r

0

)
= R̄k−1

(
grC
gφS

)
,

where k = 1, δ = 0, and n = ñ = nk = 0. Setting ΛA = H
6 D

(1)
r we identify fr =

fφ = 0, gr = ΛA, and gφ = 0. The quantities fr and fφ applied to (3.13)–(3.14) give
the particular solution for the stress as σp

ij,A = 0, which through (3.12) indicates that

g̃r = ΛA and g̃φ = 0. For the homogeneous solution, we solve L0(w1,A) = La(w0,A)
with the boundary condition B0(w1,A) = Ba(w0,A) and by using (3.16) to determine
the stress, which gives

(3.17c)

⎛
⎜⎜⎜⎝
σh
rr,A

σh
φφ,A

σh
rφ,A

⎞
⎟⎟⎟⎠ = ΛA

⎛
⎝1

1
0

⎞
⎠ .

For w0,B , we have k = 3, δ = 0, and n = ñ = nk = 0, and continuing in an
analogous fashion we find that

La(w0,B) =

(
0
0

)
, Ba(w0,B) = R̄2

(
gr
gφ

)
=

H

6
R̄2

(
D

(3)
r

0

)
.(3.18a)

As with the previous case, we find σp
ij,B = 0, and defining ΛB = H

6 D
(3)
r we identify

g̃r = gr = ΛB , and g̃φ = gφ = fr = fφ = 0. From (3.16) we have

(3.18b)

⎛
⎜⎜⎜⎝
σh
rr,B

σh
φφ,B

σh
rφ,B

⎞
⎟⎟⎟⎠ = ΛBR̄

2

⎛
⎝1

1
0

⎞
⎠ .

For w0,C , k = nk−1, n = ñ = nk, and defining ΛC = H
6 (1−nk)D

−
r we determine

La(w0,C) =

(
0
0

)
, Ba(w0,C) = ΛCR̄

nk−2

(
Ck
−Sk

)

so that fr = fφ = 0, σp
ij,C = 0, gr = g̃r = ΛC , and gφ = g̃φ = −ΛC . Applying (3.16)

we obtain

(3.19)

⎛
⎜⎜⎜⎝
σh
rr,C

σh
φφ,C

σh
rφ,C

⎞
⎟⎟⎟⎠ = ΛCr

nk−2

⎛
⎝ Ck
−Ck
−Sk

⎞
⎠ .



294 JINBIAO WU, C. SEAN BOHUN, AND HUAXIONG HUANG

The fourth component is w0,D and k = nk + 1, n = ñ = nk. By defining ΛD =
H
12 (nk + 1)(D+

r + D+
φ ) one has

La(w0,D) = nkΛDrnk−1

(
Ck
−Sk

)
, Ba(w0,D) = ΛDR̄nk

(
Ck
0

)

so that fr = −fφ = nkΛD, gr = ΛD, and gφ = 0. In this case the particular solution
for the stress is

(3.20a)

⎛
⎜⎜⎜⎝
σp
rr,D

σp
φφ,D

σp
rφ,D

⎞
⎟⎟⎟⎠ =

ΛDrnk

nk + 4 − 4ν

⎛
⎝2(nk + 1 − νnk)Ck

2(1 + νnk)Ck
−nk(1 − 2ν)Sk

⎞
⎠

so that (
g̃r
g̃φ

)
=

(1 − 2ν)ΛD

nk + 4 − 4ν

(
2 − nk

nk

)
,

and from (3.16)

(3.20b)

⎛
⎜⎜⎜⎝
σh
rr,D

σh
φφ,D

σh
rφ,D

⎞
⎟⎟⎟⎠ =

(1 − 2ν)ΛDrnk

nk + 4 − 4ν

⎛
⎝(2 − nk)Ck

(nk + 2)Ck
nkSk

⎞
⎠ .

The last component, w0,E , has k = nk + 1 and n = ñ = nk. For this case we
choose ΛE = H

12 (D+
φ −D+

r ) and find

La(w0,E) = nkΛEr
nk−1

(
Ck
−Sk

)
, Ba(w0,E) = ΛER̄

nk

(
(nk − 1)Ck
−nkSk

)

so that fr = −fφ = nkΛE , gr = (nk − 1)ΛE , and gφ = −nkΛE . Continuing,

(3.21a)

⎛
⎜⎜⎜⎝
σp
rr,E

σp
φφ,E

σp
rφ,E

⎞
⎟⎟⎟⎠ =

ΛEr
nk

nk + 4 − 4ν

⎛
⎝2(nk + 1 − νnk)Ck

2(1 + νnk)Ck
−nk(1 − 2ν)Sk

⎞
⎠ ,

yielding (
g̃r
g̃φ

)
=

(nk + 3 − 2ν)ΛE

nk + 4 − 4ν

(
nk − 2
−nk

)

and

(3.21b)

⎛
⎜⎜⎜⎝
σh
rr,E

σh
φφ,E

σh
rφ,E

⎞
⎟⎟⎟⎠ = − (nk + 3 − 2ν)ΛEr

nk

nk + 4 − 4ν

⎛
⎝(2 − nk)Ck

(nk + 2)Ck
nkSk

⎞
⎠ .
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Combining (3.17)–(3.21) and using both (3.9) and (3.4), we find the first order
correction to the total stress in the [1̄1̄1̄] direction accounting for cubic anisotropy as

⎛
⎜⎜⎜⎜⎜⎜⎝

σtot
rr

σtot
φφ

σtot
zz

σtot
rφ

⎞
⎟⎟⎟⎟⎟⎟⎠

[1̄1̄1̄]

=
2(1 − ν)ωC1

3

⎛
⎜⎜⎝

1
1
2ν
0

⎞
⎟⎟⎠− 4(1 − ν)2ωC1r

2

(1 + ν)(1 − 2ν)R̄2

⎛
⎜⎜⎝

1
1

1 + ν
0

⎞
⎟⎟⎠

− 4(1 − ν)εωC2

3(1 − 2ν)

βk

nk

( r

R̄

)nk

Ck

⎛
⎜⎜⎜⎜⎜⎝

2 1−ν+ν2

1+ν

2 1−ν+ν2

1+ν

3 − 5ν + 4ν2

0

⎞
⎟⎟⎟⎟⎟⎠

+
εωC1

3
βk(nk + 1)

( r

R̄

)nk

⎛
⎜⎜⎝

(nk + 2 − 4ν)Ck
(2 − nk − 4ν)Ck
4ν(1 − 2ν)Ck

−nkSk

⎞
⎟⎟⎠

− εωC1

3
βknk(nk − 1)

( r

R̄

)nk−2

⎛
⎜⎜⎝

Ck
−Ck
0

−Sk

⎞
⎟⎟⎠

(3.22)

with ω = 1+ν
1−ν

|H|
2 using the scaled version of H.

This procedure can of course be followed for any pulling direction provided the
form of Ca is known. It can also be applied to finding higher order corrections provided
that the solution (3.13) to (3.10) is generalized to allow a multiplicative factor of (ln r)l

for some integer l ≥ 1. In the following we simply state La and Ba for the [001] and
[2̄11] seeding orientations for each of the five components of the displacement (3.8).

3.2.2. [001] pulling direction. From (B.2) we have Ca = Ca
0 + Ca

4 with

Ca
0 =

H

4

⎛
⎝1 1 0

1 1 0
0 0 0

⎞
⎠ , Ca

4 =
H

4

⎛
⎝ c4 −c4 −s4

−c4 c4 s4

−s4 s4 −c4

⎞
⎠ .

Accordingly one finds that

La(w0,A) =

(
0
0

)
, Ba(w0,A) = 3ΛA

(
1
0

)
,

La(w0,B) = 12ΛBr

(
1
0

)
, Ba(w0,B), = 3ΛBR̄

2

(
2 + c4
−s4

)
.

The composite form of Ba(w0,B) shows that the condition (3.11) can generate more
than one term of a particular solution for a fixed version of (3.10). For the rest of



296 JINBIAO WU, C. SEAN BOHUN, AND HUAXIONG HUANG

the terms we extend the notation {Ck,Sk} to {Ck,m,Sk,m}, where Ck,m = cos((nk −
m)φ + δk), and Sk,m is updated similarly. In this notation, one has

La(w0,C) = 6(2 − nk)ΛCr
nk−3

(
Ck,4
Sk,4

)
, Ba(w0,C) = −3ΛCR̄

nk−2

(
Ck,4
Sk,4

)
,

La(w0,D) = 3nkΛDrnk−1

(
Ck
−Sk

)
, Ba(w0,D) = 3ΛDR̄nk

(
Ck
0

)
,

La(w0,E) = 3nkΛEr
nk−1

(
2(1 − nk)Ck,4 − Ck
2(1 − nk)Sk,4 + Sk

)
,

Ba(w0,E) = −3ΛER̄
nk

(
nkCk,4 + Ck

nkSk,4

)
.

3.2.3. [2̄11] pulling direction. From (B.3),

Ca,[2̄11] =
H

48

⎛
⎝3 − 4c2 − 7c4 9 + 7c4 2s2 + 7s4

9 + 7c4 3 + 4c2 − 7c4 2s2 − 7s4

2s2 + 7s4 2s2 − 7s4 −3 + 7c4

⎞
⎠ .

In the case for [2̄11], Ca is decoupled into Ca
0 , C

a
2 , C

a
4 , which is analogous to the [001]

case. Repeating the calculation we find

La(w0,A) =

(
0
0

)
,

Ba(w0,A) =
1

2
ΛA

(
3 − c2
s2

)
,

La(w0,B) = 3ΛBr

(
1 − c2
s2

)
,

Ba(w0,B) =
1

4
ΛBR̄

2

(
−7c4 − 6c2 + 9

7s4 + 4s2

)
,

La(w0,C) =
1

2
(nk − 2)ΛCr

nk−3

(
7Ck,4 + Ck,2
7Sk,4 − Sk,2

)
,

Ba(w0,C) =
1

4
ΛCR̄

nk−2

(
7Ck,4 + 2Ck,2 + 3Ck

7Sk,4 − 3Sk

)
,

La(w0,D) =
1

2
nkΛDrnk−1

(
−Ck,2 + 3Ck
−Sk,2 − 3Sk

)
,

Ba(w0,D) =
1

4
ΛDR̄nk

(
−Ck,2 − Ck,−2 + 6Ck

−Sk,2 + Sk,−2

)
,

La(w0,E) =
1

2
nkΛEr

nk−1

(
7(nk − 1)Ck,4 + (nk + 1)Ck,2
7(nk − 1)Sk,4 + (3 − nk)Sk,2

)
,

Ba(w0,E) =
1

4
ΛER̄

nk

(
7nkCk,4 + (2nk + 1)Ck,2 + Ck,−2 + 3(nk − 2)Ck

7nkSk,4 + Sk,2 − Sk,−2 − 3nkSk

)
.

In summary, the total stress is the sum of the stress components due to anisotropy
in the elastic constants obtained above, plus the sum for isotropic solids given in [13]
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multiplied by μ = 1 − H
2

1−2ν
1−ν , which is reproduced as follows for completeness:

⎛
⎜⎜⎜⎝
σtot,iso
rr

σtot,iso
φφ

σtot,iso
rφ

⎞
⎟⎟⎟⎠ = μC1

⎛
⎜⎝ 1 −

(
r
R̄

)2
1 − 3

(
r
R̄

)2
0

⎞
⎟⎠ + μεC1βknk(nk − 1)

( r

R̄

)nk−2

⎛
⎝ Ck
−Ck
−Sk

⎞
⎠

+ μεC1βk(nk + 1)
( r

R̄

)nk

⎛
⎝(2 − nk)Ck

(nk + 2)Ck
nkSk

⎞
⎠

(3.23a)

and

(3.23b) σtot,iso
zz = 2μC1

(
1−2

( r

R̄

)2
)

+4μεβk

(
ν(nk +1)C1−

1 − ν

nk
C2

)( r

R̄

)nk

Ck.

3.3. The von Mises and total resolved stresses. A characteristic amount
of stress can be assigned to each point with the von Mises stress, which satisfies

(3.24) 2σ2
vm = (σrr − σφφ)2 + (σrr − σzz)

2 + (σφφ − σzz)
2 + 6σ2

rφ

for a cubic material, where the σij are given by (3.23) and the corrections due to
material anisotropy, such as that given by (3.22).

The preferred method of dislocation generation in all III–V semiconductors is
through the generation of slip defects, in particular the {111}, 〈11̄0〉 slip system [1],
which consists of four glide planes within which atoms can slip in one of three direc-
tions. The resolved stress σrs, in a particular slip direction d within the glide plane
with normal n, is given by

σrs = dTUT
p QTσtotQUpn.

The matrix Up rotates vectors from the crystallographic frame to the solidification
frame. If the stress tensor σtot is expressed in the (r, φ, z) coordinates, Q is the
coordinate transformation matrix that takes (x, y, z) → (r, φ, z).

Plastic deformation of the crystal occurs if the stress in any of the 12 slip directions
exceeds a maximum value known as the critical resolved shear stress, σcrss. To leading
order, the actual density of dislocations suffered by the crystal is proportional to the
total excess stress at any given point within the crystal. In this sense, an estimation of
where dislocations are likely to occur is given by the distribution of the total absolute
resolved stress

(3.25) |σtot
rs | =

12∑
i=1

∣∣dT
i U

T
p QTσtotQUpni

∣∣ .
4. Numerical results. The physical parameters used for the simulations corre-

spond to InSb grown with the Cz method can be found in [1]. Numerical results are
obtained for a conic crystal with a half opening angle of ϕcone = 5◦ so that in non-
dimensional coordinates R̄(z) = R̄(Z0) + θ̂conez. The initial seed length is Z0 = 0.054
and the radius is R̄(Z0) = 1/6, corresponding to an initial dimensional radius and
length of 0.005 m and 0.01 m, respectively. Here we have taken hgs = h̄gs = 4

so that by using the characteristic radius R̃ = 0.03 m and thermal conductivity of
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Table 1

The maximum von Mises and resolved stress values for the three seed orientations using j
correction terms.

Maximum von Mises stress
j p = [001] p = [1̄1̄1̄] p = [2̄11]

0 3.32 × 10−3 7.23 × 10−3 3.83 × 10−3

1 2.75 × 10−3 6.80 × 10−3 3.89 × 10−3

12 2.85 × 10−3 6.89 × 10−3 4.04 × 10−3

Maximum resolved stress
j p = [001] p = [1̄1̄1̄] p = [2̄11]

0 9.23 × 10−3 1.34 × 10−2 8.78 × 10−3

1 7.66 × 10−3 1.20 × 10−2 8.78 × 10−3

12 8.15 × 10−3 1.21 × 10−2 8.84 × 10−3

4.57 W m−1K−1 we find Bi = 0.026. The final radius and length (not including the
seed) are 0.03 m and 0.286 m or 1 and 1.537, respectively, in scaled units. This gives

a value of θ̂cone = 0.542.
Θ0 is the solution of (2.6) in the pseudosteady case (1/St = 0) with δ = γ = 0

and I0,1/I2,0 = 1. Θ1 is given by (2.7) with hF = 0 so that F (Θ) = βΘ = Θ.
Since the stiffness constants for InSb are C11 = 6.70 × 104, C12 = 3.65 × 104, C44 =
3.02× 104 MPa, one has H = 2C44 −C11 +C12 = 2.99× 104 MPa and ω = 0.329. In
addition, the values of E and ν used in the calculation are represented by (3.2b),

E =
(C11 + 2C12 + H/2)(C11 − C12 + H/2)

C11 + C12 + H/2
= 5.95 × 104 MPa,(4.1a)

ν =
C12

C11 + C12 + H/2
= 0.308.(4.1b)

When combined with the parameters above, the dimensional constant for the stress
calculations is αΔTE/(1 − ν) ∼ 93.8 MPa, where α = 5.5 × 10−6K−1 and ΔT =
198.4 K [1].

We start with the expression for the displacement (3.8), which defines D(1), D(3),
D±, k, and n for the La(w0) and Ba(w0) expressions found in sections 3.2.1, 3.2.2,
and 3.2.3. The La(w0) defines fr, fφ, k, and ñ in (3.10), which gives σp

ij , and Ba(w0)

defines gr, gφ, k, and ñ in (3.11), which gives σh
ij with g̃r and g̃φ given by gr, gφ,

and σp
ij .

Figure 1 shows the von Mises stress for the three seeding orientation: [001], [1̄1̄1̄]
and [2̄11]. To the left of each pair is the isotropic case corresponding to the material
in [13], and to the right is the anisotropic case corresponding to one correction term,
namely, w ∼ w0 + w1. Reported stress values are given in percentages with 100%
corresponding to the outer edge of a cylindrical crystal (α = 0) grown in the [001]
direction or |σvm| = 3.32 × 10−3. In the [001] pulling direction the von Mises stress
retains its axial symmetry even when anisotropic stiffness coefficients are included. For
the [1̄1̄1̄] and [2̄11] seeding orientations the geometric effect dominates the amount
of stress. Table 1 lists the maximum value of the von Mises stress for the three
orientations using zero (isotropic, ω = 0), one, and twelve correction terms for the
total stress. It can be seen that the von Mises stress can either decrease or increase
when material anisotropy is considered, depending on seed orientation.

Figure 2 shows the corresponding resolved stress σtot
rs as given by (3.25), which is

relevant to dislocation generation. The computed peak values for the total resolved
stress are listed in Table 1 and once again we conclude that the effect of the material
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Fig. 1. The von Mises stress computed using (3.24) at the indicated orientation, just inside the
crystal/melt interface at the end of the growth. All reported stress values are expressed in percentages
with 100% occurring at the outer edge of a crystal grown in the [001] direction, which corresponds
to a value of |σvm| = 3.32 × 10−3(0.311 MPa). The ω = 0.329 case utilizes one correction term.

anisotropy is more significant for the [001] orientation since there is no geometric
effect in that case. For the other two directions, the geometric effect dominates and
the material anisotropy has a limited effect.

5. Conclusion. In this paper we have discussed the effect of material anisotropy
on the thermal stress and compared it with that of geometric anisotropy due to facet
formation. We have presented a systematic procedure which computes the stress
iteratively, using an asymptotic series. We have also shown that the series converges
for any anisotropic cubic material. Numerical results are obtained for InSb crystals
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Fig. 2. The total resolved stress computed using (3.25) at the indicated orientation, just inside
the crystal/melt interface at the end of the growth. All reported stress values are expressed in
percentages with 100% occurring at the outer edge of a crystal grown in the [001] direction, which
corresponds to a value of |σtot

vm| = 9.23×10−3(0.866 MPa). The ω = 0.329 case utilizes one correction
term.

grown by the Cz method in three pulling directions. When the seed orientation is in
the [001] direction, since no facet forms and no geometric anisotropy is present, the
material anisotropy has a visible effect on both the von Mises and the total resolved
stresses. For the [1̄1̄1̄] and [2̄11] seeding orientations, however, the material anisotropy
has only a limited effect, while the geometric (facet formation) has a much stronger
effect. Our results suggest that for faceted crystals, it is much more important to take
the geometric effect into account, while neglecting the material anisotropy is justified.
Finally, the methodology used in this paper is not limited to the case of Cz crystals.
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It can be applied to other elastic problems, such as the ones investigated in [7, 14],
by including the effect of an anisotropic material property.

Appendix A. Proof of (3.7). We begin by introducing the weighted direct
sum Hilbert space

◦
H =

{
w ∈

(
H1(Ω)

)3
:

∫
Ω

w dV = 0,

∫
Ω

rot(w) dV = 0, ‖w‖2
◦
H

=

6∑
i=1

λi‖ei(w)‖2
0

}

on the bounded domain Ω. ‖ · ‖0 denotes the standard L2 norm, and the quantity
e(w) consists of elements of the strain tensor associated with the displacement w. The
weights λi take on the value C11−C12+H/2 for i = 1, 2, 3 and C44−H/4 for i = 4, 5, 6
with H = 2C44 − C11 + C12 �= 0 for an anisotropic, cubic material. In Cartesian
coordinates, e(w) = (exx, eyy, ezz, 2eyz, 2exz, 2exy)

T, where eij = (wi,j + wj,i)/2, the
comma denoting partial differentiation.

For the uniqueness of (3.3), (3.5), and (3.6), we assume that the displacement

solutions to these equations belong to
◦
H.

Lemma A.1. For an anisotropic cubic material characterized by the stiffness
values {C11, C12, C44}, the quantity

ω =
|2C44 − C11 + C12|
2C44 + C11 − C12

satisfies 0 < ω < 1.
Proof. The eigenvalues of the stiffness matrix C11+2C12, C11−C12, and C44 must

be positive, for otherwise the crystal would be unstable [10]. Due to the positivity
constraint, we have the strict inequalities

−2C44 − C11 + C12 < 2C44 − C11 + C12 < 2C44 + C11 − C12

so that |2C44 −C11 +C12| < 2C44 +C11 −C12 or ω < 1. The case ω = 0 corresponds
to an isotropic crystal.

The space
◦
H is the natural choice for an anisotropic cubic crystal. The next

lemma states that convergence in
◦
H is equivalent to convergence in (H1)3.

Lemma A.2. ‖ · ‖ ◦
H

is equivalent to ‖ · ‖1 (the (H1)3 norm) in
◦
H.

Proof. This is a direct consequence of the Korn inequality [4],

‖w‖2
1 ≤ C(Ω)

(
6∑

i=1

‖ei(w)‖2
0

)
∀w ∈

◦
H,

where C(Ω) is a constant depending only on the domain Ω.

Next we illustrate that the operator N is a contraction mapping on
◦
H.

Lemma A.3. The operator N in (3.7) satisfies ‖N‖ ◦
H�→

◦
H

≤ ω < 1.

Proof. For any given u ∈
◦
H, let w = Nu. Using the boundary condition in the

definition of N , we see that w satisfies∫
Ω

C0
ijei(w)ej(v) dV =

∫
Ω

Ca
ijei(u)ej(v) dV ∀v ∈

◦
H,
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and in particular for v = w,

(A.1)

∫
Ω

C0
ijei(w)ej(w) dV =

∫
Ω

Ca
ijei(u)ej(w) dV.

Taking only the diagonal terms of the left-hand side of (A.1) yields

(A.2)

∫
Ω

C0
ijei(w)ej(w) dV ≥

∫
Ω

6∑
k=1

λke
2
k(w) dV = ‖w‖2

◦
H
,

while noting that Ca is itself diagonal gives

(A.3)

∫
Ω

Ca
ijei(u)ej(w) dV ≤

∫
Ω

(
3∑

k=1

∣∣∣∣H2 ek(u)ek(w)

∣∣∣∣ +

6∑
k=4

∣∣∣∣H4 ek(u)ek(w)

∣∣∣∣
)

dV.

Using the definitions of ω and H, one has

ω =
|H/2|

C11 − C12 + H/2
=

|H/4|
C44 −H/4

so that estimates (A.2) and (A.3) with (A.1) allow us to conclude, with Hölder’s
inequality, that

‖w‖2
◦
H

≤ ω‖w‖ ◦
H
‖u‖ ◦

H

or ‖w‖ ◦
H

≤ ω‖u‖ ◦
H

for any given u ∈
◦
H. Using Lemma A.1, ‖N‖ ◦

H�→
◦
H

≤ ω < 1.

Proposition A.4. Let sn = w0 + Nw0 + N 2w0 + · · · + Nnw0, with s0 = w0.

Expression (3.7) converges to w in
◦
H, and

‖w − sn‖ ◦
H

≤ ωn+1‖w‖ ◦
H
.

Proof. Lemma A.3 implies that the right-hand side of (3.7) converges. What
remains is to show that w is in fact the limit. We note that

L0(w − w0) = L(w) + La(w) − F = La(w), x ∈ Ω, t > 0,

B0(w − w0) = B(w) + Ba(w) − g = Ba(w), r = R(φ, z).

By the definition of N , one has w − w0 = Nw and ‖w − w0‖ = ‖Nw‖ ≤ ω‖w‖.
w − sn = N (w − sn−1) gives ‖w − sn‖ ≤ ω‖w − sn−1‖ with all norms taken in

◦
H.

By induction on n

‖w − sn‖ ◦
H

≤ ωn+1‖w‖ ◦
H

∀n ≥ 0

so that letting n → ∞ and using Lemma A.3 gives the result.
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Appendix B. Detailed form of Ccyc. For the [1̄1̄1̄] pulling direction we obtain

C
a,[1̄1̄1̄]
cyc = C

a,[1̄1̄1̄]
cyc,0 + C

a,[1̄1̄1̄]
cyc,3 , where

C
a,[1̄1̄1̄]
cyc,0 =

H

12

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 4 0 0 0
2 0 4 0 0 0
4 4 −2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.1a)

C
a,[1̄1̄1̄]
cyc,3 =

√
2H

6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 s3 −c3 0
0 0 0 −s3 c3 0
0 0 0 0 0 0
s3 −s3 0 0 0 c3
−c3 c3 0 0 0 s3

0 0 0 c3 s3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.(B.1b)

For the [001] pulling direction, C
a,[001]
cyc = C

a,[001]
cyc,0 + C

a,[001]
cyc,4 , where

C
a,[001]
cyc,0 =

H

4

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 1 0 0 0 0
0 0 2 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.2a)

C
a,[001]
cyc,4 =

H

4

⎛
⎜⎜⎜⎜⎜⎜⎝

c4 −c4 0 0 0 −s4

−c4 c4 0 0 0 s4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−s4 s4 0 0 0 −c4

⎞
⎟⎟⎟⎟⎟⎟⎠

.(B.2b)

Finally, for the [2̄11] pulling direction, C
a,[2̄11]
cyc = C

a,[2̄11]
cyc,0 + C

a,[2̄11]
cyc,1 + C

a,[2̄11]
cyc,2 +

C
a,[2̄11]
cyc,3 + C

a,[2̄11]
cyc,4 , where

C
a,[2̄11]
cyc,0 =

H

16

⎛
⎜⎜⎜⎜⎜⎜⎝

1 3 4 0 0 0
3 1 4 0 0 0
4 4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.3a)

C
a,[2̄11]
cyc,1 =

√
2H

24

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −s1 3c1 0
0 0 0 −3s1 c1 0
0 0 0 4s1 −4c1 0

−s1 −3s1 4s1 0 0 c1
3c1 c1 −4c1 0 0 −s1

0 0 0 c1 −s1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.3b)
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C
a,[2̄11]
cyc,2 =

H

24

⎛
⎜⎜⎜⎜⎜⎜⎝

−2c2 0 2c2 0 0 s2

0 2c2 −2c2 0 0 s2

2c2 −2c2 0 0 0 −2s2

0 0 0 −2c2 −2s2 0
0 0 0 −2s2 2c2 0
s2 s2 −2s2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.3c)

C
a,[2̄11]
cyc,3 =

√
2H

8

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 s3 −c3 0
0 0 0 −s3 c3 0
0 0 0 0 0 0
s3 −s3 0 0 0 c3
−c3 c3 0 0 0 s3

0 0 0 c3 s3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.3d)

C
a,[2̄11]
cyc,4 =

7H

48

⎛
⎜⎜⎜⎜⎜⎜⎝

−c4 c4 0 0 0 s4

c4 −c4 0 0 0 −s4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
s4 −s4 0 0 0 c4

⎞
⎟⎟⎟⎟⎟⎟⎠

.(B.3e)
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A CONTINUUM MODEL FOR A CHUTE FLOW OF GRAINS∗

A. S. ELLIS† AND F. T. SMITH†

Abstract. This paper is motivated by a problem from the food-sorting industry and is concerned
with the development of a continuum model for a chute flow of grains, based on analogies with the
Lighthill–Whitham model of traffic flow. A fundamental relationship between the density and the
flux is proposed which is multivalued due to the fact that grains can move leftwards and rightwards
across the chute. The subsequent implications are discussed in detail. Results are presented first
by solving with a method of characteristics and second by solving analytically and numerically after
including a viscous dissipation term to smooth out discontinuities. The fundamental diagram is
revisited in view of the viscous dissipation term and a substantial modification at the cusps is found
necessary to allow physically sensible solutions to emerge. If the viscous dissipation is small, then
in general the viscous effects also are small. Exceptions, however, are shocks, where the viscosity
has a smoothing effect, as is well known, and two new features/observations: crossovers, which allow
two-way solutions, and steady states, which can exist only in the viscous case and appear over a long
time scale.

Key words. wave equation, shocks and related discontinuities, granular flows

AMS subject classifications. 35L05, 74J40, 76T25

DOI. 10.1137/080713057

1. Introduction. The aim of this paper is to define and explore a mathematical
model for the nearly two-dimensional (2D), gravity-driven, rapid flow of a monolayer
of grains down an inclined chute. This is directly motivated by a problem from the
food-sorting industry, in particular from a company that manufactures machines for
the sorting of food, Sortex Ltd.

In the particular food-sorting process developed by Sortex, grains fall from a
hopper and are subsequently moved along by a vibrator tray. At the end of the tray
the grains fall onto an inclined chute, down which they are accelerated due to gravity.
They quickly form an apparent 2D monolayer upon the chute. Shortly after the grains
have fallen from the bottom of the chute they pass an optical system that can detect
defective grains. A grain is considered to be defective if it is, for example, of the
wrong size, shape, or color. Foreign bodies, such as small shards of glass, can also be
detected. If a defective grain or foreign body is detected, a powerful jet of air is fired
from at least one ejector in an array of ejectors, and the grain is knocked into a reject
bucket by the force of the impact. A schematic diagram of the process is shown in
Figure 1.1. Studies of the ejector and jet properties are in theses by Westwood [16]
and Wilson [18].

The chute is approximately 30cm wide and a meter in length, and its angle of
inclination from the vertical is 30◦. The grains exit the chute with a vertical velocity
of the order of 4–5ms−1. A typical grain of rice has a width of 1–3mm and a length
of 5–7mm. The mass has a magnitude of roughly 10−5kg.

Particular difficulties arise as the grains fall off the chute, since they are not
uniformly distributed but typically clustered and inhomogeneous. As a consequence,
the air jet can, and usually does, remove other grains of rice surrounding the target

∗Received by the editors January 10, 2008; accepted for publication (in revised form) July 7, 2008;
published electronically October 29, 2008. This work was partially supported by Sortex, Ltd.
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Fig. 1.1. A schematic diagram of the food-sorting process showing (A) the side view of the
sorting machine; (B) a dimensional front view of the chute depicting the grain motion; and (C) a
nondimensional front view of the chute. Cartesian coordinates x∗, y∗, z∗ are shown and g∗ is the
dimensional acceleration due to gravity. The diagram is not to scale.

grain which may not themselves be defective. This is a source of inefficiency in the
food-sorting process; the grains in the reject bucket sometimes must be sorted through
again to reduce waste. Currently, the optical system can be configured to yield an
increased sorting performance, but if a high level of sorting is required a chute with
channels must be used; these align the grains with the ejectors and improve the
uniformity of the product feed. There is, however, a concomitant reduction in the
mass of grains that can be sorted in a given time (known as the “throughput”).
The main goal is to increase uniformity of “product feed” as much as possible while
maintaining a high throughput of grains. In the current work we therefore try to
find a suitable mathematical model for a chute flow of grains so that the above issue
regarding ejection can be better treated.

As there is no general theory applicable to chute flows of grains, we necessarily
develop a theory from modeling the process from first principles. Other attempts have
been made, notably the approach of Jenkins and Savage [9], who describe a kinetic
theory of the particle motion, whereas after consideration we choose to develop a
continuum description of the chute flow. It may seem unusual to model an inherently
discrete process with a continuum model, but there is a strong and successful history
of doing so in other particulate flow problems. For example, continuum models have
been used to model traffic and pedestrian flows [7], [8], [10], [11], [12] and many
aspects of granular flows; see, for example, the review by Rajchenbach [14] and the
works of Aranson and Tsimring [1], [2] and Grossman, Zhou, and Ben-Naim [6] and
the references therein, to name but a few. The particulate nature of the problem can
be essentially overlooked by addressing larger macroscale behavior and assuming that
quantities such as density are continuous. It is then possible to write hydrodynamic-
like equations that govern the overall particulate motion. For example, Hughes [7]
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used a continuum theory of pedestrian flows to suggest a method of safely placing
barriers to prevent tragic events as pilgrims cross the bridge of Jamarat in Mecca, and
Lighthill and Whitham [11] used a continuum theory of kinematic waves to describe
traffic flow. Their results explain well-observed phenomena such as traffic jams at
traffic lights and density waves in moving vehicular flow. In this paper we extend the
Lighthill–Whitham theory of traffic flow to produce a description of a chute flow.

The structure of the paper is as follows. Basic modeling and simple analytic solu-
tions are dealt with first in sections 2 and 3, including descriptions of separating grains
and clashing grains. Next in section 4 more general solutions are sought numerically,
and we shall see that this necessitates the introduction of a viscous dissipation term
into the governing equations, and that these solutions compare well to those found
from the inviscid theory. In section 5 it is demonstrated that in principle two-way
solutions can exist for the viscous model in which the grains move both left and right
across the chute. Steady states are discussed in section 6 before concluding remarks
are made in section 7.

2. Continuum modeling. The continuum model below is based on an argu-
ment for extending the Lighthill–Whitham model of traffic flow to cover aspects of the
chute flow. Strengths and weaknesses of the argument are described. In particular,
the continuum model we propose requires the introduction of a fundamental relation
between the nondimensional flux q and the nondimensional density ρ, and the under-
lying physical mechanism requires discussion. The variables are nondimensionalized
as follows: x∗ = a∗x, y∗ = L∗y, v∗ = V ∗v, u∗ = U∗u, t∗ = (a∗/U∗)t, ρ∗ = (M∗/a∗)ρ,
and q∗ = (M∗U∗/a∗)q. Here variables with an asterisk are dimensional and variables
without an asterisk are nondimensional. The parameters are defined so that a∗ is the
distance across the chute; L∗ is the distance down the chute; V ∗ is a typical vertical
velocity given by

√
g∗h∗, say, where h∗ is distance fallen down the chute and g∗ is

the acceleration due to gravity; finally U∗ is a typical velocity across the chute. We
follow through the implications of the proposed flux-density relation in detail and an
appraisal is given in the conclusion. We cannot deny that the model omits many fac-
tors, and as such is incomplete, as would be any first model. In a sense, the approach
is an empirical one, and we shall examine whether the model can describe some spe-
cial situations seen on chutes in reality, although the original physical arguments per
se may remain open to question.

We make the assumption that the density of rice grains, ρ, forms a continuum
and that the grains move along a horizontal line (the x axis) with a flow rate q.
The lines are considered to fall down the chute with increasing time t, their vertical
displacement being given by y∗ = −g∗t∗2 (the grains are assumed to have a vertical
speed v∗ = 0 at the top of the chute where y∗ = 0). Although the assumption of
grain motion occurring only in horizontal lines appears simplistic, because in reality
vertical interactions could be expected to be an important mechanism of the flow, as
noted below, computations with this assumption achieve physically reasonable results
as qualitatively they show the development of clusters and voids which are seen in
experiments [5]. Moreover, the one-dimensional (1D) model itself is found to contain
some rich and complex behavior suggesting that to try to start immediately with a
2D model might be premature.

In addition to the a posteriori motivation for modeling grain motion along a
horizontal line, mentioned above, there exists a priori justification for doing so which
is as follows. We shall see shortly that the spatially 2D extension, which includes
vertical grain motion, reduces to the 1D model of present interest at large distances
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down the chute (see (2.4) below). Primarily we are interested in obtaining the density
profile at the bottom of the chute, where the ejection issue occurs. Given that the
2D model reduces to the 1D model in the lower portion of the chute, then it seems
appropriate to use the 1D equation, at least as a first approximation. In fact, the
interest and novelty in this work lie in the perhaps surprising result that the horizontal
grain motion is seen to dominate the flow behavior, rather than the vertical motion
of grains down the chute. The reason for the existence of horizontal grain motion is
described later, but briefly it is due to the action of the vibrator tray.

A continuum model for this discrete process is believed justifiable since in reality
a state can evolve on the chute where the grains form into large coalesced masses,
each one moving as if it is one body with a particular velocity distribution and each
one containing a large number of grains. The density of these masses may be different
in each case and as there are large numbers of grains the density could take any value.
When the flow is in this state there are sudden jumps in density between each cluster
and there can also be voids. We shall see that this can be modeled by the shocks
and expansion fans in the continuum model and thus the model provides qualitative
agreement with experiments, which do indeed indicate the formation of clusters and
voids.

By conservation of mass the continuity equation is

(2.1) ρt + qx = 0.

Taking q to depend only on ρ keeps the wave problem simple as a first approximation
and may also be justified on physical grounds, and if qρ ≡ dx

dt , then the total derivative
dρ
dt = 0. Defining the wavespeed qρ ≡ c (ρ), the density is constant along straight
characteristics given by

(2.2) x = c (ρ) t+ x0,

where x0 is a constant of integration representing an initial position for x. The
resultant equation for the flow is

(2.3) ρt + c (ρ) ρx = 0.

Therefore an initial density distribution ρ = f (x) at t = 0 determines in principle the
density evolution with time via the characteristics.

To determine c (ρ) we argue that the flux q is related to the density ρ by q = Q (ρ)
say and then c (ρ) = Q′ (ρ), where the prime denotes differentiation with respect to
the argument. (We shall discuss shortly the validity of choosing a particular q = Q(ρ)
relation.) We must also initially specify q along each characteristic. The values (ρ, q)
in the initial condition thus determine a unique value of c which in turn determines
the gradient of the characteristic. The flux and the density are then constant along
the characteristic, i.e., both q and ρ are propagated along the characteristics. The
initial conditions in the current section are piecewise-constant as these provide a basic
starting point for the analysis.

An important point concerning improvement and extension is to make the model
spatially 2D, the 2D equation being

(2.4) ρt + c1(ρ)ρx + c2(ρ)ρy = 0,

where y is the vertical distance down the chute. Seeking a solution independent of
y as y → ∞ leads back to the 1D model of (2.3), however. Thus the 1D model of
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ρ

q = Q

O

Fig. 2.1. Sketch of the fundamental diagram, including the cusps at q = ρ = 0 and at q = 0,
ρ = ρM and the inflexion points relatively nearby.

present interest evolves directly from the 2D case at large times or sufficiently large
distances down the chute. This justifies a priori the assumption of horizontal grain
motion.

We propose below a particular Q(ρ) relation for the chute flow (see Figure 2.1);
the validity of the proposition is discussed shortly. Note that, borrowing from traffic
flow theories, the Q(ρ) curve is known as the fundamental diagram or fundamental
curve. If ρ = 0, there can be no flow, so then q = 0 trivially. Further, it is argued
that there is no flow for a maximum value ρM of the density, corresponding to a
“jamming” of grains across the chute where each grain is touching the neighboring
grain or wall and hence, within some interval of at least x, there is no room for any
grain to move relatively across the chute. In between q takes a single maximum at
some value of the density ρF . However, the rice can travel in both directions (unlike
the traffic flow case) and hence q can also take negative values (of the same magnitude
by virtue of symmetry) for each value of ρ. The reason for this bidirectional grain
motion is as follows. Before the grains fall down the chute, they are transported
along a vibrator tray. As they fall off the vibrator tray, its motion induces horizontal
velocity fluctuations. Hence, as they travel down the chute, grains can collide, which
induces further horizontal velocity fluctuations, or they can separate. Thus there are
two branches of the fundamental diagram, one which describes leftward-moving grains
and the other rightward-moving grains, and so the flux-density relation is necessarily
double-valued.

Finally here, the Q (ρ) curve on each branch is expected to pass through inflexion
points relatively near the cusps, which lie at the zero-q end of the branches. The
two branches meet at cusps so that the wavespeed remains finite and smooth as
the solution passes through the endpoints and switches branches; they also allow
mass-conserving shock-fan structures, as we shall see later, which enable physically
acceptable descriptions of clashing and separating regions to develop. In more detail,
the cusps must behave locally as

(2.5a) q ∝ ±ρ 3
2 near ρ = 0

or

(2.5b) q ∝ ±(ρM − ρ)
3
2 near ρ = ρM .

To see this consider putting ρ = f(μ), where μ = x
t is a similarity variable. The

governing equation is then satisfied provided that

(2.6) (c− μ)f ′ = 0;
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so μ = c is allowed, which produces expansion fans. Next, at the high-density endpoint
(the reasoning applies equally to the zero-density endpoint) consider having locally

(2.7) q = ±β(ρM − ρ)n

with the unknown power n > 0 and the constant β being nonzero. Via the definition
of c we obtain from (2.7) the local behavior

(2.8) ρ = ρM −
(
|μ|
βn

) 1
n−1

.

Consequently the relation 1
n−1 = M must hold with M an even integer in order that

the wavespeed varies smoothly as the density passes through its maximum. Hence
n = 1 + 1

M . In particular, the value

(2.9) n =
3
2

corresponds to M = 2 and the density ρ = ρM − ( |μ|βn )2, which would be expected to
be the most general case. Similar reasoning for a cusp also applies at the low-density
end. The fundamental curve’s upper branch must therefore be concave upwards at
its endpoints. It follows also that for there to be a maximum q in between, inflexion
points must be produced between the maximum and the endpoints. The only alter-
native to having cusps, while retaining a smooth wavespeed as the solution switches
branches, would be to have an infinite wavespeed at the endpoints, which is physically
unacceptable. Flux functions with inflexion points also arise in traffic flow theory; see,
for example, Lebacque and Khoshyaran [10] or Morgan [12].

Concerning strengths and weaknesses of the present proposed fundamental dia-
gram, in pedestrian and traffic flows there are obvious physical reasons why people or
cars slow down with increased density (overcrowding, driver nervousness, and so on),
whereas it is difficult to provide a comprehensive argument as to why, for example, a
densely packed region of grains may move more slowly than a sparser region as in the
cases here. This difficulty could be countered by arguing that, when the densities are
low, grains may have small horizontal velocities because there is a smaller probability
of velocities being induced impulsively by a collision. At large densities, however, col-
lisions are likely to be very numerous and thus grain speeds would reduce as energy
would be lost repeatedly at each collision. At moderate densities the probability of
a collision lies somewhere in between these two extremes and so horizontal velocities
may be induced impulsively by a collision, but there may not be so many repeated
collisions as to cause a continual reduction in the velocity component via restitution,
so that the magnitude of the horizontal velocities may be larger. In the extreme case
of a blockage the grains would come to a complete stop and may become packed at
the jammed density. Thus a situation arises in which the density influences the flux,
or vice versa, and the view that q = Q(ρ) appears to be justified (at least as a first
approximation). Further, owing to these simple arguments, a shape of such a funda-
mental curve similar to the one proposed above seems to be suggested. Alternatively,
we could argue that such a choice of fundamental diagram is appropriate for certain
physical situations, such as with colliding or separating grains on a chute. It may be
of significance here that at a collision the grains can be considered to instantaneously
change velocity at the point of touching, and so the flux of the grains is zero when
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the density is maximal, exactly as in the proposed fundamental diagram. Other sit-
uations, such as with a highly dense region moving rapidly on an otherwise empty
chute, should be covered by another fundamental diagram, but such a situation may
be unlikely to develop in practice because high densities seem more likely to arise
when grain speeds are slow. It is also worth mentioning that as clusters and voids
are the key feature of the computational results [5] and as collisions and separations
are believed to be the crucial mechanism behind the formation of clusters and voids,
then this aspect of the flow may be the most pertinent part to consider in an initial
model. Some of the above criticisms may also hold for the theory when it is applied
to traffic flow: for example, a densely packed region of cars on an otherwise empty
highway will not in reality have q = 0; they may accelerate away and diffuse.

Given the above setting, we continue with the present 1D formulation and, in
brief, examine the outcome.

3. Inviscid solutions. Interesting aspects arise in the model because Q (ρ) is
smoothly varying on each branch and so the characteristics generally intersect or
diverge within a finite time if ρ and q vary on each characteristic. Intersections are
a significant feature since the density is implied as multivalued. Such an apparent
contradiction is resolved by the formation of a “shock” (see Whitham [17]) which
travels with velocity

(3.1) U =
q2 − q1
ρ2 − ρ1

,

which is the gradient of the chord between (ρ1, q1) and (ρ2, q2) on the fundamental
curve. Diverging characteristics potentially create an area devoid of information about
the density but lead to an “expansion fan.” The aim in what follows is to employ the
shock wave and expansion fan structures as mechanisms to obtain inhomogeneous
density distributions upon the chute and provide some further explanation of clusters
and voids when grains are colliding or separating.

A number of simple analytical solutions are illustrated here. We shall see that it
is possible to build increasingly complex solutions to the continuum model. In theory,
it is possible to determine any solution analytically by examining the characteristics,
together with the shocks and fans. The approach is much the same as that of Morgan
[12], the difference here being the multivalued fundamental diagram.

Let us first define ρF as the value of the density for which q is maximum; ρIR as
the value of the density at the right-hand inflexion point; and ρIL as the value of the
density at the left-hand inflexion point.

3.1. Example solution one. We start simply with a classical example [4] in
which a shock must occur. Consider two adjacent regions of constant density, one with
density ρ1 and the other with density ρ2, and allow ρ1 < ρ2 < ρF . The corresponding
values of the flux are q1 and q2, respectively, with 0 < q1 < q2 < qF . It is possible to
choose this arrangement such that c1 > c2; see Figure 3.1 for clarity.

Furthermore, if the region of density ρ1 is assumed to lie to the left of the region of
density ρ2, as depicted in Figure 3.2(a), then the characteristics are seen to intersect
in the x − t plane. As has already been stated, the density at first glance would be
multivalued at such an intersection since the density is a different constant along each
intersecting characteristic. This would be physically unacceptable.

The resolution is well known, namely, to replace the intersecting points with a
shock, i.e., a sudden jump in the density. In this way, we see that the correct x − t



312 A. S. ELLIS AND F. T. SMITH

q

ρ

(ρ1, q1)

(ρ2, q2)

Fig. 3.1. Illustration highlighting the values of (ρ1, q1), (ρ2, q2) for the case producing a shock
outlined in section 3.1. The respective slopes of the tangents at (ρ1, q1) and (ρ2, q2) are c1 and c2.

x

t

ρ1 ρ2

(a) The characteristics in the first example de-
scribed in section 3.1 appear to intersect in the x− t
plane. This is physically unacceptable.

x

t

ρ1 ρ2

SHOCK

(b) The solution (continuing from (a)) is to re-
place the intersecting points by a shock wave; a
sudden jump in the value of the density.

ρ

x

ρ1

ρ2

Increasing time

(c) The corresponding density profile is shown above as
it evolves over time. The two regions translate right-
wards, separated by a shock.

Fig. 3.2. Shock formation.
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q

ρ
(ρ3, q3)

(ρ4, q4)

Fig. 3.3. Illustration highlighting the values of (ρ3, q3), (ρ4, q4) for the case of the “fan” outlined
in section 3.2.

diagram for this case is as in Figure 3.2(b), in which two regions of constant density
are separated by a shock.

The corresponding evolution of the density profile is as in Figure 3.2(c). Both
regions are moving rightward (as q > 0) and there is a translating shock between the
two regions.

3.2. Example solution two. Similarly, a scenario which involves an expansion
fan is as follows. Again consider two adjacent regions of constant density, one with
density ρ3 and the other with density ρ4, where the corresponding values of the flux are
q3 and q4, respectively. However, now suppose that q3 > 0, q4 < 0, and ρ4 < ρ3 < ρIL.
Thus c3 > 0, c4 < 0, and |c3| > |c4|; see Figure 3.3. (If ρIL < ρ3 < ρ4 < ρF , then the
solution is a little more complex, as we shall see in a later example.) The region with
density ρ3 is assumed to lie to the right of the region with density ρ4, as in Figure
3.4(a). Such an arrangement corresponds to the two regions moving apart since q > 0
in the right-hand region and q < 0 in the left-hand region, and in the x− t diagram
there is seen to be a region devoid of characteristics. Consequently, there appears to
be no information about the density evolution here, yet we know that the regions are
separating. The problem can be resolved by the introduction of an expansion fan.

An expansion fan is a region of characteristics which all start from the same
point, but their gradient continuously changes from the value of the gradient of the
characteristic in the right-hand region to the gradient of the characteristic in the left-
hand region. Hence the void region is now replaced by a “fan” of characteristics whose
gradients decrease monotonically. As the gradient varies through this fan, so must
the density. See Figure 3.4(b). The continual change in the gradient corresponds to
moving from the point (ρ3, q3) on the upper branch of the q(ρ) curve to the point
(ρ4, q4) via the cusp at (0, 0). Notice that the characteristic at the center of the
fan has zero slope and thus the point of zero density is stationary. Therefore the
fan in this case corresponds to a gradual decrease in the density and a reduction in
flux to a stationary central point with zero density. This is followed by a gradual
increase in the density accompanied by an increase in magnitude of the flux, which
is now negative. The expansion fan has allowed the density to switch branches. The
physical interpretation of this is indeed a separation of the two regions. Figure 3.4(c)
illustrates the evolution of the corresponding density profile to highlight the physics.
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ρ3ρ4

(a) A plot of the x−t plane reveals a region devoid
of any characteristics, and hence any information
about the density. Yet we know that the regions
are separating.

t

x

ρ3ρ4

FAN

(b) Continuing from (a), it is seen that the prob-
lem can be resolved by the introduction of an
expansion fan.

ρ

x

ρ

x
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(c) The evolution of the density profile correspond-
ing to the preceding figure shows that the expansion
fan captures the physical process of separation.

Fig. 3.4. The expansion fan solution of the example in section 3.2.

(ρ5, q5)

(ρ6, q6)

ρ

q

Fig. 3.5. Illustration highlighting the values of (ρ5, q5), (ρ6, q6) for the example of a fan in a
colliding region.

3.3. Example solution three. This again is a classical problem [4] in which
expansion fans arise, this time describing regions of colliding grains. Consider two
regions of constant density with ρ6 > ρ5 > ρIR and q5 > 0 and q6 < 0. Now c5 < 0
and c6 > 0 since ρ5 and ρ6 lie toward the large density end of the fundamental
diagram, as in Figure 3.5. Assuming that the ρ5 region lies to the left of the ρ6

region will result in an x − t plot of the characteristics that is qualitatively similar
to that in the example above in Figure 3.4. Such an arrangement now corresponds
to clashing of grains. Again there will be a region devoid of characteristics where
an expansion fan can be introduced. However, in this example, the monotonically
decreasing gradient of the characteristics in the fan corresponds to moving along the
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Fig. 3.6. The corresponding evolution of the density profile for Figure 3.5 illustrates the ex-
pansion fan capturing the physical process of collision.

fundamental diagram from (ρ6, q6) to (ρ5, q5) via the cusp located at (ρM , 0). Observe
that the characteristic at the center of the fan has zero slope and thus the point of
maximal density is stationary.

Thus, moving through the fan from ρ6 to ρ5 allows the density to switch branches
from the lower branch to the upper branch while passing through a point of maximum
density. The fan describes a “hump” of large density at the location where we know
that grains are colliding. Figure 3.6 shows the evolution of the density profile to
highlight this point.

The expansion fan structures can be described analytically [17]. The character-
istics satisfy (2.2) and each characteristic in the fan crosses the x axis at the same
point, hence x0 is the same constant for each one. Therefore we can rearrange (2.2)
to find the gradient of each characteristic in the fan as

(3.2) c(ρ) =
x− x0

t
.

Therefore the complete solution for the wavespeed is

(3.3) c =

⎧⎪⎨
⎪⎩

c5, c5 <
x−x0
t ,

x−x0
t , c6 <

x−x0
t < c5,

c6,
x−x0
t < c6.

3.4. Example solution four. A more complex case is illustrated here. Consider
two regions of constant density: the right-hand region with ρF < ρ7 < ρIR and q7 < 0
and the left-hand region with ρF < ρ8 < ρIR and q8 > 0; see Figure 3.7. Thus c7 > 0
and c8 < 0. If the characteristics are plotted in the x − t plane, there will again be
a region devoid of characteristics which we intuitively expect to describe a clashing
region.

One simply might expect the solution of this problem to be an expansion fan
between (ρ7, q7) and (ρ8, q8), but it is actually a little more involved, as follows. Since
ρ7 and ρ8 are to the left of the inflexion point ρIR the characteristics in an expansion
fan would not monotonically decrease from c7 to c8. Hence an expansion fan cannot
be immediately plotted.

Instead, consideration indicates that there must be a shock from ρ7 to ρT− and
a shock from ρ8 to ρT+, where ρT− is the point where a chord drawn from (ρ7, q7) is
tangent to the fundamental curve. Similarly, ρT+ is the point where a chord drawn
from (ρ8, q8) is tangent to the fundamental curve. This is similar to the approach of
Morgan [12]. Both ρT−, ρT+ > ρIR, clearly. See Figure 3.7. An expansion fan which
passes through the cusp at (ρM , 0) can now be drawn between ρT− and ρT+. Such a
“shock-fan-shock” structure will still conserve mass.

Figure 3.8(a) shows the plot of the characteristics in the x − t diagram for this
situation, and Figure 3.8(b) depicts the time evolution of the density profile. There
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Fig. 3.7. The values of (ρ7, q7), (ρ8, q8), (ρT−, qT−), (ρT+, qT+) for a case including a mix
of shocks and fan(s) in a colliding region.
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(a) The characteristics for the shock-fan-shock structure.

ρ

x

ρ

x

ρ

x

(b) The corresponding evolution of the density pro-
file is shown for (a).

Fig. 3.8. The shock-fan-shock structure of the solution in the example in section 3.4.

is a region of constant density moving leftward, then a shock to a fan where there
is a high density region, then a shock down to a region of constant density moving
rightward. Thus the characteristics appear to give a solution where a high-density
cluster develops, as might be anticipated for a clashing region.

3.5. Example solution five. Shock-fan-shock structures can arise in other sit-
uations. Consider ρ9 = ρ7, ρ10 = ρ8 given as in the above case, but now with ρ10 lying
in the right-hand region and ρ9 lying in the left-hand region, so that the regions are
separating. At first sight, it seems that the characteristics are intersecting and so the
solution ought to be a shock. However, if a line were drawn through the intersecting
points, the gradient would not be equal to the gradient of the chord between (ρ9, q9)
and (ρ10, q10); the chord would not have the required speed U (hence such a shock
would not conserve mass and moreover, by violating the Rankine–Hugoniot condition,
it would not be a weak solution to the conservation law).

The problem is avoided by the introduction of two shocks: one from ρ9 to ρT2−,
and the other from ρ10 to ρT2+. The point ρT2− is the place on the fundamental curve
where the gradient cT2− is tangent to a chord drawn from ρ9 such that ρT2− < ρIL.



CHUTE FLOW OF GRAINS 317

q

ρ

(ρ10, q10)

(ρ9, q9)
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Fig. 3.9. The values of (ρ9, q9), (ρ10, q10), (ρT2− , qT2−), (ρT2+, qT2+) for a case including a
mix of shocks and fan in a separating region.
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(a) The characteristics for the shock-fan-shock structure described
in the example in section 3.5.
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(b) A sketch of the time evolution of the density pro-
file for the example of a shock-fan-shock structure
when grains are separating.

Fig. 3.10. The shock-fan-shock structure of the solution in the example in section 3.5.

Similarly, the point ρT2+ is the place on the fundamental curve where the gradient
cT2+ is tangent to a chord drawn from ρ9 such that ρT2+ < ρIL. See Figure 3.9 for
details. An expansion fan can now be drawn between ρT2− and ρT2+ that switches
branches through the cusp at zero density. Thus there is a region of constant density
moving leftward adjacent to a leftward-translating shock down to small densities.
Then there is a fan through zero density that is next to a rightward-moving shock
that jumps to large densities; see Figure 3.10. Hence the characteristics here appear
to give a solution in which a void develops, as might be anticipated for a separating
region.

3.6. Example solution six. It is useful to consider an example with three
discontinuous density regions to show the complexity of possible solutions. Thus
consider three regions of density ρ11, ρ12, and ρ13 as given in Figure 3.11. These
are chosen such that ρIL < ρ11 < ρF with corresponding q11 > 0; ρ12 > ρIR with
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ρ11
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Fig. 3.11. The important values of ρ11, ρ12, etc., are shown on the fundamental diagram for
the example in section 3.6, which has three regions of different density.

corresponding q12 > 0; and ρ13 > ρIR with corresponding q13 < 0. We also draw
attention to the point ρT+, which is the point where a chord drawn from (ρ11, q11) is
tangent to the fundamental curve on the upper branch. Observe that ρIL < ρT+ <
ρIR and the chord is the shock s1.

These three regions are assumed to lie in the x − t plane such that the region of
density ρ13 lies to the right of the region of density ρ12, which in turn lies to the right
of the region of density ρ11. Thus we observe that there is an area of colliding grains
between ρ13 and ρ12, and consequently an expansion fan is required here. Further
consideration shows that a fan is also required at the bottom of the ρ12 region to a
density with value ρT+. The characteristic with density ρT+ coincides with the shock
s1 where there is a jump down to density ρ11. Consequently the x − t plane is as
shown in Figure 3.12(a), and a schematic representing the evolution of the density
profile is shown in Figure 3.12(b).

These examples illustrate how shocks and fans can be used to model clusters and
voids. We wish to highlight here that we have observed that there might be cases, for
example, where waves of negative speed and positive velocity occur and where waves
of positive speed but negative velocity occur. The physical interpretation of this, as
in the example in section 3.3, is when two regions collide, causing grains to “pile up”
and form a blockage. This is analogous, say, to a traffic jam in a unidirectional traffic
flow model. The transition between positive and negative velocities is either grains
colliding and hence reversing velocities or grains which are separating due to the initial
velocities induced by the vibrator tray. More complex solutions can be constructed in a
similar fashion for any number of colliding or separating regions, and interactions with
walls may be included. We also remark here that in general a steady state behavior
does not set in at, say, large times for the inviscid model, except for ρ, q constant.

A further point for discussion is that the model above could instead be written
as

(3.4a) ρt +Q(q, ρ)x = 0

and

(3.4b) qt = 0,

where

(3.4c) Q(q, ρ) = sgn(ρ)f(ρ),
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(a) The construction of the x−t diagram for the example in section
3.6. The region of ρ1 lies on the left. There is a shock, s1, and
a fan between the ρ11 and ρ12 regions. A now familiar expansion
fan structure occurs in the colliding region between ρ12 and ρ13.

→ →

(b) A sketch of the the evolution of the density profile corresponding to (a). Density is on
the vertical axis, and the position across the chute is along the horizontal axis. A shock
exists between ρ11, on the left of the chute, and the small fan to the region of density ρ12. A
“hump” of high density exists in the colliding region between ρ12 and ρ13. As time increases
the two fans spread out. The shock on the left persists for all time.

Fig. 3.12. The solution from the example in section 3.6, which involves three regions of different
density.

where f is a classical flux function. The six examples above could be examined in
the realm of the above system, which yields a 2× 2 conservation law whose Riemann
problems can be analyzed. This could form the scope of future work, and we are
grateful to a referee for making this observation.

4. Viscous effects. Only examples that have discontinuous initial conditions
have so far been investigated. Obviously we would wish to find the long-term density
distributions for an arbitrary set of initial conditions, and in particular we would like
to solve for problems with continuous initial density distributions. However, owing to
the shock wave and expansion fan structures, it is difficult to do this in general, both
analytically and computationally.

We now attempt to find such generalized solutions, but in this section we consider
only those which remain always on one branch of the fundamental diagram, that is,
only those situations in which grain movement is unidirectional and especially those
which are not near the chute walls. (Solutions which require a branch switch, in which
grains move to and fro, are dealt with in the following section.)

One standard way to compute general solutions to equations of the above form
is to add an artificial viscous dissipation term νρxx, so all discontinuities can be
“smoothed out” in principle, as the equation is now parabolic. Indeed, this is the
conventional method used in traffic flow problems [13], [17]. Whitham [17] discusses
at length the validity of such an approach and shows that in the limit of the viscosity
ν tending to zero the solutions do in fact asymptote toward the familiar shock and
fan structures seen for the inviscid equation.
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A strong physical argument for including viscous dissipation in our case is the
inclusion of air effects. As grains approach each other in collisions, effects of air
cushioning can reduce the importance of impacts in the model for certain flow rates
[5], [15] and thus make the density distribution more homogeneous. Another line of
argument is that including a viscous dissipation term is comparable to including
the next term in a Taylor expansion of the flux, in the sense that now the flux
q = Q(ρ) − νρx, where ν is a small positive constant; see Whitham [17]. Equation
(2.3) is therefore modified to

(4.1) ρt + cρx = νρxx.

This admits some general solutions for the density in a one-way flow, which we inves-
tigate below. Equation (4.1) is of central importance here and is referred to frequently
hereafter as the “continuum equation.”

The continuum equation (4.1) is solved numerically by a finite difference scheme.
In the examples below, ν = 0.0001. Upwind or downwind differencing is used for the
spatial first derivative, depending on the sign of c(ρ) at each cell in the numerical
grid. Although this method of solution is standard and well known, we wish to briefly
examine two problems in the new context of the chute flow.

An appropriate flux-density relation must first be specified for the continuum
model. We take

(4.2) q =

⎧⎨
⎩

±ρ4, 0 ≤ ρ < 1,
±
(
c1ρ

4 + c2ρ
3 + c3ρ

2 + c4ρ+ c5
)

1 ≤ ρ < 10,
± (ρM − ρ)2 , 10 ≤ ρ < ρM ,

where for now ρM = 15; c1, c2, . . . , c5 are constants chosen to ensure that the function
matches smoothly, and ± obtains the upper or lower branch, respectively. Equation
(4.2) captures the main features required of the fundamental diagram that were elu-
cidated earlier. As we consider only unidirectional grain movement we choose the
positive branch without loss of generality.

We illustrate two solutions here. Recall that in section 3 solutions were for dis-
crete, discontinuous input, as these formed a basic starting point for the analysis. We
attempt to approximate such initial conditions in the code, although of course it is
not particularly desirable to start the computation with discontinuous input.

For the first case here we find a solution which mimics the translating shock type
of solution.

The initial condition used for this case is

(4.3) ρ(x, 0) =

⎧⎨
⎩

2 + e−25, x ≤ 4,
e−25(x−5)2 + 2, 4 < x ≤ 5,

3, x > 5,

and the boundary conditions are

(4.4a) ρ(0, t) = 2 + e−25,

(4.4b) ρ(15, t) = 3.

Hence there are two regions of constant density, both with q > 0 (i.e., the density
is fixed on the upper branch), and there is a smooth transition between the two
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Fig. 4.1. The initial condition together with solutions at t = 0.5, 1, and 1.5. The initial
condition is the smoothest thick black line. As time increases, the “jump” between the two near-
constant regions steepens considerably and translates leftward, mimicking a translating shock. The
solution is shown at times t = 0.5, 1, and 1.5.

1 2 3 4 5

10.5

11.5

12

12.5

13

13.5
ρ

x

Fig. 4.2. The initial condition and two solutions, one at t = 0.1 and the other at t = 0.2. As
time increases, the “jump” between the two near-constant regions flattens considerably and spreads
rightward across the chute, mirroring well an expansion fan.

regions; this approximates the discontinuous input leading to a translating shock
type of solution in the ν = 0 “inviscid” case.

Figure 4.1 shows the initial condition together with solutions obtained at times t =
0.5, 1, and 1.5. As time increases, the “jump” between the two near-constant regions
steepens considerably and translates leftward, mimicking well a translating shock.

For the second case here an expansion fan type of solution is replicated. The
initial condition is

(4.5) ρ(x, 0) =

⎧⎨
⎩

13, x ≤ 2.5,
2e−1000(x−2.5)2 + 11, 2.5 < x ≤ 3,

11 + 2e−250, x > 3.

The boundary conditions are

(4.6a) ρ(0, t) = 13 + 2e−250,

(4.6b) ρ(5, t) = 11.

Hence initially there are two regions of constant density, and a smooth, yet steep,
transition between the two regions.

Figure 4.2 shows the initial condition and the solution obtained at times t =
0.1 and 0.2. As time increases, the “jump” between the two near-constant regions
flattens considerably and spreads rightward across the chute, resembling an expansion
fan, as hoped. Other solutions can similarly be found.
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q

ρ

O(ν)

Fig. 5.1. A sketch of the new fundamental diagram in the neighborhood of ρ = q = 0.

5. Viscous two-way flows. In this section, we demonstrate that in principle
valid solutions can be obtained for the continuum equation in which grains can move
to and fro across the chute; i.e., there exist valid solutions for “viscous” two-way
flows. Such solutions, however, require a modification to the fundamental diagram
at the endpoints. In particular, we stated in section 2 that the two branches of
the fundamental diagram must meet at cusps at the endpoints. Such geometry is
required if the wavespeed is to change smoothly during the branch switch in the
inviscid model , but in the viscous parabolic governing equation such discontinuities
are found to be incompatible with the viscous dissipation term. Consequently, the
local inviscid q ∼ ρ

3
2 relation should be altered for the viscous case.

On changing the fundamental diagram locally near the endpoints, we show below
that the local behavior near the origin (or maximum) must in general be

(5.1a) q ∝ ρ
1
2 near ρ = 0

or

(5.1b) q ∝ (ρM − ρ)
1
2 near ρ = ρM ,

and then we examine if a valid solution exists. The suggested behavior above is
required by the following reasoning. As the solution passes through a minimum, as
it must do in separating regions, ρ ∝ x2 is clearly the most general case. This, in
answer to a referee’s query, is because we expect ρ to be small and positive as the
solution passes through a minimum. As x is also small (since ρ is expected to be zero
in the center of a separating region) the higher order terms x4, x6, etc., give only
an asymptotically small correction, in general. Balancing terms in (4.1) thus reveals
immediately that q ∼ x, i.e., q ∝ ρ

1
2 as just above. A similar relation applies near a

maximum. The consequences of this new law in the vicinity of ρ = 0 are considered
next, where we aim to find a similarity solution valid at small time. Figure 5.1 shows
a sketch of the new fundamental diagram in the neighborhood of ρ = q = 0. Note
that the size of the viscous region is O(ν).

Locally q ∼ 2c0ρ
1
2 , say, with c0 a constant, so c ∼ c0ρ

− 1
2 and substitution into

(4.1) yields the ordering

ρ

t
± c0ρ

− 1
2
ρ

x
∼ ρ

x2
.



CHUTE FLOW OF GRAINS 323

Balancing terms in ρ we see that, in terms of orders, x ∼ t
1
2 and hence ρ ∼ t. This is

acceptable since the density is small in a separating region. Therefore the similarity
variable η = x

t
1
2

and the form ρ = tf (η) hold locally.
It is also clear that application of this local argument is actually quite wide-

ranging because of the parameters c0, ν. Their inclusion gives the representative size
of x as (νt)

1
2 and hence the size of ρ as c20t

ν , implying formally that the small-density
law continues to apply provided that t	 ν

c20
. The time range could therefore be small

or large, depending on the parameters.
The solutions for the current revised model thus have regions which are governed

by the new viscous behavior when ρ ≈ 0 or ρ ≈ ρM , and regions governed by the
inviscid behavior away from ρ ≈ 0 or ρ ≈ ρM , where the fundamental diagram is
unchanged. As ν → 0 the viscous regions effectively vanish and the fully inviscid
solutions are regained. In this way, the solutions from the inviscid model and the
current viscous model are correlated.

Substituting into the continuum equation (4.1) and choosing +c0 with c0 positive
when the flux q is greater than zero, where locally f ′ > 0, and choosing −c0 with c0
positive when the flux q is less than zero, where f ′ < 0 locally, we obtain the nonlinear
ordinary differential equation

(5.2) νf ′′ −
(
± c0

f
1
2
− η

2

)
f ′ − f = 0

as the nominal small-time equation near the density extremum. It is shown in the
coming analysis that f is necessarily zero at a minimum, a physically sensible result
for the density in the center of a separating region. Thus (5.2) is to be solved subject
to f(k) = f ′(k) = 0, where η = k is the location of the minimum. Also f is expected
to be a smooth function for all η and to grow proportionally to η2 at large |η|.

As a check, approximating the behavior away from the extremum, in the core, we
put c ∼ ±c0ρ−

1
2 and expand

(5.3) ρ = ρ0 (x) + tρ1 (x) + t2ρ2 (x) + · · · .

Now if we assume that, for some positive constant λ, ρ0 ≈ λx2, which is the most gen-
eral form for a minimum (separating grains) local to the origin, then on substitution
into (4.1) we obtain

(5.4) ρ = λx2 + 2tλ
1
2

(
λ

1
2 ν ∓ c0

)
− t2

c20 ∓ c0νλ
1
2

x2
+O(t3).

Hence if x2 ∼ t, then the three leading terms become O (t) and the series is no
longer asymptotic. This reinforces the earlier similarity variable η = xt−

1
2 . Moreover,

if λ = c20ν
−2, then the O (t) and the O

(
t2
)

terms are zero and so the expansion
may still be valid. Therefore a simple crossover between branches is possible with
λ = c20ν

−2.
Indeed, turning to (5.2) we observe that

(5.5) f = Γη2

is an exact solution if Γ =
(
c0
ν

)2. All other solutions fall into one of two categories.
One is where the minimum of f is zero, in which case a series solution through the
minimum is required so the numerical scheme does not blow up. The second category
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is where the minimum has f nonzero: the series in this case is not regular. The latter
might be dismissed by a physical argument (the density must be zero at the center
of a separating region) but an analysis is presented for completeness. The series are
helpful in the subsequent numerical study.

First we put f = F 2; so (5.2) becomes

(5.6) νFF ′′ + F ′
(
νF ′ ∓ c0 +

1
2

(k + s)F
)
− 1

2
F 2 = 0,

where we have defined s ≡ η−k and f ′ = 0 at η = k, a prime denoting differentiation
with respect to s.

We mention here that having k nonzero allows the minimum, which cannot then
be at the origin, to move with speed ẋ = k

2 t
− 1

2 . Thus the solution has a fixed
minimum point at x = 0 only if k = 0 (we shall see later that this corresponds to
the exact solution f = Γη2). We are free to choose k in the local problem; it is
actually determined by the global solution across the whole chute. Since t	 1 slower
movements correspond to k → 0, in effect, and faster movements can be roughly
approximated by |k| becoming large.

We must find a series solution through the minimum point, in order that a Runge–
Kutta scheme can start away from the minimum point, where (5.2) has a singularity.
We therefore write an expansion for F near the minimum point:

(5.7) F = F0 + sF1 + s2F2 + · · · .

Since f ′ = 0 at η = k then 2FF ′ = 0 at s = 0, implying that F0F1 = 0. In the first
instance we choose F1 = 0 and hence

(5.8) F = F0 + s2F2 + s3F3 +O(s4).

Substituting (5.8) into (5.6) reveals that at leading order

(5.9) F0 = 0 or F2 =
F0

4ν
.

So this leads to either f = 0 at the minimum or to a series for the case when f = F0

at the minimum. If the former case is chosen, then we can re-expand

(5.10) F = sF1 + s2F2 + s3F3 + s4F4 +O(s5)

about s = 0, since the condition F0F1 = 0 is automatically satisfied (we shall return
shortly to the case F0 �= 0, F1 = 0, F2 = F0

4ν ). Expansion (5.10) ultimately results in

(5.11) F =
c0
ν

(
s− s2

k

8ν
+ s3

k2

96ν2
− s4

1
256

(
k3

6ν3
− k

ν2

)
+ · · ·

)

to the right of the minimum, and

(5.12) F = −c0
ν

(
s+ s2

k

8ν
+ s3

k2

96ν2
+ s4

1
256

(
k3

6ν3
− k

ν2

)
+ · · ·

)

to the left of the minimum. In fact, any number of terms in the series can be deduced.
We can now use the series in (5.11) to march from the minimum to the right to

some positive value s = a, say (i.e., η = k + a) to obtain f and f ′ there. Similarly
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we can use the series in (5.12) to find the values of f and its first derivative at some
s = −b, b > 0, which is to the left of the minimum (η = k − b). Hence we have
the starting conditions for two Runge–Kutta schemes: one starting at η = k + a
and solving (5.2) shooting forward to some large positive η, and the other starting
at η = k − b and solving (5.2) shooting backward to some large negative η. In the
following solutions we have also normalized both c0, ν to one.

Before examining these solutions, however, we return to the option where the
minimum f �= 0, i.e., F0 �= 0 and F1 = 0, giving the alternative result that F2 = F0

4ν
at leading order (5.9). In this case the expansion to the right of the minimum is

(5.13) F = F0

(
1 +

s2

4ν
+ s3

(
− k

24ν2
+

c0
12ν2F0

))

and the expansion to the left of the minimum is

(5.14) F = F0

(
1 +

s2

4ν
+ s3

(
− k

24ν2
− c0

12ν2F0

))
.

The central point here is that the third term in (5.13) differs from the third term
in (5.14) in the sign of c0. The series about the minimum is therefore not regular
if F0 �= 0, which is unacceptable as we are seeking a smooth solution. An inner-
inner region would be required if the series solution were nonregular, within which
more knowledge of the local physics would be required, possibly concerning “jump
conditions,” for example. Hence it turns out that the series with this choice is not
regular and furthermore it results in the unphysical condition that f �= 0 at the center
of a separating region, and this option is therefore ultimately dismissed. Altogether,
therefore, the minimum must occur with f = 0, and so series (5.11) and (5.12) can
be used in conjunction with a Runge–Kutta method to find solutions of (5.2). These
correspond to the density being zero at the center of a separating region, agreeing
with physical intuition.

The first solution we find is for the values a = b = 0.1 and k = 1, corresponding
to the minimum being located at (η, f) = (1, 0). A series expansion is used to find
the solution between η = [0.9, 1.1], and then two Runge–Kutta schemes are used to
shoot forwards or backwards from the endpoints of the series. Figure 5.2 shows that
the density increases relatively rapidly to large values to the left of the minimum yet
increases to a smaller value to the right of the minimum: the density distribution
is asymmetric either side of the minimum. Four terms have been used in the series
expansion in this case. Although this may seem a surprisingly small number, when
the number of terms in the series is changed to check the numerical accuracy the
solution remains virtually the same.

The numerical accuracy of the above solution was further checked. The step-
length was made shorter or longer to check the grid-dependence of the solution. Also
the number of terms in the series expansion was changed, and the interval of η in
which the series is applied, to make sure the solution is not dependent on either.
Finally, the length of the series can be changed to further ensure the result has no
dependence on this as well. The solution is found to be robust to the above changes,
and we can conclude that the numerical scheme is indeed sufficiently accurate.

Other solutions can be found where the minimum is located at different points.
These solutions have quantitatively different behavior from the one found above. For
example, the solution shown in Figure 5.3 has the minimum placed at (η, f) = (0, 0).
Again, a four-term series expansion is used to find the solution through the minimum,
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Fig. 5.2. A solution to (5.2) where the minimum occurs at (η, f) = (1, 0). A series solution
has been used to enable passage through the minimum. The step size in this example is h = 0.001.
The grains separate into regions of differing density.
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Fig. 5.3. The solution to (5.2) for when the minimum is located at the origin. A step size
of h = 0.001 was used and a four-term series expansion was used to find the solution through the
minimum. The grains separate into two regions of equal density.

and then the Runge–Kutta scheme is used to find the solutions from the endpoints
of the series which are located at η = −0.1 and η = 0.1. In this case, the analytical
solution is exactly f = Γη2 with Γ = c20ν

−2, which is symmetric about the origin.
Therefore this case corresponds to the situation where grains separate into regions of
equal density.

Another example is to find the solution when the minimum is placed at (η, f) =
(−2, 0), as shown in Figure 5.4. Again we see an asymmetric solution: to the left
of the minimum f increases only to relatively small values, whereas to the right of
the minimum the solution increases relatively rapidly to large values of f . We pay
particular note to the way in which the curve seems to tend to a small constant for a
large distance to the left of the minimum before beginning to increase.

In summary, by modifying the fundamental diagram to include a self-consistent
local viscous law we indeed find that physically sensible solutions are obtained for
the case of separating grains at low density, for small times and order-one viscosity,
or for order-one times and small viscosity, depending on the parameters. In the so-
lutions presented above the condition f = 0 (i.e., density is zero) must be satisfied
at the center of the separating region. This agrees with physical intuition and also
fits well with results from the idealized inviscid case. Furthermore, the solutions can
be asymmetric about the origin. This corresponds to grains moving apart, possibly
at different speeds, into regions of differing density. It is important that the con-
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Fig. 5.4. The solution to (5.2) when the minimum is located at (η, f) = (−2, 0). Again we
see an asymmetric solution: to the left of the minimum f increases only to relatively small values,
whereas to the right the solution rapidly increases to large values of f . The solution appears to have
a large region where f remains constant. For the above solution a step size of h = 0.001 was again
used, as was a four-term series expansion through the minimum. Thus the creation of a void in a
separating region seems to be described.

tinuum model allows this kind of solution as regions of differing density are seen in
direct numerical simulations of the chute flow, where clusters of different sizes develop
[5]. We also found above that a large region of low density can evolve between two
separating regions; see Figure 5.4. Again, one would expect this to occur for some
cases of separating regions, and we also mention that numerical simulations have
some large regions that are devoid of grains [5]. Finally, an origin shift of the center
of the separating region is possible; i.e., the grains do not have to separate about a
fixed point, which is also a physically sensible result. Consequently, it seems reason-
able to conclude for cases of separating grains that the q ∼ ρ

3
2 law from the inviscid

case should be changed locally to a viscous q ∼ ρ
1
2 law. Similar results describing

clashing of grains apply at the high-density cusp ρ → ρM [5]. Although this funda-
mental diagram cannot yet be entirely supported by physical arguments, physically
sensible results are nevertheless obtained. The modifications therefore appear to be
admissible.

6. Remarks on steady states. We noted at the end of section 3 that general
steady states do not exist for the inviscid model, except for ρ, q constant. This is not
the case for the viscous model, where steady states are possible in the sense of being
a large-time limit. The steady continuum equation is, from (4.1),

(6.1) qx = νρxx.

Hence

(6.2)
x− c2
ν

=
∫ ρ

ρ1

dρ

q + c1
,

where c1, c2 are constants of integration. Here for a finite integral we must choose
c1 = 0, and then the local behavior q ∼ ±ρ 1

2 from section 5 results in ρ ∼ (x− c2)2 on
integration of (6.2). This confirms (5.1a), which allows for a maximum or a minimum
near crossover at x = c2. Thus steady viscous states exist with two-way viscous flow.

The contrasting predictions from inviscid theory and viscous theory concerning
steady states are due to there being a long viscous time scale in the viscous regime
for small ν; evolution over times t of order 1

ν is inferred directly from (4.1) for x
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remaining of order unity. This conclusion is reinforced by the case of near-uniform
density flow where ρ = ρ̄ + ρ̃, with ρ̄ being a constant and ρ̃ being small. For then
c ≈ c̄ is near-uniform and (4.1) reduces to

(6.3) ρ̃t + c̄ρ̃x = νρ̃xx,

admitting a solution of the form ρ̃ = f̃ (x− c̄t, t), where f̃ is controlled by the diffusion
equation acting over the time scale of order 1

ν .

7. Further comments. If the fundamental diagram proposed in the present
paper is taken to give the flux-density law for a chute flow of grains, the previous
sections show that the inherent discontinuities in the model can apparently describe
the formation of clusters, voids, and sudden jumps in the density during collisions
and separations. Hence we can construct descriptions of significant parts of a chute
flow including regions of colliding or separating grains. However, we do not claim
that the fundamental diagram must describe the entire chute flow. The approach has
also been an empirical one: we have seen that the results can describe some situations
seen on chutes in reality, although the original physical arguments per se may remain
open to question.

In section 3 on the inviscid model, solutions with discontinuous input were found,
these being cases that yield relatively easily to analysis. Several examples of increasing
complexity illustrated how shocks and fans can be used to model clusters and voids. It
was noted that steady state solutions in general do not exist, except for ρ, q constant.
In the future, it may be possible to include an analysis of the effects of the chute wall
in an inviscid case.

In section 4, the number of solutions was extended to other cases. To obviate
problems associated with the discontinuities present in the model, an artificial viscous
dissipation term was added so that the governing equation is parabolic. We focused
there solely on problems in which grain movement is unidirectional so that no branch-
switching occurred. Hence a finite difference scheme was used to obtain numerical
solutions that imitate those found in the inviscid model.

Finally, in sections 5 and 6, we showed that the work can be extended further
to encompass a two-way flow in which grains can move to and fro. In order to
find such solutions, the fundamental diagram has to be modified so its curvature is
convex outwards at the endpoints. It was determined that such an alteration allows
physically reasonable descriptions of separating and clashing grains to develop. Again,
it is interesting, as section 6 pointed out, that steady state solutions do exist for the
viscous model.

If the viscosity ν is small, then in general the viscous effects also are small.
Exceptions are (a) shocks, where ν has a smoothing effect, as is well known [17];
(b) crossovers, which allow two-way solutions, and which are a new feature; and (c)
steady states, which can exist only if ν �= 0 and appear over a long time scale, which
is also a new observation.

It may be possible in future work to determine the fundamental diagram more
rigorously from a direct numerical simulation. A small control volume can be consid-
ered in the computational domain and at random times a measurement of the grain
density and flux within the control volume could be taken. This would be repeated for
many computational runs and a distribution of points of q versus ρ produced. These
points could then be collapsed onto a curve by an appropriate statistical method and
a fundamental diagram would be produced. This is similar to the recent approach of
Armbruster et al. [3].
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We also aim to obtain two-way viscous solutions across the entire chute, involving
the whole multivalued fundamental diagram. We hope to include such solutions,
alongside aspects addressing other mathematical properties of the viscous system, in
a future paper.
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OPTICAL FIBER DRAWING AND DOPANT TRANSPORT∗

H. HUANG† , R. M. MIURA‡ , AND J. J. WYLIE§

Abstract. Optical fibers are made of glass with different refractive indices in the (inner) core and
the (outer) cladding regions. The difference in refractive indices arises due to a rapid transition in the
concentration of a dopant across the boundary between these two regions. Fibers are normally drawn
from a heated glass preform, and the different dopant concentrations in the two regions will change
due to dopant diffusion and convective transport induced by the flow. In this paper, we analyze
a mathematical model for the dynamics of dopant concentration changes during the fiber drawing
process. Using a long-wave approximation, we show that the governing equations can be reduced to
a simple diffusion equation. As a result, we are able to identify key dimensionless parameters that
contribute to the diffusion process. We also derive asymptotic solutions for the temperature, cross-
sectional area, and effective diffusion coefficient when there are strong temperature dependencies in
the viscosity and the diffusion coefficient. Our simplified model and asymptotic solutions reduce the
need for extensive numerical simulations and can be used to devise control strategies to limit excess
dopant diffusion.

Key words. dopant diffusion, optical fiber drawing, incompressible viscous flow, long-wave
approximation, asymptotic approximation

AMS subject classifications. 76D99, 76R50, 41A60, 76D27
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1. Introduction. Optical fibers are drawn from a heated glass preform using
mechanical pullers. The glass preform is fabricated so that there is a difference in the
refractive index between the fiber core and the outer cladding region. This refractive
index difference is achieved normally by adding a dopant to the inner core region [4].
Typically, dopant materials, such as oxides of germanium, phosphorus, and boron,
are deposited in pure silica in the perform. However, during drawing, splicing, and
fusion, the refractive index may change due to diffusion of the dopant in the glass
[7, 11].

Compared to dopant concentration changes due to splicing and fusion of these
fibers, dopant concentration changes during fiber drawing would appear to be more
complicated since dopant diffusion depends not only on temperature, but also on a
number of other factors, including the mechanics of the drawing process. In Lyytikäi-
nen et al. [5], numerical simulations and an experimental study of specialized fibers
have been carried out. For relatively low drawing speeds, it was shown that diffu-
sion can cause a small but visible spreading of the dopant. It also was shown that
larger drawing speeds and lower furnace temperatures both reduce the diffusion of
dopant. Their simulations ignored advection of dopant by the flow and were based
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on a simple diffusion equation with only a radial component. Their experiments and
simulations compare favorably, which indicates that the key mechanism is captured
by simple radial diffusion; however, it is not clear why this is the case and whether this
assumption will hold for other parameter values. On the other hand, Yan and Pitchu-
mani [11] carried out a full numerical simulation of the drawing process, including
dopant diffusion. Although the fiber surface is a free boundary, they simplified their
computations by using a prescribed surface boundary based on previous numerical
studies of the drawing process by Lee and Jaluria [6]. Contrary to the conclusion in
Lyytikäinen et al. [5], the numerical simulations by Yan and Pitchumani [11] show
that a significant amount of diffusion occurs during the drawing process, in spite of
a similar drawing environment and higher drawing speeds, which should reduce the
amount of diffusion.

In this paper, we analyze a mathematical model for dopant concentration changes
during optical fiber drawing. The main objective of the paper is to understand the
mechanism of dopant transport during drawing. We also are interested in exploring
different ways to control dopant diffusion since from a practical point of view it is
desirable to minimize its effect. Based on an asymptotic analysis of this model, we
are able to show that the diffusion of dopant is governed by a simple diffusion equa-
tion with only a radial component, as used by Lyytikäinen et al. [5]. However, the
molecular diffusion coefficient used in [5] must be replaced by an effective diffusion
coefficient, which includes a “history” factor. For typical parameter values, we show
that the effective diffusion coefficient is determined mainly by two dimensionless pa-
rameters, namely, the Péclet number based on the diffusion coefficient for dopant, and
a parameter that quantifies the heating strength. For large changes in viscosity, we
derive analytical expressions that are uniformly valid asymptotic expansions for veloc-
ity, radius, and temperature. This allows us to find simple expressions for the effective
diffusion coefficient that clearly show the way in which all of the parameters affect
the diffusion process and hence reduces the need for extensive numerical simulations.

The paper is organized as follows. In section 2, the mathematical model for
glass optical fiber drawing is given and subsequently simplified. We derive explicit
approximations for the temperature and cross-sectional area in section 3. For these
approximations, we considered two cases, one with cooling and one without cooling.
In section 4, we derive asymptotic approximations for the effective diffusion in the
case of no cooling.

2. Problem description. In a typical setup for glass optical fiber drawing, a
cylindrical preform with radius R0 and temperature T0 is extruded from an input
nozzle into a heating and cooling device with speed u0; see Figure 1. At a distance
L from the input nozzle, the fiber is pulled out of the device by a roller. Between
the input nozzle and a distance Lf < L, the fiber is inside a furnace and is subjected
to heating. This heating causes the viscosity of the glass to dramatically decrease,
and thus facilitates rapid stretching of the fiber with moderate forces. Between the
end of the furnace and the roller, the fiber is cooled by natural and forced cooling.
At the nozzle input, the dopant concentration c = c0(r) will be assumed to be a
given function of the radial distance from the fiber axis, r. The aim of this study
is to understand how the heating, cooling, and the stretching process, as well as the
diffusion and advection of the dopant, affect the dopant concentration profile when
the fiber exits the device. We note that throughout this paper, subscripts 0, f , and
c refer to quantities associated with the input nozzle, furnace heating, and cooling,
respectively.
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� Heating Zone �� Cooling Zone �

��

z = 0 z = Lf z = L

Fiber drawn with speed udPreform fed in with speed u0

Fig. 1. Schematic of heating and cooling zones.

2.1. Mathematical model. We assume that the glass fiber is an incompressible
fluid with temperature-dependent viscosity. Also, we assume that the dopant concen-
tration has a negligible effect on the density, viscosity, and conductivity of the glass,
the fiber remains axisymmetric, and the drawing conditions are in a steady state.
Under these assumptions, the governing equations for mass, momentum, energy, and
dopant concentration are given by [11]

∂(ρu)
∂z

+
1
r

∂(rρv)
∂r

= 0,(2.1)

∂(ρu2)
∂z

+
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∂(rρuv)
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+ 2
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∂r

=
∂

∂z

(
D
∂c

∂z

)
+
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r

∂

∂r

(
rD

∂c

∂r

)
,(2.5)

where z is the distance from the input nozzle measured along the axis of the fiber, u
and v are the velocity components in the axial and radial directions, respectively, p is
the pressure, T is the temperature, c is the dopant concentration, ρ is the density, μ is
the viscosity, cp is the specific heat, k = kT+kR is the effective conductivity [11] where
kT is the (molecular) thermal conductivity and kR is the radiative conductivity, and
D is the molecular diffusivity of the dopant. We observe that the mass, momentum,
and energy equations decouple from the dopant equation.

The boundary conditions at the inlet of the furnace are

(2.6) u = u0, v = 0, T = T0, c = c0(r), 0 ≤ r ≤ R0, at z = 0.

At a fixed downstream location, we assume the velocity is known:

(2.7) u = ud at z = L.

At this downstream location, boundary conditions also are needed for the radial com-
ponent of the velocity v, the temperature T , and the dopant concentration c. How-
ever, we will show that in the asymptotic limit of the long-wave approximation, such



DOPANT TRANSPORT IN OPTICAL FIBERS 333

boundary conditions do not play a significant role outside of a thin region near this
boundary. The lateral fiber surface r = R(z) is a free boundary at which the following
dynamic and kinematic conditions must be applied:

(2.8) nT · σ · n = Γκ, tT · σ · t = 0, v = R′u

where the prime denotes differentiation with respect to z, σ is the stress tensor,
n = [(1 + R′2)−1/2, R′(1 + R′2)−1/2]T is the outward normal vector to the glass
surface, t = [−R′(1 + R′2)−1/2, (1 + R′2)−1/2]T is the corresponding vector in the
tangential direction, κ is the mean curvature, and Γ is the surface tension coefficient.

The boundary condition for temperature at the fiber surface depends on whether
the fiber is inside or outside of the furnace. In Lee and Jaluria [6], the heat flux q is
specified when the fiber is inside the furnace. In general, q depends on many factors,
such as the furnace wall temperature profile, inert gas flow, and the dimensions of the
furnace, as well as the fiber temperature. Here, as in previous studies [6], we have
adopted the standard Newton’s cooling law1

(2.9) −k∂T
∂n

= q :=
{
hf (Tf − T ), 0 ≤ z < Lf ,
−hc(T − Tc), Lf ≤ z ≤ L,

where Tf and Tc are the furnace and background temperatures, respectively, and hf
and hc are the heat transfer coefficients for the heating from the furnace and cooling
to the background, respectively. For simplicity, we will assume that the background
temperature is the same as the temperature at the nozzle input, that is, Tc = T0,
although generalization is straightforward.

Finally, the dopant concentration satisfies the no-flux boundary condition

(2.10) D
∂c

∂n
= 0

at the fiber surface r = R(z) and the regularity condition

(2.11)
∂c

∂r
= 0

at the axis of the fiber r = 0.
For the glass fibers used in typical optical fiber fabrication, the viscosity of the

fiber varies rapidly with temperature. This rapid variation plays a fundamental role
in controlling the dynamics. Empirical data for glass (see [8, 3] and the references
therein) show that the viscosity can be well approximated by an Arrhenius formula
or an exponential law. In this paper, we will use the exponential law in the form

(2.12) μ(T ) = μ0 exp (−Gμ(T − T0))

where μ0 is the viscosity of the fiber at T0 and Gμ is a constant. The diffusion
coefficient for the dopant also is normally assumed to follow the Arrhenius formula

(2.13) D(T ) = D∞ exp
(
−GD
T

)

where GD is the activation energy divided by the universal gas constant and D∞ is
the diffusion coefficient at high temperatures.

1Within the furnace, there is a complicated balance between radiative and convective heat pro-
cesses, but it is straightforward to generalize our approach, as outlined in this paper, to heating laws
for these processes, e.g., for radiative heat transfer; see [3].
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Table 1

List of the physical parameter values.

ρ cp kT kR Γ hf hc

kg/m3 J/(K kg) W/(m K) W/(m K) kg/s W/(m2 K) W/(m2 K)

2.23 × 103 7.538 × 102 1.130 1.2 × 101 3 × 10−1 200 20

u0 ud L Lf R0 T0 Tf μ0 Gμ D∞ GD

m/s m/s m m m K K kg/(m s) K−1 m2/s K

10−4 1 0.5 0.1 6 × 10−3 300 2300 108 2 × 10−2 2.4 × 10−6 3.73 × 104

2.2. Dimensional analysis. We nondimensionalize the governing equations us-
ing the following scalings:

ẑ =
z

L
, r̂ =

r

R0
, R̂ =

R

R0
, û =

u

u0
, v̂ =

Lv

R0u0
, p̂ =

R2
0p

μ0u0L
,

μ̂ =
μ

μ0
, θ =

T − T0

Tf − T0
, ĉ0 =

c0
c0(0)

, ĉ =
c

c0(0)
, D̂ =

D

D∞
.

Substitution of these scalings into (2.1)–(2.4) yields the following dimensionless pa-
rameters, which we list along with their order of magnitude estimates based on the
typical parameter values [5, 6, 11] that are listed in Table 1:

Dr =
ud
u0

≈ 104, δ =
R0

L
≈ 10−2, Re =

ρu0L

3μ0
≈ 10−9, λ =

ΓL
3μ0u0R0

≈ 10−3,

Bi =
hfR0

k
≈ 10−1, αμ = Gμ(Tf − T0) ≈ 40, αD =

GD
Tf − T0

≈ 20,

Θ =
T0

Tf − T0
≈ 0.15, P =

u0R
2
0

LD∞
≈ 3 × 10−3,

and

Hf =
2
√
πhfL

ρcpu0R0
≈ 350, Hc =

2
√
πhcL

ρcpu0R0
≈ 35, � =

Lf
L

≈ 0.2.

Here Dr is the draw ratio, δ is the aspect ratio, Re is the Reynolds number, λ is
the ratio of surface tension forces to viscous forces, and Bi is the Biot number. The
parameters αμ and αD measure the changes in the viscosity and the diffusion coeffi-
cient as the temperature varies between its initial value and the heater temperature,
respectively, Θ is the ratio of the initial temperature to the difference between the
heater and initial temperatures, P is the Péclet number for the dopant, Hf and Hc

represent the dimensionless strengths of the heating and cooling, respectively, and �
represents the proportion of the length of the device that is heated by the furnace.
We note that the Biot number estimated here is consistent with the value cited in [6],
where the heat transfer is estimated based on an estimate for the heat flux.

2.2.1. Flow and temperature equations: Simplifications. The mass, mo-
mentum, and temperature equations clearly decouple from the dopant equation, and
we begin by simplifying these equations. Based on the parameter values given in
Table 1, we see that δ, Re, λ, and Bi are small. Since δ � 1, we can use the long-wave
approximation. Furthermore, since λ� 1 and Re � 1, we can ignore the inertia and
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surface tension terms in the momentum equations. Finally, assuming that Bi � 1,
equations (2.1)–(2.4) become (dropping the hats)

∂

∂z
(us) = 0,(2.14)

1
s

∂

∂z

(
μs
∂u

∂z

)
= 0,(2.15)

u
∂θ

∂z
=

Hf (1 − θ)H(�− z) −HcθH(z − �)
s1/2

,(2.16)

where s = R2, μ = exp(−αμθ), and H is the Heaviside step function. The derivation
of these equations follows the derivation of similar equations in previous work (cf. [1,
2, 9, 10]).

The boundary conditions (2.6) and (2.7) become

(2.17) s = 1, u = 1, θ = 0 at z = 0

and

(2.18) u = Dr at z = 1.

2.2.2. Dopant equation: Long-wave approximation. The long-wave ap-
proximation of the dopant concentration equation (2.5) is

(2.19) P
(
u
∂c

∂z
− r

2
∂u

∂z

∂c

∂r

)
=

1
r

∂

∂r

(
rD

∂c

∂r

)

where

(2.20) D = exp
(
− αD
θ + Θ

)
.

The boundary conditions are

(2.21) c = c0(r), 0 ≤ r ≤ R0, at z = 0

and

(2.22) cr = 0 at r = 0 and r =
√
s.

2.2.3. Flow and temperature equations: Reduced system. From (2.14),
(2.15), and the boundary conditions on u and s in (2.17) and (2.18), it is easy to
verify that

(2.23) su = 1 and μsuz = 2F

where

F =
lnDr

2
∫ 1

0 μ
−1dz

is the effective pulling force that will be obtained by using the boundary condition at
z = 1. Using the first equation in (2.23) to eliminate u in the temperature equation
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(2.16) and uz in the second equation in (2.23), we obtain a system of two coupled
first-order ordinary differential equations for s and θ:

sz = −2Fs
μ
,(2.24)

θz = s1/2 [Hf (1 − θ)H(�− z) −HcθH(z − �)] ,(2.25)

which must be solved subject to the following boundary conditions:

(2.26) s = 1, θ = 0 at z = 0 and s = D−1
r at z = 1.

2.2.4. Dopant equation: Simplification. We can further simplify the equa-
tion for dopant concentration changes by defining

(2.27) φ(z) ≡
∫ z

0

D[θ(z′)]dz′ and φ̄ ≡ φ(1)

and using the coordinate transformations ξ = r/R and τ = φ(z)/φ̄. The quantity

(2.28) D =
φ̄

P
will be called the effective diffusion coefficient, and we obtain

(2.29) cτ =
D
ξ

∂

∂ξ

(
ξ
∂c

∂ξ

)

subject to

(2.30) c = c0(ξ) at τ = 0

and

(2.31) cξ = 0 at ξ = 0 and ξ = 1.

The exit of the entire heating and cooling device is located at τ = 1.
To summarize, we have shown that dopant transport during fiber drawing is

governed by a diffusion equation in the coordinates (ξ, τ), which has the form for
diffusion in cylindrically symmetric heat flow. The amount of diffusion is characterized
by the effective diffusion coefficient, D, which depends on the temperature distribution
inside the fiber. In principle, the fiber temperature can be obtained by solving two
coupled first-order ordinary differential equations (2.24) and (2.25) numerically. The
effective diffusion coefficient can then be evaluated numerically using (2.27).

Since the range of temperature variation is large, the value of the molecular
diffusion coefficient varies over several orders of magnitude and the effective diffusion
coefficient is mainly determined by the portion of the fiber where the temperature
is high. It can be seen that if the temperature is uniformly high, i.e., θ = constant,
then φ̄ = D(θ) and D = D(θ)/P . Therefore, to estimate the value of the effective
diffusion coefficient, it is important to obtain an estimate of the temperature inside
the fiber. In the next two sections, we show that due to special features of the setup
and parameter values used in practice, approximate solutions could be obtained for
the fiber temperature. In the case without cooling, solutions also can be obtained
for the effective diffusion coefficient. When compared with numerical solutions, such
asymptotic solutions provide valuable insights for understanding the dopant transport
mechanism.
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3. Asymptotic solution for θ and s. We consider two cases: first without
cooling (� = 1), in which the furnace heats the entire fiber, followed by the case with
cooling (� < 1), in which the furnace heats the initial portion of the fiber, whereas
the remaining portion is subjected to cooling.

3.1. � = 1. Introducing the scaled effective force F = 2Feαμ/ lnDr, we can
rewrite the system (2.24) and (2.25) as

sz = −F lnDrse
−αμ(1−θ),(3.1)

θz = Hf

√
s(1 − θ),(3.2)

subject to the boundary conditions s(0) = 1 and θ(0) = 0. From the above two
equations, we obtain

(3.3)
ds

dθ
= −F lnDr

Hf

√
se−αμ(1−θ)

1 − θ
.

Integrating and using the boundary conditions, we obtain

(3.4) s =
(

1 − F lnDr

2Hf
{E1[αμ(1 − θ)] − E1[αμ]}

)2

where

E1[η] =
∫ ∞

η

e−x

x
dx

is the exponential integral. Note that up to this point no approximation has been
made to (3.1) and (3.2). To proceed further, we exploit the fact that viscosity varies
rapidly with temperature, that is, αμ � 1. Note that the exponential integral has the
following asymptotic approximations:

E1[η] ∼
e−η

η
as η → ∞, E1[η] ∼ − ln(η) − γ as η → 0

where γ = 0.5772 . . . is Euler’s constant.
From (3.2), we have

(3.5) θz = Hf

(
1 − F lnDr

2Hf
{E1[αμ(1 − θ)] − E1[αμ]}

)
(1 − θ).

Since αμ ≈ 30 � 1, we have that E1[αμ] is small. Also, E1[αμ(1− θ)] will be small if
1 − θ � α−1

μ . Therefore,

(3.6) θz = Hf (1 − θ),

which can be solved to give

(3.7) θ = 1 − e−Hfz.

Clearly, 1 − θ → 0 as z increases to 1 for Hf � 1. Thus, for z � H−1
f , we have

(3.8) θz = Hf

(
1 +

F lnDr

2Hf
{ln[αμ(1 − θ)] + γ}

)
(1 − θ).
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Letting

αμ(1 − θ) = e−
2Hf

F ln Dr θ̂,

we have

(3.9) θ̂z = −F lnDr

2

(
ln θ̂ + γ

)
θ̂,

which can be integrated to obtain

(3.10) ln θ̂ = −γ + C1e
−F ln Dr

2 z

where C1 is an integration constant.
Next, we match the above solution with (3.6) to obtain

(3.11) C1 = γ + lnαμ +
2Hf

F lnDr
.

Thus,

(3.12) θ̂ = exp
[
−γ +

(
γ + lnαμ +

2Hf

F lnDr

)
e−

F ln Dr
2 z

]
,

or returning to the original variable,

(3.13) θ = 1 − exp
[
−
(
γ + lnαμ +

2Hf

F lnDr

)(
1 − e−

F ln Dr
2 z

)]
.

Given θ, we can find s using (3.4).
The scaled pulling force F can be obtained by substituting z = 1 into (3.13)

and (3.4) and using the condition s(1) = D−1
r . Using the fact that αμ � 1 and the

asymptotic properties of E1, we obtain

(3.14) F = 1 +
2

lnDr
ln
[
1 +

F(lnαμ + γ) lnDr

2Hf

]
.

In general, to obtain F , this equation must be solved numerically. But for typical
parameter values, we have

(3.15)
(lnαμ + γ) lnDr

2Hf
∼ 10−1 � 1,

and so we can obtain an asymptotic estimate for F in closed form:

(3.16) F = 1 +
lnαμ + γ

Hf
.

In Figure 2, we plot the asymptotic and numerical solutions, and it can be seen
that the agreement between the two solutions is excellent.



DOPANT TRANSPORT IN OPTICAL FIBERS 339

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
0

s

z

Fig. 2. Numerical (dots) vs. asymptotic (lines) solutions. The parameter values are Hf = 100,
αμ = 30, and Dr = 104.

3.2. � < 1. When there is cooling, the previous solution is valid up to the
location z = �, but for z > �, the area and temperature are determined from (2.24)
and (2.25):

sz = −F ln(Dr)eαμ(θ−1)s,(3.17)
θz = −Hc

√
sθ,(3.18)

subject to the boundary conditions s(�) = s� and θ(�) = θ�.
We rescale the variables using

ϑ = αμ(θ� − θ), s =
√

s

s�
, y =

F ln(Dr)eαμ(θ�−1)

2
(z − �),

and (3.17) and (3.18) become

sy = −se−ϑ,(3.19)
ϑy = As(1 − εϑ)(3.20)

where

A =
2
√
s�Hcαμθ�e

αμ(1−θ�)

F ln(Dr)
, ε =

1
αμθ�

� 1,

and subject to ϑ(0) = 0 and s(0) = 1.
From (3.19) and (3.20), we obtain

(3.21)
dϑ

ds
= −A(1 − εϑ)eϑ.

Using ϑ(0) = 0, s(0) = 1, and integration by parts, we obtain

(3.22) s = 1 − 1
A

∫ ϑ

0

e−w

1 − εw
dw = 1 +

1
A

(
e−ϑ

1 − εϑ
− 1
)
− ε

A

∫ ϑ

0

e−w

(1 − εw)2
dw.

Given typical parameter values, one can readily see that the scaled temperature ϑ
at the exit is much greater than ε−1. Therefore, ε/(1 − εϑ) � 1, and (3.22) can be
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approximated as

(3.23) s = 1 +
1
A

(
e−ϑ

1 − εϑ
− 1
)
.

We now proceed with three different cases: A = 1, A < 1, and A > 1.

Case 1. A = 1. In this case, we have

(3.24) s = e−ϑ

and the equation for ϑ becomes

(3.25) ϑy = e−ϑ,

which can be solved as

(3.26) ϑ = ln(y + 1)

using the boundary condition ϑ(0) = 0. Thus, the leading-order solution for s is

(3.27) s =
1

(y + 1)
.

Case 2. A < 1. Note that A is the scaled cooling strength, and when A < 1,
we expect that the temperature is bounded below by A = 1. Using the solution in
Case 1, we note that ϑ is a monotonically increasing function with a maximum value

(3.28) ϑmax = ln
(
F ln(Dr)eαμ(θ�−1)

2
(1 − �) + 1

)
.

The quantity ϑmax is an order one quantity as long as ln(ln(Dr)) � ε−1, so we
conclude that ϑ also will be an order one quantity.

Having established that ϑ = O(1), we can approximate (3.23) by

(3.29) s = 1 +
1
A
(
e−ϑ − 1

)
.

From (3.20), we obtain

(3.30) ϑy = As = e−ϑ + A− 1,

which can be integrated to give

(3.31) ϑ = ln
Ae(A−1)y − 1

A− 1

after applying the condition ϑ(0) = 0. Note that this solution also applies to the case
of A = 1 by taking the limit A → 1, which yields (3.26). The solution for s can be
obtained as

(3.32) s =
A− 1

A− e−(A−1)y
.
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Case 3. A > 1. In this case, we need to consider two scenarios: when ϑ = O(1)
and when ϑ is large.

(i) ϑ = O(1). When ϑ = O(1), the analysis is identical to the case for A < 1,
yielding the same formulas (3.31) and (3.32).

(ii) Large ϑ. When 1 � ϑ � ε−1 and A > 1, the approximation of (3.23),
neglecting exponentially small terms, is given by

(3.33) s = 1 − 1
A ,

which can be combined with (3.20) to yield

(3.34) ϑy = (A− 1)(1 − εϑ).

This equation can be solved as

(3.35) ϑ =
1 − C2e

−ε(A−1)y

ε

where C2 is an integration constant. Since we obtained the solution based on the
assumption that ϑ is not small, we cannot use the boundary condition ϑ(0) = 0. To
determine C2, we need to match the small ϑ solution given by (3.31) with that for
large ϑ given by (3.35). Taking the limit of ϑ→ 0 from (3.35), we obtain

ϑ ∼ 1 − C2(1 − ε(A− 1)y)
ε

.

For large ϑ, i.e., y → 0, (3.31) gives

ϑ ∼ (A− 1)y + ln
A

A− 1
.

Comparing the two expressions, the only choice we have is

C2 = 1 − ε ln
A

A− 1
,

and the solution becomes

(3.36) ϑ =
1 − e−ε(A−1)y

ε
+
(

ln
A

A− 1

)
e−ε(A−1)y.

Note that when A � 1, C2 ∼ 1 and ϑ can be approximated by

(3.37) ϑ =
1 − e−ε(A−1)y

ε
.

(iii) Uniformly valid solution. The uniformly valid solution for ϑ obtained by
combining the solutions for small and large values of ϑ is given by

ϑ = ln
Ae(A−1)y − 1

A− 1
+

1 − e−ε(A−1)y

ε
+ ln

A
A− 1

e−ε(A−1)y(3.38)

− (A− 1)y − ln
A

A− 1
.

The solution for s can be obtained using (3.23).
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Solutions in original variables. Using the original variables and θ = θ�−α−1
μ ϑ,

the temperature solution is given by

(3.39) θ = θ� −
1
αμ

ln
A exp [(A− 1)B(z − �)] − 1

A− 1

for A ≤ 1 and

θ = θ� −
1
αμ

ln
A exp [(A− 1)B(z − �)] − 1

A− 1

−
(
θ� −

1
αμ

ln
A

A− 1

)(
1 − exp

[
− (A− 1)B

αμθ�
(z − �)

])
+

1
αμ

(A− 1)B(z − �)

(3.40)

for A > 1. Here B = F ln(Dr)eαμ(θ�−1)/2.
In both cases, the solution for the cross-sectional area in the original variables is

obtained using (3.23):

(3.41) s = s�

(
1 − 1

A +
θ� exp[αμ(θ − θ�)]

Aθ

)2

.

Using s(1) = D−1
r , we can obtain F (and F ) by solving the following equation nu-

merically:

(3.42) D−1
r = s�

(
1 − 1

A +
θ� exp[αμ(θ(1) − θ�)]

Aθ(1)

)2

where θ(1) is evaluated at z = 1 using (3.39) or (3.40), depending on the value of A.
In Figures 3 and 4, we have plotted both the numerical and the asymptotic

solutions for various values of the draw ratio Dr and for two different values of the
cooling parameter Hc, respectively. It can be seen that the solutions agree very well
with each other. Therefore, instead of relying on numerical solutions, one can use
(3.39) and (3.40) to evaluate the effective diffusion coefficient for the dopant. This
will be shown in the next section.

4. Dopant diffusion. Since dopant transport follows a standard diffusion equa-
tion, the solution is completely determined by the effective diffusion coefficient. When
the diffusion coefficient is small (as in the case of dopant diffusion), the effect of the
boundary on the dopant distribution is also small. Therefore, we can ignore the
boundary and solve (2.29) on an infinite domain as an approximation.2 In this case,
the solution for the dopant concentration can be written as

(4.1) c(τ, ξ) = 2π
∫ 1

0

G(τ, ξ; η)c0(η)ηdη.

2If we consider the boundary effect, we can use the series solution given by

c(τ, ξ) = 2

[
1 +

r∗
R

∞∑
m=1

e−λ2
mDτ J0(λmξ)J1(λmr∗R−1)

λmJ0(λm)2

]

where λm are the zeros of J1(λ). As long as the diffusion is not too small, only a small number of
terms is needed. For small diffusion coefficient values, convergence becomes slow, and we can switch
to the solution based on the infinite domain Green’s function.
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Fig. 3. Numerical (dots) vs. asymptotic solutions (solid line) given by (3.40) and (3.41):
(a) Dr = 103 (A = 3.67); (b) Dr = 104 (A = 1.71); and (c) Dr = 105 (A = 1.20). Values of the
other parameters are H = 350, Hc = 35, αμ = 40, � = 0.2.
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Fig. 4. Numerical (dots) vs. asymptotic solutions (solid line) given by (3.39), (3.40), and
(3.41): (a) Hc = 350 (A = 6.96); and (b) Hc = 1 (A = 0.78). Values of the other parameters are
H = 350, Dr = 104, αμ = 40, � = 0.2.

If we know the value of D, then the Green’s function is given by

(4.2) G(τ, ξ; η) =
1

4πDτ exp
(
−ξ

2 + η2

4Dτ

)
I0

(
ξη

2Dτ

)

where I0 is the modified Bessel function of the first kind.
In order to illustrate how the effective diffusion coefficient D is affected by various

parameter values, we obtain an asymptotic approximation for the case with no cooling
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(� = 1). Recall that in this case, the temperature is given by (3.13):

θ = 1 − exp
[
−C1

(
1 − e−

F ln Dr
2 z

)]
,

with C1 given by (3.11) and the effective diffusion coefficient is given by D = φ̄/P
where φ̄ is given by (2.27) with D given by (2.20).

Introducing new variables ζ = 1 − exp
(
−F lnDr

2 z
)

and ϕ(ζ) ≡ φ(z), we have

dζ =
F lnDr

2
(1 − ζ)dz

and

(4.3) ϕζ =
2

F lnDr

exp
(
− αD

Θ+1−exp(−C1ζ)

)
1 − ζ

, ϕ(0) = 0.

Since C1 � 1, the solution can be found for two cases: ζ ∼ C−1
1 and ζ ∼ 1.

Case I. ζ ∼ C−1
1 � 1. In this case, we use a new variable ζ̂ = C1ζ and denote

the solution by ϕ(i) (inner solution) which satisfies

(4.4) ϕ
(i)

ζ̂
=

2 exp
(
− αD

Θ+1−exp(−ζ̂)

)
C1F lnDr

, ϕ(i)(0) = 0.

The inner solution can be obtained as

ϕ(i)(ζ̂) = − 2
C1F lnDr

[
E1(x) − exp

(
− αD

Θ + 1

)
E1

(
x− αD

Θ + 1

)]x=αD/(Θ+1−exp(−ζ̂))

x=αD/Θ

.

(4.5)

Case II. ζ ∼ 1. In this case, we denote the solution by ϕ(o) (outer solution)
which satisfies

(4.6) ϕ
(o)
ζ =

2
F lnDr

exp(− αD

Θ+1 )
1 − ζ

.

The solution can be obtained as

(4.7) ϕ(o)(ζ) = −
2 exp(− αD

Θ+1 )
F lnDr

ln(1 − ζ) + C3

where C3 is an integration constant.

Matching. To determine the integration constant C3 and the outer solution,
ϕ(o), we need to match the two solutions as follows:

lim
ζ̂→∞

ϕ(i)(ζ̂) = lim
ζ→0

ϕ(o)(ζ).

Since

(4.8) ϕ(o)(ζ) ∼ C3 +
2 exp(− αD

Θ+1 )
F lnDr

ζ as ζ → 0
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and E1[z] ∼ −γ − ln(z) for small z, we have

ϕ(i)(ζ̂) ∼ − 2
C1F lnDr

⎧⎨
⎩E1

(
αD

Θ + 1

)
− E1

(αD
Θ

)
− exp

(
− αD

Θ + 1

)

×

⎡
⎣−γ − ln

⎛
⎝ αD

Θ + 1 − exp
(
−ζ̂
) − αD

Θ + 1

⎞
⎠
⎤
⎦

+ exp
(
− αD

Θ + 1

)
E1

(
αD
Θ

− αD
Θ + 1

)⎫⎬
⎭

≈ − 2
C1F lnDr

{
E1

(
αD

Θ + 1

)
− E1

(αD
Θ

)
− exp

(
− αD

Θ + 1

)

×
[
−γ − lnαD + ζ̂ + 2 ln(Θ + 1)

]
+ exp

(
− αD

Θ + 1

)
E1

(
αD

Θ(Θ + 1)

)}

≈ − 2
C1F lnDr

{
E1

(
αD

Θ + 1

)
− E1

(αD
Θ

)
− exp

(
− αD

Θ + 1

)

× [−γ − lnαD + 2 ln(Θ + 1)] + exp
(
− αD

Θ + 1

)
E1

(
αD

Θ(Θ + 1)

)}

+
2 exp

(
− αD

Θ+1

)
F lnDr

ζ̂

C1
as ζ̂ → ∞.(4.9)

We obtain

C3 = − 2
C1F lnDr

{
E1

(
αD

Θ + 1

)
− E1

(αD
Θ

)
− exp

(
− αD

Θ + 1

)

× [−γ − lnαD + 2 ln(Θ + 1)] + exp
(
− αD

Θ + 1

)
E1

(
αD

Θ(Θ + 1)

)}
.(4.10)

Using the original variable, we have

(4.11) φ(o)(z) = exp
(
− αD

Θ + 1

)
z + C3,

from which we obtain the effective diffusion coefficient as

(4.12) D =
exp
(
− αD

Θ+1

)
+ C3

P .

First, we observe that the first term on the right-hand side of D is given by
P−1 exp

(
− αD

Θ+1

)
, which is the value of the effective diffusion coefficient when θ = Θ

for all z, i.e., uniform temperature. The correction term C3 is inversely proportional to

2Hf + (lnαμ + γ)
(

1 +
lnαμ + γ

Hf

)
lnDr.

The parameter Hf is typically much larger than the other parameters. Therefore,
the above asymptotic analysis clearly shows that the effective diffusion is extremely
weakly dependent on the draw ratio Dr.
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On the other hand, D is strongly affected by the Péclet number P . Therefore, the
most effective way to control excessive diffusion is to increase P , which can be achieved
by using a relatively large feeding speed. We note that the diffusion coefficient given
here is for the scaled fiber radius. Thus, the absolute length of diffusion is proportional
to the initial fiber radius R0. For illustrative purposes, we have evaluated the effective
diffusion coefficient given in (4.12) using the parameter values listed in Table 1 and
keeping the feeding speed as a free parameter, yielding

D ≈ 3.02 × 10−9

u0
− 1.44 × 10−11

4.27u2
0 + 5.10 × 10−5

m2/s.

Here the second term comes from the correction term C3/P . Taking the value of
u0 = 10−4 m/s (cf. [6]), we obtain D ≈ 2.99 × 10−5 m2/s with the correction
term and 3.02 × 10−5 m2/s without the correction term. Next we compute the
effective diffusion coefficient using numerical quadrature, based on (2.27), (2.28),
and (3.13), which yields D = 2.99 × 10−5 m2/s. For a higher feeding speed, e.g.,
u0 = 3 × 10−3 m/s, the asymptotic solution is D ≈ 8.45 × 10−7 m2/s with the cor-
rection term and 1.01 × 10−6 m2/s without the correction term, while the numerical
solution is D = 8.5×10−7 m2/s. In both cases the asymptotic solution is a very good
approximation when it is compared with the numerical solution, especially when the
correction term is included.

Finally, to find D for the case with cooling, we could solve for the temperature
from (2.24)–(2.25) with boundary condition (2.26). The effective diffusion coefficient
could be computed using the integral

∫ 1

0
D(θ)dz. In general, we can apply numerical

methods, e.g., finite difference to solve the flow and temperature equations (2.24)
and (2.25) and numerical quadrature to the integral to find an approximation of D.
However, since we already obtained an asymptotic solution for the temperature, D
can be computed easily by evaluating the integral using numerical quadrature.

5. Conclusion. In this paper, we have shown that the long-wave approximation
can be used to dramatically simplify the governing equations for dopant transport in
optical fiber drawing. The viscosity and diffusion coefficient vary rapidly with temper-
ature, which makes direct numerical simulations difficult. However, we take advantage
of these rapid changes to derive asymptotic approximations of the solution. We show
that the transport of dopant satisfies a simple diffusion equation with an effective
diffusion coefficient that can be computed easily using our asymptotic solution. Our
solution shows that the feeding speed is the most effective way to control dopant dif-
fusion from the core into the cladding region. Using our asymptotic solution, other
control strategies can also be developed. For example, one can use an optimal control
framework based on a cost function that maximizes fiber production and minimizes
dopant diffusion and which uses the feeding and drawing speeds or the heating and
cooling rates as control variables. However, such a study is beyond the scope of this
paper and will be pursued in future work.
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STATIONARY SOLUTIONS OF DRIVEN FOURTH- AND
SIXTH-ORDER CAHN–HILLIARD-TYPE EQUATIONS∗
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Abstract. New types of stationary solutions of a one-dimensional driven sixth-order Cahn–
Hilliard-type equation that arises as a model for epitaxially growing nanostructures, such as quantum
dots, are derived by an extension of the method of matched asymptotic expansions that retains
exponentially small terms. This method yields analytical expressions for far-field behavior as well
as the widths of the humps of these spatially nonmonotone solutions in the limit of small driving
force strength, which is the deposition rate in case of epitaxial growth. These solutions extend the
family of the monotone kink and antikink solutions. The hump spacing is related to solutions of
the Lambert W function. Using phase-space analysis for the corresponding fifth-order dynamical
system, we use a numerical technique that enables the efficient and accurate tracking of the solution
branches, where the asymptotic solutions are used as initial input. Additionally, our approach is first
demonstrated for the related but simpler driven fourth-order Cahn–Hilliard equation, also known as
the convective Cahn–Hilliard equation.

Key words. convective Cahn–Hilliard, quantum dots, exponential asymptotics, matching, dy-
namical systems

AMS subject classifications. 34E05, 74K35, 65P99

DOI. 10.1137/070710949

1. Introduction. A paradigm for phase separating systems such as binary alloys
is the Cahn–Hilliard equation for the phase fraction u,

(1.1) ut +
(
Q(u) + ε2uxx

)
xx

= 0,

where Q(u) is the negative derivative of the double-well potential −F , typically

(1.2) Q(u) = F ′(u) = u− u3.

The long-time dynamics are characterized by the logarithmically slow coarsening pro-
cess of phases, corresponding to local minima of the potential, separated by interfaces
of width ε. This process is described well by the motion of equidistantly spaced
smoothed shock solutions or kinks (“positive kinks”) and antikinks (“negative kinks”)
which connect the local minimum of F(u) at u = −1 to that at u = 1 and vice versa.

In recent years, an extension of this model has been studied for the case when the
phase separating system is driven by an external field [16, 27]. In one space dimension
it can be written as

(1.3) ut − νuux +
(
Q(u) + ε2uxx

)
xx

= 0,
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where ν denotes the strength of the external field. This equation, the convective Cahn–
Hilliard (CCH) equation, also arises as a model for the evolution of the morphology of
steps on crystal surfaces [21], and the growth of thermodynamically unstable crystal
surfaces into a melt with kinetic undercooling and strongly anisotropic surface tension
[17, 11, 9].

The dynamics of this model as ν → 0 are characterized by coarsening, as is
typical for the Cahn–Hilliard equation (ν = 0) [7, 26]. If ν → ∞, using the transfor-
mation u �→ u/ν in (1.3) one obtains the Kuramoto–Sivashinski equation, which is a
well-known model for spatiotemporal chaotic dynamics (see, e.g., [10] and references
therein). Recently, Eden and Kalantarov [6] also established the existence of a finite-
dimensional inertial manifold for the CCH equation, viewed as an infinite-dimensional
dynamical system.

A related higher order evolution equation arises in the context of epitaxially grow-
ing thin films (for a review on self-ordered nanostructures on crystal surfaces see
Shchukin and Bimberg [24]). Here, the formation of quantum dots and their faceting
has been described by the sixth-order equation

(1.4) ut − νuux −
(
Q(u) + ε2uxx

)
xxxx

= 0,

where u denotes the surface slope, ν is proportional to the deposition rate [22], and
Q(u) is given with (1.2); it is assumed to have this form from now on throughout
the paper. The high order derivatives are a result of the additional regularization
energy which is required to form an edge between two plane surfaces with different
orientations. This implies that the crystal surface tension also depends on curvature,
which becomes very high at edges as the parameter ε goes to zero. In analogy to
the Cahn–Hilliard equation, here the phases are the orientations of the facets. This
higher order convective Cahn–Hilliard (HCCH) equation shares many properties with
the CCH equation. In both cases the dynamics are described by conserved order
parameters if ν = 0. They also share characteristic coarsening dynamics as ν → 0 and
chaotic dynamics as ν becomes large. To understand the complicated structure of the
solutions it is instructive to study first the stationary solutions and their stability, as
has been done for the CCH equation [28, 16]. For small ν, the stationary solutions for
both equations have been characterized by the monotone kink and antikink solutions
[16, 22]. Recently new spatially nonmonotone solutions were found for the lower order
equation [28]. In this study we establish that the HCCH equation also possesses
such nonmonotone solutions. We show this by using phase-space methods for the
corresponding fifth-order boundary value problem. We use the expression “simple”
or “monotone” for a solution that connects the maximal value of u(x) to the minimal
value without any humps on the way down, although these extrema exist and lead to
nonmonotonicity even for simple (anti-)kink solutions of the HCCH equation.

Since the treatment of this high order problem is not straightforward, one part of
this study is concerned with the development of an approach that accurately locates
the heteroclinic connections in the five-dimensional phase space. We find that these
stationary solutions develop oscillations whose width and amplitude increase as ν → 0.

In the second part of this study we derive an analytic expression for the width and
amplitude within the asymptotic regime of small external field strength. For the CCH
equation we find that the width has a logarithmic dependency on the strength of the
external field, while for the HCCH equation our analysis yields a dependency in terms
of the Lambert W function. In order to arrive at these expressions we solve the fifth-
order equation by a combination of the method of matched asymptotic expansions
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and exponential asymptotics. We first demonstrate our approach for the third-order
boundary value problem arising from the CCH equation. Our approach generalizes
the work by Lange [15] to higher order singularly perturbed nonlinear boundary value
problems, where standard application of matched asymptotics is not able to locate the
position of interior layers that delimit the oscillations of the nonmonotone solutions.

Reyna and Ward [19] previously developed an approach to resolve the internal
layer structure of the solutions to the boundary value problem for the related Cahn–
Hilliard and viscous Cahn–Hilliard equations. The approach is based on a method
due to Ward [25], who uses a “near” solvability condition for the corresponding
linearized problem in his asymptotic analysis, and who was inspired by an earlier
variational method [13] and work by O’Malley [18] and Rosenblat and Szeto [20],
who investigated the problem of spurious solutions to singular perturbation problems
of second-order nonlinear boundary value problems [3]. Moreover, for the related
Kuramoto–Sivashinsky equation, a multiple-scales analysis of the corresponding third-
order nonlinear boundary value problem by Adams, King, and Tew [1] shows that the
derivation of monotone and oscillating traveling-wave solutions involve exponentially
small terms; their method is based on an analysis of the Stokes phenomenon of the
corresponding problem in the complex plane (see Howls, Kawai, and Takei [12] for an
introduction).

In what follows we begin with the phase-space analysis for the CCH equation in
section 2, followed by the asymptotic treatment for ν � 1. The asymptotic ideas
used for the CCH equation are then applied to the HCCH equation in section 3.
The solutions obtained there are useful to serve as initial input for the numerical
investigations of the branches of nonmonotone solutions in section 4. In this part we
develop our numerical approach and then use it to identify new stationary solutions
of the HCCH equation; these agree with the asymptotic theory. Finally, we briefly
sum up the results together with concluding remarks in section 5.

2. Stationary solutions of the CCH equation. The high order term in the
CCH equation represents the regularization of the internal layers of the solutions. For
most of our investigations we consider the problem in the scaling of the internal layers,
or inner scaling, where the x-coordinate is stretched around the location x = x̄ of a
layer according to

(2.1) x∗ =
x− x̄

ε
.

In this scaling the CCH equation becomes (after dropping the “∗”)

(2.2) ε2ut −
δ

2
(u2)x + (Q(u) + uxx)xx = 0,

where δ = εν. The stationary problem obtained by setting ut to zero can be integrated
once, requiring that the solutions approach the constants ±

√
A as x → ∓∞, where

A is a constant of integration. That is, we consider the boundary value problem

(2.3)
δ

2
(
u2 − A

)
= (Q(u) + uxx)x

together with the far-field conditions

(2.4) lim
x→±∞

u = ∓
√
A
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and vanishing derivatives in the same spatial limit. We refer to solutions of this sys-
tem as antikinks. Monotone antikinks are known analytically [16], while recently,
nonmonotone connections were computed numerically by Zaks et al. [28]. We now
briefly discuss the numerical approach for obtaining these solutions. Here we con-
centrate on the regime where 0 < δ � 1 in order to compare the results with the
asymptotic solutions derived later on. For a bifurcation analysis for larger δ we refer
the reader to [28].

2.1. Numerical solutions. For the numerical solutions, we will work with a
rescaled version, where we set u =

√
Ac so that the equilibrium points do not depend

on A, and for Q(u) given by (1.2), (2.3) and (2.4) become

(2.5) (1 − c2) = − 2
δ
√
A

(cxx + c−Ac3)x , lim
x→±∞

c = ∓1.

This differential equation could be reduced to second order by the transformation
g(c) = cx at the expense of making it nonautonomous. However, for this problem
we find it most convenient to present a shooting method, which enables us to track
solution branches in the (A, δ) parameter plane. We transform (2.5) into a first-order
system U ′ = F (U), where F : R3 → R3 is the function

(2.6) F1(U) = U2, F2(U) = U3, F3(U) = (3A(U1)2 − 1)U2 +
δ
√
A

2
((U1)2 − 1) .

We work in a three-dimensional phase space and denote either vectors or whole tra-
jectories therein with capital U ’s. We use the same notation for two different objects
because it will be clear from the context what is meant. Subscripts indicate the
components.

The characteristic polynomials at the equilibrium points U± = (±1, 0, 0)T are

(2.7) P±(λ) =
∣∣∣∣dFdU (U±) − λI

∣∣∣∣ = λ3 + λ(1 − 3A) ∓ δ
√
A.

The signs of the real parts of the roots determine the dimension of the stable and
unstable manifolds Wu(U+), W s(U−), W s(U+), Wu(U−) of the equilibrium points.
The latter two are two-dimensional and so the existence of a kink is generic, while this
is not the case for the antikinks. The dimension of Wu(U+) and W s(U−) is one, so
that the heteroclinic connections from the positive to the negative equilibrium arise
from a codimension two intersection. This means that with the two parameters A
and δ, we can expect only separated solutions when the manifolds intersect, but due
to the reversibility properties, which are discussed below, the codimension reduces to
one and we can expect separated solutions for the free parameter A and a fixed δ,
and hence one or several whole branches in the (A, δ) parameter plane. An example
of a nonmonotone connection is sketched in Figure 2.1, where the trajectories wind
themselves in the phase space with a solution that exhibits 15 humps.

Reversibility and computations . It is instructive to note that the solution of (2.5)
is translation invariant, c(x) → c(x+L), and that (2.6) forms a reversible dynamical
system; hence it is invariant with respect to the transformation x→ −x, U → −U , as
has also been noted by Zaks et al. [28].

Let us consider generally a k-dimensional phase space, since the following discus-
sion will be also useful in section 4, where we analyze the HCCH equation with its
higher order system. The linear transformation

(2.8) R : Rk → Rk, R(Uj) = (−1)jUj , j = 1, . . . , k,
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Eu(U+)

Es(U−)

U−

U+

u

u’

u’’

Fig. 2.1. CCH: Antikink solutions connecting the hyperbolic equilibrium points U+ and U− are
sought in a three-dimensional phase space. The unstable manifold emerging from U+, Wu(U+) is
one-dimensional, as is the stable manifold W s(U−). The approximating linearized spaces Eu(U+)
and Es(U−) are drawn as dash-dotted lines and are used in the computations.

fulfills R2 = Id and RF (U) = −F (RU) for k = 3 and (2.6) and represents the
reversibility in the phase space. It is an involution (or a reflection), and its set of fixed
points is the symmetric section of the reversibility; these are zero at odd components,
Ui = 0 for odd i. A solution that crosses such a point is necessarily symmetric under
R, and for each point U on the connection there exists a corresponding transformed
point RU somewhere on the branch. In fact there is an equivalence here since odd
solutions necessarily cross a point in the symmetric section. It holds that c and its
even derivatives have to vanish in the point of symmetry L because of the fulfilled
equations d2m

dx2m c(x+L) = − d2m

dx2m c(−x+L),m = 0, 1, . . . , 	k/2
, and continuity of the
solution and its derivatives.

From the above we conclude that with a shooting method we can stop integrating
when we find a point with zero odd components, since the second half of the solution
is then given by the set of transformed points under R. Hence we define the following
distance function for a trajectory U over the interval of integration which helps to
find these points,

(2.9) dA(U) = min
x

√∑
i odd

Ui(x)2 .

The minimization of dA(U) over the free parameter, minA dA(U), must result in
the value zero for an antisymmetric heteroclinic solution. We can use this condition
for shooting and boundary value problem formulations, for the CCH and later for the
HCCH equation in section 4.

For a fixed value of δ and a range of different A we follow the relevant branch
of Wu(U+) by shooting from an initial point U+ ± εv near U+, where v is a unit
eigenvector corresponding to the positive eigenvalue of dF/dU|U=U+ and ε � 1. We
stop the integration if a certain threshold value for |U1| is crossed. Figure 2.2 shows
dA(U) as a function of A for δ = 0.05.

At this point we have heteroclinic connections for one fixed value of δ, which
we denote by hetk, k = 0, 1, . . . (using the notation in Zaks et al. [28]). het0 is the
analytical, monotone tanh solution, while hetk has k humps on the way down from
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) het1 het0

A

Fig. 2.2. Distance function dA defined by (2.9) depending on A with fixed δ = 0.05, showing
the first 14 zeros corresponding to het0 to het13.
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Fig. 2.3. Parameter plane, log(δ) for the x-axis and log(1 − A) for the y-axis, for the CCH
equation for the first nine antikink solutions hetk, k = 0, 1, . . . , 8. The graphs on the right show
the shapes of representative het4 solutions, and hence those on the fifth line from below, for the
approximate (A, δ) tuples (0.8259, 0.0289), (0.9893, 0.0017), and (0.9998, 2.6457 · 10−5).

√
A to −

√
A. We will use the same terminology for the solution structure of the

stationary HCCH problem in section 4. Here, a hetk solution corresponds to the kth
zero from the right in Figure 2.2. We then follow the roots of the distance function by
linearly extrapolating to a new guess for A and use a bisection algorithm to quickly
converge to the next root. Figure 2.3 shows a portion of the (A, δ) parameter plane,
where we concentrate on very small values of δ or, differently interpreted, on the
bifurcation of the various spiraling CCH orbits from the heteroclinic connections of
the Cahn–Hilliard equation in its one dimension smaller phase space.

2.2. Asymptotic internal layer analysis. For the asymptotic analysis we use
a slightly different scaling than for the numerical treatment. Here, we let

(2.10) x∗ =
x− x̄√

2 ε

denote the inner variable about a layer located at x = x̄. For the stationary problem
we then obtain

(2.11) (u′′ + 2Q(u))′ = δ
√

2
(
u2 −A

)
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instead of (2.3), where ′ = d/dx∗. For later comparisons of the numerical and asymp-
totic results we have to keep in mind that the spatial scales differ by a factor of√

2.
We point out that the problem considered here shares the internal layer structure

of the singular perturbation problems discussed by Lange [15], and we will make use of
and extend this ansatz for our situation. This will also prove useful for understanding
the approach taken for the HCCH problem in section 3.1, since there we have to
carefully combine the exponential matching with the conventional matching procedure
when matching the two regions. For both problems the asymptotic analysis can be
conveniently carried out in terms of the small parameter δ.

In the following analysis we consider the simplest case of a nonmonotone solution
with only one hump, as illustrated in Figure 2.4; we note that nonmonotone solutions
with more oscillations can be treated similarly.

−1

0

1
outer region

outer region

A1/2

−A1/2

κ
m

κ
p0

Fig. 2.4. Sketch of a 1-hump, or het1, solution showing the general setup for the matching
procedure for the CCH and HCCH equations.

2.2.1. The 1-hump solution. We observe that the 1-hump solution has three
internal layers, one at κm < 0, one at κp, and one at the symmetry point in between.
Since the solution is point symmetric, we can choose this point to be x = 0, and it
will be enough to discuss only the two layers at κm and zero and then match them to
the outer solution.

Internal layer near κm. For the first internal layer at κm we let

(2.12) xm =
x√
2 ε

− κ̄m√
2
,

where κ̄m < 0, and set

(2.13) κm = κ̄m +
√

2
∞∑
k=1

δkκmk,

so that to leading order the location where the solution crosses zero is κ̄m and the
additional terms account for the corrections due to the higher order problems.

With um(xm) = u(ε(κ̄m +
√

2 xm)) the governing equation becomes

(2.14) u′′′m + 2Q′(um) = δ
√

2 (u2
m −A) , where ′ =

d

dxm
.

For the boundary condition where um crosses zero, we have

(2.15) um

(
κm − κ̄m√

2

)
= 0,
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and the condition towards −∞ is

(2.16) lim
xm→−∞

um(xm) =
√
A.

We now assume um(xm) can be written as the following asymptotic expansion,
valid near κm:

(2.17) uα(xα) = uα0(xα) +
∞∑
k=1

δk uαk(xα) ,

with α = m here. Additionally, we assume A has the asymptotic expansion

(2.18) A = 1 + δA1 +O(δ2).

Observe that from (2.16) and (2.18),

(2.19) lim
xm→−∞

um(xm) = lim
xm→−∞

um0(xm) +
∞∑
k=1

δk umk(xm) = 1 +
1
2

∞∑
k=1

δkAk .

To leading order in δ we get the following problem for the Cahn–Hilliard equation:

u′′′m0 + 2Q′(um0) = 0,(2.20a)
um0(0) = 0 and lim

xm→−∞
um0(xm) = 1(2.20b)

with the unique solution um0(xm) = − tanh(xm). Next, the problem of order δ is

(
L (um1, xm)

)′
=

√
2
(
tanh2(xm) − 1

)
,(2.21a)

um1(0) = κm1 and lim
xm→−∞

um1(xm) =
A1

2
,(2.21b)

where κm1 and A1 are constants to be exponentially matched and the operator L is
defined by

(2.22) L(v, z) = v′′ + 2
(
1 − 3 tanh2(z)

)
v ,

and z = xm, v = um1, and ′ = d/dxm. Note that the first boundary condition is
obtained by expanding (2.15),

um

( ∞∑
k=1

δkκmk

)
= um

(
δκm1 + δ2κm2 +O(δ3)

)
(2.23)

= um0(0) + δ
(
κm1u

′
m0(0) + um1(0)

)
+O(δ2),

so that collecting the terms of order δ gives

um1(0) = −κm1 u
′
m0(0) = κm1 .

Next, we integrate (2.21) once to obtain

(2.24) L (um1, xm) = fm(xm) ,
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where fm(xm) = −
√

2 tanh(xm)+ cm. Taking the limit of this equation to −∞ yields
cm = −

√
2 − 2A1 so that

(2.25) fm(xm) = −
√

2 (tanh(xm) + 1) − 2A1 .

The homogeneous solutions of (2.24) are

φm(xm) = −u′m0(xm) = 1 − tanh2(xm) ,(2.26)

ψm(xm) =
(∫ xm

0

dz

φ2
m(z)

)
φm(xm) .(2.27)

Also note that limxm→−∞ φm(xm) = 0 and ψm(0) = 0. At this stage it is convenient to
choose the inhomogeneous solution that remains bounded as xm → −∞ and vanishes
at xm = 0, which is satisfied by

(2.28) ϕα(xα) = ψα(xα)
∫ xα

−∞
φα fα dz − φα(xα)

∫ xα

0

ψα fα dz

with α = m. Hence, the unique solution for (2.21) is the linear combination

(2.29) um1(xm) = −κm1φm(xm) + ϕm(xm) .

Internal layer near x = 0. For the internal layer near the origin we proceed as
above. Here, we stretch the independent variable as

(2.30) x0 =
x√
2ε

and construct an asymptotic expansion (2.17) near x = 0 with α = 0 for the solution
of the problem

(2.31) u′′′0 + 2Q′(u0) = δ
√

2 (u2
0 −A) , where ′ =

d

dx0
.

We note that the point x = 0 is assumed to be the symmetry point of the complete
solution; hence here we require

(2.32) u0(0) = 0 and u′′0(0) = 0 .

In anticipation of the exponential matching we also require that limx0→−∞ u00(x0) =
−1, so that the solution to the leading order problem is u00(x0) = tanh(x0). For the
solution to O(δ) we find

(2.33) u01(x0) = b0 ψ0(x0) + ϕ0(x0),

where b0 is a further constant to be exponentially matched. Here, the homogeneous
solutions are

(2.34) φ0(x0) = −u′00(x0) and ψ0(x0) =
(∫ x0

0

dz

φ2
0(z)

)
φ0(x0),

and the inhomogeneous solution is defined by (2.28), where α = 0 and f0(x0) =
−
√

2 tanh(x0). They are chosen such that ϕ0(0) = 0 and ϕ′′
0 (0) = 0; in fact we have

limx0→±∞ ϕ0(x0) = ±
√

2/4.
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2.2.2. Exponential matching. Exponential matching requires that all expo-
nentially small and exponentially growing terms have to be accounted for and matched.
This means that first we have to express the variable x0 in terms of xm (or vice versa).
From the definitions of these variables it follows that

(2.35) x0 = xm +
κ̄m√

2
.

In particular, exponential terms in the solution u0(x0) transform as e2x0 = e
√

2κ̄m e2xm

and so forth for higher order exponential terms e2nx0 or terms with different signs in
the exponent.

Now note that as x0 → −∞, the leading and O(δ) solutions can be written as

(2.36) u00(x0) = −1 + 2e2x0 −O(e4x0),

and with μ̄ =
(

3
2b0 +

√
2
)
,

(2.37) u01(x0) = −1
4
μ̄− b0

16
e−2x0 +

(
13
16
b0 +

1√
2

+ μ̄x0

)
e2x0 +O(e4x0) .

Written in xm variables, the solution

(2.38)

u0(xm) = −1 + 2e2xme
√

2κ̄m +O(e2
√

2κ̄m)

+ δ

(
−1

4
μ̄− b0

16
e−2xme−

√
2κ̄m +

(
13
16
b0 +

1√
2

+ μ̄

(
xm +

κ̄m√
2ε

))
e2xme

√
2κ̄m

+O(e2
√

2κ̄m)
)

+O(δ2)

has to be exponentially matched to

(2.39)
um(xm) = −1 + 2e−2xm +O(e−4xm)

+ δ

(
−
(
A1 +

√
2

4

)
− 1

4

(
A1 +

1√
2

)
e2xm +

(
7
2
A1 +

5
4

√
2 + 4κm1

)
e−2xm

−
(

3A1 +
1√
2

)
xme

−2xm +O
(
e−4xm

) )
+O(δ2)

as xm → ∞. While we have already anticipated matching of the constants during the
derivation of the leading order solutions, the constant terms of the O(δ) solutions are
first to be matched. Matching to the exponential terms in (2.39) entails a rearranging
of terms of different orders of magnitude in the expansion (2.38). In particular, the
first exponential term to leading order in (2.39) matches the second term of O(δ) in
(2.38), the second and largest exponential term of O(δ) in (2.39) matches the second
term of the leading order in (2.38), and so forth. Summarizing, we obtain

(2.40)
1
4

(
3
2
b0 +

√
2
)

= A1 +
√

2
4
, −ρ b0

16
= 2, −ρ

4

(
A1 +

1√
2

)
= 2 ,
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Fig. 2.5. Distances between the first two roots of the het1 solutions versus log(δ) together with
the width predicted by the asymptotic formula (2.43).

where we denote ρ = δ e−
√

2κ̄m . Solving yields

(2.41) ρ = 4
√

2, A1 = − 3√
2
, and b0 = − 8√

2
.

We observe that we have determined the O(δ) correction A1. Additionally, we now
know that δ e−

√
2κ̄m = 4

√
2, hence

(2.42) κ̄m =
ln (δ)√

2
−

ln
(
4
√

2
)

√
2

,

and if we recall (2.13) and κm < 0, then the width of the hump is −κm, where

(2.43) κm =
ln (δ)√

2
−

ln
(
4
√

2
)

√
2

+O (δ) .

Further constants, such as κm1, are found by including higher exponential terms and
expansions of the higher order problems. Finally, we note that by making use of the
symmetry of the solution about the point x = 0, the exponential matching of the
solution near zero to the one near κp proceeds analogously.

2.2.3. Comparison of numerical and asymptotic solution. For the com-
parison with the asymptotic solution we are interested mainly in the het1 solution
which we derived in section 2.2.1. By numerical continuation of the shooting method,
one obtains N tuples (A(j), δ(j)), j = 1, . . . , N , in the parameter plane that give a het1-
branch when being connected. We use two vectors of parameters which we abbreviate
A = (A(j))j=1,...,N and δ = (δ(j))j=1,...,N to confirm the formulas we obtained in the
previous section. Further we make use of a distance vector K = (K(j))j=1,...,N . K
contains the distances between the zero crossings of the solutions, or in context of the
asymptotics section (see Figure 2.4)K(j) ≈ |κm(δ(j))|. To obtain the relation between
A and δ and the evolution of the distances we solve the least squares problems

min
μ1

‖(1− μ1δ) − A‖2
2 and min

η1,η2
‖η1 log(δη2) − K‖2

2,

and hence we assume a linear law for the A-values in δ and a general logarithmic law
for the distances. We obtain

(2.44) A ≈ 1 − 2.12δ ≈ 1 − 3√
2
δ and K ≈ −0.71 log(0.18δ),

which confirms the results from the analysis, (2.41) and (2.43). We see the good
match in the distance plot in Figure 2.5.
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These results motivated us to obtain a general rule for the relation between the two
parameters of the CCH equation for different stationary solutions. The numerically
computed branches in Figure 2.3 show that the slopes of the hetk branches are one
when plotting log(δ) against log(1−A), so that the relation log(δ)+const = log(1−A)
shows the linear dependence A(k) = 1+A1(k)δ, where A(k) is the A value for the hetk
solution and A1(k) its linear coefficient. We see that the magnitude of A1 increases
linearly with the order k of the heteroclinic connection, and we obtain a general
expression for the squared far-field value for nonmonotone hetk solutions, namely,

(2.45) A1(k) = −2k + 1√
2

.

3. Matched and exponential asymptotics for the stationary HCCH
equation. As we did for the CCH equation, we will perform our analysis of the
internal layers in the inner scaling (2.10). From the stationary form of (1.4) we obtain
the equation

(3.1) (u′′ + 2Q(u))′′′ = −δ 23/2
(
u2 −A

)

after integrating once and requiring that for an antikink limx→±∞ u = ∓
√
A and

setting δ = ε3ν here. We consider the het1 (1-hump) solution and again make use of
the point symmetry of the problem. Now, however, unlike for the CCH equation, the
solutions in the outer region are not just constants. Here, we have to introduce an
outer layer to the left of the inner layer about κm; see also Figure 2.4 for the case of
a 1-hump solution. In the following subsections we first briefly derive the solution to
this outer problem and match it to the solution to the inner problem near κm. The
remaining degrees of freedom are then used to exponentially match it to a second
inner layer near x = 0.

It has been demonstrated in [22] for monotone antikink solutions of the HCCH
equation that it is necessary to match terms up to order δ in order to obtain the
correction A1, given the asymptotic expansion of A,

(3.2) A = 1 +
∞∑
k=1

δk/3 Ak .

Here, for the nonmonotone antikinks we have to match inner and outer solutions
and then also exponentially match the inner layers. This has to be carried through
iteratively up to three orders of magnitude in order to obtain not only the correction
A1 but also the expression for the width of the humps.

3.1. The 1-hump solution for the HCCH equation. We start by shifting
to the inner coordinates that describe the region near κm, which is to be matched to
the outer region. Again defining xm by (2.12), the governing equation in this inner
region is

(3.3)
(
u′′m + 2Q(um)

)′′′
= − 23/2 δ (u2

m −A), where ′ =
d

dxm
.

For the boundary conditions we again place κm near the point where um crosses zero,
i.e.,

(3.4) um

(
κm − κ̄m√

2

)
= 0 .
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The condition towards −∞ is not as trivial as for the CCH equation but needs to be
matched to the outer solution in the region to the left of κm (or to the right of κp,
taking account of symmetry).

For the outer region (see Figure 2.4), where xm becomes very large, we use the
ansatz

(3.5) ξ = δ1/3 xm and Y (ξ; δ) = um(xm; δ)

and obtain the outer problem

(3.6)
(
δ2/3 Yξξ + 2Q (Y )

)
ξξξ

= − 23/2
(
Y 2 −A

)

with the far-field condition

(3.7) lim
ξ→−∞

Y (ξ) =
√
A .

The region near x = 0, for which we use the variable x0 from (2.30), is described
by the problem

(3.8)
(
u′′0 + 2Q(u0)

)′′′
= − 23/2 δ (u2

0 −A) where ′ =
d

dx0
.

The point x = 0 is the point of symmetry of the solution. Here we require

(3.9) u0(0) = 0, u′′0(0) = 0, and u′′′′0 (0) = 0 ,

plus additional conditions from the exponential matching to the internal layer near
κm as x0 → −∞, as we have shown for the CCH equation.

Here we assume that the solutions to these three problems for Y , um, and u0 can
be represented by asymptotic expansions

(3.10) uα(xα; ε) = uα0(xα) +
∞∑
k=1

δk/3 uαk(xα), where α = 0,m,

valid near κm and x = 0, respectively, and

(3.11) Y (ξ; δ) = Y0(ξ) +
∞∑
k=1

δk/3 Yk(ξ) ,

valid in the outer region, where we let

(3.12) κm = κ̄m +
√

2
∞∑
k=1

δk/3κmk .

Obtaining solutions to the outer problem is straightforward [22], but in order to
be more comprehensible we include the results in Appendix A. The solutions to the
other regions are discussed now.
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3.1.1. Leading order. To leading order in δ we get the problem

(u′′m0 + 2Q(um0))
′′′ = 0,(3.13a)

um0(0) = 0.(3.13b)

Matching to the leading order outer solution (A.2) Y0 = 1 we find

(3.14) um0(xm) = − tanh(xm) .

Its representation towards the internal layer about x = 0 is given by

(3.15) um0 = −1 + 2e−2xm − 2e−4xm +O(e−6xm)

as xm → ∞. The leading order problem for this region is

(u′′00 + 2Q(u00))
′′′ = 0,(3.16a)

u00(0) = 0, u′′00(0) = 0, and u′′′′00 (0) = 0,(3.16b)

and its solution is

(3.17) u00(x0) = tanh(x0) .

As x0 → −∞, its behavior is given by

(3.18) u00 = −1 + 2e2x0 − 2e4x0 +O(e6x0) .

3.1.2. O(δ1/3).
Internal layer near x = κm. The expansion of (3.3) and (3.4) to order δ1/3 yields

L(um1, xm) = fm1(xm),(3.19a)
um1(0) = −u′m0(0)κm1 = κm1,(3.19b)

where L is defined by (2.22) as for the CCH equation and

(3.20) fm1(xm) := c1mx
2
m + c2mxm + c3m .

The homogenous solutions are therefore (2.26) and (2.27). The constants c1m, c2m, c3m
are obtained by three successive integrations of the ODE for um1 obtained at this
order. We choose the inhomogeneous solution so that it grows only algebraically as
xm → −∞ and vanishes at xm = 0. Particular solutions to (3.19b) are of the form

(3.21) ϕαj(xα) = ψα(xα)
∫ xα

0

φα fαj dz − φα(xα)
∫ xα

0

ψα fαj dz + γαjψα(xα) ,

so that now we obtain ϕm1 for α = m, j = 1 in (3.21) and

(3.22) γm1 = −π
2

12
c1m + ln(2)c2m − c3m .

Hence the solution is

(3.23) um1(xm) = −κm1φm(xm) + ϕm1(xm) .
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We evaluate ψα, φα, etc. and subsequent functions with the assistance of Maple. As
xm → −∞, the limiting behavior of um1 is

(3.24)

um1(xm)= −1
8
(c1m + 2c3m) − 1

4
c2mxm − 1

4
c1mx

2
m

+
(

1
64

(−7c1m − 8c3m + 256κm1 + 30c2m + 4c2mπ2 − 72c1mζ(3))

+
1
16

(−6c2m + 15c1m + 24c3m)xm +
1
8
(6c2m − 3c1m)x2

m +
1
2
c1mx

3
m

)
e2xm

+O( e4xm),

where ζ is the Riemann zeta function, and um1 must match the outer solution, which
is given in the appendix by (A.10) and has only constant terms to this order. Hence
we require c2m = 0 and c1m = 0. The matched solution is now

u
(m)
m1 (xm) = (1 − tanh2(xm))κm1(3.25)

−c3m
16

(
− 2e6xm + 4 + 10e2xm − 12e4xm − 24xme2xm

) e−2xm

(e2xm + 1)2
,

where we denote by u
(m)
m1 the solution that is obtained by matching to the outer

solution Y . As we will see later, exponential matching to the inner solution u0, i.e.,
as xm → ∞, where we find

u
(m)
m1 (xm) =

1
8
c3me

2xm +
1
2
c3m +

(
−7

4
c3m + 4κm1 +

3
2
c3mxm

)
e−2xm

+
(

11
4
c3m − 8κm1 − 3c3mxm

)
e−4xm +O(e−6xm) ,

requires also c3m = 0. Hence, denoting by u(e)
m1 the solution that has been exponen-

tially matched to the inner solution u0 near x = 0, we obtain

(3.26) u
(e)
m1(xm) =

(
1 − tanh2(xm)

)
κm1 .

Internal layer near x = 0. The O(δ1/3) problem is

L(u01, x0) = f01(x0) ,(3.27a)
u01(0) = 0, u′′01(0) = 0, and u′′′′01 (0) = 0 ,(3.27b)

with

(3.28) f01(x0) := c10x
2
0 + c20x0 + c30 .

Its general solution reads

(3.29) u01(x0) = ϕ01(x0) + g1 ψ0(x0) ,

where the homogeneous solutions are as before and the inhomogeneous solution is
given by (3.21) with α = 0, j = 1, and

(3.30) γ0 = −π
2

12
c10 + ln(2) c20 − c30 ,
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so that ϕ01(0) = 0 and ϕ01 grows algebraically as x0 → −∞. Furthermore, symmetry
requires ϕ′′

01(0) = 0 and ϕ′′′′
01 (0) = 0, which implies c10 = 0 and c30 = 0, leading to

(3.31)

ϕ01(x0) =
c20

16(1 + e−2x0)2
(
1 − 4x0 + 12 dilog(e2x0 + 1)e−2x0 − e−4x0 + 12x2

0e
−2x0

+ π2e−2x0 + 12x0e
−4x0 − 14x0e

−2x0 − ln(1 + e−2x0)e2x0 + 8e−4x0 ln(1 + e−2x0)

− 8 ln(1 + e−2x0) + e−6x0 ln(1 + e−2x0) + 2e−6x0x0

)
,

where dilog denotes the dilogarithm function. The remaining free parameters of u01

to be matched are c20 and g1. As will be demonstrated later, exponential matching
to um requires an expression for u01 as x0 → −∞,

(3.32)

u01(x0) = − g1
16
e−2x0 − 1

4
c20x0 −

3
8
g1

+
1
32

(
2c20π2 + 15c20 + 26g1 + (48g1 − 12c20)x0 + 24c20x2

0

)
e2x0

+
1
48

(
− 36g1 − 89c20 − 6c20π2 + (84c20 − 144g1)x0 − 72c20x2

0

)
e4x0 +O(e6x0),

and then re-expanding u0 in the variable xm. This shows that also c20 = 0, g1 = 0 and
c3m = 0. Any other choice leads to a system for the parameters having no solution.
Hence, only κm remains as a free constant in the two regions. The exponentially
matched solution is therefore simply

(3.33) u
(e)
01 (x0) = 0 .

3.1.3. O(δ2/3).
Internal layer near κm. The problem of order δ2/3 is

L(um2, xm) = fm2(xm) ,(3.34a)

um2(0) = −u′m0(0)κm2 −
1
2
u′′m0κ

2
m1 − u′m1(0)κm1 = κm2 − u′m1(0)κm1 ,(3.34b)

where

(3.35) fm2(xm) := d1mx
2
m + d2mxm + d3m + 6 um0 (u(e)

m1)
2 .

Note that u(m)
m1

′
(0) = 0. Again we choose the inhomogeneous solution so that it

grows only algebraically as xm → −∞ and vanishes at xm = 0 to obtain (3.21) with
α = m, j = 2, and

(3.36) γm2 = −π
2

12
d1m + ln(2) d2m − d3m − κ2

m1 ,

so that the general solution is represented as

(3.37) um2(xm) = −κm2φm(xm) + ϕm2(xm) .
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As xm → −∞, we have to compare

um2(xm) = −1
8
(d1m + 2d3m) − 1

4
d2mxm − 1

4
d1mx

2
m

+ e2xm

(
1
64

[(−7 − 72ζ(3))d1m − 8d3m + 256(κm2 − κ2
m1) + (30 + 4π2)d2m]

+
3
16

(5d1m − 2d2m + 8d3m)xm +
3
8
(2d2m − d1m)x2

m +
1
2
d1mx

3
m

)
+O(e4xm)

with the outer solution. Matching the constant and the linear terms in xm yields

(3.38) −1
4
d3m =

1
2
A1 −

1
8
A2

1 +
1
3
C1A1 +

23
14
C2

1 +D1 ,

(3.39) −1
4
d2m = 21/6C1 .

There is no quadratic term in the outer solution (A.10); hence d1m = 0. There are
further matching conditions, but they do not simplify the problem structurally at this
point and will be enforced later, so that d2m, d3m, and κm2 remain to be determined
via exponential matching. As xm → ∞, the expansion to this order can be written as

(3.40)

u
(m)
m2 =

1
2
d3m − 1

4
d2mxm +

1
8
d3me

2xm +
e−2xm

32

(
− 56d3m − 15d2m

− 2d2mπ
2 + 128(κ2

m1 + κm2) + (48d3m − 12d2m)xm − 24d2mx
2
m

)
+O(e−4xm) .

Internal layer near x = 0. As for the O(δ1/3) problem, at O(δ2/3) we have

L(u02, x0) = f02(x0) ,(3.41a)
u02(0) = 0, u′′02(0) = 0, and u′′′′02 (0) = 0 ,(3.41b)

with

(3.42) f02(x0) := d10x
2
0 + d20x0 + d30 .

The general solution is

(3.43) u02(x0) = ϕ02(x0) + g2 ψ0(x0) ,

where the homogeneous component is as before and the inhomogeneous part is ob-
tained by setting α = 0, j = 2, and γ02 = 0 in (3.21), so that ϕ02(0) = 0 and ϕ02

grows algebraically as x0 → −∞. Symmetry requires ϕ′′
02(0) = 0, ϕ′′′′

02 (0) = 0, which
implies d10 = 0 and d30 = 0. The remaining free parameters to be matched are d20

and g2. In order to exponentially match to um to O(δ2/3) and obtain u(e)
m2, we again

have to expand u02(x0) as x0 → −∞, giving

(3.44)

u02(x0) = − μ̂

16
e−2x0 − 1

4
d20x0 −

3
8
μ̂

+
1
32

(
(15 + 2π2 + 2 ln(2))d20 + 26g2 + (48μ̂− 12d20)x0 + 24d20x

2
0

)
e2x0

+
1
48

(
− (89 + 6π2)d20 − 36μ̂+ (84d20 − 144μ̂)x0 − 72d20x

2
0

)
e4x0 +O(e6x0) ,

and re-express in terms of xm, where we have used the abbreviation μ̂ = d20 ln(2)+g2.
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3.1.4. O(δ).
Internal layer near κm. The problem to be solved at order O(δ) is

L(um3, xm) = fm3(xm) ,(3.45a)
um3(0) = −u′m2(0)κm1 − u′′m0(0)κm1κm2 − u′m0(0)κm3

− 1
6
u′′′m0(0)κ3

m1 − u′m1(0)κm2 −
1
2
u′′m1(0)κ2

m2 ,(3.45b)

with

fm3(xm) := 2
(
(u(e)
m1)

3 + 6 um0 u
(e)
m1 u

(e)
m2

)
(3.46)

−23/2

[
1
2
dilog(e2xm + 1) +

1
2
(1 + k1m)x2

m + (ln(2) + k2m)xm + k3m

]
.

Again we choose the inhomogeneous solution so that it grows only algebraically as
xm → −∞ and vanishes at xm = 0 and so that we obtain ϕm3(xm) by using formula
(3.21) with α = m, j = 3, and γm3 = 0. The solution is

(3.47) um3(xm) = −um3(0)φm(xm) + ϕm3(xm) ,

where k1m, k2m, k3m, and κm3 remain to be determined via matching. In order to
exclude exponential growth as xm → −∞ we obtain the relation

k2m =
√

2
48 ln(2)

(
κm1

(
−(12 + 9π2)d2m + 12d3m − 24κm2

)
.

+
√

2(24k3m − 12 ln(2)2 + k1mπ
2)
)
,(3.48)

so that the expansion obtained as xm → −∞ is

um3(xm) =
1

4
√

2
(1 + k1m + 4k3m) +

1√
2
(ln(2) + k2m)xm(3.49)

+ (k1m + 1)
√

2
4
x2
m +O(e2xm) .

Comparing this with the outer solution to O(δ), equation (A.10), yields the matching
conditions

1
4
√

2
(1 + k1m + 4k3m) =

(
−1

4
A1 +

1
3
C1

)
A2 +

(
7
12
C2

1 +
1
3
D1

)
A1(3.50)

+
1
2
A3 −

59
216

C1A
2
1 −

1
12

21/3C1 +K1 −
23
7
C1D1 +

1
16
A3

1 +
127
28

C3
1

for the constant terms,

(3.51)
1√
2
(ln(2) + k2m) =

(
D1 −

23
7
C2

1

)
21/6 and (k1m + 1)

√
2

4
= 2−2/3C1

for the linear and the quadratic terms, respectively.
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Expanding the solution as xm → ∞, we find

um3(xm) =
1

192

(
κm1d2m(9π2 + 24)− 48κm1d3m + 2

√
2π2(1 − k1m) − 48

√
2k3m

)
e2xm

+
1
96

(
κm1d2m(27π2 + 72) +

√
2(k1m(12 − 6π2) − 96k3m − 12 + 2π2)

)

+
1√
2
(ln(2) + k2m)xm + (k1m + 1)

√
2

4
x2
m +O(e−2xm) ,

(3.52)

and we will exponentially match it to the solution near x = 0, which we construct
next.

Internal layer near x = 0. The general solution to the O(δ) problem

L(u03, x0) = f03(x0) ,(3.53a)
u03(0) = 0, u′′03(0) = 0, and u′′′′03 (0) = 0 ,(3.53b)

with

(3.54) f03(x0) := −21/2
[
dilog(e2x0 + 1) − dilog(2) + 2μ2x0 + (1 + k10)x2

0

]
and the abbreviation μ2 = ln(2) + k20, reads

(3.55) u03(x0) = ϕ03(x0) + g3 ψ0(x0) ,

where we have required that u03(0) = 0 and u′′03(0) = 0. If we also enforce u′′′′03 (0) = 0,
then k10 = 0. Again we take an inhomogeneous solution ϕ03(x0), which satisfies the
above conditions, so that the general solution is obtained with

μ1 =
√

2(ln(2)2+2k20 ln(2))−g3 and ω =
∫ 1

0

1
z

ln
(
z2 + 1

2z

)2

− ln(2z)2

z
dz ≈ 0.3094 ,

as

(3.56)

u03 =
12μ1 − π2

√
2

192
e−2x0 +

1
96

(36μ1 +
√

2(12 − π2)) +
μ2√

2
x0 +

√
2

4
x2

0

+
[

1
192

(
156μ1 +

√
2[(19 − 24k20)π2 − 15 − 288ω − 180μ2]

)

+
1
16

(
−24μ1 +

√
2(12μ2 −11)

)
x0 +

√
2

8
(3 − 12μ2)x2

0 −
1√
2
x3

0

]
e2x0 +O(e4x0) .

For exponentially matching to um this again has to be re-expressed in xm and com-
bined with the corresponding expressions for u00, u01, and u02 . This will be done in
the next section.

3.2. Exponential matching. Now we have to match the rest of the solution
um(xm) to the rest of the solution u0(x0). This requires matching the exponential
terms in addition to the algebraic terms, similarly to the procedure for the CCH
equation; i.e., matching of the solution describing the internal layer near x = κm to
the solution near x = 0 requires expressing the variable x0 in terms of xm (or vice
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versa). Recall again that x0 = xm + κ̄m/
√

2 and that κ̄m < 0; the e2x0 terms in the
u0 expansion will produce e2xm terms with a factor e

√
2κ̄m (and analogously for e−2x0

terms) and so we will find their corresponding matching partner at a different order in
δ in the um expansion, as we have shown for the CCH equation. The somewhat subtle
difference here is that additionally we need to determine the relationship between
e
√

2κ̄m and δ, and we have in principle several choices, only one of which allows a
consistent matching of both expansions. One can observe that the choice e

√
2κ̄m =

ρ δ1/3 , where ρ is some constant, quickly leads to a contradiction. However, setting

(3.57) e
√

2κ̄m = ρ δ2/3

will lead to an O(δ2/3) shift of terms, so that, e.g.,

(3.58) e2x0 will shift to a term δ2/3 e2xm ,

(3.59) e−2x0 will end up as a term δ−2/3 e−2xm ,

and so forth, so that, e.g., a term e2x0 in the leading order part of the u0 expansion
will have to match an e2xm term in the O(δ2/3) part of the um expansion, or an e−2x0

term in the O(δ) part of the u0 expansion will have to match an e−2xm term in the
O(δ1/3) part of the um expansion. This will also produce terms that will have no
partner term in the transformed expansion. Their coefficients must then be set to
zero. If we now sum the expansions for u01(x0), u02(x0), and u03(x0) and re-expand
using (3.57), we obtain

(3.60)

u0(xm) = −1 − 1
16

(
d20 ln(2) + g2

)
e−2xmρ+

1
192

(
12μ1 −

√
2π2

)
e−2xm ρ δ1/3

+
1
24

(
d20(3 ln(ρ) − 9 ln(2) − 2 ln(δ)) − 9g2 − 6d20xm + 48e2xm/ρ

)
δ2/3

+
[

1
96

(
36μ1 +

√
2
[
12 + (16 ln(δ) − 24 ln(ρ))μ2

+6
(

ln(ρ) − 2
3

ln(δ)
)2

− π2

])

+
√

2
12

(2 ln(δ) + 6μ2 − 3 ln(ρ))xm +
√

2
4
x2
m

]
δ ,

which has to match um1(xm), um2(xm), and um3(xm) to each order, respectively.
From this we obtain further conditions for the parameters in addition to those we have
already found. Solving the complete system of equations then yields the solutions for
the width of the hump

(3.61) Δ =
√

2
6

ln
(

β

W (β1/3)3

)
,

with β = 211/(27δ2), where W is the Lambert W function (so W (x) is the solution of
x = W exp(W )). The expressions for the remaining matching constants C1, D1, etc.
are omitted. The first correction in (3.2) has the coefficient

(3.62) A1 = −3 21/6 .

Note that not only the transformed expansions but also the expressions for the pa-
rameters contain so-called logarithmic switch-back terms.



368 M. D. KORZEC, P. L. EVANS, A. MÜNCH, AND B. WAGNER

Fig. 4.1. HCCH: Heteroclinic orbits between the equilibrium points are sought in a five-
dimensional phase space that is indicated here in three dimensions. The manifolds Wu(U+) and
W s(U−) are two-dimensional, which is suggested by the two planes in the picture.

4. Numerical method for the fifth-order phase space. For the numerical
stationary solutions of the HCCH equation (3.1) we apply the same scaling for u that
we used for the CCH equation to obtain equilibrium points at ±1,

(4.1) (1 − c2) =
2

δ
√
A

(cxx + c−Ac3)xxx , lim
x→±∞

c = ∓1,

again assuming that derivatives vanish in the far field. Reduction to a first-order
system U ′ = F (U), with F : R5 → R5, gives a five-dimensional phase space, where
the first four components of Fi(U) are equal to Ui+1 and the fifth is

(4.2) F5(U) = 6A(U2)3 + 18AU1U2U3 + (3A(U1)2 − 1)U4 + δ
√
A(1 − (U1)2)/2 .

The equilibrium points are U± = ±(1, 0, 0, 0, 0)T , and at these points the character-
istic polynomials are

(4.3) P±(λ) = λ5 + λ3(1 − 3A) ± δ
√
A .

For small δ the manifolds Wu(U+) and W s(U−) are both two-dimensional, resulting
in a codimension two event when searching for heteroclinic solutions connecting the
two hyperbolic fixed points U+ and U−. The HCCH equation exhibits the same
reversibility properties as its lower order version. This reversibility is again given
by the transformation (2.8) from the CCH section, which also here fulfills RF (U) =
−F (RU). The codimension reduces by one and again we deal with a codimension one
problem and two parameters; hence we may expect solution branches in the (A, δ)
parameter plane. Section 2.1 showed that a condition for the existence of heteroclinic
orbits is a value where the distance function (2.9) reaches zero, and the same condition
holds for the HCCH equation. The phase space is sketched in Figure 4.1, indicating
the linearizations of the intersecting manifolds in the equilibrium points. For this
problem a shooting method will be very slow and may lead to inaccuracy since the
additional parameter, say ϕ ∈ [0, 2π), an angle defining points on a circle close to
the equilibrium point on the linearization of the two-dimensional manifold, requires
a very fine resolution to obtain heteroclinic solutions.
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4.1. Boundary value problem formulation. There exist several possibilities
for setting up equations for finding heteroclinic connections in a boundary value prob-
lem framework. Generally one crucial stumbling block is the choice of a suitable phase
condition that picks out a certain solution from the infinitely many available ones due
to phase shifts [8, 2]. We choose to incorporate one phase condition, proposed by
Beyn [2], for which we use an approximation of the solution, V , typically given by a
previous solution for slightly different parameter values. Equation (4.1) contains two
parameters, A, δ, and in addition the truncated domain length L. As discussed by
Doedel and Friedman [5], one of the free parameters can be replaced by L to find a
connection. For a nearby chosen and fixed δ, we treat L and A as free parameters.
We extrapolate in the (A, δ) plane to get an approximate value of A and solve for the
exact data. Rescaling the domain to [0, 1] yields, with the phase condition variable
Uph introduced by Beyn [2], the first-order system

U ′
i = LUi+1, i = 1, 2, 3, 4,(4.4a)

U ′
5 = L

(
6A(U2)3 + 18AU1U2U3 + (3A(U1)2 − 1)U4 + δ

√
A

(1 − (U1)2)
2

)
,(4.4b)

U ′
ph = L(V ′)TU,(4.4c)

L′ = 0, A′ = 0.(4.4d)

Hence, we obtain one equation for the phase condition and two for the parameters
in addition to the five given by the original ODE; i.e., we have an overall system of
eight equations, which have to be supplemented by the same number of boundary
conditions. At the edges of the domain we utilize projected boundary conditions [4, 2],
which make use of eigenvectors in the equilibrium points and can be incorporated
by computing V0, the matrix whose columns are composed of the eigenvectors which
correspond to the eigenvalues at the upper equilibrium point U+ with negative real
part, and by forming the counterpart V1 containing those eigenvectors given by the
unstable directions at the lower stationary point U−. Hence, we consider the eight
boundary conditions

Uph(0) = 0, Uph(1) = 0, V T0 (U(0) − U+) = 0, V T1 (U(1) − U−) = 0 .(4.5)

For initial estimates we can use solutions obtained from the asymptotic analysis of
section 3.1, i.e., the leading order solution tanh profiles

V (x) = − tanh(x−K) + tanh(x) − tanh(x+K),

for the het1 solution with guessed root-distance K.
The boundary value solvers we use are based on mono-implicit Runge–Kutta

formulae [23, 14]. As for the CCH problem, efficiency can be improved by making
use of the theory from section 2.1, which holds analogously for the HCCH equation,
to obtain a boundary condition at the fixed point of a point-symmetric solution. We
can use half of the previous domain length, and phase conditions become redundant
because the phase is already fixed. We replace the projected boundary conditions by

U1(0) = 1, U2(0)2 + U3(0)2 = 0, U4(0)2 + U5(0)2 = 0

so that together with the self-reversibility condition on the right interval end U1(1) =
U3(1) = U5(1) = 0 we have six conditions which match the five equations together
with the free parameter A. Final solutions are obtained by reflecting the solution
and its derivatives around zero and changing the signs of the first, third, and fifth
components. Examples of branches of different solutions are shown in Figure 4.2.
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A, δ)-plane with curves for the first three heteroclinic connection branches for the

HCCH equation. The dashed line in the parameter plane indicates the position where the positive
roots of the characteristic polynomial in U+ have nonzero imaginary parts. Below and to the right
we see five phase-space diagrams (tuples (U1, U2), (U1, U3), . . .) for selected solutions pointed out
with arrows marking the corresponding parameters. The first pair (U1, U2) is plotted as a bold solid
curve.
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Fig. 4.3. het2 solution for δ = 0.01 and A = 0.443 and the corresponding profile obtained by
integration.

4.2. Solutions and comparison to analytical results. With the boundary
value formulation we are able to compute new HCCH stationary solutions. In Figure
4.3 we see a particular het2 solution and the profile of the growing structure.

Up to three dimensions one can nicely visualize heteroclinic orbits in the corre-
sponding phase space, while when the dimension is four or higher and the deriva-
tives vanish in the far field one can still plot the two-dimensional phase spaces
(U1, U2), (U1, U3), . . . and demand connections between the equilibrium tuples (±

√
A, 0)

as a necessary condition for heteroclinic orbits in the higher order space. Several such
projections onto two dimensions are shown in Figure 4.2, where we also see a very
rapidly oscillating heteroclinic curve in the bottom left plot, which was found by a
shooting approach with a minimization procedure that used the two parameters and
an angle as free parameters and the distance function (2.9) as an objective function,
depending on those parameters. It indicates that, as shown for the CCH equation,
we can in fact find many more hetk branches than those presented for k = 0, 1, 2, all
emerging from (A, δ) = (1, 0), which corresponds to the Cahn–Hilliard equation.

In Figure 4.4 we see the change in appearance of solutions on the het2 branch
as δ is increased. The shape varies from a solution with two pronounced humps
to a monotone one, similar to the het0 solution, although associated with different,
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Fig. 4.4. Structural change of the scaled het2 solution as δ is increased.

smaller values of A. This is crucial if one wants to compute solutions for bigger δ with
a boundary value solver. It easily happens that the solver switches between solution
branches; however, this can be prevented by starting continuation in a parameter
regime where the high-slope parts of the solutions are nonmonotone, and continuing
with small steps. A characteristic of the HCCH solutions is the overshoot from the
equilibrium value before the solutions tend into the direction of the negative equilib-
rium point. This is not observed for the CCH equation, where the shape is similar at
these regions to hyperbolic tangent functions.

In light of the expansion (3.2) we try to estimate the O(δ1/3) terms A1 for the
different heteroclinic connections in a range of very small δ. As we see in Figure 4.5 on
the left, the numerically obtained values for A behave like A = 1−21/6δ1/3 in the case
of the het0 solutions, so that A1 = −21/6, which is consistent with the result in Savina
et al. [22]. The numerical result for het1 is in line with the analytical value (3.62),
and since for het2 we see the agreement A1 ≈ −5 21/6, we propose for higher order
trajectories that for hetk we have the general approximation A1 ≈ −(2k + 1) 21/6,
which is reminiscent of the CCH expression (2.45). Hence this formula is used in
Figure 4.5 to plot the analytical values.

We measure the distance between the first and second roots for the het1 and
het2 solutions, as seen in Figure 4.5 on the right. We compare this to the analytical
expression (3.61) for the 1-hump solutions in the same figure and see that for small
δ the agreement is good. For both het1 and het2 solutions the distance is seen to
increase logarithmically as δ decreases.
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Fig. 4.5. Left figure: Logarithmic version of the (
√
A, δ) plot for very small δ. The solid lines

give the analytical values, and the dash-dotted lines give those computed with the BVP solver. On
the right we see the distances between the first two roots of the het1 and het2 solutions numerically
and for het1 via the analytical expression (3.61) (solid line).

5. Conclusion. We have demonstrated that a sixth-order generalization of the
CCH equation admits multiple stationary solutions connecting constant values. As for
the fourth-order CCH solution, these include a simple base solution, which is mono-
tone for the CCH and “almost” monotone for the HCCH equation. More complex
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solutions, containing multiple humps, are also possible for each value of the forcing
parameter δ, given particular values of the integration constant A(δ). These non-
monotone stationary solutions constitute an essential part of the solution structure
for this higher order Cahn–Hilliard type of equation. We have demonstrated this via
a numerical investigation of the phase space in which we are able to follow solution
branches. For the simplest of the multi-humped solutions, the het1 branch, careful
use of matched asymptotics that accounts for exponentially small terms allows us to
find a solution which yields both the length scale for the solution (the “hump length”)
and the parameter value A(δ), at which it occurs, in the limit of small δ. Extension
of the analysis to higher branches appears feasible. Our numerical evidence suggests
that similarly simple asymptotic expressions hold for these branches for both the CCH
and HCCH equations.

Various issues, such as the stability of these solutions, are presently being con-
sidered in light of applications of the HCCH equation as a model for the morphology
and dynamics of quantum dots. In particular, how do adjacent internal layers derived
from these solutions interact, and what is their effect on the coarsening behavior in
large spatial domains? Savina et al. [22] have begun an investigation of these ques-
tions by numerical simulation of (1.4); it is likely that asymptotics can yield further
insights.

Physically, further interesting questions relate to the extension of the HCCH
model to richer models for the energetics of faceted surfaces, and analyzing the three-
dimensional extension of the model.

Appendix A. Outer problem. For the solution to the outer problem (3.6),
(3.7) it is easy to observe that to leading order in δ the solution of

(A.1) Q (Y0)ξξξ = −
√

2
(
Y 2

0 − 1
)

with lim
ξ→−∞

Y0(ξ) = 1

is

(A.2) Y0(ξ) = 1 .

To O(δ1/3) the general solution to the problem

(A.3) Y1ξξξ
−
√

2Y1 = −A1√
2

with lim
ξ→−∞

Y1(ξ) =
A1

2

is

(A.4) Y1(ξ) =
A1

2
+C1e

21/6ξ + e−ξ/2
5/6
[
C2 cos

(√
3 ξ/25/6

)
+ C3 sin

(√
3 ξ/25/6

)]
,

with C1, C2, and C3 being constants of integration. The far-field condition requires
that Y1 remains bounded as ξ → −∞. Hence, C2 = C3 = 0 and

(A.5) Y1(ξ) =
A1

2
+ C1e

21/6ξ.

Using this and the far-field conditions, the solution to the O(δ2/3) problem

(A.6)

Y2ξξξ
−
√

2Y2 = −A2√
2
− 1

2

(
3
(
Y 2

1

)
ξξξ

−
√

2 Y 2
1

)
with lim

ξ→−∞
Y2(ξ) =

A2

2
− A2

1

8
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is

(A.7) Y2(ξ) =
A2

2
− A2

1

8
+D1e

21/6ξ +
A1C1

3
e2

1/6ξ
(
1 − 21/6ξ

)
− 23

14
C2

1e
27/6ξ,

and the solution to the O(δ) problem

Y3ξξξ
−
√

2Y3 = −A2√
2

+
Y1ξξξξ

4
+
√

2Y1Y2 −
1
2
(
Y 3

1 + 6 Y1Y2

)
ξξξ

with lim
ξ→−∞

Y3(ξ) =
A3

2
− A1A2

4
+
A3

1

16
(A.8)

is

(A.9)

Y3(ξ) =
A3

2
− A1A2

4
+
A3

1

16

+
[
K1 −

21/3

12
C1 +

1
3

(A1D1 + A2C1) −
59
216

C1A
2
1

+
(√

2
12
C1 −

21/6

3
(A1D1 +A2C1) +

17
72

21/6A2
1C1

)
ξ +

21/3

18
A2

1C1 ξ
2

]
e2

1/6ξ

+
[
− 23

7
C1D1 +

(
7
12

+
23
21

21/6ξ

)
A1C

2
1

]
e2

7/6ξ +
127
28

C3
1e

21/63ξ ,

with another integration constant K1. Finally, we obtain the asymptotic representa-
tion in terms of xm:

(A.10)

Y (xm) = 1 +
[
C1 +

1
2
A1

]
δ1/3

+
[
C1 21/6 xm − 1

8
A2

1 +
1
3
C1A1 +D1 −

23
14
C2

1 +
1
2
A2

]
δ2/3

+
[
−23

7
C2

1 21/6xm +D1 21/6xm +
1
2
C1 21/3x2

m +
(
−1

4
A1 +

1
3
C1

)
A2

+
(

7
12
C2

1 +
1
3
D1

)
A1 +

1
2
A3 −

59
216

C1A
2
1 −

1
12

21/3C1

+K1 −
23
7
C1D1 +

1
16
A3

1 +
127
28

C3
1

]
δ.
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MESENCHYMAL MOTION MODELS IN ONE DIMENSION∗

ZHI-AN WANG† , THOMAS HILLEN‡ , AND MICHAEL LI‡

Abstract. Mesenchymal motion denotes a form of cell movement through tissue which can be
observed for certain cancer metastases. In [T. Hillen, J. Math. Biol., 53 (2006), pp. 585–616], a
mathematical model for this form of movement was introduced. In the current paper we present a
comprehensive analysis of the one-dimensional mesenchymal motion model. We establish the global
existence of classical solutions and rigorously carry out the parabolic limit of the model. We discuss
the stationary solutions, prove the existence of traveling wave solutions, and use numerical simulations
to illustrate the results. Finally, we discuss the biological implications of the results.

Key words. mesenchymal motion, stationary solutions, global existence, macroscopic limits,
traveling waves, hyperbolic systems
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1. Introduction. Mesenchymal motion is a form of cellular movement through
tissue which is formed from fiber networks. An example is the invasion of tumor
metastases through collagen networks [7]. Cells migrate in fiber networks and change
their directions according to the orientational distribution of fibers. Moreover, cells
actively remodel the matrix by excreting a matrix degrading enzyme (e.g., protease)
to generate sufficient space in which to migrate.

The motion of mesenchymal cells in a tissue matrix was reported in a review
article by Friedl and Bröcker [7]. Mesoscopic and macroscopic mathematical models
for mesenchymal motion were derived by Hillen [12] in a temporally varying network
tissue. The mesoscopic models consist of a transport equation for the cell movement
and an ordinary differential equation (ODE) for the dynamics of tissue fibers. The
macroscopic models have the form of drift-diffusion equations, where the mean drift
velocity is given by the mean orientation of the tissue, and the diffusion tensor is
given by the variance-covariance matrix of the tissue orientation. The analysis in [12]
is divided into the case of undirected and directed tissue according to the distribution
of fiber orientation. In undirected tissue, the fibers are symmetrical along their axes
and both fiber directions are identical. For example, collagen fibers are undirected
and form the basis for many human and animal tissues. For directed tissue, the fibers
are unsymmetrical and the two ends can be distinguished (such as microtubules and
actin filaments). Branching collagen fiber networks can also be considered directional
if the branching points are of significance for the movement of cells [12].

The model from [12] was extended in [3, 4] to include cell-cell interactions and
chemotactic forces for the case of undirected fibers. Formal methods were used to
derive the corresponding macroscopic models. Painter [21] numerically studied mod-
els for cell movement in fiber tissues and showed pattern formation in the form of
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macroscopic networks.
In this paper, the one-dimensional mesenchymal motion model is fully analyzed.

The global existence of solutions, macroscopic limits, traveling waves, and stationary
solutions are investigated. The one-dimensional model is very instructive and we can
gain much insight into the mechanisms involved in the model. For example, we find
the existence of traveling pulse solutions for the cell population and identify some
mechanisms for cell aggregation. We also identify some differences between undirected
and directed tissue by analyzing the one-dimensional model. We restrict our attention
to the model for directed tissue only and the analysis can be completely adopted to
the study for undirected tissue from the mathematical point of view.

The paper is organized as follows. In the rest of this section, we will present the
one-dimensional mesenchymal motion model derived in [12] and discuss the stationary
solutions based on the telegraph process analysis. In section 2, we classify the one-
dimensional model as a degenerated hyperbolic system and conclude that there is no
shock solution. In section 3, the global existence of classical solutions is obtained along
the characteristics using a fixed point argument and general regularity results for the
semilinear hyperbolic system. In section 4, we rigorously carry out the parabolic limit
of the one-dimensional mesenchymal transport model, where we show that solutions of
the one-dimensional model converge to solutions of the corresponding drift-diffusion
limit equation. In section 5, we study the traveling wave solutions and find traveling
pulse solutions for the cell population and traveling front waves for fiber orientations.
In the final section 6, we summarize and compare our results with the results obtained
in [12]. Furthermore, we explain the findings in the context of the biological application
of cell movement in tissue.

1.1. Models for mesenchymal motion in one dimension. In this paper, we
are primarily interested in the one-dimensional mesenchymal motion model for the
case of directed tissue, which reads as follows [12]:

p+
t + sp+

x = −μp+ + μq+(p+ + p−),

p−t − sp−x = −μp− + μq−(p+ + p−),

q+t = κ(p+ − p−)(q− − q+ + 1)q+,

q−t = κ(p+ − p−)(q− − q+ − 1)q−.

(1.1)

The quantities p+, p− denote density of cells moving to the right or left, respec-
tively, with a constant speed s. The functions q+, q− are distributions of fibers pointing
to the right (+) or left (−). The constant μ ≥ 0 denotes the turning rate, and the
constant κ ≥ 0 represents the cutting efficiency (rate of fiber degradation). The trans-
port term sp±x in (1.1) accounts for the cell migration in either direction with speed s.
The right-hand side of the first two equations describes the change of cell movement
in the field of fibers. The third and fourth equations of (1.1) describe the changes
of the fibers in either direction due to the interaction with cells. The derivation of
the above model is omitted here for brevity and we refer interested readers to [12]
for details. It is worthwhile to point out that the model for undirected tissue can be
regarded as a special case of (1.1) for κ = 0 (see also [12]). In this paper, we focus
on the model of directed tissue, and most of our results can be applied to the case of
undirected tissue. The significant difference, when it appears, will be emphasized.

The system (1.1) is closely related to the Goldstein–Kac system [8, 17] which de-
scribes correlated random walk in one space dimension. With p = p+ + p−,
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j = s(p+ − p−), q = q+ + q−, and ξ = q+ − q−, system (1.1) becomes

pt + jx = μ(q − 1)p,

jt + s2px = −μj + μsξp,

qt = (κ/s)jξ(1 − q),

ξt = (κ/s)j(q − ξ2).

(1.2)

Since (q+, q−) denotes a distribution, q++q− = 1. Hence one is interested in solutions
with q = 1. The set q = 1 is an invariant manifold of the system (1.2) which will be
verified later in Lemma 3.1. On this manifold the system (1.2) reduces to

pt + jx = 0,

jt + s2px = −μj + μsξp,

ξt = (κ/s)j(1 − ξ2).

(1.3)

If q+ is used instead of ξ, then the system becomes

pt + jx = 0,

jt + s2px = −μj + μs(2q+ − 1)p,

q+t = 2(κ/s)jq+(1 − q+).

(1.4)

Finally, if the Kac’s trick is applied to the first two equations of the above equation,
then a damped wave equation is obtained:

(1.5) ptt + μpt = s2pxx − μs((2q+ − 1)p)x.

Any of (1.1)–(1.5) will be used for a particular question as shown later.
Now we investigate the connections between the one-dimensional mesenchymal

motion model and the well-known Goldstein–Kac model [8, 17]. We use the normal-
ization condition q+ + q− = 1 to substitute q− = 1 − q+ into the first two equations
of (1.1) and obtain

p+
t + sp+

x = −μ(1 − q+)p+ + μq+p−,

p−t − sp−x = μ(1 − q+)p+ − μq+p−.
(1.6)

The model for the case of undirected tissue (κ = 0) possesses some very interesting
properties. Undirected tissue fibers are symmetrical along their axes and both fiber
directions are identical, which indicates that q+ = q− = 1

2 . Then the model (1.6)
becomes the Goldstein–Kac model [8, 17]

p+
t + sp+

x =
μ

2
(p− − p+),

p−t − sp−x = −μ
2
(p− − p+).

(1.7)

The parabolic scaling for the Goldstein–Kac model, which leads to a parabolic equa-
tion, has been discussed in [9] and references therein.

For directed tissue, we define λ+ = μ(1 − q+), λ− = μq+; then (1.6) is converted
into

p+
t + sp+

x = −λ+p+ + λ−p−,

p−t − sp−x = λ+p+ − λ−p−,
(1.8)
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which is a modification of the Goldstein–Kac model. Extensions of the Goldstein–Kac
model and local and global existence of the solution to the extended model have been
extensively investigated in the literature [14, 15, 16]. The telegraph process of (1.8)
has been briefly discussed recently by Erban and Othmer [5]. The results obtained
in [14, 15, 16] can be applied to system (1.8) if the turning rates λ±(t, x) are given
functions. The theory does not, however, apply to (1.1), since the turning rates are
coupled with the q± equations.

In the next subsection, we will discuss stationary solutions for (1.1) based on the
telegraph process examined in [12].

We supply the system (1.1) with the initial condition

(1.9) p±(0, x) = p±I (x), q±(0, x) = q±I (x), x ∈ Ω.

Due to the biological interest and normalization condition q+ + q− = 1, we make the
following assumptions for the initial data and boundary conditions.

(ic) p±I ≥ 0, 0 ≤ q+I , q
−
I ≤ 1, and q+I + q−I = 1. For undirected tissue, we assume

that the initial data is symmetrical, i.e., q+I = q−I = 1
2 .

Here we consider two types of boundary conditions.
(bc1) Ω = R and p±I (x), q±I (x) have compact support in Ω.
(bc2) Ω = [−l, l] and zero flux boundary condition, namely,

p+(t,±l) = p−(t,±l).

1.2. Stationary solutions. In this section we discuss stationary solutions of
the mesenchymal transport model (1.1) using an argument similar to that in [6]. We
first present a second-order telegraph equation which is derived from system (1.1). To
this end, we add and subtract the first two equations of (1.1) and obtain equations
for the total population p = p+ + p− and the population flux j = s(p+ − p−),

pt + jx = 0,

jt + s2px = −μj + μ(q+ − q−)sp,
(1.10)

with initial conditions p(0, x) = pI(x) and j(0, x) = jI(x), where pI and jI are
determined from the initial condition (1.9) of p+ and p−. We differentiate the first
equation of (1.10) with respect to t and the second equation with respect to x. After
that, we subtract the resulting equations and end up with a damped wave equation
with drift term (see (1.5) or [12])

(1.11) ptt + μpt + μ(sξqp)x = s2pxx,

where the drift velocity is given by the expectation of q denoted by ξq = q+ − q−.
Equation (1.11) is a form of telegraph equation which describes electrical transmission
in a telegraph cable when current leaks to the ground. A drift-diffusion equation can
be approximated by taking the limit μ → ∞, s → ∞ with diffusivity D = s2/μ < ∞
and drift velocity sξq <∞. The same drift-diffusion equation also can be obtained by
multiscale methods (see [12]).

Suppose that equations (1.10) are defined in the interval Ω = [−l, l] and satisfy the
boundary condition (bc2). In terms of cell population density, the zero flux boundary
condition is equivalent to p+(±l) = p−(±l) = 1

2p(±l). We want to know under what
conditions, if any, these equations have time-independent, space-dependent solutions
for p±. The steady state condition jx = 0 of the first equation of (1.10) implies that
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j is a constant, and the zero flux boundary condition j(±l) = 0 furthermore gives
that j = 0. Consequently the second equation of (1.10) becomes

px =
μ

s
(q+ − q−)p.

This is a first-order equation for p, whose solution can be easily found:

(1.12) p(x) = p(−l) exp
(
μ

s

∫ x

−l
(q+(y) − q−(y))dy

)
.

The vanishing flux j = 0 gives that p+ = p−, and hence

(1.13) p±(x) =
p(−l)

2
exp

(
μ

s

∫ x

−l
(q+(y) − q−(y))dy

)
.

Note that the above integrals are bounded since q+ and q− are bounded by 1, which
will be proved in section 3. From the above equations, one can see how the distribu-
tion of fiber orientations q± affects the distribution of cell populations p and p±. In
particular, if μ �= 0 and q+ �= q−, then p and p± are nonconstants which correspond
to the stationary solutions of the system (1.10).

Particularly in undirected tissue, q+ = q− = 1
2 due to symmetry; then p and p±

are constants and p+ = p− = p(−l)
2 , which means that there is no aggregation of cells.

If q+ = 1, q− = 0, then

p±(x) =
p(−l)

2
exp

(μ
s
(x+ l)

)
.

The cells accumulate at the end x = l. This is not surprising because all cells bias
their movement to the right and eventually accumulate at the right end due to the
zero flux boundary condition.

Similarly, if q+ = 0, q− = 1, then

p±(x) =
p(−l)

2
exp

(
−μ
s
(x+ l)

)
,

and p± attains the maximum at x = −l.
Therefore, here we identify a mechanism which can lead to aggregation, namely,

μ �= 0, and the tissues are directed and cells have a probability 1 moving to the left
or right.

2. Classification as hyperbolic system. In this section we show that the
system (1.1) is degenerately hyperbolic, and we discuss shock solutions. To this end,
we rewrite (1.1) in a matrix form

(2.1) ut + Θux = H(u),

where u,Θ, and H(u) are defined as

u =

⎡
⎢⎢⎣
p+

p−

q+

q−

⎤
⎥⎥⎦, Θ =

⎡
⎢⎢⎣
s 0 0 0
0 −s 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, H(u) =

⎡
⎢⎢⎣

−μp+ + μq+(p+ + p−)
−μp− + μq−(p+ + p−)

κ(p+ − p−)(q− − q+ + 1)q+

κ(p+ − p−)(q− − q+ − 1)q−

⎤
⎥⎥⎦ .
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The drift term is linear, and hence the system (2.1) cannot create shock solutions.
The 4 × 4 matrix Θ has eigenvalues λ1 = −s < 0, λ2 = λ3 = 0, λ4 = s satisfying
λ1 < λ2 = λ3 < λ4 provided that s > 0. This implies that the system (2.1) and hence
(1.1) are hyperbolic but not strictly hyperbolic since the two eigenvalues λ2 and λ3

are identical. The eigenvectors ri corresponding to eigenvalues λi, i = 1, 2, 3, 4, are

r1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ , r2 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ , r3 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ , r4 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ .

It can be verified that ∇λi(u) · ri(u) = 0 for i = 1, 2, 3, 4, where ∇λi(u) · ri(u) means
the directional derivative of the eigenvalues λi in the direction of the eigenfunction
ri. Hence all characteristic fields (λi, ri) are linearly degenerate [2, 19]. Thus a shock
which separates intersecting characteristics defining a discontinuity does not exist.
However, the solution might contain contact discontinuities if data are discontinuous
(see [2]).

The characteristic slopes are determined from the eigenvalues of the 4× 4 matrix
Θ in (2.1) by dx

dt = λi, which is never infinite, so the line t = 0 is nowhere tangent
to a characteristic. Therefore, if initial data for p+, p−, q+, and q− are given along
the line t = 0, the resulting Cauchy problem should be well-posed, as shown in the
subsequent section.

3. Global existence. In this section, we will prove the global existence of solu-
tions to the system (1.1) subject to the initial condition (ic) and boundary condition
(bc1). For a bounded domain, the analysis for global existence will be a little bit more
complicated than for an unbounded domain, due to the boundary conditions, and is
left open here.

The system (1.1) is a coupling of two partial differential equations (PDEs) and
two ODEs. To prove the global existence of solutions to the system (1.1), we first
prove the nonnegativity of solutions.

Lemma 3.1. Let p±I ≥ 0 and q±I ≥ 0 with q+I + q−I = 1. Assume that p±, q± ∈
L∞(0, T ;L∞(R)) is a solution to system (1.1) for some T > 0; then p± ≥ 0 and
0 ≤ q±(t, x) ≤ 1 with q+ + q− = 1.

Proof. We first show that q+ + q− = 1. Toward this end, we consider q = q+ + q−

and ξ = q+ − q−. Then we add and subtract the third and fourth equations of (1.1)
to obtain equations for q and ξ as follows:

qt = −κ(p+ − p−)(q − 1)ξ,
ξt = κ(p+ − p−)(q − ξ2),(3.1)

which can be rewritten in vector form

(3.2) Qt = −κ(p+ − p−)F (Q),

where

Q =
(
q
ξ

)
, F (Q) =

(
(q − 1)ξ
ξ2 − q

)
.

The initial data of the system (3.1) is given by

(3.3) qI = q+I + q−I = 1, ξI = q+I − q−I .
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It is straightforward to verify that the vector field F (Q) ∈ C1(R2), and hence it is
locally Lipschitz continuous with respect toQ for a given p± ∈ L∞(0, T ;L∞(R)). Then
the Cauchy problem (3.1), (3.3) has a unique solution by the fundamental existence-
uniqueness theorem. On the other hand, it is trivial to check that q = 1 is a solution
of the first equation of (3.1) satisfying initial condition (3.3). Hence the system (3.1),
(3.3) has a unique solution (q = 1, ξ), where ξ is determined by the equation

ξt = κ(q+ − q−)(1 − ξ2), ξI = q+I − q−I .

It is worthwhile to point out that we provide an idea here for proving that q = 1 and
for proving the (local) existence of q and ξ given that p± ∈ L∞(0, T ;L∞(R)). This
idea will be used later without repeating this procedure.

We proceed to show that solutions q± preserve the positivity. Substituting q− =
1 − q+ into the third equation of (1.1), we have

(3.4) q+t = 2κ(p+ − p−)(1 − q+)q+.

There are three cases to consider.
Case 1. q+I = 1. Then we conclude that q+ = 1 is a solution to (3.4) with initial

condition q+I = 1. Since the right-hand side of (3.4) is locally Lipschitz continuous
with respect to q+, the solution of (3.4) is unique. Hence q+(t, x) = 1 for all t, x.

Case 2. q+I = 0. Using an argument similar to Case 1 we can show that q+(t, x) = 0
is a unique solution to (3.4).

Case 3. 0 < q+I < 1. Then integrating (3.4) with respect to t from 0 to t, one has

q+

1 − q+
=

q+I
1 − q+I

exp
(∫ t

0

2κ(p+(τ, ·) − p−(τ, ·))dτ
)
.

Due to 0 < q+I < 1, we have

q+

1 − q+
≥ 0.

It follows immediately from the above equality that 0 ≤ q+ ≤ 1. Combining Cases 1,
2, and 3, we get that 0 ≤ q+ ≤ 1 for 0 ≤ q+I ≤ 1. Applying q+ = 1 − q− in the fourth
equation of (1.1) and using the same approach, we can show that 0 ≤ q− ≤ 1.

Finally, we show the positivity of cell density p±(t, x). We use the theory of
invariant principle from [11] for the hyperbolic random walk system to achieve this
goal. To this end, we write the first two equations of the system (1.1) in a matrix form

φt = Gφ+Bφ+ F(φ),(3.5)

where

φ =
(
p+

p−

)
, G =

⎛
⎜⎝ −s ∂

∂x
0

0 s
∂

∂x

⎞
⎟⎠ , B =

(
−μ μ
μ −μ

)
,

and

F(φ) =
(
μq+(p+ + p−) − μp−

μq−(p+ + p−) − μp+

)
.
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Let Λ = [0,∞) ⊂ R. Then Λ is convex, and for each z ∈ ∂Λ, Λ has an outward normal
vector. Moreover, define Σ = Λ × Λ. Let φ ∈ ∂Σ, and without loss of generality we
assume that φ = (ϑ, 0) with ϑ ≥ 0. Then for the outward normal vector η(φ) = (0,−1)
of φ, we have

η(φ) · (Bφ + F(φ)) = −μq−ϑ ≤ 0,

where we have used the positivity of q−. Then by the theory in [11, Theorem 2], the
set Σ is positively invariant for the system (3.5), which shows the positivity of p±.
The proof is completed.

By Lemma 3.1, we obtain the following theorem.
Theorem 3.2. The set { (p+, p−, q+, q−) | p± ≥ 0, q± ≥ 0, q+ + q− = 1} is in-

variant to the system (1.1) provided that p±, q± ∈ L∞(0, T ;L∞(R)) for T > 0.
Remark 1. For p+ > p−, the term p+ − p− > 0 and q+ will increase while q−

decreases. Hence directionality is enhanced by the last two equations of (1.1).
Next, we prove the global existence of solutions to system (1.1) subject to initial

condition (ic). Due to Theorem 3.2, we can reformulate the system (1.1) as

p+
t + sp+

x = −μp+ + μq+(p+ + p−),

p−t − sp−x = −μp− + μq−(p+ + p−),

ξt = κ(p+ − p−)(1 − ξ2),

(3.6)

where q+ and q− are given by

(3.7) q+ =
1 + ξ

2
, q− =

1 − ξ

2
.

It is worthwhile to note that here ξ represents the expectation of fiber orientation in
one dimension subject to the initial condition ξI := ξ(0) = q+I −q−I . Furthermore from
initial condition (ic), we have

−1 ≤ ξI ≤ 1.

We seek the global solutions of the system (3.6) in the following space:

X(0, T ) := {(p+, p−, ξ)| p±, ξ ∈ L∞(0, T ;L1 ∩ L∞(R))}.

We first give the local existence of solutions for the system (3.6).
Lemma 3.3 (local existence). Let p±I , q

±
I (x) ≥ 0 and q+I + q−I = 1. Assume

p±I ∈ L1∩L∞(R) and ξI ∈ L1(R). Then there exists a time T0 > 0 such that the prob-
lem (3.6) with boundary condition (bc1) has a unique solution (p+, p−, ξ) ∈ X(0, T0)
satisfying −1 ≤ ξ ≤ 1.

Proof. For short we denote η = (p+, p−, ξ)T . The norm of the vector η is defined
as

‖η‖L∞(R) = max{‖p+‖L∞(R), ‖p−‖L∞(R), ‖ξ‖L∞(R)},
‖η‖L1(R) = max{‖p+‖L1(R), ‖p−‖L1(R), ‖ξ‖L1(R)},

Moreover, for the convenience of presentation we denote

f1(p+, p−, ξ) = −μp+ +
μ

2
(1 + ξ)(p+ + p−),

f2(p+, p−, ξ) = −μp− +
μ

2
(1 − ξ)(p+ + p−),

f3(p+, p−, ξ) = κ(p+ − p−)(1 − ξ2).
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Clearly the function fi(i = 1, 2, 3) is differentiable with respect to its arguments and
hence is locally Lipschitz continuous in any bounded subset of L1 ∩ L∞(R).

It is straightforward to show that system (3.6) is strictly hyperbolic with three
distinct uniform bounded eigenvalues λ1, λ2 satisfying −s = λ1 < λ3 = 0 < λ2 = s.
Then for each i = 1, 2, 3 and each point (t, x) in the t − x plane, the characteristic
equation of (3.6) defined by

dxi
dτ

= λi, xi(t) = x,

has a unique solution defined for all t > 0, describing the ith characteristic through
point (t, x). We denote such a solution by t �→ xi(τ ; t, x), where xi(τ ; t, x) = x+λi(τ−
t) and in particular x3(τ ; t, x) = x due to λ3 = 0. Following the argument in [2], we
define a set

D = {(t, x) | 0 ≤ t < 
/s,−
+ st ≤ x ≤ l − st} .

Note that 
 can be arbitrarily large since the domain is unbounded. Then for every
(t, x) ∈ D and every i ∈ {1, 2}, the characteristic curve {(t, xi(τ ; t, x))| 0 ≤ τ ≤ t} is
entirely contained inside D with xi(0; t, x) ∈ [−
, 
]. Such a set D is called a domain
of determinacy (see [2]).

The system (3.6) has two independent characteristics. We integrate the first
equation of (3.6) along the second characteristic curve x2(τ ; t, x), the second equa-
tion of (3.6) along the first characteristic x1(τ ; t, x), and the third equation along
x3(τ ; t, x) = x. Then (3.6) can be rewritten as an ODE system

p+
τ = −μp+(τ,x2(τ)) + μq+(τ,x2(τ))(p+(t,x2(τ)) + p−(τ,x2(τ))),

p−τ = −μp−(τ,x1(τ)) + μq−(τ,x1(τ))(p+(τ,x1(τ)) + p−(τ,x1(τ))),

ξτ = κ(p+(τ, x) − p−(τ, x))(1 − ξ2(τ, x)),

(3.8)

where xi(τ) := xi(τ ; t, x) for i = 1, 2 and x3(τ) = x.
In vector form, (3.8) can be reformulated as

uτ = f(u), u ∈ R
3,

where

f(u) =

⎛
⎝ f1(u(τ,x2(τ)))

f2(u(τ,x1(τ)))
f3(u(τ, x))

⎞
⎠.

Note that xi(τ) ∈ R (i = 1, 2). Then f(u) is locally Lipschitz continuous in any
bounded subset of L1 ∩L∞(R), and hence the local existence follows from the funda-
mental theorem of existence and uniqueness (e.g., see [22]). Due to Theorem 3.2 and
the definition of ξ, we have that −1 ≤ ξ ≤ 1. Then the proof is finished.

We proceed to derive a priori estimates in order to get global existence.
Lemma 3.4 (a priori estimates). Let the assumptions in Lemma 3.3 hold and let

(p+, p−, ξ) be the solution obtained in Lemma 3.3. Then for any 0 < t ≤ T0, there
exist constants C > 0 and C̃ > 0 such that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) + ‖ξ(t)‖L1∩L∞(R) ≤ C exp(C̃T ),

and −1 ≤ ξ ≤ 1, where ‖ · ‖L1∩L∞(R) = ‖ · ‖L1(R) + ‖ · ‖L∞(R).
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Proof. For each (t, x) ∈ D and xi(0; t, x) ∈ [−
, 
], we integrate the first two
equations of (3.8) with respect to τ over [0, t] and obtain that

p+(t, x) = p+(x2(0)) +
∫ t

0

f1
(
p+(τ,x2(τ)), p−(τ,x2(τ)), ξ(τ,x2(τ))

)
dτ,

p−(t, x) = p−(x1(0)) +
∫ t

0

f2
(
p+(τ,x1(τ)), p−(τ,x1(τ)), ξ(τ,x1(τ))

)
dτ,

ξ(t, ξ) = ξI +
∫ t

0

(p+(τ, x) − p−(τ, x))(1 − ξ2(τ, x))dτ.

(3.9)

Using the terminology from [2], we call (p+, p−, ξ) a broad solution for the Cauchy
problem of (3.8) if (p+, p−, ξ) satisfies (3.9), at almost every point (t, x) ∈ D. In the
circumstance of semigroup theory, the broad solution defined above is called a mild
solution if the transport operator in (3.6) generates a continuous semigroup (see [13]
for details).

Taking the L∞-norm on both sides of (3.9), using the fact that fi is Lipschitz
continuous, and taking into account fi(0, 0, ξ) = 0 for i = 1, 2, we infer that

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R)

≤ C1 + C2

∫ t

0

(‖p+(τ)‖L∞(R) + ‖p−(τ)‖L∞(R) + ‖ξ(τ)‖L∞(R))dτ,

where C1 is a constant such that ‖p+
I ‖L∞(R) + ‖p−I ‖L∞(R) + ‖ξI‖L∞(R) ≤ C1 and C2

depends on the Lipschitz constants of the functions fi(i = 1, 2, 3) and the turning
rate μ.

The application of Gronwall’s inequality to the above inequality gives

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R) ≤ C1 exp(C2t).

Similarly, one can deduce that there exist constants C3, C4 > 0 such that

‖p+(t)‖L1(R) + ‖p−(t)‖L1(R) + ‖ξ(t)‖L1(R) ≤ C3 exp(C4t).

The last two inequalities imply the first conclusion of the lemma. The second conclu-
sion −1 ≤ ξ ≤ 1 follows directly from Theorem 3.2 and the definition of ξ.

By Lemmas 3.3 and 3.4, the existence theorem of global solutions is obtained.
Theorem 3.5 (global existence). Let initial condition (ic) hold. Assume p±I , ξI ∈

L1∩L∞(R). Then the problem (3.6) with boundary condition (bc1) has a unique global
solution (p+, p−, ξ) ∈ X(0,∞) satisfying −1 ≤ ξ ≤ 1 and p± ≥ 0. Consequently, the
problem (1.1) with initial condition (ic) and boundary condition (bc1) has a unique
global solution (p+, p−, q+, q−) such that p±, q± ∈ L∞(0,∞;L1∩L∞(R)) with p± ≥ 0
and 0 ≤ q± ≤ 1 with q+ + q− = 1.

Proof. We suppose that the maximal time Tmax of existence for the solution of
(3.6) is finite, namely, Tmax < ∞. From Lemma 3.4, we know that −1 ≤ ξ ≤ 1 for
any 0 ≤ t ≤ Tmax. Hence according to the well-known alternative results (e.g., see
[20, 22]), one has that

lim
t→Tmax

‖p+(t)‖L1∩L∞(R) = ∞ or lim
t→Tmax

‖p−(t)‖L1∩L∞(R) = ∞.(3.10)
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On the other hand, when −1 ≤ ξ ≤ 1, we have proven in Lemma 3.4 that for any
t ≤ Tmax, it holds that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) ≤ C exp(C̃Tmax),

which contradicts (3.10) for 0 < Tmax < ∞. This contradiction in turn shows that
Tmax = ∞, and hence the global solution of (3.6) follows. Due to Theorem 3.1, the
second conclusion is an immediate consequence.

Remark 2. Mathematically, when cutting efficiency κ = 0, the system (1.1) be-
comes the one-dimensional mesenchymal motion model for undirected tissue (see [12]).
Due to the assumption q+(t, x) = q−(t, x) for undirected tissue, we obtain the follow-
ing global existence theorem for the model associated with undirected tissue.

Theorem 3.6. Suppose κ = 0. Let initial condition (ic) hold and let q+I = q−I =
1/2. Assume p±I ∈ L1 ∩ L∞(R). Then there exists a unique global solution to system
(3.6) such that (p+, p−, ξ) ∈ X(0,∞) with ξ = 0 and p± ≥ 0. Hence there is a unique
global solution (p+, p−, 1/2, 1/2) to (1.1) with initial condition (ic) and boundary con-
dition (bc1) such that p± ∈ L∞(0,∞;L1 ∩ L∞(R)) satisfying p± ≥ 0.

Since the functions on the right-hand side of (1.1) are continuously differentiable
with respect to p+, p−, q+, and q−, by a theory for semilinear hyperbolic systems in
[2] (see Theorem 3.6 in [2]), the broad solution of Cauchy problem (1.1) obtained
in Theorem 3.5 is indeed a classical solution provided that the initial data (1.9) are
continuously differentiable, namely, we have the following results.

Theorem 3.7. Let the assumptions in Theorem 3.5 hold. In addition, we assume
that the initial data in (1.9) are continuously differentiable. Then the broad solution
u : D → R

2 obtained in Theorem 3.5 provides a classical solution. Moreover, if initial
data in (1.9) are nonnegative, the solution is nonnegative. Its partial derivatives ut
and ux, respectively, are broad solutions of the following semilinear system:

(ut)t = Huut − Θ · (ut)x,
(ux)t = Huux − Θ · (ux)x,

where u,H, and Θ are defined as in section 2 and Hu denotes the derivative of H
with respect to u.

Proof. The proof is similar to the argument in [2]. We omit the details.

4. Macroscopic limits. For the given fiber distribution q±(t, x), formal
parabolic and hydrodynamic limits were derived in [12] for the mesenchymal mo-
tion models (1.1) in n(n ≥ 1) dimensions. In this section we rigorously carry out the
parabolic limits for system (1.1) under some suitable assumptions.

To derive a limiting diffusion model for (1.1), we use the parabolic scaling of space
and time, with x̄ = εx denoting a macroscopic space scale and t̄ = ε2t a long time
scale. Now we use the equivalent system (1.3) in a slightly different form using the flux
J = p+ − p−. Upon substituting the above scaling variable into (1.3), and dropping
the bar for convenience, we end up with the following equations:

ε2∂tpε + εs∂xJε = 0,

ε2∂tJε + εs∂xpε = μξεpε − μJε,

ε2∂tξε = κ(p+
ε − p−ε )(1 − ξ2ε),

(4.1)



386 ZHI-AN WANG, THOMAS HILLEN, AND MICHAEL LI

with initial data pε(0) = pI = p+
I +p−I , Jε(0) = JI = p+

I −p−I , ξε(0, ·) = q+I − q−I . The
system (4.1) is equivalent to the following second-order damped hyperbolic equation
(see (1.5) or [12]):

(4.2)
ε4

μ
∂2
t pε + ε2∂tpε + ε∂x(sξεpε) = ε2

s2

μ
∂2
xpε,

which indicates that the drift term is a dominating term for ε small. As in [12], we
assume that the expectation of fiber directions is small as to the order of ε:

(4.3) ξq(t, x) = lim
ε→0

1
ε
ξε

(
t

ε2
,
x

ε

)
= lim

ε→0

1
ε

[
q+
(
t

ε2
,
x

ε

)
− q−

(
t

ε2
,
x

ε

)]
<∞.

Under the above assumption, we formally obtain a drift-diffusion model with diffusion
coefficient s2

μ and drift velocity sξq from (4.2) by sending ε→ 0 (see [12]),

(4.4) ∂tp+ ∂x(sξqp) =
s2

μ
∂2
xp,

where p is the limit of pε as ε→ 0. The goal of this section is to show that the solution
of (4.2) is convergent to the solution of (4.4) in the weak sense as ε → 0. To proceed
we give the definition of weak solutions that we address here.

Definition 4.1. We say that a function P ∈ L∞([0, T ];H1(R)) is a weak solution
of (4.4) if P (t, x) satisfies the following:

(a) For any test function φ ∈ C∞
0 ([0, T ) × R), it holds that

−
∫ T

0

∫
R

P∂tφdxdt −
∫ T

0

∫
R

(sξqP )∂xφdxdt =
s2

μ

∫ T

0

∫
R

P∂2
xφdxdt+

∫
R

P (0)φ(0)dx.

(b) P (0) = pI = p+
I + p−I .

Next we establish the convergence properties of the solution (pε, Jε) as ε→ 0. It
suffices to derive a uniform estimate for the solutions of system (4.1), which is given
in the following lemma.

Lemma 4.2. Let p±I ∈ H1(R) and let the assumption (4.3) hold. Assume further
that there exists a constant C1 > 0, independent of ε, such that

(4.5) |ξε|, |∂xξε| ≤ C1ε.

Then there is a constant C2, independent of ε, such that the solution (pε, Jε) of system
(4.1) satisfies, for any 0 ≤ t ≤ T ,

‖pε(t)‖H1(R) + ‖Jε(t)‖H1(R) + ‖ε∂tpε‖L2(R)

≤ C2(C1, μ, T )(‖pI‖H1(R) + ‖JI‖H1(R)),
(4.6)

where the constant C2 depends on C1, μ, and T .
Proof. We use the energy method to prove the lemma. First, note that pε(0) =

pI = p+
I + p−I ∈ H1(R) and Jε(0) = JI = p+

I − p−I ∈ H1(R). Multiplying the first
equation of (4.1) by pε and the second by Jε, adding the resultant equations, and
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integrating over [0, t) × R, we end up with the following inequality:

1
2

∫
R

(|pε|2 + |Jε|2)dx +
∫ t

0

∫
R

με−2|Jε|2dxdτ

=
1
2

∫
R

(|pI |2 + |JI |2)dx+
∫ t

0

∫
R

με−2ξεpεJεdxdτ

≤ 1
2

∫
R

(|pI |2 + |JI |2)dx+
∫ t

0

∫
R

μC1|ε−1pεJε|dxdτ,

(4.7)

where we have used the assumption (4.5). Applying Young’s inequality |C1ε
−1pεJε| ≤

1
2 (ε−2|Jε|2 + C2

1 |pε|2) in (4.7), we have
∫

R

(|pε|2 + |Jε|2)dx+
∫ t

0

∫
R

με−2|Jε|2dxdτ

≤
∫

R

(|pI |2 + |JI |2)dx+ μC2
1

∫ t

0

∫
R

|pε|2dxdτ.

By Gronwall’s inequality, we immediately get an L2-estimate of pε and Jε independent
of ε such that for 0 ≤ t < T ,

(4.8) ‖pε‖2
L2(R) + ‖Jε‖2

L2(R) ≤ (‖pI‖2
L2(R) + ‖JI‖2

L2(R)) exp(μC2
1T ).

Next we go to the higher order estimates. To this end, we multiply the first equation of
(4.1) by −∂2

xpε and the second by −∂2
xJε. Then we end up with the following estimates

using the same procedure as that deriving (4.7):

1
2

∫
R

(|∂xpε|2 + |∂xJε|2)dx+
∫ t

0

∫
R

με−2|∂xJε|2dxdτ

=
1
2

∫
R

(|∂xpI |2 + |∂xJI |2)dx+
∫ t

0

∫
R

με−2∂x(ξεpε)∂xJεdxdτ

≤ 1
2

∫
R

(|∂xpI |2 + |∂xJI |2)dx+
∫ t

0

∫
R

μC1ε
−1(|pε| + |∂xpε|)|∂xJε|dxdτ.

Using Young’s inequality and the fact that (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, we
deduce that∫ t

0

∫
R

μC1ε
−1(|pε| + ∂xpε|)|∂xJε|dxdτ

≤ 1
2

∫ t

0

∫
R

με−2|∂xJε|2dxdτ +
C2

1

2

∫ t

0

∫
R

μ(|pε| + |∂xpε|)2dxdτ

≤ 1
2

∫ t

0

∫
R

με−2|∂xJε|2dxdτ + C2
1

∫ t

0

∫
R

μ|∂xpε|2dxdτ + C(T, pI , JI),

(4.9)

where (4.8) has been used and

C(T, pI , JI) = μC2
1T (‖pI‖2

L2(R) + ‖JI‖2
L2(R)) exp(μC2

1T ).

Now substituting (4.9) into (4.7) and applying Gronwall’s inequality to the resulting
inequality, we infer that

‖∂xpε‖2
L2(R) + ‖∂xJε‖2

L2(R)

≤ C(T, pI , JI)(‖∂xpI‖2
L2(R) + ‖∂xJI‖2

L2(R)) exp(μC2
1T )

≤ μC2
1T (‖pI‖H1(R) + ‖JI‖H1(R))2 exp(2μC2

1T ).

(4.10)
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Furthermore, by (4.1) we have

(4.11) ‖ε∂tpε‖L2(R) = ‖∂xJε‖L2(R).

Then the combination of (4.8), (4.10), and (4.11) gives (4.6) and completes the
proof.

Theorem 4.3. Let the assumptions in Lemma 4.2 hold and let pε(0) = pI =
p+
I + p−I . Then as ε → 0, the solutions pε of (4.2) converge to a limit function p0,

which is a weak solution of (4.4) such that p0(t = 0) = pI .
Proof. According to the energy estimates (4.6), we see that the solution sequence

pε is uniformly bounded in L∞
loc([0,∞);H1(R)) and ε∂tpε is uniformly bounded in

L∞
loc([0,∞);L2(R)) for every ε > 0.

As a consequence of the Rellich–Kondrachov compactness theorem, there exist
a subsequence of pε and ε∂tpε, still denoted by pε and ε∂tpε, and functions p0 ∈
L∞

loc([0,∞);H2(R)) and p1 ∈ L∞
loc([0,∞);L2(R)) such that

{
pε ⇀ p0 weakly∗ in L∞

loc([0,∞);H1(R)),
ε∂tpε ⇀ p1 weakly∗ in L∞

loc([0,∞);L2(R)).
(4.12)

Next we show that p0 is a weak solution of (4.4) subject to the given initial data. To
this end we multiply (4.2) by a test function φ ∈ C∞

0 ([0, T ) × R) with φ(T ) = 0 and
integrate the resultant equation to get

(4.13)

ε2

μ

∫ T

0

∫
R

pε∂
2
t φdxdt +

ε2

μ

∫
R

[pε(T )∂tφ(T ) − ∂tpε(0)φ(0)]dx

− ε2

μ

∫
R

[∂tpε(T )φ(T ) − pε(0)∂tφ(0)]dx −
∫ T

0

∫
R

pε∂tφdxdt+
∫

R

pε(T )φ(T )dx

− 1
ε

∫ T

0

∫
R

(sξεpε)∂xφdxdt =
∫

R

pε(0)φ(0)dx +
s2

μ

∫ T

0

∫
R

pε∂
2
xφdxdt.

Note that pε(0) = pI = p+
I + p−I ∈ H1(R). Hence Jε(0) = JI = p+

I − p−I ∈ H1(R) and
ε∂tpε(0) = ∂xJε(0) ∈ L2(R) from (4.1). Thus the second, third, and fourth terms in
(4.13) vanish as ε→ 0 by (4.12). Using assumption (4.3) and sending ε→ 0 in (4.13),
we obtain from (4.12) that

−
∫ T

0

∫
R

p0∂tφdxdt −
∫ T

0

∫
R

(sξqp0)∂xφdxdt

=
∫

R

pIφ(0)dx +
s2

μ

∫ T

0

∫
R

p0∂
2
xφdxdt,

(4.14)

which shows that p0 is a weak solution of (4.4) satisfying the initial condition.
Remark 3. It is worthwhile to note that assumptions (4.5) and (4.3) are auto-

matically satisfied for the case of undirected tissue where ξε = 0 (see also Remark 2).
Then the limit equation for the case of undirected tissue is a pure diffusion equation
without a drift term.

5. Traveling waves. Since the system (1.1) models the invasion of cells through
tissue, it is of interest to look for traveling wave solutions for (1.1) and see what kinds
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of movement patterns are used by cells for invasion. To this end, we first use the
invariant of motion q+ + q− = 1 and consider the equivalent system (1.4).

We introduce the wave variable

z = x− ct,

where c ≥ 0 denotes the wave speed. Then we can define the wave profile by

p(z) = p(t, x) = p(x− ct),
j(z) = j(t, x) = j(x− ct),

q+(z) = q+(t, x) = q+(x − ct).

(5.1)

Substituting (5.1) into (1.4), we convert (1.4) into an ODE system as follows:

−cpz + jz = 0,

−cjz + s2pz = −μj + μs(2q+ − 1)p,

−cq+z =
2κ
s
j(1 − q+)q+.

(5.2)

We prescribe the boundary conditions by

p(−∞) = p(+∞) = 0,
j(−∞) = j(+∞) = 0,

q+(−∞) = q+l , q
+(+∞) = q+r ,

(5.3)

where q−l and q+r are constants and satisfy 0 ≤ q−l , q
+
r ≤ 1, and q−l > q+r . That is, we

look for the traveling pulse wave for p and decreasing traveling front wave for q+.
From (5.2) and the boundary conditions (5.3), we obtain an invariant of motion

for j and p such that

(5.4) j = cp.

Then the system (5.2) is reduced to a two-dimensional system by the substitution of
(5.4) into (5.2):

(c2 − s2)pz = μp[c− s(2q+ − 1)],

q+z = −2κ
s
p(1 − q+)q+.

(5.5)

It is clear that (5.5) becomes a singular problem when c = s and that this singular
problem has no solution satisfying the boundary conditions (5.3). Indeed if c = s,
then q+ = 1 due to μ �= 0, which biologically means cells continuously move to the
right without changing movement direction. Also, q+ = 1 does not agree with the
boundary conditions (5.3). Thus we assume c �= s hereafter. We will see later that
biologically meaningful waves exist only for c < s. However, for now, we just assume
c �= s, and system (5.5) can be rewritten as

pz = −αp[c− s(2q+ − 1)],

q+z = −βp(1 − q+)q+,
(5.6)

where α = − μ
c2−s2 , β = 2κ

s > 0. Due to the biological interest, we consider only non-
negative solutions where p ≥ 0 and 0 ≤ q± ≤ 1. In fact, the nonnegativity of solutions
to the system (5.6) with boundary conditions (5.3) can be analogously obtained by
following the argument used in section 3. Therefore we are interested only in those
heteroclinic orbits that remain nonnegative.
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5.1. Phase plane analysis. System (5.6) has a continuum of steady states
(0, θ) with 0 ≤ θ ≤ 1. The Jacobian matrix linearized about the steady state (0, θ) is

Js =
[

−α
(
c− s(2θ − 1)

)
0

−β(1 − θ)θ 0

]
.

The eigenvalues of Js are

(5.7) λ1 = −α
(
c− s(2θ − 1)

)
, λ2 = 0.

The corresponding eigenvectors are

r1 =
[

λ1

−β(1 − θ)θ

]
, r2 =

[
0
1

]
.(5.8)

When c �= s, we have two cases to consider corresponding to the sign of eigenvalue
λ1.

Case 1. If c > s > 0, then α < 0. It is straightforward to check that λ1 > 0, which
indicates every steady state (0, θ) with 0 ≤ θ ≤ 1 is unstable, and consequently there
is no nonnegative heteroclinic connection due to the lack of the stable manifold. We
thus claim that 0 ≤ c < s is a necessary condition for the existence of a traveling wave
and s is then a critical traveling speed. Thus we assume that c < s hereafter.

Case 2. If 0 ≤ c < s, then α > 0. We first fix the traveling speed c and solve
c− s(2θ∗ − 1) = 0 to get θ∗ = c+s

2s . Clearly we have that 0 < θ∗ < 1. Furthermore the
following properties hold:

θ < θ∗ ⇒ λ1 < 0,
θ = θ∗ ⇒ λ1 = 0,
θ > θ∗ ⇒ λ1 > 0.

(5.9)

Next, we show that there exists a pair of equilibria which generates a heteroclinic
connection for each fixed c satisfying 0 ≤ c < s. From (5.7), we see that every steady
state (0, θ) of the system (5.6) with 0 ≤ θ ≤ 1 has two manifolds, one of which is a one-
dimensional center manifold corresponding to zero eigenvalue λ2. Since each center
manifold is invariant under the flow of the system (5.6), and the set {(p, q+) : p = 0,
0 ≤ q+ ≤ 1} consists of steady states only and hence is invariant, the center manifold
is the q+ axis where 0 ≤ q+ ≤ 1. So the heteroclinic connection is determined only by
the stable and unstable manifolds corresponding to positive and negative eigenvalues
given by λ1, respectively. The existence of a heteroclinic orbit connecting the unstable
manifold of one fixed point with the stable manifold of another fixed point corresponds
to the existence of a traveling wave (heteroclinic orbit). Below we rigorously prove
the existence of such a heteroclinic connection. Beyond this, we also shall prove the
existence of a family of traveling waves since a continuum of steady state exists for
the system (5.6). Before proceeding, we give a remark as follows.

Remark 4. The constants q+ = 0 and q+ = 1 are solutions of the second equation
of (5.6), and furthermore it holds that

(a) if q+ = 0, then p→ +∞ as z → −∞;
(b) if q+ = 1, then p→ +∞ as z → +∞.
Therefore, neither the orbit q+ = 0 nor q+ = 1 can form a heteroclinic connection,

although {q+ = 1} is the unstable manifold of the equilibrium (0, 1) and {q+ = 0} is
the stable manifold of the equilibrium (0, 0). So hereafter we assume that 0 < q+ < 1
in order to obtain the existence of traveling waves.
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5.2. Existence of traveling waves. To show that an unstable manifold can
be connected by a stable manifold, we need to investigate the global structure of
the original nonlinear system. Below we shall apply LaSalle’s invariant principle (see
[10, 18]) to study the asymptotic behavior of solutions of the system (5.6), which is
described in the following lemma.

Lemma 5.1. Assume 0 ≤ c < s. Let (p, q+) be a solution of (5.6) subject to initial
conditions pI > 0 and 0 < q+I < 1. Then the ω-limit set of solutions to system (5.6)
is contained in the following set:

(5.10) N = {(p, q+)| p = 0, 0 < q+ < θ∗},

and the α-limit set is contained in the set

(5.11) G = {(p, q+)| p = 0, θ∗ < q+ < 1},

where θ∗ is a constant between 0 and 1 determined by θ∗ = c+s
2s .

Proof. Define a function V (p, q+) by V (p, q+) = q+. Then in the set {(p, q+)| p ≥
0, 0 < q+ < 1}, V (p(z), q+(z)) > 0 and dV

dz ≤ 0 thanks to the second equation of
(5.6). Given a number L > 0, we now define a set

ΩL = {(p, q+)| V (p, q+) ≤ L, p > 0, 0 < q+ < 1}.

Since we restrict our attention to the case of 0 < q+ < 1, we let 0 < L < 1. Hence it
holds that

ΩL = {(p, q+)| p > 0, 0 < q+ < L}.

We now proceed to justify that the set ΩL is bounded for given 0 < L < 1. Toward
this end, we divide the first equation of (5.6) by the second equation to obtain that

(5.12)
dp

dq+
= −α(c+ s)

β

1
(1 − q+)q+

+
2αs
β

1
1 − q+

.

Integrating this equation and recovering α and β yield a first integral

(5.13) p(q+) =
μs

2κ

[
ln(1 − q+)
c+ s

− ln q+

c− s

]
+ C,

where C is a constant of integration determined by the boundary condition of q+

given in (5.3).
Then for any q+ = V (p, q+) < L, it is clear from (5.13) that p is bounded as a

function of q+. As a result, the set ΩL defined above is bounded.
We now define another set

N1 =
{

(p, q+)
∣∣∣∣dVdz = 0, 0 < q+ < 1

}
.

From the second equation of (5.6), we know that

dV

dz
= 0 ⇐⇒ p = 0 or q+ = 0 or q+ = 1.

Therefore, N1 = {(p, q+)| p = 0, 0 < q+ < 1} and is invariant since it is composed of
only steady states. With the help of LaSalle’s invariant principle, the ω-limits set of
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Fig. 1. The traveling wave for the system (5.6), where c = 1, s = 2, μ = 2, κ = 1. The waves
travel from the left to the right and c denotes the traveling speed and z = 0, 5, 10, 15, 20.

any trajectories of the system starting in the set ΩL for 0 < L < 1 is contained in
the set N1. Indeed, we can characterize the asymptotic behavior of the solution more
precisely. From (5.9), we know that λ1 > 0 for all θ∗ < θ < 1. Then the equilibrium
(0, θ) with θ∗ < θ < 1 is unstable. If we define N2 = {(p, q+)| p = 0, θ∗ < q+ < 1},
then all solutions of the system (5.6) converge to the set as z → +∞:

N = N1 \ N2 = {(p, q+)| p = 0, 0 < q+ < θ∗}.

In a similar fashion, if we study the problem (5.6) backward on variable z, we can
prove that all solutions of (5.6) converge to the set G when z → −∞, which completes
the proof.

Lemma 5.1 shows that any trajectory of the system (5.6) starting in a neighbor-
hood of an equilibrium (0, θ) with θ∗ < θ < 1 converges, as z → +∞, to another
equilibrium (0, θ) with 0 < θ < θ∗, which gives a nonnegative heteroclinic orbit (trav-
eling wave) connecting these two equilibria. This heteroclinic orbit can be explicitly
given by a level curve equation in the form of (5.13). It is worthwhile to point out
that the traveling speed c can be 0 from our analysis, which corresponds to a standing
wave. Hence we obtain the following existence theorem of traveling waves.

Theorem 5.2. Let us consider the system (5.6) given traveling speed c with 0 ≤
c < s and θ∗ = c+s

2s . Then for any equilibrium (0, c1) with θ∗ < c1 < 1 there exists
another equilibrium (0, c2) with 0 < c2 < θ∗ such that there is a bounded, nonnegative,
heteroclinic orbit connecting (0, c1) to (0, c2). That is, there exists a traveling solution
(p, q+) of the system (5.6) connecting two equilibria. Particularly, the system (5.6)
admits a standing wave for c = 0.

Notice that in Lemma 5.3 we will give an explicit relation between c1 and c2.
An example of traveling solution (p, q+) for system (5.6) is numerically plotted in

Figure 1. From the definition of p and the relation (5.4), we can derive that

(5.14) p+ =
s+ c

2s
p, p− =

s− c

2s
p.

In addition to the relation

(5.15) q− = 1 − q+, j = cp,

we find the traveling waves for p+, p−, q−, and j in terms of p and q+, as given
above. The plots of the traveling structures of these quantities are given in Figure 2.
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Fig. 2. Numerical illustration of traveling waves for p+, p−, j, and q−, where c = 1, s =
2, μ = 2, κ = 1. The waves shift from the left to the right and c denotes the traveling speed and
z = 0, 5, 10, 15, 20.

A plot of all these quantities in a coordinate system is given in Figure 3 from which
the transition properties between cell movement direction and fiber orientation are
clearly indicated.

From the first equation of (1.4), we know that the total mass of cells is conserved
and so traveling pulse waves are expected, as we found analytically and numerically
above. The numerical simulation for p in Figure 1 indicates that individual cells can
move to the left or the right, but the whole cell group will move to the right contin-
uously. However, when the waves travel through, the fiber orientations are modified
by cells, and alignment to cell movement direction is enhanced, which is indicated by
the numerical simulation for q+ in Figure 3.

5.3. Family of traveling waves. Note that for each left state q+l with θ∗ <
q+l < 1 we find a corresponding right state (0, q+r ) connecting to (0, q+l ) which gives a
traveling wave. Here we give an explicit formula which relates q+l and q+r .

Lemma 5.3. Given a speed c satisfying 0 ≤ c < s, the left and right equilibria
(0, q+l ) and (0, q+r ) are related as

(5.16)
(

1 − q+r
1 − q+l

)s−c
=
(
q+l
q+r

)s+c
, 0 ≤ c < s.

Proof. An explicit heteroclinic connection has been given by (5.13). By Lemma
5.1, we infer that p(q+l ) = p(q+r ) = 0. Applying this condition to (5.13), one has that

ln(1 − q+l )
c+ s

− ln q+l
c− s

=
ln(1 − q+r )
c+ s

− ln q+r
c− s

.

Rearranging the above identity yields (5.16).
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Fig. 3. A plot of traveling solutions of system (1.1) in a coordinate system, where c = 1, s =
2, μ = 2, κ = 1, and z = 0, 5, 10, 15, 20.

By Lemma 5.3 we identify a family of heteroclinic orbits as shown in Figure 4.
From (5.13) we see that p is bounded as a function of q+ if 0 < q+ < 1. It would

be of interest also to find the upper bound for each orbit and to see how the upper
bound varies with respect to the right/left states of q+. Indeed, by (5.12), we get a
unique critical point q+ = θ∗ such that dp

dq+ |q+=θ∗ = 0. The second derivative of p
with respect to q+ is

(5.17)
d2p

dq+2 = −μs
2κ

[
1

(c+ s)(1 − q+)2
+

1
(s− c)q+2

]
,

Noting that 0 ≤ c < s, it is easy to verify that d2p
dq+2 < 0 at q+ = θ∗. Moreover, we

know that p(q+l ) = p(q+r ) = 0. Hence p attains the maximal value at q+ = θ∗ given
by

(5.18) pmax =
μs

2κ

[
ln(1 − θ∗)
c+ s

− ln θ∗

c− s

]
+ σ,

where

(5.19) σ = −μs
2κ

[
ln(1 − q+l )
c+ s

− ln q+l
c− s

]
, θ∗ =

c+ s

2s
.

Remark 5. From the above equation, we know that the upper bound pmax of p
depends on the left states q+l of q. Also, we can easily verify that upper bound pmax

increases with respect to q+l > θ∗ (see Figure 4).
Remark 6. The results obtained above for traveling waves are valid only for the

case of directed tissue. For undirected tissue, traveling waves with c < s do not exist.
Indeed, in the undirected case, we know that q+ = q− = 1

2 , and the system (5.6) is
reduced to a scalar equation

(5.20) pz =
μ2

c2 − s2
cp.
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Fig. 4. The illustration of a family of heteroclinic orbits for the system (5.6), where c = 1, s =
2, μ = 2, κ = 1, and θ∗ = 0.75. The arrow denotes the orientation of trajectories to the system (5.6).

Clearly, equation (5.20) has no solution satisfying boundary conditions (5.3).
Remark 7. The situation of nested heteroclinic orbits which correspond to travel-

ing waves is also known from other biological applications, for example, for an epidemic
with moving infectives (see [24]).

6. Conclusions. In this study, we analyze the one-dimensional mesenchymal
motion model proposed by Hillen [12]. We establish the global existence of classical
solutions for both cases of directed and undirected tissue. Particularly, we show that
the model of undirected tissue (κ = 0) has a constant solution for fiber orientation
distribution such that q(t, x,+s) = q(t, x,−s) = 1

2 , which means cells have no prefer-
ence in choosing a particular movement direction and they have equal probability of
moving to the right or left. We discuss the existence of inhomogeneous steady states
for the case of directed tissue and identify a mechanism of cell aggregation. We rig-
orously show the convergence of macroscopic limits of the model; i.e., the solution of
the mesoscopic model converges to that of the corresponding macroscopic continuum
model. Moreover, we study the traveling wave solutions and establish the existence of
a traveling pulse in total cell population p(t, x) and traveling front waves in fiber ori-
entation distribution q±(t, x). The standing wave (c = 0) is admitted in our analysis.
This is not surprising considering the fact that cells can move in two directions (left
and right) and two traveling waves with opposite direction can eliminate each other
to result in a standing wave. All our results are fairly consistent with the biological
relevance discussed in paper [12].

The one-dimensional model appears artificial when compared to the real three-
dimensional process of cell movement in fiber tissue. The benefit of studying the one-
dimensional model in detail is twofold. First of all, this model and its properties give
good intuition into mechanisms that might be important in the higher dimensional
case. For example, the existence of nonhomogeneous steady states will also be ex-
pected for higher dimensional models. Also, the model with directed fibers seems to
have a richer behavior. Essentially we identify three distinctions between directed and
undirected tissue which are hard to see from the three-dimensional model. We show
that for the one-dimensional model, there is no aggregation for undirected tissue,
whereas aggregation is possible for directed tissue. In addition, for the macroscopic
limit, there are no constraints of convergence for the model of undirected tissue. How-
ever, some suitable restriction is needed for directed tissue. Moreover, the model of
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undirected tissue does not admit traveling waves and the model of directed tissue
does. All these distinctions might be true for higher dimensional models.

Second, the model considered here can be used to describe cell movement in
highly aligned tissue. In fact, many tissues show a predominant orientation; for ex-
ample, the rapid spread of glioma cells across the corpus callosum results from the
migration of individual glioma cells along the highly aligned white matter tracks inside
brain tissue [1]. F-actin filaments in vascular smooth muscle cells (VSMCs) are highly
aligned on textured polydimethylsiloxane (PDMS) scaffolds [23], and skeletal muscles
have a highly organized structure which consists of parallel bundles of multinucleated
myotubes that are formed by the fusion of myoblast satellite cells [25]. The model
studied here can be used to describe spread and propagation of cells along those
aligned tissues. In that case, the traveling pulse waves shown in section 5 correspond
to an application of a “comb” to the tissue which is aligned positively or negatively
in a common direction. If a brush is applied upstream, say, the fibers will be flipped
and higher alignment to the right results, we call these waves alignment waves; see
also our simulations in Figures 1–3.

For the application of these models to cancer invasion through collagen tissue,
the undirected formalism is important. The result of no traveling pulses for that case
does not preclude invasions. It precludes only invasion in a self-similar fashion. It is
still possible that cells invade new areas, in particular if nonlinear proliferation terms
are added. The existence of traveling waves under incorporation of cell proliferation
is an interesting open question that comes out of the research done here.

Mathematically, the higher dimensional mesenchymal motion models show signif-
icant differences when compared to the one-dimensional case. In one dimension, fiber
orientation q(t, x, θ) has only two directions and hence is bounded due to the normal-
ization condition q+ + q− = 1. However, in higher dimensions, fibers have infinitely
many directions, and highly aligned tissue corresponds to q(t, x, θ) being a Dirac delta
function along that direction. Hence the function spaces have to be chosen to include
nonintegrable distributions, and standard L2 or L∞ methods do not apply. In a forth-
coming paper [13], we will study the existence of solutions for the high dimensional
mesenchymal motion models in a Banach space of measurable functions using semi-
group theory. If the existence theory stands, we can look into the interesting network
formation dynamics, which were found numerically in Painter [21].
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Abstract. The probabilistic approach to wave propagation and diffraction is applied to a typical
problem of diffraction by a nonconvex polygon. The solution is obtained using a transparent technique
that employs a floating coordinate system, and it combines ideas from ray theory, stochastic analysis,
and complex analysis. The obtained solution is compatible with intuitive ideas about diffraction, and
it admits simple implementations.
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1. Introduction. It is widely known that the process of wave propagation may
be conveniently separated into (a) propagation along the rays, which makes possible
the long-range transport of energy, and (b) diffusion across the rays, which smooths
the distribution of energy and spreads it to the shadow zones. These two processes
correspond to different physical phenomena, and they are described by very different
mathematical models. Thus, the ray theory [15], describing propagation along the
rays, involves first-order partial differential equations, and it provides approximate
solutions of the wave equation which have a clear mathematical structure as well as
a simple physical meaning. In contrast, the process of diffraction (diffusion across the
rays) is described by second-order partial differential equations which are difficult for
analysis but, if solved, provide a correction of the ray theory approximation to the
exact solution of the considered problem of wave propagation.

The difference in the mathematical foundations of ray and diffraction theories
is reflected in the difference in the levels of their development. The ray approxima-
tion to the solutions of the wave equation can be computed by a canonical procedure
which remains valid in very general settings, and it admits a clear interpretation in
physically meaningful terms. However, computation of the diffracted fields remains a
difficult problem which has to be studied by special methods tailored to each partic-
ular configuration. Moreover, in most cases for which the solutions of the problem of
diffraction are known, they either present extremely complicated analytic expressions
or rely on massive computations which do not mimic any physical processes and,
therefore, do not extend the understanding of the wave propagation phenomena.

For more than one hundred years since the first problems of diffraction were
formulated, exact descriptions of the diffracted fields have been obtained only for a
small number of domains bounded by surfaces of simple shapes, such as a wedge,
cylinder, sphere, or ellipsoid, and most of these solutions have been obtained either
by the method of separation of variables or by integral transform methods leading
to functional or integral equations solvable by the Wiener–Hopf or other analytic
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methods [4, 12]. However, despite their limited areas of applicability, these exact
solutions of particular problems of diffraction by simple objects play an important
role in the further understanding of wave propagation, and they have also been used
as building blocks for various iterative techniques [1, 2, 3, 14, 16] developed for the
analysis of diffraction by more complex objects, such as polygons, for example.

The above-mentioned analytic approaches to the computation of diffracted fields
were recently complemented by a probabilistic method which represents solutions
of certain second-order partial differential equations by the Feynman–Kac formulas
[11, 13], which are mathematical expectations of specific functionals depending on the
trajectories of Brownian motions. This method has already been successfully applied
to a number of recognized difficult problems, including the problems of diffraction
by a finite segment [6], by a half-plane with piecewise constant impedance, and by
an arbitrary convex polygon with sidewise constant surface impedance [8]. These
problems do not have simple closed-form solutions, but their probabilistic solutions
are transparent, simple to implement, and provide clear interpretation of diffraction
in terms of diffusion across the rays. The probabilistic approach to wave propagation
appears as an extension of the ray method approximation to the exact solutions, which
suggests that the probabilistic solutions may be used not only at high frequencies but
also at intermediate and low frequencies.

The probabilistic method presented in [8] made it possible to obtain theoretically
exact representations for wave fields in the exterior of an arbitrary convex polygon,
but due to some technical reasons it could not be directly applied to problems in
the exterior of a nonconvex polygon. However, in a more recent development the
probabilistic approach has been generalized and enhanced to the extent which makes
it possible to use it for the description of wave fields in domains of general shape,
including domains bounded by nonconvex polygons. This extension is discussed in [10]
in a very general setting which may be excessive for a transparent presentation of
its main ideas. For this reason, here we do not directly use the results from [10]
but rederive them in a simplified form just sufficient for the analysis of a particular
problem of diffraction by a nonconvex polygon. We hope that such an approach will be
helpful for the further demonstration of the capabilities of the probabilistic approach
to wave propagation.

This paper is organized as follows: two introductory sections, 2 and 3, are followed
by the technical sections, 4–6, which lead to the solution of the main problem of
diffraction in sections 7 and 8.

In section 2, we introduce notation for handling multiple systems of polar coordi-
nates which are simultaneously used for the adequate description of wave fields in the
exterior of a polygon. The lack of a coordinate system naturally associated with the
exterior of a polygon seems to be a major obstacle for the description of wave fields
in such domains, but the use of a floating coordinate system makes it possible to get
around this obstacle by selecting different coordinate systems for different observation
points. In section 3 the problem of diffraction by a nonconvex polygon is reduced to
the fundamental Problem-1, the computation of wave fields that have specified jumps
along rays originating from the vertices of the polygon.

The main technical tools of the paper are developed in section 4, which deals with
the problem of radiation into a wedge with virtually arbitrary boundary conditions.
The obtained representation generalizes the results from both [8] and [10], which
are restricted to analytic boundary conditions and to wedges with angles smaller
than 270◦, respectively. The results of section 4 are then utilized in sections 5 and
6 as building blocks for the solutions of the radiation problems in the exterior of
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convex and nonconvex polygons, which are covered by sets of overlapping wedges.
Finally, in section 7 we obtain the solution of Problem-W for a nonconvex polygon,
and in section 8 the feasibility of the obtained expressions is confirmed by numerical
examples.

2. Notation and coordinate systems. Let Γ be a nonconvexN -sided polygon
with the vertices O0, O1, . . . , ON−1, shown in Figure 1 for the case when N = 6. The
polygon Γ subdivides the plane into two domains, but our interest here is restricted
to the exterior domain G.

O2

O3

O4

O5

O0 O1

l14

l24

l23 l13

l22

l12

�

U∗ = e−ir cos(θ−θ∗)

Fig. 1. Geometry of the problem.

To describe wave fields in the exterior of a polygon it is convenient to use several
coordinate systems simultaneously. The standard polar coordinates (r, θ) are used as
a universal reference system, but we also use polar coordinates (rn, θn) centered at
the vertices On and calibrated by the conditions

(2.1) θn(On−1) = 0,

which become meaningful for any integer n if we adopt the periodicity convention

(2.2) On+N ≡ On.

Similar conventions will also be applied to the exterior angle αn at the vertex On, as
well as the sides g±n of the polygon and their lengths L±

n defined as

(2.3) g+
n = g−n+1 = OnOn+1 and L+

n = L−
n+1 = |OnOn+1|,

respectively. It should be noted that although the use of the overlapping notations
g+
n = g−n+1 and L+

n = L−
n+1 may initially look confusing, it is justified by the duality

of the position of the segment OnOn+1, which may be considered either as the side
attached to the vertex On from the right or as the side attached to the vertex On+1

from the left.
To eliminate the ambiguity caused by the use of several coordinate systems it

is convenient to include reference to the coordinate system in the notation of the
functions. Thus, a function in the domain G is denoted hereafter either as F (r, θ) or
as F (r, θ;n). In the first case, the pair (r, θ) represents an observation point P in the
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O L

P = (p, 0)

p

Q = (r, θ)

r

rp = P(r, θ, p)

θ

(0, L] is the set of points Q for which

rL = L− r and rp = r − p for p < L

Fig. 2. Analytic description of the segment (0, L].

standard reference system. In the second case, the index n indicates that (r, θ) are
the coordinates of P in the nth coordinate system.

When different coordinates (rn, θn) refer to the same point of the plane there
is a one-to-one correspondence between any pair of such coordinates. For example,
applying the cosine theorem to the triangles On−1POn and OnPOn+1, where P is the
observation point, it is easy to show that the coordinates rn+1 and rn−1 are related
to (rn, θn) through the analytic expressions

rn−1 = P(rn, θn, L−
n ), rn+1 = P(rn, αn − θn, L

+
n ),(2.4)

θn−1 = αn−1 −F(rn, θn, L−
n ), θn+1 = F(rn, αn − θn, L

+
n ),(2.5)

where

(2.6) P(r, θ, L) =
√
r2 − 2rL cos θ + L2 ≡

√
(reiθ − L)(re−iθ − L)

and

(2.7) F(r, θ, L) = arcsin
(

r sin θ
P(r, θ, L)

)
.

Functions P(r, θ, L) and F(r, θ, L) are also useful for analytical continuation
of “real” geometric objects to the complex space. For example, let I(φ; 0, L) and
I(φ;L,∞), where

(2.8) I(φ, a, b) = {r, θ : θ = φ; a < r ≤ b},

be a segment and a half-line which comprise the ray r > 0, θ = φ. Then, applying
the cosine theorem to the triangle �OPQ shown in Figure 2, we conclude that if
Q ∈ (0, L], then |QP | = p− r for all p ≥ L, and therefore I(φ; 0, L) can be described
by the formula

(2.9) (r, θ) ∈ I(φ; 0, L) ⇐⇒
{
P(r, θ − φ, p) = p− r if p = L,

P(r, θ − φ, p) = r − p if p < L,

which provides analytic continuation of the intervals I(φ; 0, L) to a surface in the
complex space formed by the pairs (r, θ).
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3. The problem. Let a plane incident wave arriving from infinity in the domain
G be defined as

(3.1) U∗(r, θ) = e−ikr cos(θ−θ∗).

Then, the problem of diffraction of this wave by the perfectly reflecting polygon Γ can
be formulated as the problem of computation of the total field U which is bounded
in G and satisfies the Helmholtz equation

(3.2) ∇2U + k2U = 0 in G,

complimented by the Dirichlet boundary conditions U |Γ = 0, and by the requirement
that U(r, θ) admit the decomposition

(3.3) U = Ug + Ud

into the predefined piecewise continuous geometric component Ug(r, θ) and the un-
known piecewise continuous scattered field Ud(r, θ), which has the following asymptote

(3.4) Ud(rμ, θμ;μ) =
f(θ)eikrμ√

krμ
+ o(1/

√
krμ), θμ �= φνμ,

everywhere in G, except for a finite number of predefined semiaxes

(3.5) lνμ : rμ ≥ 0, θμ = φνμ,

along which the geometric field Ug(r, θ) has jumps. To keep track of these half-lines
we use a double-index notation lνμ, where the lower index corresponds to the vertex
Oμ from which the ray originates and the upper index enumerates the rays originating
from this vertex.

The geometric field Ug(r, θ) can be explicitly defined by a straightforward ap-
plication of the laws of geometrical optics which, however, are easier to apply than
to formalize. To keep focused on the principal issues we illustrate the structure of
the geometric field for the simple but representative configuration shown in Figure 1.
In this case the incident wave illuminates faces g+

2 = O2O3 and g+
3 = O3O4 of the

polygon, and the waves reflected from these faces do not illuminate any other parts
of the polygon, so that the geometric field Ug(r, θ) admits the decomposition

(3.6) U = Ui + U2
r + U3

r

into the incident wave Ui and the waves U2
r and U3

r reflected by the sides g+
2 and g+

3 ,
respectively. These waves have the following piecewise continuous structure:

(3.7) Ui(r, θ) =

{
e−ikr cos(θ−θ∗) between l12 and l24, counterclockwise,
0 everywhere else,

and

(3.8) Uμr (r, θ) =

{
Ke−ikr cos(θ+θμ

∗ )−ikλμ between l2μ and l1μ+1, counterclockwise,
0 everywhere else,

where μ = 2, 3 are the indices of the sides illuminated by the incident wave,

(3.9) K = −1
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is the reflection coefficient corresponding to the considered Dirichlet boundary con-
ditions, and λμ = r(Oμ) cos[θ(Oμ) − θ∗] is the phase of the incident wave at the
vertex Oμ.

It is easy to see that the geometric field obeys all of the conditions of the problem
of diffraction except that it is not continuous along a finite number of the rays lνμ,
which can be identified by an elementary geometric optical analysis. Accordingly, the
scattered field Ud should admit the decomposition

(3.10) Ud(r, θ) =
N∑
μ=1

Nμ∑
ν=1

Uνμ(r, θ;φνμ),

into the sum of Ñ =
∑
Nμ diffracted fields Uνμ each of which compensates the jump

of the geometric field along one and only one semiaxis lνμ. Next, assuming that every
individual diffracted field is 2π-periodic with respect to the angular coordinate, we
arrive at the decomposition

(3.11) Uνμ(r, θ;φ) = Kν
μe−ikλμ

∞∑
j=−∞

Uμ,φ(r, θ + 2πj),

where Uμ,φ(r, θ) is the solution of the following problem.
PROBLEM-1. Find a bounded solution Uμ,φ(r, θ) of the Helmholtz equation ∇2Uμ,φ

+k2Uμ,φ = 0 which is defined in the domain r > 0, −∞ < θ <∞, obeys the boundary
conditions Uμ,φ|gm = 0 for all integers m, has an asymptote

Uμ,φ(rμ, θμ;μ)e−ikrμ = o(1), rμ → ∞, θμ �= φ,

and satisfies the interface conditions

Uμ,φ(rμ, φ+ 0;μ) − Uμ,φ(rμ, φ− 0;μ) = eikrμ ,
∂Uμ,φ
∂θμ

∣∣∣∣
θm=φ+0

=
∂Uμ,φ
∂θμ

∣∣∣∣
θm=φ−0

,

formulated in the μth coordinate system (rμ, θμ).
As shown above, the formulas (3.10) and (3.11) reduce the problem of diffraction

to the fundamental Problem-1, which is formulated in the domain −∞ < θ <∞ and
has to be solved with several sets of the parameters μ and φ.

4. Radiation into a wedge. Our approach to Problem-1 is based on obtaining
a simple representation of the solution of the following basic problem of wave radiation
into a wedge.

PROBLEM-W. Find a solution U(r, θ) of the Helmholtz equation which is bounded
in a wedge r > 0, α1 < θ < α2, has the asymptote e−ikrU(r, θ) = o(1) as r → ∞, and
satisfies the boundary conditions

(4.1) U(r, α1) = f(r, α1), U(r, α2) = f(r, α2),

where

(4.2) f(r, θ) =

{
f1(r) if θ = α1,

f2(r) if θ = α2,

is a “boundary function” defined only on the faces θ = α1 and θ = α2.
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This problem was studied in detail in [8, 10], but since the results obtained there
are not yet commonly known, we briefly reproduce them here in a form adapted to
our current needs.

It is shown in [5] that if both f1(r)e−ikr and f2(r)e−ikr are analytic and bounded
in the complex r-domain 0 < arg(r) < π/2, then U(r, θ) admits the probabilistic
representation

(4.3) U(r, θ) = eikrE
{
f(ξτ , ητ )eik[S(τ)−ξτ ]

}
, S(τ) =

1
2

∫ τ

0

ξtdt,

where E denotes the mathematical expectation computed over the trajectories of the
radial and angular motions ξt and ηt that are controlled by the stochastic equations

ξ0 = r, dξt = ξtdw1
t + ξt

(
1
2

+ ikξt

)
dt,(4.4)

η0 = θ, dηt = dw2
t ,(4.5)

and stopped at the exit time t = τ defined as the first time when the angular motion
ηt eventually hits one of the faces ηt = α1 or ηt = α2. Obviously, the angular motion
ηt is contained in the segment 0 ≤ ηt ≤ α, while the radial motion ξt at any t > 0 runs
inside the first quarter 0 ≤ arg(ξt) < π/2 drifting to an unreachable point ξ = i/2k.

Although solution (4.3) is very convenient, it is of limited use because it can only
be applied to the cases when the function f(ξ, η) is analytic with respect to the first
argument ξ. However, using (4.3), it is possible derive a representation of the the field
U(r, θ) in much less restrictive form,

(4.6) U(r, θ) = eikrE
{
f(ξ̂τ , ητ )eik[S(ξ̂τ )−ξ̂τ ]

}
, S(τ) =

1
2

∫ τ

0

ξ̂tdt,

where the angular motion ηt runs exactly as in (4.3), while the radial motion ξ̂t for
most of the time runs as the radial motion ξt from (4.3) but at the exit time t = τ

jumps to a certain point ξ̂τ ∈ (0,∞) on the positive semiaxis where the boundary
function f(ξ, η) is defined so that no analytical continuation of f(ξ, η) is required.
More precisely, on the time interval 0 < t < τ the motion ξ̂t is controlled by the
stochastic differential equation

(4.7) ξ̂0 = r, dξ̂t = ξ̂tdw1
t + ξ̂t

(
1
2

+ ikξ̂t

)
dt if 0 ≤ t < τ,

and then suddenly, at the exit time t = τ , it moves to the final position

(4.8) ξ̂τ =

{
inf
{
Z1

+(r, θ) ∪ Z1
−(r, θ)

}
if ητ = α1,

inf
{
Z2

+(r, θ) ∪ Z2
−(r, θ)

}
if ητ = α2,

where Z1
±(r, θ) and Z2

±(r, θ) are the intersections of the trajectories of the auxiliary
motions

(4.9) ζ1
±(t) = ξ̂te±i(ηt−α1) and ζ2

±(t) = ξ̂te±i(α2−ηt)

with the semiaxis ζ > 0. It is clear that the final position ξ̂τ of the motion ξ̂t is
determined by the entire trajectory of both components of the two-dimensional motion
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(ξ̂t, ηt) launched at t = 0 from the point (r, θ) and stopped as soon as the angular
motion ηt reaches at the exit time t = τ either of the endpoints ητ = α1 or ητ = α2.

To make the derivation of (4.6) more transparent we limit ourselves to the case
when α1 = 0, α2 ≡ α ≤ 2π, and consider the problem with the special piecewise
constant boundary function

(4.10) f(r, θ) =

⎧⎪⎨
⎪⎩
a0 if (r, θ) ∈ I(0, 0, L),
a1 if (r, θ) ∈ I(0;L,∞),
a2 ≡ 0 if (r, θ) ∈ I(α; 0,∞),

where aν and L > 0 are given constants. Then, the basic formula (4.3) leads to the
representation

(4.11) U(r, θ) = eikrE
{
aν(τ) exp

(
1
2

∫ τ

0

ikξtdt− ikξτ

)}
,

where the index

(4.12) ν(τ) =

⎧⎪⎨
⎪⎩

0 if ητ = 0, P(ξτ , ητ , p) = p− ξτ ∀p ≥ L,

1 if ητ = 0, P(ξτ , ητ , p) �= p− ξτ ∀p < L,

2 if ητ = α

depends on the entire trajectory of the motion (ξt, ηt) rather than on its final position
(ξτ , ητ ).

To compute ν(τ) by the formula (4.12) it is necessary to trace the value of the
radical

(4.13) P(ξt, ηt, p) =
√

(ξteiηt − p)(ξte−iηt − p)

along the trajectory of the motion Pt = (ξt, ηt). To proceed we represent this function
as a product

(4.14) P(ξt, ηt, p) = Ξp(ζ+(t)) Ξp(ζ−(t)), ζ±(t) = ξte±iηt ,

where Ξp(ζ) =
√
ζ − p is the radical with the branch fixed by a slit along the half-line

ζ > p.
Let C

+
p and C

−
p be the two sheets of the Riemann surface of the radical Ξp(ζ), so

that

(4.15) Ξp(ζ) = ±
√
|ζ − p|ei Arg(ζ−p)/2, ζ ∈ C

±
p .

Since P(r, θ, p) is the distance between the observation point (r, θ) and the point (p, 0)
on the main axis, we need to select the branches of the radical in such a way as to
have P(r, θ, p) ≥ 0. To guarantee this inequality the initial points ζ±(0) = re±iθ must
be located on different sheets C±

p . For definiteness we assume that

(4.16) ζ+(0) = reiθ ∈ C
+
p , ζ−(0) = re−iθ ∈ C

−
p ,

which implies the identities

(4.17) Ξp(ζ±(0)) =
√
|re±iθ − p| exp

[
i
2

Arg(re±iθ − p)
]
,

leading to the required inequality P(r, θ, p) ≥ 0.
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To compute Ξ(ζ+(τ)) we need to trace the trajectory of the point ζ+(t) = ξteiηt ,
which starts from ζ+(0) = reiθ ∈ C+

p and stops at the point ζ+
τ = ξτ in the first

quarter 0 < arg(ζ−τ ) < π/2. The restraints 0 ≤ arg(ξt) < π/2 and ηt > 0 imply that
ζ−(t) never crosses the ray arg(ζ) = 0 but may cross any of the rays arg(ζ) = 2πn
with n > 1 an even number of times, so that the total number of intersections of the
trajectory of ζt with the half-line ζ > 0 is even, as illustrated in Figure 3.

�

�

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦0

ζ+(0) = reiθζ+(τ) = ξτ

L

C+
p

p2

p3p1

p4p5

p6 p

Re(ζ)

Im(ζ)
Branch cut [p,∞)

�

Z+ = {p1, p2, . . . , p6}, inf(Z+) = p6 < L

Fig. 3. Trajectory of ζ+(t) = ξteiηt on the sheet C
+
p .

Let Z+ be the set of all points where the trajectory of ζ+(t) intersects the ray
ζ > 0. Then, adopting the notation N(Z > p) for the number of points of the set Z
located to the right of p, we conclude that the radical Ξp(ζ+(τ)) has the value

(4.18) Ξp(ζ+(τ)) =

{ √
|ξτ − p| ei Arg(ξτ−p)/2 if N(Z+ > p) is even,

−
√
|ξτ − p| ei Arg(ξτ−p)/2 if N(Z+ > p) is odd,

which is completely determined by the disposition of the parameter p with respect
to the set Z+ and does not depend on other details of the trajectory of ζ+(t). It is
interesting to note that if α < 3π/2, then the set Z+ is empty, and therefore the
second option in (4.18) never occurs.

To compute Ξp(ζ−(t)) we need to trace the trajectory of the point ζ−(t) = ξte−iηt ,
which starts from ζ−(0) = re−iθ ∈ C−

p and stops at the point ζ−τ = ξτ in the first
quarter 0 < arg(ζ) < π/2. The restraints 0 ≤ arg(ξt) < π/2 and ηt > 0 imply that
ζ−(t) crosses the half-line ζ > 0 an odd number of times, as illustrated in Figure 4.
Therefore, assuming that Z− is the set of all points where ζ−(t) intersects this ray
ζ > 0, we conclude that the value of Ξp(ζ−(τ)) is determined by the formula

(4.19) Ξp(ζ−(τ)) =

{
−
√
|ξτ − p| ei Arg(ξτ−p)/2 if N(Z− > p) is even,√
|ξτ − p| ei Arg(ξτ−p)/2 if N(Z− > p) is odd,

which is similar to (4.18).
Finally, combining (4.13) with (4.18) and (4.19), we see that

(4.20) P(ξτ , ητ , p) =

{
ξτ − p if ητ = 0, N(Z− ∪ Z+ > p) is even,
p− ξτ if ητ = 0, N(Z− ∪ Z+ > p) is odd,
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Fig. 4. Trajectory of ζ−(t) = ξte−iηt on the sheet C
−
p .

and, combining (4.20) with (2.9), we arrive at the remarkable formula

(4.21) ν(τ) =

⎧⎪⎨
⎪⎩

0 if ητ = 0, inf{Z+ ∪ Z−} ≥ L,

1 if ητ = 0, inf{Z+ ∪ Z−} < L,

2 if ητ = α,

which makes it possible to evaluate (4.11) by tracing the intersections of the trajec-
tories of ζ±(t) = ξte±iηt with the positive semiaxis, but without tracing the radical
(4.13).

Formulas (4.3) and (4.11) represent the field U(r, θ) in the special cases when the
boundary function f(r, θ) is either analytic in the first quarter or a piecewise constant
on θ = 0 with only one jump. To obtain the representation of U(r, θ) corresponding
to an arbitrary boundary function f(r, θ), we first assume that f(r, θ) has a piecewise
constant structure

(4.22) f(r, θ) =

{
an if θ = 0, r ∈ In = (Ln, Ln+1], n ≥ 0,
0 if θ = α,

where {Ln} is an increasing sequence with the first element L0 = 0 and an are some
constants.

To employ the technique from the previous subsection we observe that the interval
In admits the representation In = I(0; 0, Ln+1)\I(0; 0, Ln), where I(φ; a, b) is the
domain in the space (r, θ) defined by (2.9). Then Problem-W can be considered in the
domain bounded by the junction

⋃
In, and its solution (4.6) takes the form

(4.23) U(r, θ) = eikrE
{
f(Lν(τ)+1, ητ ) exp

(
1
2

∫ τ

0

ikξtdt− ikξτ

)}
,

where the mathematical expectation is computed over the trajectories of the stochastic
processes ξt and ηt, which are described by (4.4), (4.5) and are stopped at the exit
time τ defined as the first time when ηt = 0 or ηt = α. It is easy to see that if ητ = 0,
then the exit point Pτ = (ξτ , ητ ) belongs to the interval Iν(τ) with the index

ν(τ) = n if Ln < inf{Z+ ∪ Z−} ≤ Ln+1,(4.24)
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where Z± are the intersections of the trajectories of ζ±t = ξteiηt with the ray ζ > 0.
Comparison of the last formula with (4.22) shows that if ξ̂τ = inf{Z+ ∪ Z−} belongs
to the interval In, then ντ = n and f(ξ̂τ , 0) = aν(τ). As a result, the solution (4.23)
can be converted to the form (4.6), which does not rely on the piecewise structure
of f(r, 0), and which, therefore, can be straightforwardly extended to the case when
f(r, 0) has a virtually arbitrary structure, particularly to the cases when it is not
analytic at all or when it is analytic but grows excessively fast in the first quarter of
the complex plane, where the radial motion ξt runs.

It is worth noticing that although formulas (4.3) and (4.6) look similar, there
is a significant difference between them. Thus, in (4.3) the exit position ξτ of the
radial motion is always complex, while in (4.6) the exit value ξ̂τ is real, which is very
important for our purposes.

In the above we considered only the case when the boundary values vanish on the
face θ = α, but the case with nonzero boundary values on θ = α can be considered
similarly.

5. Radiation to the exterior of a convex polygon. The solution of the
boundary value problem for the Helmholtz equation in a wedge makes it possible to
solve a similar problem of radiation to the exterior of a convex polygon.

PROBLEM-C. Find the solution U(r, θ) of the Helmholtz equation ∇2U + k2U = 0
which is bounded in the exterior of the convex polygon Γ with sides g+

n , has the asymp-
tote

U(r, θ) = u(θ)
eikr

√
kr

+ o

(
1√
kr

)
, r → ∞,

and obeys the boundary condition U |∂Γ = f , where f(r, θ) = f(rn, θn;n) is a function
defined only on the sides g+

n of Γ.
To compute the solution of this problem at an observation point (r, θ) we select

an exterior wedge Oμ which contains (r, θ). The boundary of this wedge consists of
two sides g+

μ−1 ≡ g−μ and g−μ+1 ≡ g+
μ of the polygon Γ, which are described by the

equations

(5.1) g−μ = {θμ = 0, rμ < L−
μ }, g+

μ = {θμ = αμ, rμ < L+
μ },

and of two half-lines a−μ and b+
μ , which are described by the equations

(5.2) a−μ = {θμ = 0, rμ > L−
μ }, a+

μ = {θμ = α, rμ > L+
μ },

and are shown in Figure 5 by dashed lines.
On the sides described in (5.1) the values of the field U(rμ, θμ;μ) are preassigned

by the boundary conditions, but on the half-lines (5.2) this field may not be known
until the problem is solved. However, we assume that the values of U(rμ, θμ;μ) on
the half-lines a−μ and a+

μ are already known, and, using this information, we calculate
U(rμ, θμ;μ) inside Oμ by the formula (4.6), which can be rearranged to the form

U(rμ, θμ;μ) = eikrμE
{
χ(τ, t1)f(ξ̂τ , ητ ;μ)eik[S(τ)−ξ̂τ ]

+χ∗(τ, t1)U(ξ̂t1 , ηt1 ;μ)eik[S(t1)−ξ̂t1 ]
}
, S(t) =

1
2

∫ t

0

ξ̂tdt,(5.3)
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Fig. 5. Geometry of a convex polygon.

where

(5.4) χ(a, b) =

{
1 if a ≥ b,

0 if a < b,
χ∗(a, b) =

{
0 if a ≥ b,

1 if a < b,

and Pt = (ξ̂t, ηt) is a random motion which starts from the point (rμ, θμ) and runs
inside Oμ controlled by (4.5) and (4.7)–(4.9) until the earlier of the times t = τ or
t = t1, when it hits either the “real” boundary g−μ ∪ g+

μ or the “auxiliary” boundary
a−μ ∪ a+

μ , respectively.
Expression (5.3) cannot be accepted as a solution of the problem because its

right-hand side involves yet unknown values U(ξ̂t1 , ηt1 ;μ) of the field U(r, θ) on the
half-lines a±μ . However, these values can be computed by analogues of the formula
(5.3) applied to the neighboring wedges Oμ−1 and Oμ+1, the first of which contains
a−μ while the latter contains a+

μ . To perform such evaluations we observe that the
half-lines a−μ and a+

μ are characterized by the equations

a−μ : rμ = rμ−1 + L−
μ , θμ = θμ−1 − π + α−

μ ,(5.5)

a+
μ : rμ = rμ+1 + L+

μ , θμ = θμ+1 + π − α+
μ ,(5.6)

which show that the ray a−μ is a good place for switching from the coordinates (rμ, θμ)
to the coordinates (rμ−1, θμ−1), and a+

μ is good place for switching from (rμ, θμ) to
(rμ+1, θμ+1). Then, applying (5.5) and (5.6), we obtain the identities

(5.7) U(ξ̂t1 , ηt1 ;μ) = U(ξ̂t1 − L±
μ , ηt1 ± [π − α±

μ ]; μ± 1),

with right-hand sides that can be computed by the formula (5.3) adapted to the
wedges Oμ−1 and Oμ+1. For example, the right-hand part of (5.7), determined by the
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choice “−,” can be represented as the mathematical expectation

(5.8) U(ξ̂t1 − L−
μ , ηt1 + α−

μ − π; μ− 1)

= eik[ξ̂t1−L
−
μ ]E

{
χ(τ, t2)f(ξ̂τ , ητ ;μ− 1)eik[S(ξ̂τ )−ξ̂τ ]

+χ∗(τ, t2)U(ξ̂t2 , ηt2 ;μ− 1)eik[S(ξ̂t2 )−ξ̂t2 ]
}

computed over the trajectories of the stochastic process Pt = (ξ̂t, ηt), which is launched
at the time t = t1 + 0 from the initial position

(5.9) ξ̂t1+0 = ξ̂t1 − L−
μ , ηt1+0 = ηt1 + α−

μ − π

and runs in the wedge Oμ−1 until the earlier of the exit times t = τ or t = t2, when
it hits one of the sides g±μ−1 of the polygon or their continuations a±μ−1.

It is obvious that the value of U(ξt2 , ηt2 ;μ−1) that appears in the right-hand side
of (5.8) can be evaluated by a formula similar to that in (5.8). Then, the recursion
can be repeated infinitely many times, which eventually results in the expression

(5.10) U(r, θ;μ) = eikrμE
{
f(ξ̂τ , ητ ;nτ )eik[S(τ)−ξ̂τ ]

}
, S(τ) =

1
2

∫ τ

0

ξ̂tdt− Λτ ,

where the mathematical expectation is computed over trajectories of the stochastic
processes nt, Pt = (ξ̂t, ηt), and Λt, which evolve as described below.

The process nt indicates the index of the currently used coordinate system. It
takes integer values which change only at the times t = t1, t2, . . . , when Pt reaches
one of the rays a±n . More precisely, the evolution of nt is described by the rules

(5.11) n0 = μ, nt+dt =

{
nt ± 1 if Pt ∈ a±nt

,

nt otherwise,

where the initial index μ is not rigidly fixed but must be selected according to the
condition that the observation point (r, θ) is located inside the wedge Oμ.

The process nt is closely related to another piecewise process Λt described by the
equations

(5.12) Λ0 = 0, dΛt ≡ Λt+dt − Λt =

{
L±
nt

if Pt ∈ a±nt
,

0 otherwise,

which show that every time t = tν when the coordinate system is changed, Λt takes
an increment equal to the distance between the centers of the old and new coordinate
systems.

The changes of the coordinate systems at the times t = t1, t = t2, . . . , affect both
of the components of the motion Pt = (ξ̂t, ηt), where ηt is controlled by the stochastic
equations

(5.13) η0 = θ, ηt+dt = ηt + dw2
t +

⎧⎪⎨
⎪⎩
αnt−1 − π if Pt ∈ a−nt

,

π − αnt if Pt ∈ a+
nt
,

0 otherwise,

which describe a standard Brownian motion w2
t modified by certain jumps at the

times t = tν . The radial motion ξ̂t has a more complicated structure. In the intervals
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t ∈ [tν , tν+1) between changes of the coordinate systems ξ̂t is a continuous motion
governed by the equations

(5.14) ξ̂0 = r, ξ̂t+dt = ξ̂t + ξ̂tdw1
t + ξ̂t

(
1
2

+ ikξ̂t

)
dt, t ≤ tν < tν+1,

where w1
t is the standard Brownian motion. Then, at the time t = tν+1 the point ξ̂t

jumps to the position

(5.15) ξ̂tν+1 = −dΛtν+1 +

{
inf
[
Z1

+(ξ̂tν , ηtν ) ∪ Z1
−(ξ̂tν , ηtν )

]
if ηt = 0,

inf
[
Z2

+(ξ̂tν , ηtν ) ∪ Z2
−(ξ̂tν , ηtν )

]
if ηt = αnt−0 ,

where dΛtν+1 is defined by (5.12), while Z1(ξ̂tν , ηtν ) and Z2(ξ̂tν , ηtν ) are the sets of
intersections of the trajectories of the motions

(5.16) ζ1
±(t) = ξ̂t exp[−iηt] and ζ2

±(t) = ξ̂t exp[−i(αnt − ηt)] tν < t < tν+1,

with the semiaxis Im(ζ) = 0, Re(ζ) > 0.
It is important to note that the obtained solution remains valid in the case of

an “infinite-sided” polygon Γ with the vertices On defined by the recursive process
which starts from two initial vertices O0, O1 and continues in both directions n > 1
and n < 0 making steps

(5.17) On+1 = {rn = L+
n , θn = αn}, On−1 = {rn = L+

n−1, θn = αn−1},

determined by the sequences {αν} and {L+
ν }, where Lν > 0, αν > π, and

∑
(αν−π) =

∞. Assume first that there exists N > 1 for which
∑N−1

ν=0 (αν−π) = 2π and the bound-
ary function f(r, θ; ν) satisfies the periodicity condition f(r, θ; ν) = f(r, θ; ν +N). In
this case the vertices Oν with 0 ≤ ν < N − 1 form an N -sided convex polygon, and
formulas (5.10)–(5.16) determine the field radiated into the exterior of this polygon.
In the other case, when either of the mentioned conditions is not met, these formulas
determine a field radiated to the spiral-like surface bounded by Γ.

6. Radiation to the exterior of a nonconvex polygon. In section 5 the
problem of radiation to the exterior of a convex polygon was reduced to the problem
of radiation into a wedge. Here a similar idea is employed to obtain the solution of the
problem of radiation into the exterior of a nonconvex polygon by recursive applications
of already known solutions of the problems of radiation from a convex polygon and
from a wedge.

Let Γ be a “single-cavity” nonconvex polygon with the vertices O0, . . . , ON−2,

ON−1, located in such a way that the first Ñ ≡ (N−1) vertices form a convex polygon
Γ̃. This configuration is illustrated in Figure 6, which shows a nonconvex polygon Γ
obtained by the addition of a vertex O5 to the convex pentagon from Figure 5. To
keep the notation consistent with the previous sections we reserve the symbols g±n
and a±n for the sides OnOn±1 of the polygon Γ and for their continuations beyond the
vertices On±1. Similarly, symbols g̃±n and ã±n denote the sides and their continuations
of the convex polygon Γ̃. This notation is used in Figure 6, which, however, does not
show Γ̃-related symbols whenever a similar Γ-related notation can be used.

Looking back at the previous section, we see that the employed technique is built
around the ability to represent the exterior G of the convex polygon Γ as a junction
G =

⋃
On of overlapping wedges On defined as the exterior wedges of the polygon Γ.
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Fig. 6. Geometry of a nonconvex polygon.

This representation is also used here for the analysis of radiation from the nonconvex
polygon, but this time we say that On is the maximal wedge which fits into the
exterior of the polygon Γ and has a tip at the vertex On of Γ.

Obviously, in the case when Γ is convex, all of the newly defined wedges On

coincide with the corresponding exterior wedges of Γ, but in the case when Γ is
nonconvex, this coincidence is no longer necessary. For example, in the configuration
shown in Figure 6, the wedges O0 and O4 are smaller than the exterior wedges at the
vertices O0 and O4.

To compute the field U(r, θ) that satisfies the Helmholtz equation in the exterior of
Γ and has preassigned values on Γ we first assume that the values of U(r, θ) are already
known on the segment O0ON−2, which can be considered as a side g̃−0 of the convex
polygon Γ̃. Then, applying formula (5.10), we find that if (r, θ) is located outside Γ̃,
then the value of U(r, θ) can be represented as the mathematical expectation

U(r, θ;μ) = eikrμE
{
χ(τ, t1)f(ξ̂τ , ητ ;nτ )eik[S(τ)−ξ̂τ ]

+χ∗(τ, t1)U(ξ̂t1 , ηt1 ;nt1)e
ik[S(t1)−ξ̂t1 ]

}
,(6.1)

where the averaging is extended over the stochastic processes Pt = (ξ̂t, ηt), Λt, and
nt, which are controlled by the formulas (5.11)–(5.12) adapted to the polygon Γ̃ and
are stopped at the earlier of the exit times t = τ or t = t1 defined, respectively, as the
first times when Pt hits a side of the original polygon Γ or the side g−0 = O0ON−2 of
the auxiliary convex polygon Γ̃.

The definition of the auxiliary exit time t1 implies that Pt1 belongs to the segment
O0ON−2 which is located inside the wedge ON−1 bounded by the half-lines a±N−1 and
by the sides g±N−1 of the polygon Γ, where the values of U(r, θ) are assigned by the
boundary conditions. This observation makes it possible to use the identities (2.4)–
(2.5) and represent the unknown quantity U(ξ̂t1 , ηt1 ;nt1) from the right-hand side of
(6.1) as

(6.2) U(ξ̂t1 , ηt1 ;nt1) = U(rN−2, θN−2;N − 2),
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where rN−2 and θN−2 are the (N − 2)th coordinates computed by the formulas

(6.3) rN−2 =

{
P(ξ̂t1 , ηt1 , L

−
0 ) if nt1−0 = j(N − 1),

P(ξ̂t1 , αN−2 − ηt1 , L
−
0 ) if nt1−0 = j(N − 1) − 1,

and

(6.4) θN−2 =

{
αN−1 −F(ξ̂t1 , ηt1 , L

−
0 ) if nt1−0 = j(N − 1) + 1,

F(ξ̂t1 , αN−2 − ηt1 , L
−
0 ) if nt1−0 = j(N − 1) − 1,

where j is an arbitrary integer. Then, evaluating the right-hand side of (6.2) by the
formula (5.3) adjusted to the wedge ON−1, we get a representation of U(ξ̂t1 , ηt1 ;nt1)
through yet unknown values of the field U(r, θ) on the half-lines a±N−1. Next, observing
that both a±N−1 are located in the exterior of the convex polygon Γ̃, we evaluate the
new unknown quantities by another application of (6.1), and continuing recursively,
we eventually come to the representation of U(r, θ) by the formulas

(6.5) U(r, θ;μ) = eikrμE
{
f(ξ̂τ , ητ ;nτ )eik[S(τ)−ξ̂τ ]

}
, S(t) =

1
2

∫ τ

0

ξ̂tdt− Λt,

where the stochastic processes nt, ξ̂t, ηt, and Λt are defined by the transparent rules
which are easier to understand than to formulate.

These processes start at the time t = 0 from initial positions defined by the
formulas

(6.6) ξ̂0 = r, η0 = θ, Λ0 = 0, n0 = μ,

where, as in (5.11), the initial value n0 = μ is not fixed but must be selected from the
condition that (r, θ) ∈ Oμ. The further evolution of these processes is determined by
their current position, which may be classified into the following distinct cases:

Case A−: Pt ∈ ã−nt
, nt = jN,

Case A+: Pt ∈ ã+
nt
, nt = jN − 2,

Case B−: Pt ∈ g̃−nt
, nt = jN,

Case B+: Pt ∈ g̃+
nt
, nt = jN − 2,

Case C±: Pt ∈ a±nt
,

where j may have any integer value. Then the processes nt, Λt, and ηt are described
by the following complicated but transparent rules:

nt+dt − nt =

⎧⎨
⎩

±2 in Cases A±,
±1 in Cases B±, C±,

0 otherwise,
(6.7)

Λt+dt − Λt =

⎧⎪⎪⎨
⎪⎪⎩

|O0ON−2| in Cases A±,
ρ± in Cases B±,
L±
nt

in Cases C±,
0 otherwise,

(6.8)

and

(6.9) ηt+dt − ηt = dw2
t +

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α̃nt−2 − π in Case A−,
π − α̃nt in Case A+,
ϑ± in Cases B±,
αnt−1 − π in Case C−,
π − αnt in Case C+,
0 otherwise,
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where

ϑ− = αN−1 −F(ξ̂t, ηt, |O0ON−2|), ϑ+ = F(ξ̂t, αN−1 − ηt, |O0ON−2|),(6.10)

ρ− = P(ξ̂t, ηt, |O0ON−2|), ρ+ = P(ξ̂t, αN−1 − ηt, |O0ON−2|).(6.11)

As for the radial motion ξ̂t, it is described by the same equations (5.14)–(5.16) as in
the case of the convex polygon, but the term Λt involved there must get values from
(6.8).

7. Solution of Problem-1. Results of the previous sections open the way to
the solution of the fundamental Problem-1 identified in the end of section 3 as the
principal part of the problem of diffraction by a polygon Γ.

Following the order established in the previous sections, we first consider the case
when Γ is treated as a polygon with two infinite sides. More precisely, we start from
the slightly more general problem formulated below, which includes nonvanishing
boundary conditions on the faces of the wedge.

PROBLEM-1w. Find a solution Uφ(r, θ) of the Helmholtz equation that is bounded
in a wedge O : α1 < θ < α2, has the boundary values U(r, αn) = f(r, αn) and the
asymptote e−ikrUφ(r, θ) = o(1) as r → ∞, θ �= φ, and satisfies the interface conditions

(7.1) Uφ(r, φ+ 0) − Uφ(r, φ− 0) = eikr,
∂Uφ(r, φ+ 0)

∂θ
=
∂Uφ(r, φ− 0)

∂θ
,

imposed on the ray θ = φ.
It is shown in [10] that to obtain the solution of this problem it suffices to split the

wedge O into two smaller wedges O− and O+ defined by the inequalities α1 < θ < φ
and φ < θ < α2, respectively. Indeed, assuming that Uφ(r, θ) is known on both sides
of the ray θ = φ, we represent Uφ(r, θ) in each of these wedges by formulas of the
type (4.6). Then, matching these representations in order to enforce the interface
conditions (7.1), we eventually arrive at the solution of the Problem-1w in the form
(7.2)

Uφ(r, θ) = eikrE

{
f(ξ̂τ , ητ )eik[S(τ)−ξ̂τ ] +

tν<τ∑
ν=1

δ(tν , φ)eikS(tν )

}
, S(t) =

1
2

∫ t

0

ξ̂tdt,

where ξ̂t and ηt retain their meanings from (4.6); τ is the exit time defined as the first
time when ηt = α1 or ηt = α2; the factor δ(t, φ) is determined by the rule

(7.3) δ(t, φ) =

⎧⎪⎨
⎪⎩

1 if ϑt−0 > φ, ϑt+0 < φ,

−1 if ϑt−0 < φ, ϑt+0 > φ,

0 otherwise;

and {tn}, where n ≥ 1, is a sequence of times when the angular motion ηt, running
inside the interval [α1, α2], touches the fixed point η = φ.

With the solution of the auxiliary Problem-1w in hand we can now obtain the
solution Uμ,φ of Problem-1 for a nonconvex polygon Γ. Thus, assuming that this
solution is already known on the entire faces of the wedge Oμ, we can apply formula
(7.2) and conclude that for any (r, θ) ∈ Oμ the value of Uμ,φ(rμ, θμ;μ) can be evaluated
as
(7.4)

Uμ,φ(rμ, θμ;μ) = eikrμE

{
tν<τ∑
ν=1

δ(tν , φ)eikS(tν) + χ(ξ̂τ , ητ )Uμ,φ(ξ̂τ , ητ ;μ)eikS(τ)

}
,
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where

(7.5) χ(ξ̂, η) =

{
0 if (ξ̂, η) ∈ Γ,
1 otherwise.

The right-hand side of (7.4) contains yet unknown values of the field Uμ,φ(rμ, θμ;μ)
at the points (ξ̂τ , ητ ) which belong to the boundary of the wedge Oμ but do not
belong to the polygon Γ. These points, however, are located inside one of the wedges
Oμ±1, and therefore the field there can be computed by the formula (6.5) applied to
the appropriate wedge Oμ±1. Continuing the iterations, we eventually arrive at the
expression

(7.6) Uμ,φ(r, θ) = eikrμ̄E

{ ∞∑
ν=1

δ(tν , φ;μ)eikS(tν)

}
, S(t) =

1
2

∫ t

0

ξ̂tdt− Λt,

which is similar to (6.5)–(6.11) with the few exceptions described below.
Thus the mathematical expectation in (7.4) is computed over the stochastic pro-

cesses nt, ξ̂t, ηt, and Λt, which retain their meanings from (6.5)–(6.11), except that
the integer-valued process nt starts from the position (see Figure 7)

(7.7) n0 = μ̄ =

⎧⎪⎨
⎪⎩
μ if 0 ≤ θμ ≤ αμ,

min{m : P ∈ Om} if θμ > αμ,

max{m : P ∈ Om} if θμ < 0,

which is the closest to the μ index of the wedge Oμ̄ containing the observation point
P = (r, θ).

O2

O3O4

O5

O0
O1

θ2 = φ

······
······

······
·····

················ ·······························

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · ·
· · · · · ·

· · · · ·

μ̄ = 2μ̄ = 3

μ̄ = 4 μ̄ = 5

μ̄ = 6

μ̄ = 7

Fig. 7. Selectionof μ̄ for θμ > φ.

Another feature of (7.4) which does not appear in (6.5) is the presence of the
factor δ(t, φ) determined by the rule

(7.8) δ(t, φ;μ) =

⎧⎪⎨
⎪⎩

1 if φ < ητν−0, ητν+0 < φ, nt = μ,

−1 if φ > ητν−0, ητν+0 > φ, nt = μ,

0 otherwise,
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Fixed vertices: O0 = (−3.5,−1.5), O1 = (0, 0), O2 = (−3.5, 1.5), O3 =(−9, 1.5) O4 =(−6, 0)
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Fig. 8. Samples of nonconvex polygons.
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Fig. 9. The total and geometric fields around the polygons from Figure 8. The wave fields were
computed along circles of radius R = 9 with centers at the point C = (−4.5, 0) in the middle of
the polygons. In all of the diagrams the light dashed lines correspond to the geometric fields which
comprise the incident and reflected plane waves, and the bold lines correspond to the total wave
fields, which include the diffracted fields. The solid bold lines correspond to Case 1, the dash-dotted
bold lines correspond to Case 2, and dashed bold lines correspond to Case 3.

where ν enumerates the times t = τν when nt = μ and the motion ηt touches the
point η = φ.

We don’t provide here an extended derivation of (7.4)–(7.8) because it goes along
the same lines as that discussed in section 6, and also because very similar formulas
have actually been discussed in detail in the paper [8], devoted to diffraction by a
convex polygon. The only difference between the solutions of Problem-1 obtained in
that paper and here is that in [8] the analysis is based on the representation of the
wave field in a wedge by the formulas (4.3)–(4.5), while the solution (7.4)–(7.8) is
based on the more versatile formulas (4.6)–(4.9).

8. Example. To verify the feasibility of the obtained solution of the problem
of diffraction by a nonconvex polygon, we conducted numerical simulations of the
wave fields generated by an incident plane wave U∗ = e−ir cos(θ−θ∗), with θ∗ = 60◦,
from three short polygons shown in Figure 8. The vertices are located by standard
Cartesian coordinates with the origin at O1.

Figure 9 shows the magnitudes and the phases of the total and the geometric
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Fig. 10. Zoomed view on magnitudes of the total fields from Figure 9.

fields generated due to the scattering by the pentagons shown in Figure 8.
All of the numerical results were obtained by the approximation of the math-

ematical expectation (7.6) by the average of 1500 sample values of the functional
depending on two standard one-dimensional Brownian motions w1

t and w2
t . These

Brownian motions are simulated by simple discreet random walks with jumps of dis-
tance Δw = ±

√
Δt following each other with the time increment Δt = 0.01. The

standard deviation of the samples did not exceed the level D = 0.5, which suggests
good convergence and stability of the solution. All computations were carried out us-
ing a MATLAB code of about 100 lines with no attempts at optimization. The code
was run on a 900MHz notebook PC, and it required only a few seconds to calculate
the results at each observation point.

The diagrams in Figure 9 clearly demonstrate the expected behavior of the sim-
ulated wave fields generated by the interaction of an incident plane wave with the
polygon. Thus, in the absence of the scatter, the total wave field along the circles
would have a unit magnitude and sinusoidal phase. In the presence of any of the
scatterers from Figure 8, the laws of geometric optics predict a shadow zone around
the ray θ = 235◦, and two zones illuminated by the waves reflected from the sides
O1O2 and O2O3. It is also expected that the difference in the total fields should be
most noticeable in the shadow zone where the magnitude of the total field should
be highest in Case 2, medium in Case 1, and minimal in Case 3. These physically
justified predictions are soundly confirmed by the presented graphs, which show that
the total field in Case 3 almost vanishes around the ray θ ≈ 225◦ located close to the
vertex O5 of the grounded polygon. At the same time the magnitude of the total field
in Case 1 has a little variation in the domain between the rays θ = 220◦ and θ = 240◦,
which is located on the approximately constant distance from the grounded polygon.
These peculiarities of the wave fields are best seen in Figure 10, which reproduces in
a larger scale the magnitudes of the total fields shown in Figure 9.

9. Conclusion. The probabilistic approach to wave propagation and diffraction
made it possible to solve the problem of diffraction by a nonconvex polygon and,
therefore, to expand the list of difficult problems of diffraction solved by this method.

In the past, the probabilistic random walk method led to explicit solutions of a
number of nontrivial problems of diffraction, including the scalar problem of diffrac-
tion by a plane angular sector [6], the vector problem of diffraction of the electro-
magnetic wave by a wedge with anisotropic impedance faces [9], as well as prob-
lems of diffraction by a wedge with faces of variable impedance and by an arbitrary
convex polygon. Although all of these problems are notoriously difficult for analysis
by conventional methods, the obtained probabilistic solutions appear to be simple,
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transparent, compatible with intuitive ideas about diffraction, and easy for numeri-
cal implementation. The advantages of the random walk approach become even more
apparent when it is applied to problems with several diffraction points. Thus, in [7, 8]
we solved the problems of wave scattering in a half-plane with a piecewise constant
impedance boundary condition, the problem of diffraction by a finite line segment
with different impedance sides, and the problem of diffraction by an arbitrary convex
polygon. Here we have taken the next step and extended the method to problems
of diffraction by a nonconvex polygon. To make the presentation more transparent
we limited ourselves to a perfectly reflecting nonconvex polygon of a specific shape,
but, as shown in [10], the further extensions of the method to domains of virtually
arbitrary shape with virtually arbitrary first-order impedance boundary conditions
requires only routine modifications of the general method.

We hope that the presented results will stimulate further applications of the
probabilistic methods and will extend the understanding of wave propagation and
diffraction.

REFERENCES

[1] J. M. L. Bernard, Scattering by a three-part impedance plane: A new spectral approach, Quart.
J. Mech. Appl. Math., 58 (2005), pp. 383–418.

[2] J. M. L. Bernard, A spectral approach for scattering by impedance polygons, Quart. J. Mech.
Appl. Math., 59 (2006), pp. 517–550.

[3] V. A. Borovikov, Diffraction by Polygons and Polyhedra, Nauka, Moscow, 1966 (in Russian).
[4] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, eds., Electromagnetic and Acoustic

Scattering by Simple Shapes, Hemisphere Publishing Corporation, New York, 1969.
[5] B. V. Budaev and D. B. Bogy, Random walk approach to wave propagation in wedges and

cones, J. Acoust. Soc. Amer., 114 (2003), pp. 1733–1741.
[6] B. V. Budaev and D. B. Bogy, Diffraction by a plane sector, Proc. Roy. Soc. A, 460 (2004),

pp. 3529–3546.
[7] B. V. Budaev and D. B. Bogy, Two-dimensional problems of diffraction by finite collinear

structures, J. Acoust. Soc. Amer., 119 (2005), pp. 741–750.
[8] B. V. Budaev and D. B. Bogy, Diffraction by a convex polygon with side-wise constant

impedance, Wave Motion, 43 (2006), pp. 631–645.
[9] B. V. Budaev and D. B. Bogy, Diffraction of a plane electromagnetic wave by a wedge with

anisotropic impedance faces, IEEE Trans. Antennas Propagation, 54 (2006), pp. 1559–1567.
[10] B. V. Budaev and D. B. Bogy, Novel solutions of the Helmholtz equation and their application

to diffraction, Proc. Roy. Soc. A, 463 (2007), pp. 1005–1027.
[11] E. B. Dynkin, Markov Processes, Grundlehren Math. Wiss. Einzeld. 121–122, Springer-Verlag,

Berlin, 1965.
[12] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice–Hall Micro-

waves and Fields Series, Prentice–Hall, Englewood Cliffs, NJ, 1972.
[13] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. Math. Stud. 109,

Princeton University Press, Princeton, NJ, 1985.
[14] M. Idemen and A. Alkumru, On a class of functional equations of the Wiener-Hopf type

and their applications in n-part scattering problems, IMA J. Appl. Math., 68 (2003), pp.
563–586.

[15] J. B. Keller, A geometric theory of diffraction, in Calculus of Variations and Its Applications,
McGraw–Hill, New York, 1958, pp. 27–52.

[16] J. B. Keller, Diffraction by polygonal cylinders, in Electromagnetic Waves, University of
Wisconsin Press, Madison, WI, 1962, pp. 129–137.



SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 69, No. 2, pp. 419–452

MUTUALLY EXCLUSIVE SPIKY PATTERN AND SEGMENTATION
MODELED BY THE FIVE-COMPONENT MEINHARDT–GIERER

SYSTEM∗
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Abstract. We consider the five-component Meinhardt–Gierer model for mutually exclusive pat-
terns and segmentation, which was proposed in [H. Meinhardt and A. Gierer, J. Theoret. Biol., 85
(1980), pp. 429–450]. We prove rigorous results on the existence and stability of mutually exclu-
sive spikes which are located in different positions for the two activators. Sufficient conditions for
existence and stability are derived, which depend in particular on the relative size of the various
diffusion constants. Our main analytical methods are the Liapunov–Schmidt reduction and nonlocal
eigenvalue problems. The analytical results are confirmed by numerical simulations.
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1. Introduction. We analyze the five-component Meinhardt–Gierer system
whose components are two activators and one inhibitor as well as two lateral acti-
vators. It has been introduced and very successfully used in various modeling aspects
by Meinhardt and Gierer [11]. In particular, it can explain the phenomenon of mutual
exclusion and can handle segmentation in the simplest case of two different segments.
This model has been reviewed and its many implications discussed in detail by Mein-
hardt in Chapter 12 of [10].

The most important features of this system can be highlighted as lateral activation
of mutually exclusive states. To each of the local activators a lateral activator is asso-
ciated in a spatially nonlocal and time-delayed way. The consequence of the presence
of the two lateral activators in the system is the possibility of having stable patterns
which for the two activators are mutually exclusive; in other words, the patterns for
the two activators are located in different positions. It is clear that mutually exclusive
patterns are not possible for a three-component system with only two activators and
one inhibitor since mutually exclusive patterns for the two activators could destabilize
each other in various ways. Therefore the lateral activators are needed.

Numerical simulations of mutually exclusive patterns have been performed in [11],
[10]. Many interesting features have been discovered and explained, but those works
do not give analytical solutions, and they are not mathematically rigorous. To obtain
mathematically rigorous results, in this study we show the existence and stability of
mutually exclusive spikes in such a system.

The overall feedback mechanism of the system can be summarized as follows:
Lateral activation is coupled with self-activation and overall inhibition. We will explain
this in more detail after the system has been formulated quantitatively.
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A widespread pattern in biology is segmentation. The mutual exclusion effect
described in this paper is a special case of segmentation where only two different
segments are present. Examples for biological segmentation are the body segments
of insects or the segments of insect legs. The segments usually resemble each other
strongly, but, on the other hand, they are different from each other. Segments may,
for example, have an internal polarity which is often visible by bristles or hairs. This
internal pattern within a segment depends on the position of the segment within the
sequence in its natural state. In some biological cases a good understanding of how
segment position and internal structure are related has been obtained. One famous
example is surgical experiments on insects, e.g., cockroach legs. Creating a disconti-
nuity in the normal neighborhood of structures by cutting a leg and pasting one piece
to the end of another partial leg creates a discontinuity in the segment structure as
some segments are missing their natural neighbors. By a process called intercalary re-
generation new stable patterns in the cockroach leg are formed such that all segments
get back their natural neighbors. However, the resulting pattern can be very different
from any naturally occurring pattern.

For example, for cockroach legs, if the normal sequence of structures within a seg-
ment is 123 . . .9, a combination of a partial leg 12345678 to which the piece 456789
is added first leads to the structure 12345678456789. Note the presence of the jump
discontinuity in this sequence between the numbers 8 and 4. Now segment regulation
adds the piece 765, which removes the discontinuity and leads to the final structure,
12345678765456789. This is different from the original natural structure, but never-
theless each segment has the same neighbors as in the natural situation.

In this example, which was experimentally verified by Bohn [1], it is not the natu-
ral sequence but the normal neighborhood which is regulated. It is exactly this neigh-
boring structure which can be modeled mathematically using the system from [11]
which is considered here, and this paper can be the starting point to a rigorous un-
derstanding of more complex segmentation phenomena.

Now we give a sociological application of mutual exclusion (see [11]). Consider
two families. They can hardly live in exactly the same house, as this would lead to
undesirable overcrowding. But if they live in the same street or neighborhood they can
support, nurture, and benefit each other. Thus this collaborative behavior can lead
to a rather stable situation. Indeed, stable coexisting states with concentration peaks
remaining close but keeping a certain characteristic distance from each other are
typical phenomena which are observed in quantitative models of systems modeling
mutual exclusion, and they obviously resemble real-world behavior in this example
very well.

This feedback mechanism of lateral activation coupled with overall inhibition
can be quantified by formulating the effects of “activation,” “lateral activation,” and
“inhibition” using the language of molecular reactions and invoking the law of mass
action. Now we are going to discuss this in a quantitative manner. We will introduce
the resulting model system first and then explain how these feedback mechanisms are
represented by the terms in the model.

The original system from [11] (after rescaling and some simplifications) can be
stated as follows:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

g1,t = ε2g1,xx − g1 +
cs2g

2
1

r
, g2,t = ε2g2,xx − g2 +

cs1g
2
2

r
,

τrt = Drrxx − r + cs2g
2
1 + cs1g

2
2,

τs1,t = Dss1,xx − s1 + g1, τs2,t = Dss2,xx − s2 + g2.
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Here 0 < ε � 1, Dr > 0 and Ds > 0 are diffusion constants, c is a positive reaction
constant, and τ is a nonnegative time-relaxation constant (in [11] the choice τ = 1
was made).

The x-indices indicate spatial derivatives. We will derive results for the system
(1.1) on a bounded interval Ω = (−L,L) for L > 0 with Neumann boundary condi-
tions. Some results for the system on the real line (L = ∞) will also be established
and will be compared with the bounded interval case.

The first two components, the activators g1 and g2, activate themselves locally is
due to the terms g2

1 and g2
2, respectively, in the first two equations.

The lateral activators are introduced in (1.1) by the fourth and fifth components
s1 and s2 as follows: For both the activators, gi, i = 1, 2, there are nonlocal and
delayed versions si. Now s1 acts as an activator to g2, and s2 acts as in activator to
g1 due to the terms s2 in the first and s1 in the second equation which have a positive
feedback. The expression lateral activation is used since gi activates g3−i laterally
through its nonlocal counterpart si rather than locally through gi itself.

Lateral activation is finally coupled with overall inhibition as follows: The third
component r acts as an inhibitor to both g1 and g2 due to the term r in the first and
second equations, which has a negative feedback. Note also that both the local and
the nonlocal activators have a positive feedback on r due to the terms s2g2

1 and s1g2
2

in the third equation.
This feedback mechanism is a generalization of the well-known Gierer–Meinhardt

system [6] which has one local activator coupled to an inhibitor. We recall that the
classical Gierer–Meinhardt system as well as the five-component system considered
here are both Turing systems [13], as they allow spatial patterns to arise out of a
homogeneous steady state by the so-called Turing instability. (Some analytical results
for the existence and stability of a spiky Turing pattern for the Gierer–Meinhardt
system have been obtained, for example, in [3], [4], [5], [9], [12], [14], [17], [18], [19].)

Now we state our rigorous results on the existence and stability of stationary,
mutually exclusive, spiky patterns for the system (1.1).

We prove the existence of a spiky pattern with one spike for g1 and one spike for
g2, which are located in different positions under the following conditions:

(i) the diffusivities of the two lateral activators are large compared to the inhibitor
diffusivity and

(ii) the inhibitor diffusivity is large compared to the diffusivities of the two (local)
activators.

We summarize the two main conditions (i) and (ii), which guarantee the existence
of mutually exclusive spike patterns for (1.1), in the following:

(1.2) We assume that ε2 � C1Dr ≤ Ds for some constant C1 > 0.

We also prove the stability of these mutually exclusive spiky patterns, provided
that certain conditions are met, which are of the type (1.2) with C1 replaced by some
new constant C2.

In this paper we consider a pattern displaying one spike for g1 and one for g2
which are located in different positions.

In particular, we prove the existence of a mutually exclusive two-spike solution
to the system (1.1) if Ds/Dr > 4. We show that this solution is stable if (i) Ds/Dr >
43.33 for L = ∞, or in general if (5.3) holds (condition for O(1) eigenvalues), and if
(ii) Ds/Dr > 4 (condition for o(1) eigenvalues).

The main results will be stated in Theorem 3.2 on the existence of solutions and in
Theorems 5.1 and 6.7 on the large and small eigenvalues, respectively, of the linearized
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problem at the solutions.
What do these results tell us about segmentation? As a first step, we have proved

that in the case of two segments, which we call 1 and 2, the sequence 12 can exist and
be stable, and we have found sufficient conditions for this effect to happen.

The case of n > 2 components will lead to a system with 2n+1 components, which
is very large and not easy to handle. Even in the case n = 2 for the five-component
system investigated in this paper the analysis becomes rather lengthy. We expect that,
following our approach, we will be able to prove existence and stability of n spikes in
n different locations. We do not see any major obstacle, only that the proofs become
more technical. We are currently working on this issue.

The outline of the paper is as follows. In section 2, we compute the amplitudes
of the spikes for g1 and g2. In section 3, we determine the positions of the spikes and
show the existence of steady states with mutually exclusive spikes. In section 4, we
first derive the eigenvalue problem. Then we compute the large (i.e., O(1)) eigenvalues
and derive sufficient conditions for the stability of solutions with respect to these.
In section 5, we solve a nonlocal eigenvalue problem which has been delayed from
section 4. In section 6, we give the most important steps and state the main result
on the stability of solutions with respect to small (i.e., o(1)) eigenvalues. Sufficient
conditions for this stability are derived. The technical details of the analysis of small
eigenvalues is delayed to the appendices. Finally, in section 7, our results are confirmed
by numerical simulations.

2. Computing the amplitudes. We construct steady states of the form

g1(x) = t1w

(
x− x1

ε

)
(1 +O(ε)), g2(x) = t2w

(
x− x2

ε

)
(1 +O(ε)),

where w(y) is the unique positive and even homoclinic solution of the equation

(2.1) wyy − w + w2 = 0

on the real line decaying to zero at ±∞. Here we assume that the spikes for g1 and
g2 have the same amplitude, i.e., t1 = t2. We often use different notation for the two
amplitudes, as this will be important later when we consider stability, since there
could be an instability which breaks the symmetry of having the same amplitudes.
The analysis will show that t1, t2 and x1, x2 depend on ε but to leading order and after
suitable scaling are independent of ε. To keep notation simple we will not explicitly
indicate this dependence.

All functions used throughout this paper belong to the Hilbert space H2(−L,L),
and the error terms are taken in the norm H2(−L,L) unless otherwise stated. After
integrating (2.1), we get the relation

∫
R

w(y) dy =
∫
R

w2(y) dy,(2.2)

which will be used frequently, often without explicitly stating it. We denote

(2.3) w1(x) = w

(
x− x1

ε

)
, w2(x) = w

(
x− x2

ε

)
.

Note that g1 and g2 are small-scale variables, as ε� 1, and r, s1, and s2 are large-
scale (with respect to the spatial variable). For steady states, using Green functions,
these slow variables, to leading order, can be expressed by an integral representation.
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To get this representation, g1 in the last three equations of (1.1) can be expanded
as

g1(x) = t1ε

(∫
R

w

)
δx1(x) +O(ε2), g2

1(x) = t21ε

(∫
R

w2

)
δx1(x) +O(ε2),

where δx1(x) = δ(x − x1) is the Dirac delta distribution located at x1. Similarly, for
g2 we have

g2(x) = t2ε

(∫
R

w

)
δx2(x) +O(ε2), g2

2(x) = t22ε

(∫
R

w2

)
δx2(x) +O(ε2).

Using the Green function GD(x, y), which is defined as the unique solution of the
equation
(2.4)
DΔGD(x, y)−GD(x, y)+δy(x) = 0, −L < x < L, GD,x(−L, y) = GD,x(L, y) = 0,

we can represent s1(x) by using the fourth equation of (1.1) as

(2.5) s1(x) = t1ε

(∫
R

w

)
GDs(x, x1) +O(ε2).

An elementary calculation gives

(2.6) GD(x, y) =

{
θ

sinh(2θL) cosh θ(L+ x) cosh θ(L− y), −L < x < y < L,

θ
sinh(2θL) cosh θ(L− x) cosh θ(L+ y), −L < y < x < L,

with θ = 1/
√
D. Note that

(2.7) GD(x, y) =
1

2
√
D
e−|x−y|/

√
D −HD(x, y),

where HD is the regular part of the Green function GD. In particular, for L = ∞, we
have

(2.8) GD(x1, x2) =
1

2
√
D
e−|x−y|/

√
D =: KD(x1, x2).

In the same way, we derive

(2.9) s2(x) = t2ε

(∫
R

w

)
GDs(x, x2) +O(ε).

Now we compute the last two terms on the right-hand side (r.h.s.) of the third equation
of (1.1) as follows:

cs2g
2
1(x) = cs2(x1)t21ε

(∫
R

w

)
δx1(x) +O(ε2)

= ct21t2ε
2

(∫
R

w

)2

δx1(x)GDs (x1, x2) +O(ε3)

and, similarly,

cs1g
2
2(x) = ct1t

2
2ε

2

(∫
R

w

)2

δx2(x)GDs(x1, x2) +O(ε3).
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Now, using the third equation of (1.1), we can represent r(x) by the Green func-
tion GDr ,

(2.10) r(x) = ct1t2ε
2

(∫
R

w

)2

GDs(x1, x2)(t1GDr (x, x1) + t2GDr (x, x2)) +O(ε3).

Going back to the first equation in (1.1), we get
(2.11)

ε2Δg1 − g1 +
cs2g

2
1

r
= t1(ε2Δw1 − w1) +

cs2t
2
1w

2
1

r
+O(ε) = t1

[
cs2t1
r

− 1
]
w2

1 +O(ε).

To have the same amplitudes of the two contributions in (2.11), we require

(2.12)
cs2(x1)t1
r(x1)

= 1 +O(ε).

Now we rewrite (2.12), using (2.9) and (2.10):

(2.13)
cs2(x1)t1
r(x1)

=
1

ε(
∫
R w)(t1GDr (x1, x1) + t2GDr (x1, x2))

+O(ε).

Thus, (2.12) for x = x1 gives

(2.14) t1GDr (x1, x1) + t2GDr (x1, x2) =
1

ε
∫
R
w

+ O(1).

In the same way, from the second equation in (1.1) we get

(2.15) t1GDr (x1, x2) + t2GDr (x2, x2) =
1

ε
∫
R w

+ O(1).

The relations (2.14), (2.15) are a linear system for the amplitudes t1, t2 of the spikes if
their positions state that the amplitudes x1, x2 are known. Note that the amplitudes
depend on the positions in leading order, as also the Green function GDr depends on
its arguments in leading order. We say that the amplitudes are strongly coupled to
the positions.

Note that the system (2.14), (2.15) has a unique solution t1, t2 since by (2.6)

GDr (x1, x1)GDr (x2, x2) − (GDr (x1, x2))2 =
θ2r

sinh2(2θrL)
cosh θr(L− x1) cosh θr(L+ x2)

× [cosh θr(L+ x1) cosh θr(L− x2) − cosh θr(L− x1) cosh θr(L+ x2)] > 0

for −L < x2 < x1 < L, where θr = 1/
√
Dr.

By symmetry, for x1 = −x2 we have t1 = t2. This is the case we are interested
in. However, we have not yet shown that there are such positions x1, x2. This will be
done in the next section.

For the special case L = ∞, we have GDr (x1, x2) = 1
2
√
Dr
e−|x−y|/

√
Dr , and (2.14),

(2.15) in this case are given by

t1 + t2e
−|x1−x2|/

√
Dr =

2
√
Dr

ε
∫
R
w
, t2 + t1e

−|x1−x2|/
√
Dr =

2
√
Dr

ε
∫
R
w
.
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Finally, we summarize the main result of this section as follows.
Lemma 2.1. Assume that ε > 0 is small enough. Then for spike-solutions of (1.1)

of the type

g1(x) = t1w

(
x− x1

ε

)
(1 +O(ε)), g2(x) = t2w

(
x− x2

ε

)
(1 +O(ε)),

where w(y) is the unique positive and even solution of the equation

wyy − w + w2 = 0

on the real line decaying to zero at ±∞, the amplitudes t1 and t2 are given as the
unique solution of the system

t1GDr (x1, x1) + t2GDr (x1, x2) =
1

ε
∫
R
w

+ O(1),

t1GDr (x1, x2) + t2GDr (x2, x2) =
1

ε
∫
R w

+ O(1),

where GD is the Green function defined in (2.4).

3. Existence of mutually exclusive spikes. In this section, we use the
Liapunov–Schmidt reduction method to rigorously prove the existence of mutually
exclusive spikes. We will get a sufficient condition on the locations of the spikes.

The problem here is that the linearization of the r.h.s. of the first equation in
(1.1) around w1 has an approximate nontrivial kernel. This comes from the fact that
a derivative of (2.1) with respect to y gives

(wy)yy − wy + 2wwy = 0.

Thus, wy belongs to the kernel of the linearization of (2.1) around w. Note that the
function wy represents the translation mode. Therefore a direct application of the
implicit function theorem is not possible; one has to deal with this kernel first. This
is the goal in this section.

Recall that for given g1, g2 ∈ H2
N (Ωε), where Ωε = (−L/ε, L/ε) and H2

N (Ωε)
denotes the space of all functions in H2(Ωε) satisfying the Neumann boundary condi-
tion, by the fourth equation of (1.1) s1 is uniquely determined, by the fifth equation
s2 is uniquely determined, and finally by the third equation r is uniquely determined.
Therefore, the steady state problem is reduced to solving the first two equations.

We are looking for solutions which satisfy

g1(x) = t1w

(
x− x1

ε

)
(1 +O(ε)), g2(x) = t1w

(
x+ x1

ε

)
(1 +O(ε))

with g1(x) = g2(−x) (x1 > 0). By this reflection symmetry the problem is reduced to
determining just one function: g1(x) = t1w1(x) + v.

We are now going to determine this function in two steps. Denoting the r.h.s. of
the first equation of (1.1) by Sε[t1w1 + v], which is well defined for steady states, our
problem can be written as follows: Sε[t1w1 + v] = 0, where Sε : H2

N (Ωε) → L2(Ωε).
First step. Determine a small v ∈ H2(Ωε) with

∫
Ω
v dw1
dx dx = 0 such that

(3.1) Sε[t1w1 + v] = βε
dw1

dx
.
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Second step. Choose x1 such that

(3.2) β = 0.

We begin with the first step. To this end, we need to study the linearized operator

L̃ε,x1 : H2(Ωε) → L2(Ωε) defined by L̃ε,x1 := S
′

ε[t1w1]φ,

where S
′

ε[t1w1] denotes the Fréchet derivative of the operator Sε at t1w1.
We define the approximate kernel and cokernel, respectively, as follows:

Kε,x1 := span
{
ε
dw1

dx

}
⊂ H2(Ωε), Cε,x1 := span

{
ε
dw1

dx

}
⊂ L2(Ωε).

By projection, we define the operator

Lε,x1 = π⊥
ε,x1

◦ L̃ε,x1 : K⊥
ε,x1

→ C⊥
ε,x1

,

where π⊥
ε,x1

is the orthogonal projection in L2(Ωε) onto C⊥
ε,x1

.
Then we have the following key result for the Liapunov–Schmidt reduction.
Proposition 3.1. There exist positive constants ε̄, δ̄, λ such that we have for all

ε ∈ (0, ε̄), x1 ∈ Ω with min(|L+ x1|, |L− x1|) > δ̄,

(3.3) ‖Lε,x1φ‖L2(Ωε) ≥ λ ‖φ‖H2(Ωε) for all φ ∈ K⊥
ε,x1

.

Further, the map Lε,x1 is surjective.
Proof of Proposition 3.1. We proceed by deriving a contradiction.
Suppose that (3.3) is false. Then there exist sequences {εk}, {x1

k}, {φk} with
εk → 0, x1

k ∈ Ω, min(|L + xk1 |, |L − xk1 |) > δ̄, φk = φεk ∈ K⊥
εk,xk

1
, k = 1, 2, . . . , such

that

(3.4) ‖Lεk,x1kφk‖L2(Ωεk
) → 0 as k → ∞, ‖φk‖H2(Ωεk

) = 1, k = 1, 2, . . . .

At first (after rescaling) φε is defined only on Ωε. However, by a standard result
(compare [7]) it can be extended to R such that its norm in H2(R) is still bounded
by a constant independent of ε and x1 for ε small enough. It is then a standard
procedure to show that this extension converges strongly in H2(Ωε) to some limit φ1

with ‖φ1‖L2(R) = 1. For the details of the argument, we refer to [8].
The same analysis is performed for w2 and its perturbation φε,2. Then Φ =

(φ1, φ2)T solves the system

L0φ1 −
1∫

R
w dy

[
2t̂1GDr (x1, x1)

(∫
R

wφ1 dy

)
+ 2t̂1GDr (x1, x2)

(∫
R

wφ2 dy

)

+ t̂2GDr (x1, x2)
(∫

φ1 dy

)
− t̂1GDr (x1, x2)

(∫
φ2 dy

)]
= 0,(3.5)

L0φ2 −
1∫

R w dy

[
2t̂2GDr (x2, x2)

(∫
wφ2 dy

)
+ 2t̂2GDr (x1, x2)

(∫
wφ1 dy

)

+ t̂1GDr (x1, x2)
(∫

R

φ2 dy

)
− t̂2GDr (x1, x2)

(∫
R

φ1 dy

)]
= 0,

(3.6)
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where L0φ = ε2φyy − φ+ 2wφ and

(3.7) αε =
(

1
ε
∫
R
w dy

)
and t̂i = (αε)−1ti.

This system is the special case with λ = 0 of (4.7), (4.8) derived in section 4. To
avoid doing this computation twice we have delayed it to section 4, where the more
general case is considered.

Now, adding (3.5) and (3.6), we obtain

L0(φ1 + φ2) − w2

(
2
∫
R
w(φ1 + φ2) dy∫
R w

2 dy

)
= 0.

This implies by Theorem 1.4 of [15] that φ1 = −φ2, and, setting φ := φ1, for φ we
must have

(3.8) L0φ− 4
4 − c0

w2∫
w2 dy

∫
wφdy = λφ,

where 0 < c0 < 2 (compare (5.1) for λ = 0). Now by Theorem 1.4 of [15] we must
have φ = 0. This contradicts ‖φ‖L2(R) = 1. Therefore, (3.3) must be true.

By the closed range theorem it follows that the map Lε,x1 is surjective. (The
details are given, for example, in [8].)

Based on this key result for the Liapunov–Schmidt reduction it is now fairly
standard (see, for example, the works [8] and [16]) to derive that there exists a small
v ∈ H2(Ωε) with

∫
Ω
v dw1
dx dx = 0 such that

S[t1w1 + v] = βε
dw1

dx
.

This completes the first step.
We now turn to the second step. We have to show that β = 0 for a certain x1.

This amounts to showing that
∫

Ω

S[t1w1 + v](x)ε
dw1

dx
dx = 0

for a certain x1. Note that computing x1 in fact means determining the locations of
the spikes. To this end, we have to expand S[t1w1 + v](x1 + εy).

We compute

S[t1w1 + v](x1 + εy) = t1

[
cs2(x1 + εy)t1
r(x1 + εy)

− 1
]
w2

1(x1 + εy) +O(ε2).

Using (2.9), (2.10) and the expansions

GD(x1 + εy, x2) = GD(x1, x2) +GD,x1(x1, x2)εy +O(ε2|y|2)

and

GD(x1 + εy, x1) = GD(x1, x1) −
1

2D
ε|y| − 1

2
HD,x1(x1, x1)εy +O(ε2|y|2),
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where we have used (2.7), we get

cs2(x1 + εy)t1
r(x1 + εy)

=
GDr (x1, x1) +GDr (x1,−x1)

GDs(x1,−x1)
(3.9)

×
GDs(x1,−x1) + 1

2GDs,x1(x1,−x1)εy +O(ε2|y|2)
GDr (x1, x1) +GDr (x1,−x1) − ε|y|/(2D) + 1

2 (−HDr,x1(x1, x1) +GDr ,x1(x1,−x1))εy

= 1 +
GDs,x1(x1,−x1)
2GDs(x1,−x1)

εy − GDr ,x1(x1,−x1) −HDr ,x1(x1, x1)
2[GDr (x1, x1) +GDr (x1,−x1)]

εy +O(ε2y2)

+ even term in y.

This implies
∫

Ω

S[w1 + v](x)ε
dw1

dx
dx

=
1
2

[
GDs,x1(x1,−x1)
GDs(x1,−x1)

− GDr ,x1(x1,−x1) −HDr ,x1(x1, x1)
GDr (x1, x1) +GDr (x1,−x1)

]
εy

∫
R

yw2 dw

dy
dy + ε2Wε(x1),

where Wε(x1) = O(ε), uniformly for 0 ≤ x1 ≤ L.
Using (2.6), we further compute

F (x1) :=
GDs,x1(x1,−x1)
GDs(x1,−x1)

− GDr ,x1(x1,−x1) −HDr ,x1(x1, x1)
GDr (x1, x1) +GDr (x1,−x1)

= −θs
sinh 2θs(L− x1)
cosh2 θs(L− x1)

− θr
sinh 2θrx1 − sinh 2θr(L − x1)

cosh θr(L− x1)[cosh θr(L− x1) + cosh θr(L + x1)]
,

where θ = 1/
√
D. We have to determine x1 such that F (x1) = 0. Note that

F (0) = −θs
sinh 2θsL
cosh2 θsL

+ θr
sinh 2θrL

2 cosh2 θrL
> 0

if

(3.10)
θs
θr

<
1
2

tanh θrL
tanh θsL

.

The inequality (3.10) is satisfied if, for fixed L, θr is large compared to θs.
In the limit L → 0 the condition (3.10) converges to θs

θr
< 1/

√
2. In the limit

L→ ∞, (3.10) gives θs

θr
< 1/2. For general L ∈ (0,∞) we can write (3.10) as follows:

θs

θr
< α(L) with 1

2 < α(L) < 1√
2
.

Going back to the original diffusion constants, the inequality (3.10) is equivalent
to

(3.11)
Ds

Dr
> 4

tanh2 θsL

tanh2 θrL
.

In the limit L→ 0, (3.11) gives Ds

Dr
> 2 and, in the limit L→ ∞, we can write (3.11)

as follows: Ds

Dr
> 4.
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For all L ∈ (0,∞) we can write (3.11) as follows: Ds

Dr
> β(L) for some continuous

function β(L) ∈ (2, 4).
Note that (3.11) holds if

(3.12)
Ds

Dr
> 4.

This is not the optimal condition, but it is rather handy and easy to check.
On the other hand,

F (L/2) = −θs
sinh θsL

cosh2(θsL/2)
< 0.

By the intermediate value theorem, under the condition (3.11), there exists an x1 ∈
(0, L/2) such that F (x1) = 0. There exists no such x1 ∈ [L/2, L), since the function
F is negative in that interval.

Note that F (L/2) → 0 as θs → 0. This implies that x1 → L/2 as θs → 0.
We now show that the zero x1 ∈ [0, L/2] of F is unique by proving that F ′(x1) < 0

for x1 ∈ (0, L/2) if

(3.13)
θs
θr

<
tanh(θrL/2)√
2 tanh(θsL/2)

.

We compute

F ′(x1) = 2θ2s
1

cosh2 θs(L− x1)
− θ2r

1
cosh2 θr(L− x1)

− θ2r
[cosh θr(L− x1) + cosh θr(L + x1)]2 − [sinh θr(L− x1) + sinh θr(L + x1)]2

[cosh θr(L− x1) + cosh θr(L + x1)]2
.

Therefore, taking into consideration only the first two terms and noting that the
last term is negative, we have F ′(x1) < 0 if (3.13) holds, and in this case, the solution
for x1 is unique.

Note that (3.13) holds if θs

θr
< 1√

2
or, equivalently, Ds

Dr
> 2.

Therefore (3.10) and (3.13) are both true if θs

θr
< 1

2 or, equivalently, Ds

Dr
> 4.

Now for (3.13), since F ′(x1) �= 0, a standard degree argument shows that for
ε� 1 there exists a unique xε1 depending on ε such that

∫
Ω S[w1 + v](x)εdw1

dx dx = 0.
Further, xε1 → x1 as ε→ 0, where x1 satisfies

GDs,x1(x1,−x1)
GDs(x1,−x1)

− GDr ,x1(x1,−x1) −HDr ,x1(x1, x1)
GDr (x1, x1) +GDr (x1,−x1)

= 0.

Thus we have shown existence and at the same time located the positions of the
spikes. We summarize this result in the following theorem.

Theorem 3.2. There exist mutually exclusive, spiky steady states to (1.1) in
(−L,L) with Neumann boundary conditions such that

(3.14) gε1(x) = tε1w

(
x− xε1
ε

)
(1 + O(ε)), gε2(x) = tε1w

(
x+ xε1
ε

)
(1 +O(ε))

with

(3.15) tε1 =
1

ε
∫
R
w dy (GDr (x1, x1) +GDr (x1,−x1))

+O(1)
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and xε1 → x1 as ε→ 0, where

(3.16)
GDs,x1(x1,−x1)
GDs(x1,−x1)

− GDr ,x1(x1,−x1) −HDr ,x1(x1, x1)
GDr (x1, x1) +GDr (x1,−x1)

= 0.

If Ds/Dr > 4, then (3.16) has a unique solution x1 ∈ (0, L/2] and no solution in
(L/2, L]. Further, x1 → L/2 as θs → 0.

Finally, we compute the equation for x1 in the limit L → ∞. In this limit, x1

satisfies

θs
θr

=
e−2θrx1

1 + e−2θrx1
+O(e−CL)

for some C > 0 independent of x1. This is equivalent to

(3.17) e2|x1|/
√
Dr =

√
Ds

Dr
− 1 +O(e−CL).

This concludes our study of existence. In the following sections we consider the
stability issue.

4. Stability I: The eigenvalue problem and the large eigenvalues. Now
we study the (linearized) stability of this mutually exclusive steady state. To this end,
we first derive the linearized operator around the steady state (gε1, g

ε
2, r

ε, sε1, s
ε
2) given

in Theorem 3.2.
We perturb the steady state as follows:

g1 = gε1 + φε1e
λt, g2 = gε2 + φε2e

λt, r = rε + ψεeλt,

s1 = sε1 + ηε1e
λt, s2 = sε2 + ηε2e

λt.

By linearization we obtain the following eigenvalue problem (dropping super-
scripts ε):

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λεφ1 = ε2φ1,xx − φ1 +
cη2g

2
1

r
+

2cs2g1φ1

r
− cs2g

2
1ψ

r2
,

λεφ2 = ε2φ2,xx − φ2 +
cη1g

2
2

r
+

2cs1g2φ2

r
− cs1g

2
2ψ

r2
,

τλεψ = Drψxx − ψ + cη2g
2
1 + 2cs2g1φ1 + cη1g

2
2 + 2cs1g2φ2,

τλεη1 = Dsη1,xx − η1 + φ1,

τλεη2 = Dsη2,xx − η2 + φ2,

where all components belong to the space H2
N (Ω).

We now analyze the case λε → λ0 �= 0 (large eigenvalues). After rescaling and
taking the limit ε→ 0 in (4.1) and noting that φi converges locally in H2(−L/ε, L/ε),
we get for the first two components, using the approximations of g1 and g2 given in
Theorem 3.2:

ε2Δφ1 − φ1 +
2cs2(x1)t1w1φ1

r(x1)
− cs2(x1)t21w2

1

r2(x1)
ψ(x1) +

cη2(x1)t21w2
1

r(x1)
= λφ1,(4.2)

ε2Δφ2 − φ2 +
2cs1(x2)t2w2φ2

r(x2)
− cs1(x2)t22w

2
2

r2(x2)
ψ(x2) +

cη2(x2)t22w
2
2

r(x2)
= λφ1.(4.3)
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Now, in (4.2) and (4.3) we calculate the terms ψ(x) and η1(x) and η2(x), respectively.
To get ψ(x), using the Green function GDr , we solve the linear equation for ψ given
by

Drψxx − ψ + 2cs2t1w1φ1 + 2cs1t2w2φ2 + cη2t
2
1w

2
1 + cη1t

2
2w

2
2 = 0,

where again for g1 and g2 we have used the asymptotic expansions of Theorem 3.2.
For simplicity, we study the case τ = 0. Then the stability result extends to small τ
as well, since we know that |λε| ≤ C for all eigenvalues such that λε > −c0 for some
small c0 > 0, which can be shown by a simple argument based on quadratic forms.
This gives

ψ(x) ∼
[
2cs2(x1)t1ε

(∫
R

wφ1 dy

)
+ cη2(x1)t21ε

∫
R

w2 dy

]
GDr (x, x1)

+
[
2cs1(x2)t2ε

(∫
R

wφ2 dy

)
+ cη1(x2)t22ε

∫
R

w2 dy

]
GDr (x, x2).(4.4)

Similarly, using GDs , we compute

(4.5) η1(x) ∼ εGDs(x, x1)
∫
R

φ1 dy, η2(x) ∼ εGDs(x, x2)
∫
R

φ2 dy.

Recalling from (2.5) and (2.9) that

s1(x) ∼ εt1

(∫
R

w dy

)
GDs(x, x1), s2(x) ∼ εt2

(∫
R

w dy

)
GDs(x, x2),

we get from (4.4)

ψ(x)∼
[
2ct1t2ε2

(∫
R

w dy

)(∫
R

wφ1 dy

)
+ ct21ε

2

(∫
R

w dy

)∫
R

φ2 dy

]
GDs(x1, x2)GDr (x, x1)

+
[
2ct1t2ε2

(∫
R

w dy

)(∫
R

wφ2 dy

)
+ ct22ε

2

(∫
R

w dy

)∫
R

φ1 dy

]
GDs(x1, x2)GDr (x, x2).

(4.6)

Further, recall from (2.10) that

r(x) = ct1t2ε
2

(∫
R

w dy

)2

GDs(x1, x2)(t1GDr (x, x1) + t2GDr (x, x2)) +O(ε3).

Substituting into (4.2), we get for the coefficient of
∫
R
φ1 dy on the r.h.s.

−cs2(x1)t21w
2
1

r2(x1)
cε2
(∫

R

w dy

)
t22GDs(x1, x2)GDr (x1, x2) +O(ε2)

= − w2
1

s2(x1)
ε2
(∫

R

w dy

)
t22GDs(x1, x2)GDr (x1, x2) +O(ε2)

= −εt2w2
1GDr (x1, x2) +O(ε2).
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Similarly, the coefficient for
∫
R
φ2 dy is calculated as

−cs2(x1)t21w
2
1

r2(x1)
cε2
(∫

R

w2 dy

)
t21GDs(x1, x2)GDr (x1, x1) +

cεGDs(x1, x2)t21w
2
1

r(x1)
+O(ε2)

= − w2
1

s2(x1)
ε2
(∫

R

w2 dy

)
t21GDs(x1, x2)GDr (x1, x1) +

w2
1

s2(x1)
εt1GDs(x1, x2) +O(ε2)

= − εt
2
1w

2
1

t2
GDr (x1, x1) +

t1
t2
∫
R
w dy

w2
1 +O(ε2) = εt1w

2
1GDr (x1, x2) +O(ε2).

Here we have used (2.14). Then (4.2) gives the nonlocal eigenvalue problem (NLEP)

L0φ1 −
1∫

R w dy

[
2t̂1GDr (x1, x1)

(∫
R

wφ1 dy

)
+ 2t̂1GDr (x1, x2)

(∫
R

wφ2 dy

)

+ t̂2GDr (x1, x2)
(∫

R

φ1 dy

)
− t̂1GDr (x1, x2)

(∫
R

φ2 dy

)]
= λφ1,

(4.7)

where L0φ = ε2φyy − φ + 2wφ and t̂i has been defined in (3.7). In the same way, for
(4.3) we obtain

L0φ2 −
1∫

R
w dy

[
2t̂2GDr (x2, x2)

(∫
R

wφ2 dy

)
+ 2t̂2GDr (x1, x2)

(∫
R

wφ1 dy

)

+ t̂1GDr (x1, x2)
(∫

R

φ2 dy

)
− t̂2GDr (x1, x2)

(∫
R

φ1 dy

)]
= λφ2,

(4.8)

where φ1, φ2 ∈ H2(R). Set φ = (φ1, φ2) and denote by Lφ the left-hand sides (l.h.s.)
of (4.7) and (4.8), respectively.

Then, writing (4.7) and (4.8) in matrix notation, we have following the vectorial
NLEP:

Lφ = Δφ− φ+ 2wφ−
[
B
∫
R

φdy + 2C
(∫

R

wφdy

)](∫
R

w dy

)−1

w2,

where

(4.9) B = GDr (x1, x2)
(

t̂2 −t̂1
−t̂2 t̂1

)
=

GDr (x1, x2)
GDr (x1, x1) +GDr (x1, x2)

(
1 −1

−1 1

)

and

C =
(
t̂1GDr (x1, x1) t̂1GDr (x1, x2)
t̂2GDr (x1, x2) t̂2GDr (x2, x2)

)

=
1

GDr (x1, x1) +GDr (x1, x2)

(
GDr (x1, x1) GDr (x1, x2)
GDr (x1, x2) GDr (x2, x2)

)
.(4.10)

Here we have used that (2.14), (2.15) imply

(4.11) t̂1GDr (x1, x1) + t̂2GDr (x1, x2) = 1, t̂1GDr (x1, x2) + t̂2GDr (x2, x2) = 1
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and therefore

(4.12) t̂i =
GDr (x3−i, x3−i) −GDr (x1, x2)

GDr (x1, x1)GDr (x2, x2) − (GDr (x1, x2))
2 , i = 1, 2.

In the special case when GDr (x1, x1) = GDr (x2, x2) we have

(4.13) t̂1 = t̂2 =
1

GDr (x1, x1) +GDr (x1, x2)
.

Now, adding (4.7) and (4.8), we obtain

L0(φ1 + φ2) − w2

(
2
∫
R
w(φ1 + φ2) dy∫
R w

2 dy

)
= λ(φ1 + φ2),

which implies by Theorem 1.4 of [15] that φ1 + φ2 = 0 if Re(λ0) ≥ 0. So we set
φ2 = −φ1 = −φ.

From (4.7), we obtain a scalar NLEP for φ,

(4.14) L0φ− w2∫
R
w2 dy

[
c0

∫
R

wφdy + d0

∫
R

φdy

]
= λφ,

where

(4.15) c0 =
2(GDr (x1, x1) −GDr (x1, x2))
GDr (x1, x1) +GDr (x1, x2)

, d0 =
2GDr(x1, x2)

GDr (x1, x1) +GDr (x1, x2)
.

Note that 0 < c0 < 2 and 0 < d0 < 1.
In the following section we study the NLEP (4.14). It determines the stability or

instability of the large eigenvalues of (4.1) if 0 < ε < ε0 for a suitably chosen ε0. By
our analysis, instabilities for small ε > 0 imply instabilities for ε = 0. On the other
hand, by an argument of Dancer [2], an instability for ε = 0 also gives an instability
for small ε > 0.

Note that the NLEP problem here is quite different from those studied in [4], [5],
[14], and [15].

In the next section we study this eigenvalue problem and complete the investiga-
tion of O(1) eigenvalues for (4.1).

5. Stability II: A nonlocal eigenvalue problem. In this section, we study
the NLEP (4.14) to determine whether or not there are large eigenvalues, i.e., eigen-
values of the order O(1) as ε → 0, which destabilize the mutually exclusive spiky
pattern. Integrating (4.14), we have∫

R

φdy =
2 − c0

λ+ 1 + d0

∫
R

wφdy.

Substituting this back into (4.14), we can eliminate the term
∫
R
φdy. This gives

(5.1) L0φ− μ(λ)
w2∫

R
w2 dy

∫
R

wφdy = λφ, where μ(λ) =
c0λ+ 2

λ+ 2 − c0/2
.

Here we have used that c0 + 2d0 = 2. Applying inequality (2.22) of [18], we get

(5.2)

∫
R
w3 dy∫

R
w2 dy

|μ(λ0) − 1|2 + Re(λ0(μ(λ0) − 1)) ≤ 0 if Re(λ0) ≥ 0.
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Observe that after multiplying (2.1) by w and by w′, respectively, and integrating, we
get

∫
R

w3 dy =
6
5

∫
R

w2 dy.

So, assuming without loss of generality that λ0 = +
√
−1λI , we get for the l.h.s. in

(5.2) the following:

6
5

∣∣∣∣ c0λ0 + 2
λ0 + 1 + d0

− 1
∣∣∣∣
2

+ Re
(
λ0

(
c0λ0 + 2
λ0 + 1 + d0

− 1
))

=
6
5

(c0 − 1)2|λ0|2 + (1 − d0)2

|λ0 + 1 + d0|2
+ Re

(
(c0|λ0|2 + 2λ0)(λ0 + 1 + d0)

|λ0 + 1 + d0|2

)

=
|λ0|2[1.2(1 − c0)2 + (1 + d0)c0 − 2] + 1.2(1 − d0)2

|λ0 + 1 + d0|2
.

Thus if 1.2(1−c0)2+(1+d0)c0−2 > 0, we have stability by (5.2). Using c0+2d0 = 2, we
calculate that this is equivalent to 7c20−4c0−8 > 0, which is true if c0 > 2

7 (1+
√

15) ≈
1.3923.

We compute, using (2.6),

c0 =
2(cosh θr(L + x1) − cosh θr(L− x1))
cosh θr(L+ x1) + cosh θr(L − x1)

, d0 =
2 cosh θr(L− x1)

cosh θr(L + x1) + cosh θr(L− x1)
.

Note that for L = ∞ we have

c0 =
2(e2θr|x1| − 1)
e2θr|x1| + 1

, d0 =
2

e2θr|x1| + 1
.

By (3.17), this implies
√

Ds

Dr
− 1 = e2θr|x1| > 5.5822 and Ds

Dr
> 43.33. If the last

condition is valid, we have stability.
We summarize the stability result for the O(1) eigenvalues as follows.
Theorem 5.1. The mutually exclusive, spiky steady state given in Theorem 3.2

is linearly stable with respect to large eigenvalues λε = O(1) for τ ≥ 0 and ε > 0 small
enough if

(5.3)
cosh θr(L+ x1) − cosh θr(L− x1)
cosh θr(L+ x1) + cosh θr(L− x1)

>
1
7
(1 +

√
15).

For L = ∞, this corresponds to

Ds

Dr
> 43.33.

Now the study of the large eigenvalues is complete. In the next section we study
the small eigenvalues.

6. Stability III: The small eigenvalues. Now we study the small eigenvalues
for (6.3), namely those with λε → 0 as ε → 0. In this section we summarize the
main steps and results in several lemmas. Their proofs are rather technical, and we
therefore delay them to the appendices.
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For given f ∈ L2(Ω), let Tr[f ] be the unique solution in H2
N (Ω) of the problem

(6.1) DrΔ(Tr[f ]) − Tr[f ] + αεf = 0.

In the same way, the operator Ts is defined with Dr replaced by Ds.
Let

ḡε,1 = t̂1wε,xε
1
+ φε,xε

1
, ḡε,2 = t̂2wε,xε

2
+ φε,xε

2
,

r̄ε = cTr[Ts[ḡε,2]ḡ2
ε,1 + Ts[ḡε,1]ḡ2

ε,2], s̄ε,1 = Ts[ḡε,1], s̄ε,2 = Ts[ḡε,2],(6.2)

where t̂i has been defined in (3.7) After rescaling, the eigenvalue problem (4.1) be-
comes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λεφε,1 = ε2Δφε,1 − φε,1 +
cηε,2ḡ

2
ε,1

r̄ε
+

2cs̄ε,2ḡε,1φε,1
r̄ε

−
cs̄ε,2ḡ

2
ε,1ψε

r̄2ε
,

λεφε,2 = ε2Δφε,2 − φε,2 +
cηε,1ḡ

2
ε,2

r̄ε
+

2cs̄ε,1ḡε,2φε,2
r̄ε

−
cs̄ε,1ḡ

2
ε,2ψε

r̄2ε
,

τλεψε = DrΔψε − ψε + cαεηε,2ḡ
2
ε,1 + 2cαεs̄ε,2ḡε,1φε,1 + cαεηε,1ḡ

2
ε,2 + 2cαεs̄ε,1ḡε,2φε,2,

τλεηε,1 = DsΔηε,1 − ηε,1 + αεφε,1,

τλεηε,2 = DsΔηε,2 − ηε,2 + αεφε,2,

(6.3)

where all functions are in H2
N (Ω) and αε has been defined in (3.7).

For simplicity, we set τ = 0. Since τλε � 1 the results in this section are also
valid for τ finite. The case of general τ > 0 can be treated as in [18]. We will see
that the small eigenvalues are of the order O(ε2). To compute them, we will need to
expand the eigenfunction up to the order O(ε) term.

Let us define

(6.4) g̃ε,j(x) = χ

(
x− xεj
r0

)
ḡε,j(x), j = 1, 2,

where χ(x) is a smooth cut-off function such that χ(x) = 1 for |x| < 1 and χ(x) = 0
for |x| > 2. Further,

(6.5) r0 =
1
10

(
1 + x2, 1 − x1,

1
2
|x1 − x2|

)
.

In a similar way as in section 3, we define approximate kernel and cokernel, but
in contrast now we can use the exact solution given in Theorem 3.2:

Knewε,xε := span
{
ε
d

dx
g̃ε,1

}
⊕ span

{
ε
d

dx
g̃ε,2

}
⊂ (H2

N (Ωε))2,

Cnewε,xε := span
{
ε
d

dx
g̃ε,1

}
⊕ span

{
ε
d

dx
g̃ε,2

}
⊂ (L2(Ωε))2,

where xε = (xε1, x
ε
2) and Ωε =

(
−L
ε ,

L
ε

)
.

Then it is easy to see that

(6.6) ḡi(x) = g̃ε,i(x) + e.s.t., i = 1, 2,
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where e.s.t. denotes exponentially small terms.
Note that, by Theorem 3.2, g̃ε,j(x) ∼ t̂jw

(
x−xε

j

ε

)
in H2

loc(Ωε) and g̃ε,j satisfies

ε2Δg̃ε,j − g̃ε,j +
(g̃ε,j)2s̄ε,3−j

r̄ε
+ e.s.t. = 0, j = 1, 2.

Thus g̃
′

ε,j := dg̃ε,j

dx satisfies

(6.7) ε2Δg̃
′

ε,j − g̃
′

ε,j +
2cg̃ε,j s̄ε,3−j

r̄ε
g̃

′

ε,j +
cg̃2
ε,j

r̄ε
s̄
′

ε,3−j −
cg̃2
ε,j s̄ε,3−j

(r̄ε)2
r̄
′

ε + e.s.t. = 0.

Let us now decompose

(6.8) φε,j = εaεj g̃
′

ε,j + φ⊥ε,j, j = 1, 2,

with complex numbers aεj , where the factor ε is for scaling purposes, to achieve that
aεj is of order O(1), and

φ⊥ε = (φ⊥ε,1, φ
⊥
ε,2) ∈ (Knewε,xε )⊥,

where orthogonality is taken for the scalar product of the product space (L2(Ωε))2.
Note that, by definition,

φε = (φε,1, φε,2) ∈ Knewε,xε .

Suppose that ‖φε‖H2(Ωε) = 1. Then we need to have |aεj | ≤ C.
Similarly, we decompose

(6.9) ψε = ε

2∑
j=1

aεjψε,j + ψ⊥
ε , ηε,j = εaεjη

0
ε,j + η⊥ε,j , j = 1, 2,

where ψε,j satisfies

(6.10) DrΔψε,j − ψε,j + 2αεcg̃ε,j g̃
′

ε,j s̄ε,3−j + αεcg̃
2
ε,3−jη

0
ε,j = 0,

η0
ε,i is given by

(6.11) DsΔη0
ε,i − η0

ε,i + αεg̃
′

ε,i = 0,

ψ⊥
ε satisfies

(6.12)
DrΔψ⊥

ε − ψ⊥
ε + 2αε cg̃ε,1s̄ε,2φ⊥ε,1 + αε cg̃

2
ε,1η

⊥
ε,2 + 2αε cg̃ε,2s̄ε,1φ⊥ε,2 + αε cg̃

2
ε,2η

⊥
ε,1 = 0,

and, finally, η⊥i is given by

(6.13) DsΔη⊥ε,i − η⊥ε,i + αεφ
⊥
ε,i = 0.

Substituting the decompositions of φε,i, ψε, and ηε,i into (6.3), we have

εc

(
aεj

(g̃ε,j)2s̄ε,3−j
r̄2ε

r̄
′

ε −
2∑

k=1

aεk
(g̃ε,j)2s̄ε,3−j

r̄2ε
ψε,k

)

− εc

(
aεj

(g̃ε,j)2

r̄ε
s̄
′

ε,3−j − aε3−j
(g̃ε,j)2

r̄ε
η0
ε,3−j

)

+ ε2Δφ⊥ε,j − φ⊥ε,j +
2cg̃ε,js̄ε,3−j

r̄ε
φ⊥ε,j −

cg̃2
ε,j s̄ε,3−j

r̄2ε
ψ⊥
ε +

cg̃2
ε,j

r̄ε
η⊥ε,3−j − λεφ

⊥
ε,j + e.s.t.

= λεεa
ε
j g̃

′

ε,j, j = 1, 2,(6.14)
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since

ε2Δg̃
′

ε,j − g̃
′

ε,j +
2cg̃ε,j s̄3−j,ε

r̄ε
g̃

′

ε,j + e.s.t. = 0.

Multiplying both sides of (6.14) for j = 1, 2 by g̃
′

ε,l for l = 1, 2 and integrating
over (−L,L), we obtain

(6.15) r.h.s. of (6.14) = λεa
ε
jε

∫ L

−L
g̃

′

ε,j g̃
′

ε,l dx = λεδjla
ε
l (t̂l)

2

∫
R

(w
′
(y))2 dy (1+o(1))

and

l.h.s. of (6.14) = cε

2∑
k=1

aεkδjl

∫ L

−L

(g̃ε,j)2s̄ε,3−j
r̄2ε

(
δjk r̄

′

ε − ψε,k

)
g̃

′

ε,l dx

+ cε

2∑
k=1

aεkδjl

∫ L

−L

(g̃ε,j)2

r̄ε

(
δj,3−kη

0
ε,3−j − δj,ks̄

′

ε,3−j

)
g̃

′

ε,l dx

+ cδjl

∫ L

−L

(g̃ε,l)2s̄ε,3−j
r̄ε

(
r̄
′

ε

r̄ε
−
s̄
′

ε,3−j
s̄ε,3−j

)
φ⊥ε,j dx

+ cδjl

∫ L

−L

(g̃ε,j)2s̄ε,3−j
r̄ε

(
η⊥ε,3−j
s̄ε,3−j

− ψ⊥
ε

r̄ε

)
g̃

′

ε,l dx+ o(ε2)

= J1,l + J2,l + J3,l + J4,l := Jl,(6.16)

where Ji,l, i = 1, . . . , 4, are defined by the last equality. The following is the key
lemma for the asymptotic behavior of the small eigenvalues.

Lemma 6.1. We have

Jl

= −ε2
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
−t̂l∇xε

l
∇xε

k
(HDr (xεl , x

ε
l )) + t̂3−l∇xε

l
∇xε

k
(GDr (xεl , x

ε
3−l))

}

−∇xε
l

(
δk,3−l∇xε

3−l
GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)
(6.17)

+
{

(∇xε
k
t̂l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
l ) + (∇xε

k
t̂3−l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2).

Lemma 6.1 follows from the following series of lemmas.
Lemma 6.2. We have

(6.18) η0
ε,k(x

ε
3−k) = t̂k∇xε

k
GDs(x

ε
3−k, x

ε
k) +O(ε).

Lemma 6.3. We have

(6.19) s̄
′

ε,k(x
ε
3−k) = t̂k∇xε

3−k
GDs(x

ε
3−k, x

ε
k) +O(ε).
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Lemma 6.4. For k, l = 1, 2 we have

(
δklr̄

′

ε − ψε,k

)
(xεl ) = ct̂1t̂2

{
−t̂l∇xε

k

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
k

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
k
GDs(x

ε
l , x

ε
3−l)

}
+O(ε).(6.20)

Similar to Lemma 6.4, we get the next claim.
Lemma 6.5. For k, l = 1, 2 we have

(
δklr̄

′

ε − ψε,k

)
(xεl + εy) −

(
δklr̄

′

ε − ψε,k

)
(xεl )

= εyct̂1t̂2

{
− t̂l∇xε

l
∇xε

k

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
l
∇xε

k

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
l
∇xε

k
GDs(x

ε
l , x

ε
3−l)

}
+O(ε2).(6.21)

Lemma 6.1 will be shown in Appendix A, proving Lemmas 6.2–6.5 first.
After obtaining the asymptotic behavior of the small eigenvalues, our next goal

is to study their stability.
Combining Lemma 6.1 with (6.15) and (6.16), the small eigenvalues λε are given

by the following two-dimensional eigenvalue problem, where (aε1, aε2) are the corre-
sponding eigenvectors:

−ε2t̂l
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
−t̂l∇xε

l
∇xε

k
(HDr (xεl , x

ε
l )) + t̂3−l∇xε

l
∇xε

k

(
GDr (xεl , x

ε
3−l)

)}

−∇xε
l

(
δk,3−l∇xε

3−l
GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)

+
{

(∇xε
k
t̂l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
l ) + (∇xε

k
t̂3−l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2)

= λεδjla
ε
l (t̂l)

2

∫
R

(w
′
(y))2 dy (1 + o(1)).(6.22)

From (6.22) it follows that the eigenvectors (a0
1, a

0
2) = limε→0(aε1, a

ε
2) satisfy

(a0
1, a

0
2) = (1,−1) or (a0

1, a
0
2) = (1, 1), up to a constant factor.

For the eigenvector (a0
1, a

0
2) = (1,−1), the computations of the eigenvalue λε1 are

similar to those given in section 3. We get

λε1 = C3ε
2M ′(xε1) + o(ε2),

where

M(x) = −2θs tanh θs(L− x) + θr tanh θr(L− x) + θr
sinh θr(L− x) − sinh θr(L+ x)
cosh θr(L− x) + cosh θr(L+ x)
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and

(6.23) C3 =
1

3t̂l

∫
R
w3 dy∫

R(w′ )2 dy
> 0.

This implies

M
′
(x) =

2θ2s
cosh2 θs(L− x)

− θ2r
cosh2 θr(L− x)

− θ2r

(
1 − [sinh θr(L− x) − sinh θr(L+ x)]2

[cosh θr(L− x) − cosh θr(L+ x)]2

)
.

Obviously, M ′(x) < 0 if θs = 0 or if θs is small compared to θr. A simple sufficient
condition is obtained by taking into account the first two terms of M ′(x) which has
been derived in section 3 and is given by (3.13). Recall that (3.13) holds if Ds/Dr > 4.

If Ds/Dr > 4, the eigenvalue λε1 has negative real part.
Now we consider the eigenvalue λε2 with eigenvector such that limε→0(aε1, a

ε
2) =

(1, 1). We have the following result.
Lemma 6.6. Suppose that λε2 is the eigenvalue with eigenvector limε→0(aε1, a

ε
2) =

(1, 1). Then we have

(6.24) λε2 = C3ε
2P (xε1, x

ε
2) + o(ε2), where C3 > 0 has been defined in (6.23),

and

P (xε1, x
ε
2) = (∇xε

1
+ ∇xε

2
)

{
(∇xε

1
−∇xε

2
)GDs(xε1, xε2)

GDs(xε1, x
ε
2)

− t̂ε1(x
ε
1, x

ε
2)(∇xε

1
−∇xε

2
)HDr (xε1, x

ε
1) − t̂ε2(x

ε
1, x

ε
2)(∇xε

1
−∇xε

2
)HDr (xε1, x

ε
1)

}
.

We have P (xε1, xε2) ≤ 0 with equality if and only if xε1 = xε2 = 0.
Lemma 6.6 will be proved in Appendix B.
By the argument of Dancer [2] the eigenvalue problem (6.22) captures all con-

verging sequences of small eigenvalues λε, and so λε1 and λε2 are all o(1) eigenvalues
for ε small enough. Therefore we have the following main result on o(1) eigenvalues.

Theorem 6.7. Suppose Ds/Dr > 4 and limε→0 x
ε
1 = x1 �= 0. The mutually

exclusive, spiky steady state given in Theorem 3.2 is linearly stable with respect to
small eigenvalues λε = o(1) if τ ≥ 0 and ε > 0 are both small enough. More precisely,
we have Re(λε) ≤ cε2 for some c > 0 independent of ε and τ .

7. Numerical simulations. For the simulations we use the domain Ω = (−1, 1)
and Neumann boundary conditions for all components. The constants in the five-
component Meinhardt–Gierer system are chosen as follows:

ε2 = .001, Dr = .1, Ds = 1, c = 1, τ = 1.

The graphs in Figure 1 show the numerically obtained long-term limit of the
five components g1, g2, r, s1, s2, i.e., the state at t = 3,000. After that the solution is
numerically stable and does not change anymore. This confirms the analytical result
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Fig. 1. The stable, mutually exclusive, two-spike steady state. The five components g1, g2, r,
s1, s2 have been plotted to highlight the interactions between them.

that the steady state with two mutually exclusive spikes for the two activators which
are located in different positions is stable.

Our simulations support the conjecture that the spikes are not only linearly stable
as steady states but that, at least locally, they are also dynamically stable for the
parabolic reaction-diffusion system.

The choice of constants for the numerical simulations has been motivated by the
analysis. In particular,Dr has to be rather small compared toDs by the stability result
in section 4. On the other hand, Dr cannot be too small since otherwise by the results
in section 3 the distance between the spikes becomes very large and there is no such
solution on the interval (−1, 1). So the parameters have to be chosen very carefully,
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and without any analytical results it would be very hard to find the parameter range
for which stable mutually exclusive spikes exist.

Figure 1 shows that the inhibitor r has two peaks which are near the peaks of the
local activators g1 and g2. The profile of the peaks of r is “smoother” than for those
of the local activators. The lateral activator si has a peak near the peak of gi, and its
profile again is smoother than the latter.

We expect Hopf bifurcation and oscillating spikes to occur for sufficiently large
tau. We analyzed only the case τ = 0 and did not observe oscillations numerically
for τ = 1. The instabilities of the spikes which we encountered in the numerical
calculations were (i) disappearance of spikes when their amplitudes becomes unstable
(related to large eigenvalues)—this happens if the ratio of the diffusion constants Ds

Dr

is too small, and (ii) movement of the spikes to the boundary or towards each other
when their positions became unstable (related to small eigenvalues)—this occurs if
Dr is too small.

For numerical simulations with very large τ we expect oscillations to occur.

Appendix A. Proof of Lemma 6.1. In this appendix we prove Lemma 6.1 in
a sequence of lemmas. First we introduce some notation.

Using the notation of (3.7), we introduce matrix notation

e = (1, 1)T, t =
(
t̂1, t̂2

)T
, ∇xi t̂ =

(
∇xi t̂1,∇xi t̂2

)T
, i = 1, 2,

Gij =
(
G(xi, xj)

)
, i, j = 1, 2, ∇xiGkl =

(
∇xiG(xk, xl)

)
, i, j, k = 1, 2,

from which we get

(A.1)

⎧⎪⎨
⎪⎩

e = G t̂,
0 = (∇x1G) t̂+ G

(
∇x1 t̂

)
,

0 = (∇x2G) t̂+ G
(
∇x2 t̂

)
.

The system (A.1) has a unique solution (t̂,∇x1 t̂,∇x2 t̂) since det(G) �= 0, which can
be written as follows:

(A.2) t̂ = G−1e, ∇xi t̂ = −G−1 (∇xiG)G−1e, i = 1, 2.

Let us set

(A.3) L̃ε,jφ
⊥
ε := ε2Δφ⊥ε,j − φ⊥ε,j +

2cg̃ε,js̄ε,3−j
r̄ε

φ⊥ε,j −
cg̃2
ε,js̄ε,3−j

r̄2ε
ψ⊥
ε +

cg̃2
ε,j

r̄ε
η⊥ε,3−j

and aε := (aε1, a
ε
2)
T .

We now prove the key lemma, Lemma 6.1, in a sequence of lemmas.
Proof of Lemma 6.2. Note that for k = 3 − l we have

η0
ε,k(x

ε
l ) = αε

∫ L

−L
GDs(x

ε
l , z)g̃

′

ε,k(z) dz +O(ε)

= αεt̂k∇xε
k
GDs(x

ε
l , x

ε
k)
∫ L

−L
zw′

(
z − xk
ε

)
(z) dz

= −t̂k∇xε
k
GDs(x

ε
l , x

ε
k)αε

(
ε

∫ ∞

−∞
w(y) dy

)
+O(ε)

= −t̂k∇xε
k
GDs(x

ε
l , x

ε
k) +O(ε).(A.4)
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Proof of Lemma 6.3. Note that for k = 3 − l we have

s̄
′

ε,k(x
ε
l ) = αε∇xε

l

∫ L

−L
GDs(x

ε
l , z)g̃ε,k(z) dz

= αε∇xε
l
GDs(x

ε
l , x

ε
k)
∫ L

−L
t̂kw

(
z − xk
ε

)
(z) dz +O(ε)

= αεt̂k∇xε
l
GDs(x

ε
l , x

ε
k)
(
ε

∫ ∞

−∞
w(y) dy

)
+O(ε)

= t̂k∇xε
l
GDs(x

ε
l , x

ε
k) +O(ε).(A.5)

Proof of Lemma 6.4. We first consider the case k = l and compute ψε,l(xεl ) as
follows:

ψε,l(xεl ) = cαε

∫ L

−L
GDr (xεl , z)

(
2g̃

′

ε,lg̃ε,ls̄ε,3−l + g̃2
ε,3−lη

0
ε,l

)
(z) dz +O(ε)

= c(αε)2
∫ ∞

−∞
KDr (|z|)

(
2g̃ε,l(xεl + z)g̃

′

ε,l(x
ε
l + z)

)∫ L

−L
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy dz

− c(αε)2
∫ L

−L
HDr (xεl , z)

(
d

dz
(g̃ε,l(z))2

)∫ L

−L
GDs(z, y)g̃ε,3−l(y) dy dz

+ c(αε)2
∫ L

−L
GDr (xεl , z) (g̃ε,3−l(z))

2
∫ L

−L
GDs(z, y)g̃

′

ε,l(y) dy dz +O(ε)

= c(αε)2
∫ ∞

−∞
KDr (|z|)

(
2g̃ε,l(xεl + z)g̃

′

ε,l(x
ε
l + z)

)∫ L

−L
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy dz

+
c

2
t̂1t̂2 t̂l

((
∇xε

l
HDr(x

ε
l , x

ε
l )
)
GDs(x

ε
l , x

ε
3−l)

)
+ ct̂1t̂2t̂l

(
HDr (xεl , x

ε
l )∇xε

l
GDs(x

ε
l , x

ε
3−l)

)

− ct̂1t̂2t̂3−l
(
GDr (xεl , x

ε
3−l)∇xε

l
GDs(x

ε
3−l, x

ε
l )
)

+O(ε).(A.6)

Next we consider the case k = 3 − l and compute ψε,3−l(xεl ) as follows:

ψε,3−l(xεl ) = cαε

∫ L

−L
GDr (xεl , z)

(
2g̃

′

ε,3−lg̃ε,3−ls̄ε,l + g̃2
ε,lηε,3−l

)
(z) dz +O(ε)

= c(αε)2
∫ ∞

−∞
KDr(|z|) (g̃ε,l(xεl + z))2

∫ L

−L
GDs(x

ε
l + z, y)g̃

′

ε,3−l(y) dy dz

+ c(αε)2
∫ L

−L
GDr (xεl , z)

(
d

dz
(g̃ε,3−l(z))2

)∫ L

−L
GDs(z, y)g̃ε,l(y) dy dz

− c(αε)2
∫ L

−L
HDr (xεl , z) (g̃ε,l(z))

2
∫ L

−L
GDs(z, y)g̃

′

ε,3−l(y) dy dz +O(ε)

= c(αε)2
∫ ∞

−∞
KDr(|z|) (g̃ε,l(xεl + z))2

∫ L

−L
GDs(x

ε
l + z, y)g̃

′

ε,3−l(y) dy dz

+ ct̂1t̂2t̂l

(
HDr (xεl , x

ε
l )∇xε

3−l
GDs(x

ε
l , x

ε
3−l)

)

− ct̂1t̂2t̂3−l
((

∇xε
3−l
GDr (xεl , x

ε
3−l)

)
GDs(x

ε
3−l, x

ε
l )
)

− ct̂1t̂2 t̂3−l
(
GDr (xεl , x

ε
3−l)∇xε

3−l
GDs(x

ε
3−l, x

ε
l )
)

+O(ε).(A.7)
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Next we compute r̄ε(xεl ):

r̄ε(xεl ) = αεc

∫ L

−L
GDr (xεl , z)

(
g̃2
ε,1s̄ε,2 + g̃2

ε,2s̄ε,1
)
(z) dz +O(ε)

= (αε)2c
∫ ∞

−∞
KDr (|z|)

{
(g̃ε,l(xεl + z))2

∫ L

−L
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy

}
dz

− (αε)2c
∫ L

−L
HDr (xεl , z)

{
(g̃ε,l(z))

2
∫ L

−L
GDs(z, y)g̃ε,3−l(y) dy

}
dz

+ (αε)2c
∫ L

−L
GDr (xεl , z)

{
(g̃ε,3−l(z))

2
∫ L

−L
GDs(z, y)g̃ε,l(y) dy

}
dz +O(ε).

So we have

r̄
′

ε(x
ε
l ) = (αε)2c

∫ ∞

−∞
KDr (|z|)

{(
2g̃ε,l(xεl + z)g̃

′

ε,l(x
ε
l + z)

)∫ L

−L
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy

+ (g̃ε,l(xεl + z))2
∫ L

−L
∇xε

l
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy

}
dz

− (αε)2c
∫ L

−L
∇xε

l
HDr (xεl , z) (g̃ε,l(z))

2
∫ L

−L
GDs(z, y)g̃ε,3−l(y) dy dz

+ (αε)2c
∫ L

−L
∇xε

l
GDr (xεl , z) (g̃ε,3−l(z))

2
∫ L

−L
GDs(z, y)g̃ε,l(y) dy +O(ε)

= (αε)2c
∫ ∞

−∞
KDr(|z|)

{(
2g̃ε,l(xεl + z)g̃

′

ε,l(x
ε
l + z)

)∫ L

−L
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy

+ (g̃ε,l(xεl + z))2
∫ L

−L
∇xε

l
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy

}
dz

− c

2
t̂1 t̂2t̂l

(
(∇xε

l
HDr (xεl , x

ε
l ))GDs(x

ε
l , x

ε
3−l)

)

+ ct̂1t̂2t̂3−l
(
(∇xε

l
GDr (xεl , x

ε
3−l))GDs(x

ε
3−l, x

ε
l )
)

+O(ε).(A.8)

Now we compute (δklr̄
′

ε − ψε,k) (xεl ). Again we consider the two cases k = l and
k �= l separately.

First, for k = l, we get(
r̄
′

ε − ψε,l

)
(xεl ) = −ct̂1t̂2t̂l∇xε

l

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ ct̂1t̂2t̂3−l∇xε
l

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+ (αε)2c
∫ ∞

−∞
KDr(|z|) (g̃ε,l(xεl + z))2

∫ L

−L
∇xε

l
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy dz +O(ε)

= ct̂1t̂2

{
−t̂l∇xε

l

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)
+ t̂3−l∇xε

l

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
l
GDs(x

ε
l , x

ε
3−l)

}
+O(ε).
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Next we consider the case k = 3 − l and get

−ψε,3−l(xεl ) = −ct̂1t̂2t̂l∇xε
3−l

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂1t̂2 t̂3−l∇xε
3−l

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+ (αε)2c
∫ ∞

−∞
KDr(|z|) (g̃ε,l(xεl + z))2

∫ L

−L
∇xε

l
GDs(x

ε
l + z, y)g̃ε,3−l(y) dy dz +O(ε)

= ct̂1t̂2

{
−t̂l∇xε

3−l

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
3−l

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
3−l
GDs(x

ε
l , x

ε
3−l)

}
+O(ε).

This implies (6.20). The proof of Lemma 6.4 is finished.
Remark. Note that Lemma 6.4 can be written in the simpler way

(
δklr̄

′

ε − ψε,k

)
(xεl ) = ct̂1t̂2

{
t̂l∇xε

k

(
GDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
k

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)}

+O(ε),(A.9)

with the understanding that at jump discontinuities the derivative is defined as the
arithmetic mean of its left-hand and right-hand derivatives.

Proof of Lemma 6.5. The proof of Lemma 6.5 follows along the same lines as that
for Lemma 6.4 and is therefore omitted.

Before we can complete the proof of Lemma 6.1, we first need to study the asymp-
totic expansion of φ⊥ε as ε→ 0. Let us define

φ1
ε =

(
φ1
ε,1

φ1
ε,2

)

:= εaε1

(
(∇x1t1)w1

(∇x1t2)w2

)
+ εaε2

(
(∇x2t1)w1

(∇x2t2)w2

)
+ ε

G−1WA0
ε∇GDs(x1, x2)

GDs(x1, x2)
,(A.10)

where wi, i = 1, 2, have been defined in (2.3) and

A0
ε =

(
0 aε2
aε1 0

)
, W =

(
w1 0
0 w2

)
.

Then we have the following estimate.
Lemma A.1. For ε sufficiently small, it holds that

(A.11) ‖φ⊥ε − φ1
ε‖(H2(Ωε))2 = O(ε2).

Proof. To prove Lemma A.1, we first need to derive a relation between φ⊥ε,j , η
⊥
ε,j ,

and ψ⊥
ε,j. Note that, similarly to the proof of Proposition 3.1 in section 3, it follows
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that L̃ε is uniformly invertible from (Knewε,xε )⊥ to (Cnewε,xε )⊥. By this uniform invertibility,
we deduce that

(A.12) ‖φ⊥ε ‖(H2(Ωε))2 = O(ε), where φ⊥ε =
(
φ⊥ε,1, φ

⊥
ε,2

)T ∈ (Knewε,xε )⊥.

Let us cut off and rescale φ⊥ε,j as follows: φ̃ε,j =
φ⊥

ε,j

ε χ
(x−xε

j

r0

)
. Then φ⊥ε,j = εφ̃ε,j+e.s.t.

Choose φε,j such that ‖φ̃ε,j‖H1(R) = 1. Then we have, possibly for a subsequence,
that φ̃ε,j → φj in H1

loc(R).
By (6.12) and (6.13), ψ⊥

ε can be represented as follows (the proof is similar to
that of Lemma 6.4):

ψ⊥
ε (xε

j) = ε(αε)
2c

2∑
k=1

∫ L

−L

GDr (xε
j , z)

{
2g̃ε,k(z)φ̃ε,k(z)

∫ L

−L

GDs(z, y)g̃ε,3−k(y) dy

+ g̃2
ε,k(z)

∫ L

−L

GDs(z, y)φ̃ε,3−k(y) dy

}
dz(A.13)

= εαεc

2∑
k=1

GDr (xε
j , x

ε
k)GDs(xε

k, x
ε
3−k)

(
2t̂3−k

∫ L

−L

g̃ε,kφ̃ε,k dx+ (t̂k)2
∫ L

−L

φ̃ε,3−k dx

)
+ o(ε)

= εc
2∑

k=1

t̂kGDr (xε
j , x

ε
k)GDs(xε

k, x
ε
3−k)

(
2t̂3−k

∫
R
wφk dy∫

R
w2 dy

+ t̂k

∫
R
φ3−k dy∫
R
wdy

)
+ o(ε)

=
εc

GDr (xε
1, x

ε
1) +GDr (xε

1, x
ε
2)

{
GDr (xε

j , x
ε
j)GDs(xε

j , x
ε
3−j)

(
2t̂3−j

∫
R
wφj dy∫

R
w2 dy

+ t̂j

∫
R
φ3−j dy∫
R
w dy

)

+GDr (xε
j , x

ε
3−j)GDs(xε

3−j , x
ε
j)

(
2t̂j

∫
R
wφ3−j dy∫
R
w2 dy

+ t̂3−j

∫
R
φj dy∫

R
w dy

)}
+ o(ε).

In the same way, we calculate

η⊥ε,3−j(x
ε
j) = εαε

∫ L

−L
GDs(x

ε
j , z)φ̃ε,3−j(z) dz

= εαεGDs(x
ε
j , x

ε
3−j)

∫ L

−L
φ̃ε,3−j dx+O(ε2)

= εGDs(x
ε
j , x

ε
3−j)

∫
R
φ3−j dy∫
R w dy

+ o(ε)(A.14)

and

(A.15) η⊥ε,j(x
ε
j) = o(ε).

Substituting (6.18), (6.19), (6.20), (A), and (A.14) into (6.14) and calculating the
limit ε→ 0 as we have done in section 4, it follows that φ = (φ1, φ2)T satisfies

Lφ = Δφ− φ+ 2wφ−
[
B
∫
φ+ 2C

(∫
R

wφ

)](∫
R

w

)−1

w2

= t̂1(a · ∇G)G−1ew2 − t̂1A0∇GDs(x1, x2)
GDs(x1, x2)

w2.(A.16)
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In the previous calculation we have used (4.9), (4.10), (A.2), the notation

a = (a1, a2)T = lim
ε→0

(aε1, a
ε
2)
T , a · ∇ = a1∇x1 + a2∇x2 , xj = lim

ε→0
xεj , j = 1, 2,

A0 =
(

0 a2

a1 0

)

and (compare section 2)

r̄ε(xεj) = ct̂1t̂2GDs(x
ε
j , x

ε
3−j) +O(ε), j = 1, 2,(A.17)

s̄ε,3−j(xεj) = t̂3−jGDs(x
ε
j , x

ε
3−j) +O(ε), j = 1, 2.(A.18)

We compute

Id − B − 2C = − 1
GDr (x1, x1) +GDr (x1, x2)

(
GDr (x1, x1) GDr (x1, x2)
GDr (x1, x2) GDr (x2, x2)

)
= −t̂1G.

By the Fredholm alternative and since det(G) �= 0, equation (A.16) has a unique
solution φ which is given by

(A.19) φ = −G−1(a · ∇G)G−1ew +
G−1A0∇GDs(x1, x2)

GDs(x1, x2)
w.

Now we compare φ with φ1
ε . By definition and using (A.2), we get

φ1
ε =

(
ε
(
aε1∇xε

1
t̂1 + aε2∇xε

2
t̂1
)
g̃ε,1, ε

(
aε1∇xε

1
t̂2 + aε2∇xε

2
t̂2
)
g̃ε,2
)T

+ ε
G−1WA0∇GDs(x1, x2)

GDs(x1, x2)

= ε(aε · ∇xε t̂)w + ε
G−1A0∇GDs(x1, x2)

GDs(x1, x2)
w + o(ε)

= −εG−1(a · ∇G)G−1ew + ε
G−1A0∇GDs(x1, x2)

GDs(x1, x2)
w + o(ε).(A.20)

On the other hand, using (A.19) gives

φ⊥ε = ε
(
φ̃ε,1, φ̃ε,2

)T
+ e.s.t. = ε

(
φj

(
x− tεj
ε

))
j=1,2

+ o(ε)

= −εG−1(a · ∇G)G−1ew + ε
G−1A0∇GDs(x1, x2)

GDs(x1, x2)
w + o(ε).(A.21)

From (A.20) and (A.21), it follows that φε = φ1
ε + o(1).

Finally, we complete the proof of the key lemma, Lemma 6.1.
Proof of Lemma 6.1. The computation of J1 follows from Lemmas 6.4 and 6.5

and from (A.17), (A.18). We get

J1,l = cε
2∑

k=1

aεkδjl

∫ L

−L

c(g̃ε,j)2s̄ε,3−j
r̄ε

(
δkl

r̄
′

ε

r̄ε
− ψε,k

r̄ε

)
g̃

′

ε,l dx
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= ε

2∑
k=1

aεkδjl

∫ L

−L
c(g̃ε,j)2

s̄ε,3−j
r̄ε

(xεl )

(
δkl

r̄
′

ε

r̄ε
− ψε,k

r̄ε

)
g̃

′

ε,l dx

+ ε

2∑
k=1

aεkδjl

∫ L

−L

c(g̃ε,j)2s̄ε,3−j
r̄ε

[(
δkl

r̄
′

ε

r̄ε
− ψε,k

r̄ε

)
(xεl )

]
g̃

′

ε,l dx + o(ε2)

= − ε2t̂l

(∫
R

1
3
w3 dy

) 2∑
k=1

aεk

{
∇xε

l

{
−t̂l∇xε

k

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
k

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
k
GDs(x

ε
l , x

ε
3−l)

}

×
{(
t̂lGDr (xεl , x

ε
l ) + t̂3−lGDr (xεl , x

ε
3−l)

)
GDs(x

ε
l , x

ε
3−l)

}−1

−
{
−t̂l∇xε

k

(
HDr (xεl , x

ε
l )GDs(x

ε
l , x

ε
3−l)

)

+ t̂3−l∇xε
k

(
GDr (xεl , x

ε
3−l)GDs(x

ε
3−l, x

ε
l )
)

+
1

2
√
Dr

t̂l∇xε
k
GDs(x

ε
l , x

ε
3−l)

}

×
{
∇xε

l
GDs(x

ε
l , x

ε
3−l)

}{
GDs(x

ε
l , x

ε
3−l)

}−2
}

+ o(ε2)

= −ε2t̂l
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
−t̂l∇xε

l
∇xε

k
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
∇xε

k
GDr (xεl , x

ε
3−l)

}

+∇xε
l

(∇xε
k
GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)

−
{
−t̂l∇xε

k
HDr (xεl , x

ε
l ) + t̂3−l∇xε

k
GDr (xεl , x

ε
3−l)

}

×
{
−t̂l∇xε

l
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2).

In the previous computation of J1,l we have used the condition for the positions of
the spikes given in the derivation of Theorem 3.2, which implies that s̄ε,3−j

r̄ε
(xεj) = O(ε).

More precisely, this condition implies that the second line in the previous computation
has only a contribution which was included in the error terms. We will use the same
condition in the computation of the other Ji,l without explicitly mentioning it again.

Similarly, we compute J2,l. We get

J2,l = ε
2∑
k=1

aεk

∫ L

−L

c(g̃ε,j)2s̄ε,3−j
r̄ε

(
δ3−j,k

η0
ε,3−j
s̄ε,3−j

− δjk
s̄
′

ε,3−j
s̄ε,3−j

)
g̃

′

ε,l dx

= −ε
2∑
k=1

aεk

∫ L

−L

c(g̃ε,j)2s̄ε,3−j
r̄ε

(
(δjk∇xε

j
+ δ3−j,k∇xε

3−j
)GDs(xεj , x

ε
3−j)

GDs(xεj , x
ε
3−j)

)
g̃

′

ε,l dx+ o(ε2)

= ε2t̂l

(∫
R

1
3
w3(y) dy

) 2∑
k=1

aεk∇xε
l

(
(δkl∇xε

l
+ δk,3−l∇xε

3−l
)GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)
+ o(ε2).
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Note that we need to have k = 3 − j and j = l; otherwise J2,l is of the order o(ε2).
The estimate J3,l = o(ε2) follows by the fact that φ⊥ε,j ⊥ g̃ε,j.
Next we determine J4,l. We compute, using (A), (A.14), and Lemma 7, that

J4,l = cδjl

∫ L

−L

(g̃ε,j)2s̄ε,3−j
r̄ε

(
η⊥ε,3−j
s̄ε,3−j

− ψ⊥
ε

r̄ε

)
g̃

′

ε,l dx

= −ε2t̂l
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
(∇xε

k
t̂l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
l )

+ (∇xε
k
t̂3−l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
3−l)

}

−
{

(∇xε
k
t̂l(xε1, x

ε
2))GDr (xεl , x

ε
l ) + (∇xε

k
t̂3−l(xε1, x

ε
2))GDr (xεl , x

ε
3−l)

}

×
{
−t̂l∇xε

l
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2).

Here we have used the relation∫ L

−L

cg̃2
ε,j s̄ε,3−j

r̄ε

η⊥ε,3−j
s̄ε,3−j

εg̃
′

ε,j dx = o(ε2),

which follows from the trivial identity

∇xε
l

(
GDs(xεj , x

ε
3−j)

GDs(xεj , x
ε
3−j)

)
= 0.

In a similar way, using the identity

∇xε
l

(
t̂jGDr (xεj , x

ε
j) + t̂3−jGDr (xεj , x

ε
3−j)

t̂jGDr (xεj , x
ε
j) + t̂3−jGDr (xεj , x

ε
3−j)

)
= 0,

it can be seen that the contribution of the term −εG
−1WA0∇GDs (xε

1,x
ε
2)

GDs (xε
1,x

ε
2)

in ψ⊥
ε to J4,l

is of the order o(ε2).
Adding J1,l, J2,l, and J4,l, we get

Jl = −ε2t̂l
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
−t̂l∇xε

l
∇xε

k
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
∇xε

k
GDr (xεl , x

ε
3−l)

}

+∇xε
l

(
δkl∇xε

l
GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)

−
{
−t̂l∇xε

k
HDr (xεl , x

ε
l ) + t̂3−l∇xε

k
GDr (xεl , x

ε
3−l)

}

×
{
−t̂l∇xε

l
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
GDr (xεl , x

ε
3−l)

}

−∇xε
l

(
(δkl∇xε

l
+ δk,3−l∇xε

3−l
)GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)
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+
{(

∇xε
k
t̂l(xε1, x

ε
2)
)
∇xε

l
GDr (xεl , x

ε
l ) +

(
∇xε

k
t̂3−l(xε1, x

ε
2)
)
∇xε

l
GDr (xεl , x

ε
3−l)

}

−
{(

∇xε
k
t̂l(xε1, x

ε
2)
)
GDr (xεl , x

ε
l ) +

(
∇xε

k
t̂3−l(xε1, x

ε
2)
)
GDr (xεl , x

ε
3−l)

}

×
{
−t̂l∇xε

l
HDr (xεl , x

ε
l ) + t̂3−l∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2).

This expression consists of six parts, which are given in lines 1, 2, 3–4, 5, 6, 7–8,
respectively. Part 3 is minus part 6 (up to o(ε2)) by (A.1), and they cancel. Part 2
and part 4 cancel partially.

Making these simplifications, we finally get

Jl = −ε2t̂l
(∫

R

1
3
w3 dy

) 2∑
k=1

aεk

{{
−t̂l∇xε

l
∇xε

k
(HDr (xεl , x

ε
l ))

+ t̂3−l∇xε
l
∇xε

k

(
GDr (xεl , x

ε
3−l)

)}

−∇xε
l

(
δk,3−l∇xε

3−l
GDs(xεl , x

ε
3−l)

GDs(xεl , x
ε
3−l)

)

+
{

(∇xε
k
t̂l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
l ) + (∇xε

k
t̂3−l(xε1, x

ε
2))∇xε

l
GDr (xεl , x

ε
3−l)

}}
+ o(ε2).

This finishes the proof of Lemma 6.1.

Appendix B. Proof of Lemma 6.6.
Proof of Lemma 6.6. We show that

P (xε1, x
ε
2) = (∇xε

1
+ ∇xε

2
)

{
(∇xε

1
−∇xε

2
)GDs(xε1, x

ε
2)

GDs(xε1, x
ε
2)

− t̂ε1(x
ε
1, x

ε
2)(∇xε

1
−∇xε

2
)HDr (xε1, x

ε
1) − t̂ε2(x

ε
1, x

ε
2)(∇xε

1
−∇xε

2
)HDr (xε1, x

ε
1)

}
< 0.

We compute

(∇xε
1
+ ∇xε

2
)GDs(x

ε
1, x

ε
2) = 0

and

(∇xε
1
+ ∇xε

2
)(∇xε

1
−∇xε

2
)GDs(x

ε
1, x

ε
2) = ((∇xε

1
)2 − (∇xε

2
)2)GDs(x

ε
1, x

ε
2) = 0.

Therefore, the first term coming from GDs gives no contribution at all.
Further, we get

(∇xε
1
+ ∇xε

2
)t̂ε1(x

ε
1, x

ε
2) =

∇xε
2
GDr (xε2, xε2)
detG .
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To simplify the previous expression, we use the identity

(B.1) (∇xε
1

+ ∇xε
2
)(detG) = 0,

which is easy to derive.
Using (B.1), we get

(B.2) (∇xε
1
+ ∇xε

2
)t̂ε1(x

ε
1, x

ε
2) =

∇xε
2
GDr (xε2, x

ε
2)

detG ,

which gives

−[(∇xε
1
+ ∇xε

2
)t̂ε1(x

ε
1, x

ε
2)](∇xε

1
−∇xε

2
)GDr (xε1, x

ε
1)

= −
∇xε

2
GDr (xε2, xε2)
detG ∇xε

1
GDr (xε1, x1ε)

=
∇xε

1
GDr (xε1, x

ε
1)

detG ∇xε
1
GDr (xε1, x

ε
1).(B.3)

In analogy to (B.2), we get

(B.4) (∇xε
1
+ ∇xε

2
)t̂ε2(x

ε
1, x

ε
2) =

∇xε
1
GDr (xε1, xε1)
detG ,

which implies
(B.5)

−[(∇xε
1
+∇xε

2
)t̂ε2(x

ε
1, x

ε
2)](∇xε

1
−∇xε

2
)GDr (xε1, x

ε
2) = −

∇xε
1
GDr (xε1, xε1)
detG 2∇xε

1
GDr (xε1, x

ε
2).

Finally, we compute

−t̂ε1(xε1, xε2)(∇xε
1

+ ∇xε
2
)(∇xε

1
−∇xε

2
)GDr (xε1, x

ε
1) = −t̂ε1(xε1, xε2)∇2

xε
1
GDr (xε1, x

ε
1)

= −GDr (xε2, x
ε
2) −GDr (xε1, x

ε
2)

detG ∇2
xε
1
GDr (xε1, x

ε
1).(B.6)

Now P (xε1, x
ε
2) is given by the sum of (B.3), (B.5), and (B.6).

Using the explicit expression of the Green’s function (2.6), we get for the sum of
(B.3) and (B.5)

∇xε
1
GDr (xε1, x

ε
1)

detG
[
∇xε

1
GDr (xε1, x

ε
1) − 2∇xε

1
GDr (xε1, x

ε
2)
]

=
θ4r

sinh2 2θrL detG
sinh(2θr − xε1) [sinh 2θrxε1 + sinh 2θr(L − xε1)] .

For (B.6), we get

−GDr(x
ε
2, x

ε
2) −GDr (xε1, x

ε
2)

detG ∇2
xε
1
GDr (xε1, x

ε
1)

= − θ4r
sinh2 2θrL detG

cosh 2θr(L+ xε2) [cosh θr(L− xε2) − cosh θr(L− xε1)] 2 cosh 2θrxε1.
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Adding this all up, we get

P (xε1, x
ε
2) =

θ4r
sinh2 2θrL detG

{
−2 cosh2θr(L+ xε2) [cosh θr(L− xε2)

− cosh θr(L− xε1)] cosh 2θrxε1

+ sinh 2θrxε1 [sinh 2θrxε1 + sinh 2θr(L − xε1)]

}

=
θ4r

sinh2 2θrL detG

{
cosh 2θrL · [1 − cosh 2θrxε1]

}
.

Note that for x1 = limε→0 x
ε
1 we have

cosh 2θrL · [1 − cosh 2θrx1] ≤ 0

and

cosh 2θrL · [1 − cosh 2θrx1] = 0 if and only if x1 = 0.

Therefore, if x1 �= 0, then for ε small enough we have P (xε1, xε2) < 0.
This concludes the proof of Lemma 6.6.
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THERMOPHORESIS DUE TO STRONG TEMPERATURE
GRADIENTS∗

EHUD YARIV†

Abstract. We consider a standard thermophoretic configuration, wherein an insulating spherical
particle is suspended within a gaseous domain which is bounded between two parallel walls. The walls
are maintained at two different temperatures, thereby generating a nonuniform temperature field
within the gas. Due to thermal slip, the particle drifts toward the cold wall. Conventional analyses of
this problem, starting with the classical work of Epstein [Z. Physik., 54 (1929), pp. 537–563], employ
the small-temperature-difference limit. Then, if the particle is small enough, the problem becomes
quasi-steady, and the animating effect of the two walls can be represented by a uniform far-field
temperature gradient. The corresponding unbounded problem is identical to other slip-generated
problems, such as electrophoresis. We focus here upon the general case where the temperature
difference is not small. The dependence of the pertinent flow variables upon the absolute temperature
prohibits a transformation to a quasi-steady description, whence the transport problem is governed
by an unsteady nonlinear process. The small-particle limit is a singular one, wherein the walls cannot
be represented by effective far-field conditions. Moreover, the unique structure of the thermal-slip
condition implies that inertia and heat-convection effects are of comparable scaling to wall effects.
The singular limit is analyzed using inner–outer expansions. In the outer domain, the temperature
field is steady to leading-order, but is not described by a uniform gradient. In the inner particle-
scale domain, the flow problem is governed by the steady Stokes equations only in the leading order.
The transformation between the inner and outer coordinates involves the particle velocity, itself a
dependent variable. Using symmetry arguments, we avoid the detailed calculation of the leading-
order flow correction, and focus instead upon its effect on the particle thermophoretic velocity. Due
to a fortuitous cancellation of terms, Epstein’s result remains valid to leading-order analysis. It has
been proposed by Kogan, Galkin, and Fridlender [Sov. Phys. Usp., 19 (1976), pp. 420–428] that
thermal stresses must be incorporated into all continuum descriptions which apply to flows driven
by O(1) temperature differences. Using symmetry arguments, we also analyze the effects of these
stresses in the present configuration.

Key words. inner outer expansions, Stokes equations, phoretic motion
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1. Introduction. When solving continuum flows, the common approach is to
postulate a no-slip boundary condition over all solid surfaces in contact with the
fluid. Theoretical predictions based upon this condition, however, fail to explain two
well-known gas experiments which involve nonisothermal solid surfaces. The first
experiment was carried out by Tyndall [21], who observed that solid particles drift
away from heated surfaces. (This motion is now known as thermophoresis.) Another
deviation from the no-slip prediction was observed by Reynolds [19], who exposed
closed gas capillaries to temperature gradients and noticed the establishment of a
pressure difference between the capillary ends, with higher pressure at the hot end
(see also [15, 2]). (This phenomenon was coined “thermal transpiration.”)

These experiments have been performed in the continuum regime. According
to “conventional” continuum theory, both describe pure heat conduction scenarios,

∗Received by the editors December 18, 2007; accepted for publication (in revised form) July 1,
2008; published electronically November 14, 2008. This research was supported by the United
States—Israel Binational Science Foundation under grant 2004355.

http://www.siam.org/journals/siap/69-2/71121.html
†Department of Mathematics, Technion—Israel Institute of Technology, Technion City 32000,

Haifa, Israel (yarive@technion.ac.il).

453



454 EHUD YARIV

with no mechanism for flow generation (gravity being neglected). Indeed, both the
governing balance equations and the boundary conditions (including the ubiquitous
no-slip condition) are satisfied by a static solution. In the absence of flow, however,
there is no mechanism to push the particle in Tyndall’s experiment, and there can be
no pressure variation in Reynolds’s experiment.

Both phenomena were explained by Maxwell [16] using gas-kinetic theory. Max-
well analyzed the Knudsen layer which lies in at the gas–solid interface, wherein the
gas is out of thermodynamic equilibrium, and showed that even if the layer thick-
ness goes to zero, it results in a finite slip velocity v∗

S at its outer edge—where the
continuum boundary conditions are prescribed:

(1.1) v∗
S = cS

ν∗

θ∗
∂θ∗

∂x∗
S

.

Here cS is an O(1) dimensionless coefficient, ν∗ is the kinematic viscosity, θ∗ is the
temperature, and ∂/∂x∗

S denotes surface gradient (dimensional variables are decorated
with stars). Maxwell obtained the value cS = 3/4 using the artificial-yet-simple model
of central molecular interactions that decay with the sixth power of the intermolecular
separation (“Maxwell molecules”). Other systematic analyses of this problem [20, 13]
yield different values of cS .1 The predicted value of cS depends upon the molecular
model which is employed to solve Boltzmann’s equation in the Knudsen layer. At
present, there is no universally accepted value for cS . Practically speaking, however,
all molecular models predict O(1) slip coefficients, in agreement with experimental
results.

Given the relative slip of gases along nonisothermal solid surfaces, it becomes
clear that a force-free solid particle will drift toward cold regions (thermophoresis).
In the case of nonuniformly heated closed capillary, the thermal slip along the capillary
walls tends to generate a uniform plug flow, directed from the cold end to the hot
one. This flow generates a nonzero net mass flux; in a closed capillary, it must
therefore be accompanied by a counter-balancing Poiseuillian velocity profile (which
is the only nontrivial solution that satisfies the Navier–Stokes equations and a no-
slip condition on the capillary walls). This profile, in turn, generates a longitudinal
pressure gradient, which is directed toward the hot end of the capillary. This pressure
gradient explains the thermal transpiration phenomenon.

In analyzing slip-driven flows, it is a common practice to assume that the tem-
perature difference Δθ∗ associated with the imposed wall- temperature distribution
is small compared with a characteristic temperature, say θ∗∞, of that distribution.
Then, the gas density and transport coefficients are considered constant. This leads
to two major simplifications: the temperature field is essentially governed by conduc-
tion (and therefore satisfies Laplace’s equation), and the slip condition (1.1) adopts
the approximated form

v∗
S ≈ cS

ν∗∞
θ∗∞

∂θ∗

∂x∗
S

(where ν∗∞ is a characteristic viscosity value). Within this approximation, the thermal-
slip condition is analogous to that appearing in a variety of other phoretic mecha-

1The structure (1.1) is valid for arbitrary temperature gradients [14]. The above-mentioned anal-
yses were performed using a linearized version of the Boltzmann equation, valid for small gradients:
Since the value of cS is independent of the magnitude of the gradients, this linearized approach is
legitimate.
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nisms [1], where the slip velocity is proportional to the gradient of some harmonic
field (electric potential, solute concentration, etc.).

The analogy breaks down when Δθ∗ is comparable to θ∗∞. Indeed, numerical
simulations in the strong-gradient regime [18] exhibit rich phenomena, not all of which
can be described by the linearized model. Despite its importance for a variety of
applications (in Annis’s experiments [2], for example, Δθ∗ = 300 K), this general case
has not yet been systematically investigated. It is the goal of this paper to present
an analytic investigation of flows driven by significant temperature differences, where
the parameter

(1.2) ζ =
Δθ∗

θ∗∞

is O(1).
A fundamental property of such thermally-driven flows, identified by Kogan [13],

has to do with the velocity scaling. According to the slip condition (1.1), slip-driven
flows are quantified by the velocity scale

(1.3) U = ζ
ν∗∞
L
.

Here, ν∗∞ is a characteristic viscosity and L is the length dimension associated with
the temperature gradient. This scaling implies that the Reynolds number, U L/ν∗∞,
is simply given by ζ. Thus, flows which are driven by strong temperature differences
are characterized by inherently O(1) Reynolds numbers. (Since the Prandtl number
of a gas is O(1), the same conclusion holds for the Péclet number.) This universal
scaling contrasts with phoretic slip-driven mechanisms which are characterized by
independent velocity scales.2

It becomes evident that flows driven by strong temperature differences are inher-
ently nonlinear. The nonlinearity results from both the dependence of thermodynamic
and transport properties upon the temperature and from the universal velocity scal-
ing. In a previous work [23], the role of nonlinearity was investigated in the context
of channel flows. In this paper we investigate its implications upon thermophoretic
particle motion.

Conceptually, the simplest thermophoretic configuration consists of a gaseous do-
main which is bounded between two walls. The walls are separated distance 2L apart,
and are held at two different temperatures, say θ∗∞ ± Δθ∗. A particle of dimension a
is introduced into the gas domain, and drifts toward the cold wall. Practical interest
often surrounds the small-particle case, ε = a/L� 1.

This problem was solved by Epstein [8] in the limit ζ → 0. In that limit, the flow
and heat transport are affected only by the temperature gradients, rather than the ab-
solute temperature. In that case, it is possible to transform the bounded-fluid-domain
problem into a comparable unbounded-fluid-domain problem, whereby the two walls
are represented by a far-field “imposed gradient” condition. The resulting steady
problem is identical to that describing electrophoresis of a constant zeta-potential
particle under the action of a uniformly applied electric field [1], the temperature
being analogous to the electric potential.

For ζ = O(1), however, the absolute temperature affects the flow and heat-
transport processes. Accordingly, the spatial distribution of the pertinent fields de-
pends upon the instantaneous position of the particle relative to the walls. This

2These reflect the dependence of phoretic slip upon dimensional physicochemical surface proper-
ties (e.g., surface charge density), which have no counterpart in the thermal-slip mechanism.
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dependence implies that the ζ = O(1) regime is inherently unsteady. Moreover, even
for small particles (ε � 1) it is not possible to replace the two walls by a far-field
condition. The limit ε� 1 is a singular one.

The asymptotic limit ε � 1 is addressed here via the use of matched asymp-
totic expansions. The transport processes are analyzed in two separate regions. An
“outer” region, characterized by the large length scale L associated with the interwall
separation, and an “inner” region, characterized by the particle dimension a. In both
regions, each of the pertinent fields is expanded into an asymptotic series in terms of
the aspect-ratio parameter ε.

The outer region is dominated by a pure heat conduction process. In a sense, this
region constitutes the analog of the “far-field” in the linearized problem. In the present
problem, however, the outer temperature field is affected by the gas conductivity
and therefore is not harmonic; specifically, its longitudinal variation is nonlinear. A
spatially-linear profile is attained only in the limit ζ � 1, and only then does the
outer solution conform to the “applied-gradient” notion.

The inner region is suitable for the description of the transport processes at the
particle scale, which are governed by nonlinear and unsteady equations. In that scale,
where the fluid domain appears unbounded, conditions at “infinity” are supplemented
by the requirement of matching with the outer solution. The equations are closed by
imposing Newton’s second law on the particle motion, thereby relating the particle
velocity to the flow field about it. In view of that dependence, the particle velocity
must also be expressed as an asymptotic series in ε. Since the transformation between
the inner and outer coordinates is performed using this velocity, Van Dyke’s matching
rules cannot be applied and we resort to the use of intermediate variables.

The leading-order inner flow problem is similar to the linearized ζ � 1 problem
analyzed by Epstein [8]. Due to the time-varying “applied gradient” appearing in the
ζ = O(1) case, the similarity is not complete. Nevertheless, a fortuitous cancellation
of terms reveals that the leading-order thermophoretic velocity is identical to that
obtained by Epstein. Nonlinear effects in the flow problem appear only in the leading-
order asymptotic correction. This correction is governed by a perturbation of the
compressible Navier–Stokes equations. The mathematical problem governing that
correction is transformed into a nonhomogeneous creeping-flow equation. Without
solving the flow correction in detail, we employ symmetry arguments and show that
it does not affect the particle velocity.

We also consider the role of Burnett stresses. In a formal small-Knudsen-number
analysis of the Boltzmann equation [6], these stresses constitute a correction to the
“conventional” Newtonian stress. Given their small magnitude in continuum flows,
Burnett stresses can be ignored in most practical scenarios. Continuum flow in the
presence of strong temperature gradients, however, may pose an exceptional case, since
two of the Burnett terms (the “thermal stresses”) are associated with temperature
variations. Indeed, it was shown by Kogan and his coworkers [13, 14] that thermal
stresses can actually generate flow if such variations are externally imposed. In that
case, Burnett terms actually possess the same scaling as the Newtonian stress, and
must therefore be superimposed upon the conventional Navier–Stokes equations. A
systematic discussion of this asymptotic reordering appears in [4].

Flows driven by strong temperature variations through the action of thermal
stresses were studied for a variety of idealized configurations [14], which are usually
characterized by several isothermal surfaces (held at different temperatures). In such
configurations, the only mechanism for flow generation are the thermal stresses, since
no thermal slip is generated on the surfaces. Unfortunately, these idealized configura-
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tions are not encountered in practical devices. To this day, as a matter of fact, there
is no available experimental evidence for the existence of thermal stresses.

Since the velocity scaling associated with thermal-stress-driven flows is the same
as that of flows driven by thermal slip, thermal stresses may be pertinent to the
present problem. We therefore revisit the thermophoretic analysis, incorporating the
two Burnett thermal terms into the momentum balance. Symmetry arguments show
that this incorporation does not affect the O(ε) correction to the particle velocity.

2. Problem formulation. Consider the simplest model of thermophoresis, tak-
ing place within an ideal gas domain (constant specific heats cP and cV ) which is
bounded between two parallel solid walls separated distance 2L apart. The two walls
are maintained at two different temperatures, say (1 ± ζ) θ∗∞ (where 0 < ζ < 1).

Neglecting gravity effects, the pressure field between the walls must be uniform;
it is denoted by p∗∞. Since the temperature field θ∗ is nonuniform, so must be the
density field ρ∗. The static pure-conduction state described here is compatible with
the equations of fluid motion.

A spherical solid particle of radius a (a < L) is now introduced between the
walls. For simplicity, we assume a thermally-insulating particle. The nonuniform
temperature field along the particle surface, in conjunction with the slip condition
(1.1), implies that the particle-free static state is perturbed: the slip animates a
velocity field v∗, and a consequent modification of the the uniform pressure p∗∞ to a
nonuniform distribution p∗; the fields θ∗ and ρ∗ are then modified from their respective
static distributions. Since the particle is freely suspended, these fields may result in its
motion relative to the ambient nonuniform temperature field. The problem is therefore
inherently unsteady; in general, then, all fields depend upon both the position vector
x∗ and the time t∗.

Clearly, the problem is axi-symmetric about an axis (say z∗) which runs perpen-
dicular to the walls and passes through the particle center. For convenience, we take
the walls to be at z∗ = ±L. Symmetry implies that the particle velocity is given
by w∗ = ez w

∗, ez being a unit vector pointing in the positive-z∗ direction. The
instantaneous configuration of the system is determined by the position z∗P (t∗) of the
particle center, where w∗ = dz∗P /dt

∗. A schematic of the problem is presented in
Figure 2.1.

The pertinent fields (v∗, p∗, ρ∗, and θ∗) involved in this unsteady transport

(1+ζ)θ (1−ζ) θ
∗∗

a

ideal gas

z

z=−L z=L∗∗

∗
Pz ∗ ∗w

Fig. 2.1. A schematic of the particle-walls configuration.
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process are governed by the standard set of balance equations [3], in which the viscosity
μ∗ and the heat conductivity k∗ are both temperature dependent. The heat transport
is described by the enthalpy-balance equation,

(2.1) cPρ
∗Dθ

∗

Dt∗
=

∂

∂x∗ ·
(
k∗
∂θ∗

∂x∗

)
+
Dp∗

Dt∗
+ Φ∗.

Here,

D

Dt∗
=

∂

∂t∗
+ v∗ · ∂

∂x∗

is the material derivative operator, and

(2.2) Φ∗ = 2μ∗e∗ : e∗

is the dissipation rate, wherein e∗ is the rate-of-strain tensor:

(2.3) e∗ =
1
2

[(
∂v∗

∂x∗

)
+
(
∂v∗

∂x∗

)†
]
− 1

3

(
∂

∂x∗ · v∗
)

I.

The flow is described by the mass-balance equation

(2.4)
Dρ∗

Dt∗
+ ρ∗

∂

∂x∗ · v∗ = 0

and the momentum-balance equation

(2.5) ρ∗
Dv∗

Dt∗
= − ∂p∗

∂x∗ + 2
∂

∂x∗ · (μ∗e∗).

The three thermodynamic fields are coupled by the ideal-gas equation of state,

(2.6) p∗ = Rρ∗θ∗.

Here, R = cP − cV is the gas constant. Also, the dependence of μ∗ and k∗ upon θ∗

is provided by the functional relations:

(2.7)
μ∗

μ∗
∞

= fμ

(
θ∗

θ∗∞

)
,

k∗

k∗∞
= fk

(
θ∗

θ∗∞

)
,

where μ∗
∞ and k∗∞ are the values of μ∗ and k∗ at the reference temperature θ∗∞ (so

that fμ(1) = fk(1) = 1).
The differential equations are supplemented by the appropriate boundary condi-

tions. On the two walls z∗ = ±L the imposed thermal conditions are

(2.8) θ∗ = θ∗∞(1 ± ζ),

and the no-slip condition is

(2.9) v∗ = 0.

The conditions on the particle surface are written using the relative position vector,

(2.10) r∗ = x∗ − ez z
∗
P (t∗) ,
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which is measured from the particle center. Thus, on r∗ = a the temperature field
satisfies the no-flux condition,

(2.11)
∂θ∗

∂n
= 0,

and the velocity field satisfies the slip condition (cf. (1.1))3

(2.12) v∗ − w∗ = cS
ν∗

θ∗
∂θ∗

∂x∗ .

At large distances from the particle, the flow-induced pressure disturbance attenuates,
and the pressure approaches its quiescent value:

(2.13) p∗ → p∗∞ as x∗2 + y∗2 → ∞.

The governing equations are closed by imposing Newton’s second law on the
particle motion:

(2.14) hydrodynamic force on particle =
4π
3
σρ∗∞a

3 dw
∗

dt∗
.

Here, ρ∗∞ = p∗∞/Rθ∗∞ is a reference density value, and σρ∗∞ is the average particle
density.

3. Dimensionless formulation. In what follows, it proves convenient to em-
ploy dimensionless variables, which appear without the star designation. The coor-
dinates and gradient operator are normalized using the length L. The normalized
density and pressure fields are given by the ratios

(3.1) p =
p∗

p∗∞
, ρ =

ρ∗

ρ∗∞
,

and the reduced temperature θ is defined by the relation

(3.2)
θ∗

θ∗∞
= 1 + ζθ.

Velocity variables are normalized using the velocity scale (see (1.3)):

(3.3) U = ζ
μ∗
∞

ρ∗∞L
.

In the transition to dimensionless description, three parameters emerge: (i) the
Prandtl number Pr = μ∗

∞cP /k
∗
∞; (ii) the ratio γ = cP /cV ; and (iii) the Mach number

M = U /c∗∞, wherein c∞ is the sound speed in the reference state:

(3.4) c2∞ = γRθ∗∞.

The dimensionless enthalpy equation adopts the form

(3.5) ζρ
Dθ

Dt
=

2
Pr

∂

∂x
·
[
fk (1 + ζθ)

∂θ

∂x

]
+
γ − 1
γ

Dp

Dt
+
γ − 1
ζ

M2Φ,

3In principle, (2.12) should be written using a surface gradient operator; (2.11), however, implies
that the conventional gradient operator is equivalent here.
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with D/Dt = ∂/∂t+ v · ∂/∂x. Here, the dimensionless dissipation is

(3.6) Φ = 2fμ (1 + ζθ) e : e,

where e is given by the dimensionless equivalent of (2.3). The dimensionless mass-
and momentum-conservation equations are

(3.7)
Dρ

Dt
+ ρ

∂

∂x
· v = 0

and

(3.8) ζρ
Dv

Dt
= − ζ

γ
M−2 ∂p

∂x
+ 2

∂

∂x
· [fμ (1 + ζθ) e] .

Last, the dimensionless equation of state appears as

(3.9) p = ρ (1 + ζθ) .

Given the velocity scaling of thermal slip, it is not surprising that both the Reynolds
and Péclet numbers are simply given by ζ.

The boundary conditions on the two walls are

(3.10)
θ = ±1,
v = 0,

}
at z = ±1.

At the particle surface, the no-flux condition reads as

(3.11)
∂θ

∂r
= 0 at r = ε

and the slip condition is

(3.12) v − w =
cS
ρ

fμ (1 + ζθ)
1 + ζθ

∂θ

∂x
at r = ε.

At large distances from the particle, the pressure approaches the unperturbed value

(3.13) p→ 1 as x2 + y2 → ∞.

The equations are closed by the dimensionless version of (2.14).

4. The dynamic incompressibility limit. In continuum gas flows, the Knud-
sen number Kn must be small [6]. This number is proportional to the ratio of the
Mach number to the Reynolds number. In the present context, the latter is given by
the scaled temperature difference ζ, which is O(1). Accordingly, the Mach number is
small.

We therefore extract the leading-order limit of the preceding equations forM � 1.
In that limit, the momentum-balance (3.8) and the far-field condition (3.13) imply
the following distinguished limit for the pressure field:

(4.1) p→ 1 +
γ

ζ
M2p̃.

The “dynamic pressure” p̃ actually represents a Stokes-type normalization using the
viscous scale μ∗

∞U /L (cf. the “thermodynamic” normalization (3.1)):

(4.2) p̃ =
p∗ − p∗∞
μ∗
∞U /L

.
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Since the pressure is constant to leading-order (the “hydrodynamic” pressure is un-
affected by the flow), the equation-of-state (3.9) becomes

(4.3) ρ =
1

1 + ζθ
.

This equation describes a “dynamically-incompressible” fluid [3], whose density is
affected only by the temperature.

The density is therefore eliminated as an independent variable. Thus, the slip
condition (3.12) becomes

(4.4) v − w = cSfμ (1 + ζθ)
∂θ

∂x
at r = ε,

and the balance equations (3.5), (3.7), and (3.8) adopt the following continuum limits:

ζ Pr
1 + ζθ

Dθ

Dt
=

∂

∂x
·
[
fk (1 + ζθ)

∂θ

∂x

]
,(4.5)

∂

∂x
· v =

ζ

1 + ζθ

Dθ

Dt
,(4.6)

ζ

1 + ζθ

Dv

Dt
= − ∂p̃

∂x
+ 2

∂

∂x
· [fμ (1 + ζθ) e] .(4.7)

Note that both the pressure and dissipation terms disappear from the enthalpy equa-
tion, which adopts a standard convective–diffusive form. Also, because the fluid is
dynamically incompressible, it is only the gradient of the dynamic pressure p̃ which
affects the flow. Since the hydrodynamic force is insensitive to the addition of a
constant pressure, the pressure p̃ is effectively defined up to an additive constant.

The preceding analysis resembles the Janzen–Rayleigh expansions for small Mach
number inviscid flows. Similar analyses for thermodynamically-compressible flows
in the limit of small Mach numbers were also performed in the context of forced
convection [5, 10].

The present framework of strong-gradient thermophoresis introduces two new
features which are absent in the linearized model: (i) the Péclet and Reynolds numbers
are both O (1)—in principle, nonlinear convective terms are of the same order as the
diffusive terms; (ii) since the absolute temperature affects the transport process, the
flow depends upon the instantaneous location of the particle, and the problem is
inherently unsteady.

For simplicity of subsequent analysis, we assume Maxwellian intermolecular in-
teractions. Thus, Pr = 2/3, and the transport coefficients are proportional to the
temperature

(4.8) fμ (η) = fk (η) = η.

5. Small-particle limit. We now focus upon the small-particle case, ε = a/L�
1. Since the flow is driven by a slip mechanism at the particle scale, the actual
Reynolds and Péclet numbers that characterize the transport are modified from O(1)
to O (ε), whence the continuum domain is modified from M � 1 to M � ε. Thus, it
is still consistent to employ the preceding equations of a dynamically incompressible
gas, obtained via neglecting O

(
M2
)

terms, while retaining both O (ε) and O
(
ε2
)

corrections.
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Fig. 5.1. Variation of the outer temperature field for the limiting ζ values.

The limit ε → 0 corresponds to the absence of a particle. Since the slip over the
particle surface is the animating mechanism for the generation of flow, this limit rep-
resents a steady heat conduction process. Moreover, the transport problem becomes
one-dimensional: θ = θ̃(z). Thus, the energy equation adopts the form

(5.1)
d

dz

[(
1 + ζθ̃

) dθ̃
dz

]
= 0.

The solution to this equation, which satisfies the boundary conditions (3.10), is

(5.2) θ̃ (z) =

√
ζ2 + 2ζz + 1 − 1

ζ
.

For ζ → 0, θ̃ (z) ∼ z; this is the linearized solution. For ζ → 1−, θ̃ (z) ∼
√

2z + 2− 1.
The dependence of θ̃ upon ζ is depicted in Figure 5.1. Note that (5.2) implies that
the temperature gradient is inversely proportional to the absolute temperature:

(5.3)
dθ̃

dz
=

1
1 + ζθ̃

.

Only in the limit ζ → 0 does the outer solution correspond to the notion of an “applied
gradient.”

Since the preceding solution does not satisfy the no-flux condition (3.11), it actu-
ally constitutes an outer solution of the limit ε→ 0. Thus, the temperature distribu-
tion (5.2) (with vanishing v and p̃) needs to be supplemented by a comparable inner
solution, which is valid for r = O (ε). When solving the thermophoretic problem using
inner–outer expansions, separate asymptotic expansions in ε� 1 are required in each
separate region. These expansions must match in their common region of validity.

A solution comprised of a quiescent gas in the temperature profile (5.2) actually
satisfies the exact governing equations. However, since it is not guaranteed to match
the inner solution at all asymptotic orders, it constitutes only a leading-order outer
solution. As will become evident in subsequent analysis, the leading-order inner solu-
tion consists of a temperature dipole and a velocity doublet. This solution “induces,”
through matching requirements, an O

(
ε2
)

temperature correction and an O
(
ε3
)

ve-
locity correction in the outer solution. Luckily, the determination of such higher-order
corrections proves unnecessary in the present investigation.
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6. Inner problem. The inner problem is formulated in terms of the relative
position vector. The rescaled variables of the inner problem are denoted by capital
letters. Thus, the position and time variables are defined by r = εR and t = εT ,
while the dependent variables are rescaled as

(6.1) Θ = θ, P = εp̃, V = v, W = w.

Note that the pressure rescaling is equivalent to normalization with the Stokes viscous
scale μ∞U /a (cf. (4.2)). The inner and outer coordinates are related via the relation

(6.2) x = xP (0) + ε

∫ T

0

W (τ) dτ + εR,

and, specifically,

(6.3) z = zp (0) + ε

∫ T

0

W (T ′) dT ′ + εR cosϑ,

where R = |R| and with the polar angle ϑ measured from the z-axis. These two vari-
ables therefore constitute the radial and polar coordinates in a particle-fixed spherical
reference system.

The inner temperature field is governed by the enthalpy equation (cf. (4.5))

(6.4) ε
2 ζ

3 (1 + ζΘ)
DΘ
DT

= ∇ · [(1 + ζΘ)∇Θ] ,

together with the no-flux condition

(6.5)
∂Θ
∂R

= 0 at R = 1.

Here, ∇ ≡ ∂/∂R is the inner gradient operator. The modified material derivative
operator,

(6.6)
D

DT
=

∂

∂T
+ (V − W ) · ∇,

reflects the transformation (6.2) to a particle-fixed reference system. In addition to
satisfying (6.4)–(6.5), Θ should also match the outer solution (5.2).

The inner flow field is governed by the differential equations (cf. (4.6)–(4.7)),

∇ · V =
ζ

1 + ζΘ
DΘ
DT

,(6.7)

ε
ζ

1 + ζΘ
DV

DT
= −∇P + 2∇ · [(1 + ζΘ)E] ,(6.8)

where

(6.9) E =
1
2

[
∇V + (∇V )†

]
− 1

3
(∇ · V ) I

is the rescaled rate of strain tensor. It also satisfies the slip condition on the particle
surface:

(6.10) V − W = ε−1cS (1 + ζΘ)∇Θ at R = 1,
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and is required to decay at large R. The flow problem is closed by the application of
Newton’s second law to the particle:

(6.11)
∮
d2nn · [−P I + 2 (1 + ζΘ)E] =

4π
3
εζσ

dW

dT
.

Here, n is an outward-pointing unit vector, normal to the particle surface, and d2n
is a differential solid angle about it.

7. Asymptotic matching. A convenient procedure for performing inner–outer
matching is provided by Van Dyke laws [22]:

(7.1) The m-term inner expansion of (the n-term outer expansion) =
The n-term outer expansion of (the m-term inner expansion).

Note that this is a statement of strict equality. Applying this law requires rewriting
the left-hand side of (7.1) in terms of the outer variables (or, alternatively, rewriting
the right-hand side of (7.1) in terms of the inner variables). The transformation
between the inner and outer coordinates, however, involves the variable W , which is
itself expanded into an asymptotic series in ε. Thus, (7.1) cannot be satisfied unless
one assumes a priori that the expansion of W terminates after a finite number of
terms.

We therefore abandon Van Dyke’s method in favor of the more general approach
of intermediate variables [12]. We define the intermediate position vector ξ:

(7.2) r = εαξ,

where 0 < α < 1. This vector is related to the inner coordinate through the relation
ξ = ε1−αR, and to the outer coordinate through the relation

(7.3) X = Xp (0) + ε

∫ T

0

W (τ) dτ + εαξ.

The matching procedure requires that the inner and outer expansions possess a
common domain of validity, in which ξ is O(1). The more terms are required to be
matched, the smaller this common domain becomes. It is therefore expected that
matching of higher-order expansions would decrease the upper bound on α.

For future reference, we express the outer temperature field (5.2) in terms of the
intermediate variable:

(7.4) θ̃ ∼ θ̃P +
εα

1 + ζθ̃P
ξ cos θ +

ε
∫ T
0
W (τ) dτ

1 + ζθ̃P

− ε2αζ

2(1 + ζθ̃P )3
ξ2 cos2 ϑ−

ε1+αζ
∫ T
0 W (τ) dτ

(1 + ζθ̃P )3
ξ cosϑ+O

(
ε3α, ε2

)
.

Here,

(7.5) θ̃P =

√
ζ2 + 2ζzP (0) + 1 − 1

ζ

is the value of undisturbed temperature field (5.2) at the original position (at time
T = 0) of the particle center.
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8. Asymptotic analysis in the inner region. We postulate the following
asymptotic expansions: Inner solution

Θ ∼ Θ0 + εΘ1 + ε2Θ + · · · ,(8.1a)
V ∼ V 0 + εV 1 + · · · ,(8.1b)

and

(8.1c) P ∼ P0 + εP1 + · · · ,

together with a comparable expansion E. In principle, these expansions induce the
following expansion for W = ezW :

(8.1d) W ∼W0 + εW1 + · · · .

8.1. Leading-order temperature field. The leading-order temperature field
is governed by the equations

(1 + ζΘ0)∇2Θ0 + ζ (∇Θ0)
2 = 0,(8.2a)

∂Θ0

∂R
= 0 at R = 1,(8.2b)

which possess a trivial constant solution. Matching with (7.4) readily yields

(8.3) Θ0 ≡ θ̃P .

To calculate the leading-order velocity field the next term is also needed; see the
slip condition (6.10). It is convenient to define

(8.4a) Θ̄1 = (1 + ζθ̃P )Θ1.

This scaled variable satisfies the following equations:

∇2Θ̄1 = 0,(8.4b)

∂Θ̄1

∂R
= 0 at R = 1.(8.4c)

Accordingly, it consists of spherical harmonics of the form

(8.5) c(0) (T ) +
∞∑
n=1

c(n) (T )
(
Rn +

n

n+ 1
R−n−1

)
P (n) (cosϑ) .

Here, P (n) is the Legendre Polynomial of degree n.4 Note that the terms in (8.5)
appear in pair-combinations which satisfy the no-flux condition (8.4c).

Matching with (7.4) reveals that Θ1 does not possess any modes of n > 1. Ac-
cordingly,

(8.6) Θ̄1 = c
(0)
1 (T ) + c

(1)
1 (T )

(
R+

1
2R2

)
cosϑ.

4It is usually denoted by Pn; here we use an unconventional notation to avoid confusion with the
various terms of the inner pressure expansion (8.1c).
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In terms of the intermediate variable, the inner temperature field adopts the expansion

(8.7) Θ0 + εΘ1 ∼ θ̃P + εα
c
(1)
1

1 + ζθ̃P
ξ cos θ + ε

c
(0)
1

1 + ζθ̃P
+O

(
ε3−2α

)
.

Matching with (7.4) then yields

(8.8) c
(1)
1 = 1, c

(0)
1 =

∫ T

0

W0 (τ) dτ.

The time-dependent term c
(0)
1 accounts for the slowly-varying temperature back-

ground observed in a particle-fixed reference system as the particle moves through
the nonuniform temperature field.

8.2. Leading-order flow. The leading-order velocity field is governed by the
following equation set:

∇ · V 0 = 0,(8.9a)

(1 + ζθ̃P )∇2V 0 −∇P0 = 0,(8.9b)
V 0 − W 0 = cS∇Θ̄1 at R = 1,(8.9c)

V 1 → 0 as R → ∞.(8.9d)

In addition, (6.11) implies that the particle appears force-free at this asymptotic level.
Now, Θ̄1 satisfies Laplace’s equation, the no-flux condition, and the far-field be-

havior for large R:

(8.10) ∇Θ̄1 → ez.

Accordingly, it satisfies the same equations as would the electric potential in a thin-
Debye-layer electrophoretic problem [1]. Moreover, the velocity field satisfies the same
equations as those that apply to electrophoresis of a constant-zeta-potential particle.
Thus, we can exploit Morrison’s classical analysis [17] to obtain a solution to the
present problem. The particle translates with the velocity

(8.11) W0 = −cS

(corresponding to the Smoluchowski velocity in electrophoresis), the flow is irrota-
tional,

(8.12) V 0 − W 0 = cS∇Θ̄1,

and P0 = 0. In view of (8.4b), it is readily verified that (8.12) trivially satisfies the
flow equations (8.9a)–(8.9b). Moreover, using the Gauss theorem allows us to write
the force delivered by V 0 as an integral over any surface enclosing the particle, not
necessarily its boundary. With the stress field decaying as R−4 (corresponding to the
dipole term in (8.7)), it becomes evident that this force vanishes, as required.5

5These results actually hold for nonspherical particle shapes (in which case Θ̄1 would not be
given by (8.6), but would still decay as a dipole to leading order). When considering such particles,
it is also necessary to demonstrate that they remain torque-free. This is again verified using the
Gauss theorem and the fast decay of ∇∇Θ̄1.
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The velocity (8.11) is the same as that obtained by Epstein [8]. This may ap-
pear surprising, since the outer temperature field deviates from the linear gradient of
Epstein’s small-ζ analysis. Indeed, the outer temperature field (5.2) appears at the
particle-scale description (represented by (8.3) and (8.6)) as a uniform gradient su-
perimposed upon a uniform temperature. This gradient is smaller by a factor 1+ ζθ̃P
from that appropriate to its ζ → 0 limit; see (5.3). Moreover, the absolute tempera-
ture is larger by that factor. Considering the slip condition (1.1), we then find that
the direct effect of deviation from the small-ζ uniform gradient is to reduce the slip
by the factor (1 + ζθ̃P )2. On the other hand, the kinematic viscosity increases by the
same factor; see (4.3) and (4.8). Thus, Epstein’s result is recovered due to a fortuitous
cancellation of effects.

For future reference, we note that the leading-order rate-of-strain satisfies the
relations

(8.13) E0 = ∇V 0 = cS∇∇Θ̄1, ∇ · E0 = 0.

8.3. Convective-driven temperature correction. To analyze the perturba-
tion to the leading-order flow, we need to evaluate Θ2. It is convenient to define the
variable

(8.14a) Θ̄2 =
(1 + ζθ̃P )3

ζ
Θ2,

which is governed by the following equations:

∇2Θ̄2 =
(

2
3
cS − 1

)
(∇Θ1)

2 − 2
3
cS ,(8.14b)

∂Θ̄2

∂R
= 0 at R = 1.(8.14c)

A particular integral to (8.14b) is

(8.15a) Θ̄2,p = −R
2

6
+
(

2
3
cS − 1

)[
1

24R4
+
(

1
3R

+
1

12R4

)
P (2) (cosϑ)

]
.

This solution, however, does not satisfy the no-flux condition (8.14c). Thus, we add
to (8.15a) the following terms, which, together with (8.15a), retain the condition

(8.15b) − 1
3R

−
(

2
3
cS − 1

)[
1

6R
+

2
9R3

P (2) (cosϑ)
]
.

These terms satisfy the homogeneous counterpart of (8.14b).
The solution obtained is not unique: we can add to it an additional homogeneous

solution, say Θ̄2,h, consisting of spherical-harmonics pairs of the form (8.5) (recall that
these pairs retain the no-flux condition). Since the inner solution must be matched
with (7.4), only modes 0, 1, and 2 of the general solution (7.4) can be added. Thus,
(8.15c)

Θ̄2,h = c
(0)
2 (T ) + c

(1)
2 (T )

(
R+

1
2R2

)
cosϑ+ c

(2)
2 (T )

(
R2 +

2
3R3

)
P (2) (cosϑ) .
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An asymptotic expansion for Θ in the intermediate domain is (cf. (8.7))

θ̃P + εαc
(1)
1 ξ cosϑ+ εc

(0)
1 +

ε2αζ

(1 + ζθ̃P )3
ξ2
[
c
(2)
2 P (2) (cosϑ) − 1

6

]

+
ε1+αζ

(1 + ζθ̃P )3
c
(1)
1 ξ cosϑ+O

(
ε3−2α, ε2

)
.

Matching with (7.4) in conjunction with (8.11) readily yields

(8.16) c
(2)
2 = −1

3
, c

(1)
2 = cST.

(It is not necessary to obtain c(0)2 .) For this matching process the intermediate domain
must be modified to the range 0 < α < 2/3.

9. Leading-order flow correction. The leading-order flow correction (V 1, P1)
is governed by the mass equation

(9.1a) ∇ · V 1 =
ζ

1 + ζθ̃P

DΘ1

DT

and momentum equation

(9.1b)
ζ

1 + ζθ̃P

DV 0

DT
= −∇P1 + 2∇ ·

[
(1 + ζθ̃P )E1 + ζΘ1E0

]
,

together with the boundary conditions

V 1 − W 1 = cS

[
(1 + ζθ̃P )∇Θ2 + ζΘ1∇Θ1

]
at R = 1,(9.1c)

V 1 → 0 as R → ∞.(9.1d)

Since W0 is constant, (6.11) implies that the particle is also force-free at the O(ε)
asymptotic level:

(9.1e)
∮
d2nn ·

{
−P1I + 2

[
(1 + ζθ̃P )E1 + ζΘ1E0

]}
= 0.

9.1. A fictitious Stokes-type problem. Define

(9.2) P1 = (1 + ζθ̃P )P̄1.

Making use of (8.12) and (8.13), the momentum-balance equation (9.1b) and the
force-free condition (9.1e) are, respectively, rewritten as

(9.3) ∇2V 1 −∇P̄1 = −ζcS(cS − 2)∇Θ1 · ∇∇Θ1 −
1
3
cSζ∇

[
(∇Θ1)

2
]

and

(9.4)
∮
d2nn ·

(
−P̄1I + 2E1

)
= −2cSζ

∮
d2nn · Θ1∇∇Θ1.

Note the Stokes operator appearing in (9.3) and the constant-viscosity structure
of the stress-like object appearing in (9.4). Thus, we have transformed the flow prob-
lem for the variable-viscosity fluid into a comparable problem governing a fictitious
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constant-viscosity flow field
(
V 1, P̄1

)
. The latter problem is driven by a mass-source

distribution (the right-hand side of (9.1a)), velocity slip (the right-hand side of (9.1)),
a body force distribution (the right-hand side of (9.3)), and an external force on the
particle (the right-hand side of (9.4)).

The flow field (V 1, P̄1) is decomposed as follows:

V 1 = V I + V II + V III + V IV ,(9.5a)
P̄1 = PI + PII + PIII + PIV ,(9.5b)

wherein the subfields V I , V II , V III , and V IV all decay at large R. The flow problem
is, respectively, decomposed into four problems. The first problem satisfies

∇2V I = right-hand side of (9.3),(9.6a)
PI = 0.(9.6b)

The second problem satisfies

∇2V II = 0, PII = 0,(9.7a)
∇ · V II = right-hand side of (9.1a) −∇ · V I .(9.7b)

The third problem is governed by the Stokes equations, together with a slip-type
boundary condition:

∇2V III −∇PIII = 0, ∇ · V III = 0,(9.8a)
V III = right-hand side of (9.1c) − V I − V II at R = 1.(9.8b)

The fourth problem is also governed by the Stokes equations, but with the boundary
condition

(9.9) V IV = W 1 at R = 1.

It is identical to the problem governing the slow translation of a sphere at velocity
W 1 = ezW1 relative to an otherwise quiescent fluid, wherein the no-slip boundary
applies.

Our interest is not in the detailed fields, bur rather in their effect upon W1. This
velocity is determined from the condition that the total hydrodynamic force exerted
upon the particle by the flow field (V 1, P̄1) is equal to the right-hand side of (9.4).

9.2. Symmetry arguments. It is convenient here to define a “flip-symmetry”
property: We will say that a scalar field has this symmetry if it is invariant under the
transformation z → −z. Similarly, an axisymmetric vector field is flip-symmetric if its
transverse component is flip-symmetric, while its axial component is antisymmetric.
The latter definition can be equivalently stated using polar spherical coordinates:
a vector field is flip-symmetric if its radial component is flip-symmetric, while its
angular component is antisymmetric. It is readily verified that the Laplacian operator
preserves flip-symmetry (or antisymmetry) when applied to either scalar or vector
fields; the same is true for the divergence operator: the divergence of a flip-symmetric
(antisymmetric) vector field is a flip-symmetric (antisymmetric) scalar field.

The right-hand side of (9.6a) is flip-symmetric; accordingly, so is V I . Clearly,
then, V I does not contribute to the hydrodynamic on the particle. Moreover, it is
readily seen that the right-hand side of (9.7b) is flip-symmetric, whence so is V II ,
which then also does not contribute to the hydrodynamic force.
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Consider now the slip-driven field V III . The slip-terms in the right-hand-side
of (9.8b) which are contributed by V I and V II are flip-symmetric. They therefore
contribute flip-symmetric components to V III ; these components, obviously, do not
generate any hydrodynamic force. Moreover, the antisymmetric terms in the right-
hand side of (9.1c) cancel each other. We conclude that V III , too, does not contribute
to the force.

The hydrodynamic force contributed by the fourth hydrodynamic subfield is sim-
ply the Stokes drag −6πW 1. Thus, W1 is determined by equating this force to the
right-hand side of (9.4). Straightforward calculation shows that the latter vanishes.
Accordingly, W1 = 0.

10. Maxwell stresses. From the viewpoint of gas-kinetic theory, viscous
stresses (and the heat-flux vector) constitute O (Kn) correction terms in the
Chapman–Enskog expansion of the Boltzmann equation [6], wherein the ideal-fluid
model emerges at the leading-order. Higher-order terms obtained in that expansion,
such as the O

(
Kn2

)
Burnett terms, are traditionally not included in conventional

continuum descriptions.
The exclusion of Burnett stresses, however, has been shown to be inconsistent

in flows driven by significant temperature differences [9, 13]. The inconsistency is
related to only two of the six Burnett stress terms, which are provoked by temperature
gradients. For Maxwell molecules, these two “thermal” terms adopt the dimensional
form

(10.1) −3
μ∗2

ρ∗θ∗
∂2θ∗

∂x∗∂x∗ , −3
μ∗2

ρ∗θ∗2

∂θ∗

∂x∗
∂θ∗

∂x∗ .

In the presence of a single length scale L, these terms are of order ζμ∗
∞

2/ρ∗∞L
2. The

ratio of these stresses to the O (μ∗
∞U /L) viscous terms (where U is a characteristic

velocity of the flow) therefore scale as ζν∗∞/LU . Since the kinematic viscosity ν∗∞ is
O (λc∗∞), where λ is the mean free path, this ratio is about ζ Kn/M , and is indeed
O (Kn) small for “normal” (M = O (1)) situations considered in gas-kinetic theory.6

For slip-driven flows, however, the velocity U scales according to (1.3), and the
above-mentioned ratio is actually O (1): the thermal stresses are of comparable mag-
nitude to the viscous (and inertial) terms. It was shown in [9] that the remaining
Burnett terms are still O (Kn) small, and are therefore negligible.

In the present dimensionless momentum equation, the right-hand side of (4.7) is
accordingly supplemented by the term

(10.2) −3
∂

∂x
·
[
(1 + ζθ)2

∂2θ

∂x ∂x
+ ζ (1 + ζθ)2

∂θ

∂x

∂θ

∂x

]
,

which corresponds to the divergence of the Maxwell stresses (10.1).
In principle, the existence of Maxwell stresses implies that classical pure-conduc-

tion situations may not be compatible with mechanical equilibrium. In the present
investigations, it is therefore necessary to reexamine the validity of the outer solution.
Fortunately, the one-dimensional temperature profile (5.2) generates Maxwell stresses
which possess only an ezez component:

−3

[
(1 + ζθ)2

d2θ

dz2
+ ζ (1 + ζθ)2

(
dθ

dz

)2
]
.

6Usually it is even smaller, since in the absence of imposed temperature differences, ζ is also
small; if the temperature field is set by viscous dissipation, for example, it is O (Kn).
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According to (5.3), this component vanishes.
Of course, the Maxwell stresses do modify the inner solution. It is readily verified

that the right-hand side of the inner momentum equation (6.8) is supplemented by
the term

(10.3) −3ε−1∇ ·
[
(1 + ζΘ)2 ∇∇Θ + ζ (1 + ζΘ)∇Θ∇Θ

]
.

In the leading-order flow problem, the right-hand side of (8.9b) is supplemented by
the term

−3∇ ·
[
(1 + ζθ̃P )2∇∇Θ1

]
.

Since Θ1 is harmonic (see (8.4b)), this term vanishes. Consider now the leading-order
flow correction: the right-hand side of (9.3) is supplemented by the term

−3∇ ·
[
(1 + ζθ̃P )∇∇Θ2 + 2ζΘ1∇∇Θ1 + ζ(1 + ζθ̃P )∇Θ1∇Θ1

]
.

It is easily verified that this term is flip-symmetric and does not contribute to the
hydrodynamic force experienced by the particle.

11. Concluding remarks. The drift of a spherical particle in a nonisothermal
gaseous environment, provoked by a thermally-induced slip at the outer edge of a
Knudsen layer, was investigated theoretically. The gas is bounded between two par-
allel walls maintained at uniform but unequal temperatures. Unlike previous studies,
it was not assumed that the temperature difference is small compared with the mean
absolute temperature. The problem is then inherently nonlinear, with a universal
scaling for the Reynolds and Péclet numbers.

With the goal of obtaining qualitative understanding, we adopt the simple model
of an insulating particle. (At the other extreme, when the particle conductivity is large
compared with that of the gas, the slip model obviously predicts null thermophoretic
velocity.) We also restrict the analysis to the continuum regime, the Knudsen number
approaching zero.

The analysis is asymptotic, in the limit of a small particle. In view of the inherent
nonlinearity, it is impossible to transform the problem into a steady one. The small-
particle limit is singular and requires asymptotic matching between the particle-scale
solution and the apparatus-scale nonlinear behavior. The transformation between the
inner and outer descriptions employs the particle position, itself a dependent variable
of the asymptotic problem.

Due to a fortuitous cancellation of terms, we found that Epstein’s result [8] holds
at leading order. Moreover, the symmetric leading-order O(ε) correction to the flow
field does not affect Epstein’s result. The inclusion of Burnett stresses modifies the
flow field, but symmetry arguments show that this modification does not contribute
to the thermophoretic velocity at the inspected asymptotic orders.

In view of the growing interest in the effect of walls upon thermophoretic motion
[7, 11] and the O(ε3) asymptotically small wall effects predicted by prevailing analyses
of the linearized model [1], it is desirable to evaluate higher-order corrections to the
flow. Unfortunately, we were unable to progress further with the present asymptotic
scheme. Thorough understanding of the nonlinear thermophoretic mechanism may
therefore require analysis of the nonlinear model in the future.
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OSTWALD RIPENING IN THIN FILM EQUATIONS∗

K. B. GLASNER†

Abstract. Fourth order thin film equations can have late stage dynamics that are analogous
to the classical Cahn–Hilliard equation. We undertake a systematic asymptotic analysis of a class
of equations that describe partial wetting with a stable precursor film introduced by intermolecular
interactions. The limit of small precursor film thickness is considered, leading to explicit expressions
for the late stage dynamics of droplets. Our main finding is that exchange of mass between droplets
characteristic of traditional Ostwald ripening is a subdominant effect over a wide range of kinetic
exponents. Instead, droplets migrate in response to variations of the precursor film. Timescales for
these processes are computed using an effective medium approximation to the reduced free boundary
problem, and dynamic scaling in the reduced system is demonstrated.
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1. Introduction. Viscous liquid films have a rich set of dynamics that are still
only partially understood [7, 28]. A large subset of phenomena involves dewetting
instabilities that produce a diverse collection of patterns that have been studied ex-
perimentally [1, 13, 33, 34, 35, 42] as well as theoretically [2, 3, 19, 22, 27, 36, 37, 42].
These instabilities cause nearly uniform fluid layers to break up into arrays of large
droplets connected by a remaining (very) thin film, which undergo an elaborate coars-
ening process characterized both by coalescence of droplets and exchange of fluid
between droplets and the intervening film [11, 12, 15, 16].

The results we describe run parallel to other studies of dynamical coarsening
processes, most notably phase separation phenomena described by the Cahn–Hilliard
equation [5, 30]. At late times and small volume fractions, this equation describes
the Ostwald ripening process [14, 24, 25, 38, 39]. Our purpose is to describe a similar
limit for a class of thin film equations and to highlight the differences between our
problem and classical Ostwald ripening.

The analogy between spinodal decomposition and liquid dewetting was first ex-
plored by Mitlin [19, 20, 21, 22]. Subsequent theoretical works have studied coarsening
in thin film equations that results from other instabilities. Bestehorn, Pototsky, and
Thiele [4] consider the evolution of a film destabilized by Marangoni effects and quan-
tify coarsening rates through numerical experiments. Merkt et al. [18] obtain similar
results for a two-layer film. There are, in fact, numerous other variations of dissipative
fourth order equations that exhibit coarsening behavior, for example, the convective
Cahn–Hilliard equation studied by Watson et al. [40].

This paper is a continuation of a body of work initiated by Glasner and Witel-
ski [11, 12] on coarsening behavior of liquid droplets described by disjoining-pressure
models. It was found there that the dewetting instability leads to the eventual devel-
opment of droplets separated by a precursor film. The subsequent one-dimensional
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dynamics of these droplets was computed, involving mass exchange between droplets
and the precursor layer as well as motion of the droplets themselves. This results in a
coarsening process characterized by both mass transfer and coalescence, and exhibits
dynamic scaling with a nonstandard exponent. Rigorous bounds for dynamic scaling
were subsequently obtained by Otto, Rump, and Slepčev [29]. In two dimensions,
the interaction of droplets has been studied by Pismen and Pomeau [32]. Although
not entirely dissimilar from the conclusions described here, their results are in both
quantitative and qualitative disagreement with our calculations (see the concluding
section for a comparison).

This work serves as a companion paper to the manuscript of Glasner et al. [9].
Instead of a matched asymptotics approach, that work utilizes a variational princi-
ple (the Rayleigh–Onsager notion of least dissipation [26]) to explain and quantify
droplet migration effects. Both papers obtain comparable results, although a careful
interpretation is needed to show their equivalence. Some comparison is provided in
section 5.

This paper considers a class of fourth order parabolic equations which have the
structure

(1.1) τ(ε)ht = ∇·(hq∇p), p = ε−1U ′
(
h

ε

)
− Δh, q > 0.

The physical domain is taken to be a two-dimensional, bounded, simply connected
open set Ω, where Neumann and no-flux boundary conditions are imposed (although
few of our results depend crucially on these assumptions). The timescale τ(ε) is
chosen to capture the slow dynamics associated with migration and mass exchange
(i.e., ripening) of droplets. It depends on the mobility exponent as

(1.2) τ(ε) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εq, q ∈ (0, 2),
ε2 ln(ε−1), q = 2,
ε2, q ∈ (2, 3),
ε2/ ln(ε−1), q = 3,
εq−1, q > 3.

Our interest is in the limit of small ε, which corresponds to both thin precursor films
and long timescales.

It is instructive to consider a range of mobility exponents to capture the crossover
between different dynamical mechanisms. For liquid films, this exponent is a function
of the solid-liquid boundary condition and the fluid rheology. The standard case of
a Newtonian fluid with a no-slip boundary condition corresponds to q = 3. The
Navier slip condition leads to q = 2 if particular limits are considered [8, 23], whereas
Darcy’s law can lead to q = 1 [6]. Models of non-Newtonian fluids may have a variety
of exponents (see, e.g., [41]).

The class of potentials U considered here include those commonly employed to
describe a combination of attractive and repulsive van der Waals forces [28]. The
following assumptions are used:

1. U is scaled so that it has a minimum at 1 and U(∞) − U(1) = 2.
2. U ′ has a unique maximum at H∗ > 1.
3. The potential decays as

(1.3) U ′(H) = O(H−α), H → ∞,
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where

(1.4) α >

{
q + 1, q ∈ (0, 2),
3, q ≥ 2.

This will ensure that intermolecular interactions have a subdominant effect
for macroscopic (h ∼ O(1)) films.

The structure of the paper is as follows. Section 2 describes the results of the
lengthy calculation, whose details are given in sections 3 and 4. Section 5 goes on
to propose an approximation procedure for the resulting free boundary problem, and
timescales for the relevant dynamics are worked out. Section 6 gives example calcu-
lations and compares them to predictions of dynamic scaling.

2. Setup for matched asymptotics and a summary of results. There will
be three regions in the matched asymptotic analysis (see Figure 2.1):

• Region I: This region corresponds to droplets and is composed of the union
of disjoint disks {Di} which have the form D = {x

∣∣∣ |x−X | < R} so that X
is the droplet center and R is its radius. Unit normals to ∂D will be denoted
n, and we will also utilize the coordinate unit vectors x̂, ŷ, etc. In this region,
h and x will both scale like O(1). It will be convenient to use the moving
polar coordinates r = |x −X(t)|, θ = arg(x −X(t)).
To be more precise about R and X , we define the contact line at finite ε to
be the set {x | h(x) = εH∗}, where H∗ is the global maximum of U ′. This
definition is somewhat arbitrary and is chosen merely for convenience. On
the other hand, in the limit ε → 0 this set converges to the boundary of
the support of h, i.e., the sharp-interface contact line. We suppose that for
each droplet this curve is nearly circular and has the form x = X + R(θ)r̂.
Properly speaking, R and X should also be expanded in ε, but to avoid

Region I

Region II

Region III

ε

(Top view)

(Side view)

ε

Fig. 2.1. Three regions for the matched asymptotic calculation.
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excessive notation, these labels will simply denote the corresponding leading
order solutions. In particular, we find that R is independent of θ at leading
order.

• Region II is a microscopic internal layer near the contact line where h and x
scale like ε. The moving rescaled radial coordinate

(2.1) z =
R(t) − r

ε

will be employed. In light of the definition of R, the solution in this region
must satisfy

(2.2) h(z = 0) = h∗.

For reference, the Laplacian in z, θ coordinates expands as

(2.3) Δh = ε−2hzz − ε−1R−1hz −
(
zR−2hz +R−2hθθ

)
+ O(ε).

• Region III is the complement Ω/ ∪Di which contains the precursor film. In
this region, h will scale like ε.

The overall strategy is to propose self-consistent asymptotic expansions in each re-
gion and to connect them via matching conditions. Less-standard matching conditions
are derived when needed. Corrections to the leading order base solutions solve linear
equations, and Fredholm-type solvability conditions will yield information about the
dynamics.

The main goal is to determine the dynamic behavior of R and X , which will be
shown to arise from a flux J which is determined by the elliptic problem

(2.4) ΔP = 0, P |∂Di =
2
Ri
, J = −∇P,

solved in the exterior region Ω/∪Di. Here P represents the first nontrivial correction
to the pressure p. Equations (2.4) describe quasi-steady diffusion of material driven
by a Gibbs–Thomson boundary condition. We find that, with respect to the timescale
τ , the dynamics at leading order are

(2.5) Rt =

{
− 4

3πR2

∫
∂D

J · n ds, q < 2,
0, q ≥ 2,

and

(2.6) Xt = −M(R)
∫
∂D

nJ · n ds,

where the mobility factor M(R) is

(2.7) M =
1
π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R−2Ψ1(1)
/∫ 1

0
Ψ1(r)r2dr, q < 2,

R−2
/∫ 1

0 Ψ1(r)r2dr, q = 2,

Rq−4
∫∞
−∞[H1−q

1 −H−q
1 ]dz

/∫ 1

0
Ψ1(r)r2dr, q ∈ (2, 3),

R−1
∫∞
−∞[H−2

1 −H−3
1 ]dz, q = 3,

R−1
∫∞
−∞[H1−q

1 −H−q
1 ]dz

/∫∞
−∞H2−q

1 −H1−q
1 dz, q > 3.
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H1 is the leading order solution for the microscopic contact line region II. The function
Ψ1 arises from the solvability argument and is specified as the solution of the rescaled
boundary value problem (4.5)–(4.7).

The point of writing Rt = 0 for q ≥ 2 in (2.5) is to emphasize the crossover
between radial and migration dynamics. This is to some extent an artifact of our
choice of timescales (1.2). Had we chosen τ = εq for all q instead, then the radial
dynamics would just be given by the first nonzero formula in (2.5).

3. Base solutions. This section summarizes the aspects of the analysis which
are common to all mobility exponents q > 0. The rest is split into cases in the
following section.

Region II. The solution is expanded as h = εH1 + ε2H2 +o(ε2). The leading order
equation is

(3.1) (Hq
1 [−(H1)zz + U ′(H1)]z)z = 0.

Integrating twice and using the matching conditions (H1)z ∼ 0 as z → −∞, we get

(3.2) −(H1)zz + U ′(H0) = c1.

The matching condition (H1)zz ∼ 0 as z → +∞ means that C = 0 in light of (1.3).
It follows that H1 ∼ 1 as z → −∞, and we can integrate again to obtain

(3.3)
1
2
(H1)2z = U(H1) − U(1),

from which the equilibrium contact angle is determined by

(3.4) (H1)z =
√

2[U(H1) − U(1)] ∼ 1, z → +∞.

Solving (3.3) gives the solution implicitly as

(3.5)
∫ H1 dH√

2[U(H) − U(1)]
= z + c2.

The constant of integration is determined uniquely by the condition (2.2).
The next order correction satisfies

(3.6) (Hq
1 [−(H2)zz −R−1(H1)z + U ′′(H1)H2]z)z = 0.

Integrating and using the matching condition (H2)zzz → 0 as z → ∞ gives

(3.7) [−(H2)zz −R−1(H1)z + U ′′(H1)H2]z = 0.

A further integration implies

(3.8) −(H2)zz −R−1(H1)z + U ′′(H1)H2 ≡ P = constant.

This says that (total) leading order pressure is constant through region II, and we
can use this to match between regions I and III. We remark that both H1 and H2 are
independent of θ. Later in the calculation, this will provide symmetry that is needed
to make certain integrals vanish.

Region I. Expanding h = h0(x, t) + o(1) for now, we obtain

(3.9) ∇·(hq0∇Δh0) = 0, x ∈ D.
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Provided that h0 is well behaved (bounded third derivatives), integration of (3.9)
against Δh0 gives

(3.10)
∫
D

hq0|∇Δh0|2dx = 0.

Since h0 → 0 on the boundary of D, it follows that Δh0 is a constant. Using the
matching conditions

(3.11) h0(R, θ) = 0, (h0)r(R, θ) = −1

gives the family of radially symmetric droplet solutions

(3.12) h0(x;R(t), X(t)) = R(t)H
(

x −X(t)
R(t)

)
, H(η) =

1
2
(1 − η2).

Using (3.8), (3.12) and the matching condition

(3.13) (h0)rr(R, θ) = lim
z→∞

(H2)zz

allows us to relate the pressure P and the droplet radius:

(3.14) P = −Δh0 =
2

R(t)
.

Region III. Here we expand h = εh1 + ε2h2 + o(ε2). Because of the scaling of τ(ε),
the leading order problem for all q > 0 is the elliptic equation

(3.15) ∇·(hq1∇U ′(h1)) = 0.

Matching to region II implies h1 = 1 on the boundary ∪∂Di; therefore h1 ≡ 1. At
order ε2, the correction term satisfies the “quasi-steady” problem

(3.16) Δh2 = 0.

This equation is solved together with boundary conditions that are derived by match-
ing. Using (3.8) and (3.14), we find that

(3.17) U ′′(1)h2 =
2

R(t)
, x ∈ ∂D.

It is convenient introduce the flux

(3.18) J = −hq∇p = −εqU ′′(1)∇h2 + o(εq)

so that at leading order

(3.19) Jq = −∇P, P ≡ U ′′(1)∇h2

is therefore determined by solving the boundary value problem (3.16), (3.17). To
avoid excessive notation, we also use Jq to denote the flux of order O(εq) in regions I
and II.
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4. Mobility-dependent expansions.

4.1. Case q ∈ (0, 2). The expansion of the equation in region II at order εq

gives 0 = (Jq · ẑ)z, which merely says that the z-component of Jq is constant through
this layer. Thus the normal component of Jq to the boundary of D is that given by
the solution in region III.

In region I, we expand h = h0(x, t)+ εqhq+o(εq), which means that leading order
flux is Jq = hq0∇Δhq. The first nontrivial correction to the equation in this region
gives the linear problem

(4.1) Lhq = Xt · ∇h0 −Rt
∂h0

∂R
, L = ∇·[hq0∇Δ

for x ∈ D (the mismatched bracket indicates that the divergence applies to everything
to the right). We remark that a similar linear problem was encountered by Pismen [31].
The linear operator L (on a space endowed with suitable homogeneous boundary
conditions) has the adjoint

(4.2) L† = Δ∇·[hq0∇.

Nullspace of L†. To invoke a Fredholm solvability argument, we need to char-
acterize its nullspace by finding orthogonal functions whose span is the same as
{(h0)x, (h0)y, (h0)R}. Observe that if ψ is in the nullspace, then

(4.3) ∇·
[
hq0∇ψ

]
= φ, Δφ = 0.

We shall be interested in the particular harmonic functions φ = 0,−x,−y, which
ultimately correspond to changes in droplet size and translation in each direction,
respectively. Since x = r cos θ, y = r sin θ, we look for a solution of (4.3a) of the form
ψ = Ψ(r) cos θ or ψ = Ψ(r) sin θ. In either case we are led to the differential equation

(4.4) r(rhq0Ψ
′)′ − hq0Ψ = −r3

together with the boundary conditions

(4.5) hq0Ψ
′(R) = 0, Ψ(0) = 0.

Several observations about (4.4)–(4.5) are in order. First, the solution is unique, since
multiplying the homogeneous version of this linear equation by Ψ/r and integrating
leads to

(4.6)
∫ R

0

[
rhq0Ψ

′2 +
hq0Ψ

2

r

]
dr = 0.

There is also a natural scale invariance for this problem: If Ψ1 solves

(4.7) r(rHqΨ′
1)

′ −HqΨ1 = r3, Ψ1(0) = 0, HqΨ1(1) = 0,

then

(4.8) Ψ = R3−qΨ1(r/R)

solves (4.4). Finally, the regularity of solutions of the ordinary differential equation
(4.4) and the first boundary condition (4.5) allow us to ascertain the asymptotics at
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Fig. 4.1. The function Ψ(r) with R = 1, used in the solvability argument.

r = R. In particular, we have hq0Ψ
′(R) = O(|r −R|), and therefore one computes for

r → R

(4.9) Ψ ∼

⎧⎪⎨
⎪⎩
O(1), q < 2,
R ln |r −R|, q = 2,
R
q−2 |r −R|2−q, q > 2.

In particular, Ψ is bounded for q < 2 and integrable for q < 3. Since r = R is a
regular singular point of (4.4), the first boundary condition in (4.5) implies

(4.10) hq0Ψ
′(r) = O(|r −R|), r → R.

In practice, solutions to (4.4) can be obtained numerically (see Figure 4.1). To sum-
marize, the desired functions for the solvability argument are

(4.11) ψR = 1, ψx = Ψ(r) cos θ, ψy = Ψ(r) sin θ.

Solvability conditions. The inner product of ψR with (4.1) produces

(4.12) Rt = −
∫
∂D h

q
0∇Δhq · n ds∫

D
∂h0/∂Rdx

.

Using the matching condition for flux,

(4.13) Rt = − 4
3πR2

∫
∂D

Jq · n ds.

This is just a statement about conservation of the droplet volume V =
∫
h0 dx =

πR3/4 since

(4.14) Vt = −
∫
∂D

Jq · n ds.
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Inner products of (4.1) with ψx,y determine the translation dynamics. Integration
with ψx gives

Xt · x̂
∫
D

ψx
∂h0

∂x
dx =

∫
∂D

ψxh
q
0∇Δhq · n ds−

∫
∂D

hq0(Δhq)∇ψx · nds

−
∫
∂D

x∇hq · nds+
∫
∂D

hq cos θ ds

≡
∫
∂D

ψxJq · n ds+B1 + B2 +B3.

(4.15)

In writing this, the inner products with ∂h0/∂y and ∂h0/∂R are zero by symmetry.
We will argue that B1 = B2 = B3 = 0.

First, since the leading order flux is constant across region II,

(4.16) Jq · n = hq0∇Δhq · n = O(1), r → R.

Therefore

(4.17) ∇Δhq · n = O(|r −R|)−q, Δhq = O(|r −R|−q+1), r → R.

Using (4.10), this means that

(4.18) hq0(ψx)zΔhq = O(|r −R|−q+2), r → R,

so that integral B1 = 0.
For the integrals B2 and B3, consider first the subcase q = 1. The relevant

matching conditions are

(4.19) h1(R, θ) = lim
z→∞

H1(z), (h1)r(R, θ) = lim
z→∞

H ′
2(z).

Since H1 and H2 are independent of θ, the integrals B2 and B3 vanish by symmetry.
For noninteger q, the terms in the region II expansion necessary for matching

would be orders εq and εq+1. If such orders were included in the expansion, they
would solve equations like

(4.20)
(
Hq

1 [(Hn)zz − U ′′(H1)Hn]z
)
z

= 0,

where 1 < n < 3. Since there is no flux of order εq+n−3 > εq, integrating (4.20), one
gets

(4.21) (Hn)zz − U ′′(H1)Hn = constant.

From this it is seen that the solution Hn of any order n < 3 is independent of θ, and
therefore the integrals B2 and B3 again vanish.

We now return to determining the migration dynamics. A similar argument
as presented holds for the inner product with ψy. Using (4.11), (4.15) and n =
(cos θ, sin θ) leads to

(4.22) Xt = − 1
π

RΨ(R)∫ R
0 Ψ(r)r2dr

(∫
∂D

nJq · n ds
)
.

Equations (4.13), (4.22) specify the droplet dynamics once the boundary value prob-
lem (3.16)–(3.18) is solved.
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4.2. Case q ∈ (2, 3). As for the case of p ≤ 2, in region II the flux of order εq

involves the correction to H of order ε3, which satisfies the linear equation

0 = (Jq · ẑ)z =
(
Hq

1

[
(H3)zz −R−1(H2)z − zR−2(H1)z

+
1
2
U ′′′(H1)H2

2 + U ′′(H1)H3

]
z

)
z

.(4.23)

The relevant solvability condition for the linear equation (4.23) is found by using the
bounded function

(4.24) Φ(z) = −
∫ ∞

z

H1 − 1
Hq

1

dz′,

which is in the adjoint nullspace of the linear operator in (4.23) and corresponds to
translation. Taking an inner product with (4.23) gives

0 =
[
(Jq · ẑ)Φ − (H1 − 1)[(H3)zz − U ′′(H1)H3] + (H1)z(H3)z − (H1)zz(H3)

]∞
−∞

+Q,

(4.25)

Q =
∫ ∞

−∞
(H1 − 1)

[
R−1(H2)z + zR−2(H1)z +

1
2
U ′′′(H1)H2

2

]
z

dz.

Here (Jq · ẑ) = −(Jq ·n) is just the flux matched to the region III solution at z = −∞.
Note that the term Q inherits radial symmetry from H1, H2 and therefore should be
inconsequential for migration dynamics.

Applying the far field and matching conditions

Φ ∼ 0, (H1)z ∼ 1, (H3)z ∼ +
∂2h1

∂r2
(R, θ)z − ∂h2

∂r
(R, θ), z → ∞,(4.26)

H1 ∼ 1, z → −∞,(4.27)

to (4.25) gives

(4.28)
(
Jq · ẑ

)∫ ∞

−∞

H1 − 1
Hq

1

dz′ =
∂h2

∂r
(R, θ) −Q.

In region I, we expand h = h0(x, t) + εh1 + ε2h2 + o(ε2) and obtain the same as
(4.1), except that it applies to the correction at order ε2 instead of order εq:

(4.29) Lh2 = Xt · ∇h0 −Rt
∂h0

∂R
, L = ∇·[hq0∇Δ, x ∈ D.

Solvability conditions are obtained as in case q < 2. An inner product with ψR gives

(4.30) Rt = −
∫
∂D

hq0∇Δh2 · n ds∫
D ∂h0/∂Rdx

.

Note that hq0∇Δh2 would be the flux at order ε2, but this is zero since the leading
order flux scales like εq. This means that Rt = 0 on the timescale specified by τ(ε).
One could potentially obtain the slow dynamics for mass exchange by going further
in the expansion, where a result like (4.13) should follow on a timescale εq instead
of τ(ε).
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For exponents q ≥ 2 the functions ψx, ψy are not bounded at r = R, but we
can integrate over a smaller disk Dρ of radius ρ and take ρ → R. To avoid excessive
notation, the integrals

∫
D
,
∫
∂D

which appear below should be interpreted as this limit.
Integration with ψx yields

Xt · x̂
∫
D

ψx(h0)x dx =
∫
∂D

ψxh
q
0∇Δh2 · nds−

∫
∂D

hq0(Δh2)∇ψx · nds

−
∫
∂D

x∇h2 · nds+
∫
∂D

h2 cos θ ds

≡ B1 + B2 + B3 + B4.

(4.31)

In contrast to p < 2, only the boundary term B3 is not zero. In light of (4.9), one has
the asymptotics

(4.32) ψx = O(|r −R|2−q), ∇ψx · n = O(|r −R|1−q), hq0 = O(|r −R|q).

The boundedness of derivatives of h2 then implies B1 = B2 = 0. For B4, matching
to region I implies H2 ∼ 1

2 (h0)rr(R, θ)z2 − (h1)r(R, θ)z + (h2)(R, θ) for large z. This
means that h2 is independent of θ, and symmetry gives B4 = 0. It follows that

(4.33) Xt · x̂
∫
D

ψx(h0)x dx = −
∫
∂D

x∇h2 · nds.

A similar expression can be obtained using φy. Combining this with (4.28), the terms
involving Q drop away by symmetry, leaving

(4.34) Xt = − 1
π

R2
∫∞
−∞H1−q

1 −H−q
1 dz′∫ R

0 Ψ(r)r2dr

(∫
∂D

nJq · nds
)
.

4.3. Case q > 3. The expansion in region II is now done as H = εH1 + ε2H2 +
ε3H3 + · · · . At the level of the first nonzero flux Jq, we get the linear equation

−(Xt · n)(H1)z =
(
Hq

1

[
(H3)zz −R−1(H2)z − zR−2(H1)z

+
1
2
U ′′′(H1)H2

2 + U ′′(H1)H3

]
z

)
z

.(4.35)

The solvability argument proceeds as for the case 2 < q < 3 and uses the bounded
function Φ defined in (4.24). The inner product with (4.35) gives the same result as
for 2 < q < 3 except that the left-hand side is nonzero:

(4.36) (Xt · n)
∫ ∞

−∞

H1 − 1
Hq−1

1

dz = −(Jq · n)
∫ ∞

−∞

H1 − 1
Hq

1

dz − ∂h2

∂r
(R, θ) −Q.

Here (Jq · n) = −(Jq · ẑ)(z = −∞) is the flux matched to region III.
The expansion in region I is h = h0 + εh1 + ε2h2 + o(ε2), which means h2 solves

(4.37) ∇·(hq0∇Δh2) = 0.

This is the homogeneous version of (4.29), and therefore the relevant solvability con-
ditions (for each coordinate direction) are the same as (4.33) with the left-hand side
suppressed:

(4.38)
∫
∂D

x∇h2 · nds = 0 =
∫
∂D

y∇h2 · nds.
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We can now multiply (4.36) by x or y and integrate over ∂D and use (4.38). Again
the Q term drops away and we are left with

(4.39) Xt = − 1
π

∫∞
−∞[H1−q

1 −H−q
1 ]dz′

R
∫∞
−∞[H2−q

1 −H1−q
1 ]dz′

(∫
∂D

nJq · nds
)
.

4.4. Case q = 2. This case is similar to q ∈ (2, 3), but there are logarithmically
diverging terms that require care. The flux of order ε2 in region II satisfies the linear
equation

0 = (J2 · ẑ)z =
(
H2

1

[
(H3)zz −R−1(H2)z − zR−2(H1)z

+
1
2
U ′′′(H1)H2

2 + U ′′(H1)H3

]
z

)
z

,(4.40)

which again says that the normal component of the flux is constant. The relevant
solvability condition uses the function

(4.41) Φ =
∫ z

−∞

H1 − 1
H2

1

dz′,

which diverges logarithmically:

(4.42) Φ = ln(z) +O(1), z → ∞.

Multiplying Φ by (4.40) and integrating from −∞ to some finite value z = Z (since
the result is unbounded as Z → ∞) gives a result similar to (4.25):

0 =
[
(J2 · ẑ)Φ − (H1 − 1)[(H3)zz − U ′′(H1)H3] + (H1)z(H3)z − (H1)zz(H3)

]Z
−∞

+Q,

(4.43)

Q =
∫ Z

−∞
(H1 − 1)

[
R−1(H2)z + zR−2(H1)z +

1
2
U ′′′(H1)H2

2

]
z

dz.

Since the flux J2 is nonzero, integrating (4.40) directly gives (H3)zzz ∼ 1/z2 for large
z. Therefore H3 is bounded and (H3)z diverges logarithmically as z → +∞. The
balance of logarithmically diverging terms in (4.43) gives

(4.44) (H3)z = (J2 · n) ln(z) +O(1), z → ∞,

where (Jq · n) = −(Jq · ẑ)(z = −∞) is the flux matched to region III.
In region I, we expand h = h0(x, t) + εh1 + ε2 ln(1/ε)h∗ + o(ε2 ln(1/ε)). Then

h∗ solves the linear equation (4.1), and the solvability arguments proceed as before.
Like the case q ∈ (2, 3), Rt = 0 to leading order (albeit mass exchange is only
logarithmically slower). The other solvability conditions are obtained by taking inner
products with ψx, ψy, which produces a result analogous to (4.33):

(4.45) Xt · x̂
∫
D

ψx(h0)x dx = −
∫
∂D

x∇h∗ · nds.

Matching conditions that relate (h∗)x to (H3)z are now derived. It is assumed
that region I and II solutions describe the same solution on some overlapping region
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1 � z � [ε ln(1/ε)]−1. Within this region, a Taylor expansion is justified for h0, h1

but not h∗ so that

(H1)z + ε(H2)z + ε2(H3)z + o(ε2)

= − (h0)r − ε(h1)r − ε2 ln(1/ε)(h∗)r + o(ε2 ln(1/ε))

= − (h0)r(R, θ) − ε
[
(h1)r(R, θ) + (h0)rr(R, θ)z

]

− ε2 ln(1/ε)(h∗)r(R, θ) + o(ε2 ln(1/ε)).

(4.46)

Equating terms at order 1 and ε gives the usual matching conditions for regular
expansions. For the logarithmic terms, the procedure is to take ε → 0 and z ∼
[ε ln(1/ε)]−1 simultaneously. Using (4.44), for large z we have

(4.47) (H3)z = (J2 · n) ln
(
[ε ln(1/ε)]−1

)
+O(1) = (J2 · n) ln(1/ε) + O

(
ln(ln(1/ε))

)
.

Inserting into (4.46) and equating terms of order ε2 ln(1/ε) gives

(4.48) (J2 · n) = −(h∗)r(R, θ).

This can be combined with (4.45) to yield

(4.49) Xt = − 1
π

R2∫ R
0

Ψ(r)r2dr

(∫
∂D

nJq · n ds
)
.

4.5. Case q = 3. This case is similar to both q > 3 and q ∈ (2, 3), but there
are again logarithmically diverging terms. The flux of order ε3 in region II satisfies
the linear equation

0 = (J3 · ẑ)z =
(
H3

1

[
(H3)zz −R−1(H2)z − zR−2(H1)z

+
1
2
U ′′′(H1)H2

2 + U ′′(H1)H3

]
z

)
z

.(4.50)

A solvability argument identical to the case q ∈ (2, 3) produces

(4.51) (J3 · n)
∫ ∞

−∞

H1 − 1
H3

1

dz′ = (H3)z −Q.

In region I, we expand h = h0(x, t)+εh1+ε2/ ln(1/ε)h∗+o(ε2/ ln(1/ε)), so that h∗
solves the linear equation (4.1) with q = 3, and the solvability arguments proceed as
before. As for all cases q ≥ 2, Rt = 0 to leading order. In this case, the inner products
with ψx, ψy diverge logarithmically, so we integrate on a disk D(ρ) with radius ρ < R
and consider the asymptotics as ρ→ R. Multiplying by ψx and integrating gives

(Xt · x̂)
∫
D(ρ)

ψx(h0)x dx =
∫
∂D(ρ)

ψxh
3
0∇Δh∗ · nds−

∫
∂D(ρ)

h3
0(Δh∗)∇ψx · nds

−
∫
∂D(ρ)

x∇h∗ · nds+
∫
∂D(ρ)

h∗ cos θ ds = B1 +B2 +B3 +B4.

(4.52)
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The integral on the left-hand side has a logarithmic singularity as ρ → R because of
(4.9); in particular,

(4.53)
∫
D(ρ)

ψx(h0)x dx = −πR2 ln |R − ρ| + O(1), ρ→ R.

Matching conditions (which are detailed below) require ∇h∗ ∼ C ln |R − r|. As a
consequence, we find that h∗ is bounded and

(4.54) ∇Δh∗ ∼ |R− r|−2, Δh∗ ∼ |R− r|−1

as r → R. All this implies that the integrals B1, B2, B4 are bounded as ρ → R but
B3 diverges logarithmically. Using (4.52)–(4.53) gives

(4.55)
∫
∂D(ρ)

x∇h∗ · nds = πR2(Xt · x̂) ln |R− ρ| + O(1), ρ→ R.

The matching condition that relates (h∗)r to (H3)z is derived as for q = 2.
Equating expansions for hr in regions I and II, then for 1 � z � log(1/ε),

(H1)z + ε(H2)z + ε2(H3)z + o(ε2)

= −(h0)r − ε(h1)r − ε2/ ln(1/ε)(h∗)r + o(ε2/ ln(1/ε))

= −(h0)r(R, θ) − ε
[
(h1)r(R, θ) + (h0)rr(R, θ)z

]

− ε2(h1)rr(R, θ)z − ε2/ ln(1/ε)(h∗)r + o(ε2/ ln(1/ε)).

(4.56)

Let (h∗)r ∼ C ln |R − r|, r → R, where C is to be determined. Taking ε → 0 with
z ∼ ln(1/ε) simultaneously implies for large z

(4.57) (h∗)r = C ln(εz) + O(1) = C ln(ε) + O(ln(ln(1/ε))), ε→ 0.

Inserting into (4.56) and equating terms of order ε2, we obtain

(4.58) C = lim
z→∞

−(H3)z .

Finally, combining (4.51), (4.55), (4.58),

(4.59) Xt = − 1
π

∫∞
−∞[H−2

1 −H−3
1 ]dz

R

(∫
∂D

nJq · n ds
)
.

5. Effective medium approximation and identification of timescales.
One potentially useful approximation to the free boundary problem described in sec-
tion 2 utilizes Green’s functions similar to the effective medium approximations for
standard Ostwald ripening [38]. This is employed to determine timescales and study
large systems of interacting droplets.

5.1. Reduced system. Let Xk, Rk, k = 1, . . . , N , be the droplet centers and
radii. We want to solve ΔP = 0 exterior to the droplets, i.e., for all x, |x−Xk| > Rk,
subject to the boundary conditions

(5.1) P (x) =
2
Rk

, |x −Xk| = Rk.
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The simplest approximation looks for a solution as a sum of Green’s functions,

(5.2) P (x) = B0 +
N∑
k=1

Bk ln |x −Xk|2.

For each j = 1, . . . , N , the boundary condition which one wishes to satisfy is

(5.3)
2
Rj

= B0 +
N∑
k=1

Bk ln |x −Xk|2 for |x −Xj | = Rj .

Assuming the droplets are well separated, the approximation |x − Xk| ≈ |Xj −Xk|
holds on the boundary of droplet j = k, giving

(5.4)
2
Rj

= B0 +Bj ln(R2
j ) +

∑
k �=j

Bk ln |Xj −Xk|2, j = 1, . . . , N.

The system is completed by the requirement that there be no flux at infinity:

(5.5)
∫
S

∇P · n→ 0,

as the curve S (take it to be a giant circle) is taken out to infinity. As x → ∞,
1/|x−Rk| ≈ 1/|x|, and therefore

(5.6)
∫
S

∇P · n→
N∑
k=1

Bk

(∫
S

1
|x|ds

)
= 2π

N∑
k=1

Bk.

This integral will be zero only if

(5.7)
N∑
k=1

Bk = 0.

Equations (5.4) and (5.7) define an (N + 1) × (N + 1) linear problem to be solved.
The integral in (2.5) to be computed for each j is

(5.8)
∫
∂Dj

J · n ds = −
∫
∂Dj

∇P · n ds = 4πBj .

The integral in (2.6) to be evaluated for each j is

∫
∂Dj

(J · n)n ds = −
∫
∂Dj

(∑
k

Bk
2(x −Xk) · n
|x −Xk|2

)
ds(x)

≈ −2

⎛
⎝∑
k �=j

Bk
Xj −Xk

|Xj −Xk|2

⎞
⎠ ·

(∫
∂Dj

n⊗n ds

)
,

(5.9)

where the same approximation |x −Xk| ≈ |Xj −Xk| as before was used. Since

(5.10)
∫
∂Dj

n⊗n ds = πRjI,
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Fig. 5.1. Example numerical solution of an approximate system with four initial droplets. The
net repulsion experienced by the drop in the center is small, allowing one of the large droplets to
catch up.

where I is the identity matrix, it follows that

(5.11)
∫
∂Dj

(J · n)n ds ≈ −2πRj
∑
k �=j

Bk
Xj −Xk

|Xj −Xk|2
.

It is instructive to examine a simple situation where only two droplets interact.
By virtue of the quasi-steady diffusion (2.4) it follows that the flux J will on average
be toward the smaller drop. In the context of the above approximation, that means
that if R1 > R2, then B1 > 0 > B2. Using (2.6) and (5.11), it follows that the velocity
of both droplets is in the direction of the smaller droplet.

By virtue of the mobility factor (2.7), a smaller droplet moves faster, and therefore
it would simply “run away” from a single large droplet. On the other hand, if a smaller
droplet is surrounded by several large droplets, the net repulsion can be small enough
so that merging with a larger droplet is possible. Figure 5.1 shows a numerically
computed example with three large droplets and a small droplet, which eventually
touches one of the larger droplets. Simulations of the thin film equation indicate that
this initiates a rapid coalescence of both drops [29].

5.2. Dynamic timescales. Consider now a reasonably large array of droplets
which all have a similar size R and typical spacing L, so that the volume per unit
area is

(5.12) Haverage =
R3

L2
,

which is constant as time progresses.
Timescale for ripening. The approximation (5.2) gives the scaling

(5.13) Bj ∼ R−1/ lnL,

which with (5.8) further implies

(5.14)
∫
∂Dj

J · n ds ∼ R−1/ lnL.

For exponents q < 2, using (2.5), the timescale for ripening (i.e., mass exchange) can
be computed as

(5.15) τripe ∼
R

Rt
∼ R4 lnL ∼ H4/3

averageL
8/3 lnL, q < 2.
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For exponents q ≥ 2, the ripening dynamics occur on a timescale of the flux, i.e., εq

rather than τ(ε). This can be accommodated by including an extra factor in the
timescale:

(5.16) τripe ∼
R

Rt
∼ τ(ε)

εq
H4/3
averageL

8/3 lnL, q ≥ 2.

Timescale for migration. Using (5.11) and (5.13), one can obtain

(5.17)
∫
∂Dj

(J · n)n ds ∼ L−1/ lnL.

Using (2.6), the timescale for migration can be computed as

(5.18) τmig ∼ L

Xt
∼

⎧⎪⎨
⎪⎩
H

2/3
averageL10/3 lnL, q < 2,

H
4−q
3

averageL(14−2q)/3 lnL, q ∈ [2, 3],
H

1/3
averageL8/3 lnL, q > 3.

The limit of large droplet size in the unscaled equation. Here we show that our
scaling results are, suitably interpreted, the same as those derived in the companion
paper [9]. The starting point there was the unscaled thin film equation

(5.19) ht = ∇·(hq∇p), p = U ′(h) − Δh, q > 0.

In [9], the limit of large droplet volume was considered, in contrast to a small precur-
sor film. In this case, let V � 1 be a typical droplet volume with characteristic
interdroplet distance L′. This suggests that the natural small parameter is ε = V −1/3.
Rescaling (5.19) using

(5.20) x→ ε−1x, t→ τ(ε)−1εq−4, h→ hε−1

gives exactly (1.1). The average droplet size after rescaling is R = 1, and the charac-
teristic distance between droplets is

(5.21) L = εL′ =
V 1/6

H
1/2

,

where H = V/(L′)2. The mass density for the scaled equation is

(5.22) Haverage =
1

ε2(L′)2
=

H

V 1/3
.

Timescales with respect to the unscaled equation (5.19) can now be written in
terms of V and H . For the ripening times given by either (5.15) or (5.16) one obtains

(5.23) τunscaledripe = τ(ε)ε4−qτripe ∼ V 4/3 lnV + O(1), V → ∞.

For the migration timescale (5.18) one has

(5.24) τunscaledmig = τ(ε)ε4−qτmig = O(1) +
1
H

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V 5/3 lnV, q ∈ (0, 2),
V 5/3, q = 2,
V

7−q
3 lnV, q ∈ (2, 3),

V 4/3 ln2 V, q = 3,
V 4/3 lnV, q > 3.

V → ∞,
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Fig. 6.1. Trajectories for a simulation with 500 initial droplets (q = 3). The direction of
motion is mostly outward from the center. Note that small, uncoalesced droplets on the fringes are
repelled.

6. Large scale coarsening by coalescence. We conclude by using the ap-
proximations of the previous section to study the evolution of a large assembly of
droplets. We focus on the most relevant mobility exponent q = 3, which corresponds
to a fluid with Newtonian viscosity and a no-slip boundary condition. In doing this,
the exchange of material between droplets is ignored, and only the leading order ef-
fect, migration, is considered. There are no boundaries in the calculation, so that
(5.5) applies. An ad hoc criterion for coalescence is applied, which states that when
the perimeters of two droplets overlap, their volume is combined and the center of
mass is preserved.

Figure 6.1 is an illustration of the dynamics. The simulation was started with
500 droplets in random locations, each with a random but nearly uniform radius.
Droplets in the middle of the assembly coalesce first, simply because they have a
greater number of neighbors. As time progresses, it follows that smaller, more mobile
droplets on the fringes will be driven away, since the motion is opposite the flux, which
is toward larger droplets. The amount of time that droplets take to move (relative
to the interdroplet distance) increases since the driving force given by flux decreases
with increasing droplet size.
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Fig. 6.2. Dynamic scaling of coalescence-driven coarsening (q = 3), using 5000 initial droplets.
A line with slope −3/4 is provided for comparison to the predictions of [29].

Figure 6.2 shows the droplet number plotted as a function of time, for a sim-
ulation with 5000 droplets initially. Dynamic scaling of the coarsening process was
predicted [29]; in particular, the relevant length scale (the typical interdroplet distance
L) should increase as t3/8. Since the number of droplets N scales according to

NL2 ∼ area of domain,

N should scale in time like t−3/4. This is more or less borne out by the results in
Figure 6.2. At late times when the array has spread out to a somewhat larger area,
there is a slowing of the coarsening process, also seen in the computational results.

7. Conclusions. The main outcome of this paper is to establish a concrete link
between a class of thin film equations and a free boundary problem for the motion of
the contact line interface. In contrast to the classical situation of Ostwald ripening,
we have shown that migration of droplets, and ultimately coalescence, is a likely
mechanism for coarsening. Another feature which distinguishes this problem is its
mixed dimensionality: droplets are three-dimensional, but the quasi-steady diffusion
of material between them is effectively two-dimensional. This leads to dynamic scaling
with exponents different than the familiar “1/3” power law.

There is some experimental support for the conclusions which we reach. Limary
and Green [15, 16] examined the late stage structural evolution of droplets and mea-
sured their size and shape distributions. They found that droplet size (measured as a
length scale) evolved as a power law with an exponent that varied from 1/10 to about
2/5. They conclude from their observations that “coarsening occurs via a self-similar,
dynamic coalescence process, not Ostwald ripening” (referring to the exchange of
material).

As mentioned in the introduction, [32] derives dynamic equations for droplet ra-
dius and position in the same thin film model as ours for mobility exponent q = 3. The
procedure used there does not involve systematic asymptotic expansions and solvabil-
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ity conditions, but rather poses a traveling wave problem that loosely derives from
the thin film equation. The authors connect the traveling wave speed to the influence
felt by the disjoining pressure at the foot of the droplet. The resulting formulas are
vaguely similar to ours but are not quantitatively the same. Most significantly, their
assessment of the sign of migration seems to be opposite of ours and contradicts other
analytical results [9, 11, 12] as well as direct numerical simulation of the partial dif-
ferential equation [11, 29]. Indeed, in section IV.B of their paper, they claim that in a
two-droplet system “both droplets migrate in the direction of the larger droplet” and
show calculations where smaller droplets are attracted to larger droplets. According
to (2.6), a larger droplet would move toward a smaller droplet since motion is oppo-
site of the flux J . This certainly calls into question the reasoning that leads to their
formulation.

There is reason to believe that our results (or at least our analytical procedures)
are relevant for a variety of related thin film problems. The main ingredients which
we required were the formation of near-equilibrium structures (droplets) and a sep-
aration of timescales between their formation and interaction. This separation of
timescales is a simple consequence of the nearly degenerate kinetics common to many
thin film models. A variety of other phenomena can create instability leading to
structure formation and interaction. For example, the Rayleigh–Taylor or Rayleigh–
Plateau instabilities lead to formation of migrating liquid ridges [10, 17]. Migration
effects similar to ours have also been reported for droplets subject to Marangoni ef-
fects [4], chemically driven droplets [31], and two-layer fluids [18]. More broadly, one
might expect that degenerate diffusion in other phase separation processes can lead
to alternative mechanisms to coarsening.

Acknowledgments. The author is grateful for discussions with Felix Otto, To-
bias Rump, and Dejan Slepčev, and for the hospitality afforded during his visit to the
University of Bonn.
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NONLINEAR ELECTRON AND SPIN TRANSPORT IN
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Abstract. Nonlinear charge transport in strongly coupled semiconductor superlattices is de-
scribed by Wigner–Poisson kinetic equations involving one or two minibands. Electron-electron
collisions are treated within the Hartree approximation, whereas other inelastic collisions are de-
scribed by a modified BGK (Bhatnaghar–Gross–Krook) model. The hyperbolic limit is such that
the collision frequencies are of the same order as the Bloch frequencies due to the electric field, and
the corresponding terms in the kinetic equation are dominant. In this limit, spatially nonlocal drift-
diffusion balance equations for the miniband populations and the electric field are derived by means
of the Chapman–Enskog perturbation technique. For a lateral superlattice with spin-orbit interac-
tion, electrons with spin up or down have different energies, and their corresponding drift-diffusion
equations can be used to calculate spin-polarized currents and electron spin polarization. Numerical
solutions show stable self-sustained oscillations of the current and the spin polarization through a
voltage biased lateral superlattice thereby providing an example of superlattice spin oscillator.

Key words. quantum drift-diffusion equations, quantum BGK model, Chapman–Enskog meth-
od, propagation of pulses, modified Kane model, Rashba spin-orbit interaction, spin oscillator

AMS subject classifications. 34E15, 92C30

DOI. 10.1137/080714312

1. Introduction. Semiconductor superlattices are essential ingredients in fast
nanoscale oscillators, quantum cascade lasers, and infrared detectors. Quantum cas-
cade lasers are used to monitor environmental pollution in gas emissions, to analyze
breath in hospitals, and in many other industrial applications [3]. A superlattice (SL)
is a convenient approximation to a quasi-one-dimensional (quasi-1D) crystal that was
originally proposed by Esaki and Tsu to observe Bloch oscillations, i.e., the periodic
coherent motion of electrons in a miniband in the presence of an applied electric field.
Figure 1.1(a) shows a simple realization of an N -period SL. Each period of length
l consists of two layers of semiconductors with different energy gaps but with simi-
lar lattice constants. The SL lengths in the lateral directions, Ly and Lz, are much
larger than l, typically tens of microns compared to about ten nanometers. The en-
ergy profile of the conduction band of this SL can be modeled as a succession of square
quantum wells and barriers along the x direction (Kronig–Penney model) and, for an
n-doped SL, we do not have to consider the valence band. A different quasi-1D crystal
called a lateral superlattice (LSL) is shown in Figure 1.1(b). In this case, a periodic
structure is formed on the top surface of a quantum well (QW), so that Lz is of the
order of l and Ly � l. The wave functions of a single electron in the conduction band
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Firenze, Italy (barletti@math.unifi.it).

494



NONLINEAR ELECTRON AND SPIN TRANSPORT 495

y

x

z

(a) (b)

GaAs

AlAs

GaAs

AlAs

Fig. 1.1. (a) Schematic drawing of a superlattice. (b) A lateral superlattice.

of an SL can be expanded in terms of 1D Bloch wave functions times plane waves,

1√
S
eikyyψ(z) eikxuν(x, k),(1.1)

ψ(z) =
{

eikzz for an SL,
ψn(z) for an LSL,(1.2)

where ν is the miniband index and n is the energy level of the quantum well in the
case of an LSL. The function uν(x, k) is l-periodic in x and 2π/l-periodic in k. S is
the area of the lateral cross section, equal to LyLz for a rectangular cross section.

Many interesting nonlinear phenomena have been observed in voltage-biased SL
comprising finitely many periods, including self-oscillations of the current through the
SL due to motion of electric field pulses, multistability of stationary charge and field
profiles, and so on [3]. It is important to distinguish between strongly and weakly cou-
pled SLs depending on the coupling between their component QWs. Roughly speak-
ing, if barriers are narrow, QWs are strongly coupled and we can use the electronic
states (1.1) as a convenient basis in a quantum kinetic description. The resulting re-
duced balance equations for electron density and electric field are partial differential
equations (which may be nonlocal, as we shall see in this paper). On the other hand,
for SLs having wide barriers, their QWs are weakly coupled and the electronic states
of a single well provide a good basis in a quantum kinetic description, replacing the
Bloch functions eikxuν(x, k) in (1.1). In this case, the balance equations are spatially
discrete, and phenomena such as multistability of stationary field profiles, formation
and pinning of electric field domains, etc., are theoretically predicted and observed in
experiments. See the review [3]. Another promising field of applications is spintron-
ics. Electrons in SLs having at least one period doped with magnetic impurities and
subject to a static magnetic field can be distinguished by their spin because the mag-
netic field splits each miniband in two, giving it different spin-dependent energy [19].
Recently an SL of this type has been proposed as a spin oscillator producing spin-
polarized oscillatory currents and able to inject polarized electrons in a contact [6].
Alternatively, materials displaying strong spin-orbit effects can be used as spintronic
devices without having to apply magnetic fields; cf. the case of the LSL considered in
[14]. In this paper, we will show that an LSL can be used as a spin oscillator.

This paper presents systematic derivations of quantum balance equations for SLs
with two populated minibands, and it shows that their numerical solutions may predict
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space- and time-dependent nonlinear phenomena occurring in these materials. Our
methods can be used in 3D crystals, but their application to 1D structures such as
SLs and LSLs leads to simpler equations that are less costly to solve. Although
nonlinear charge transport in SLs has been widely studied in the last decade (see
the reviews [3, 17, 21]), systematic derivations of tractable balance equations for
miniband populations and electric field are scarce. One reason is that quantum kinetic
equations are nonlocal in space and their collision terms may be nonlocal in space
and time [10, 21]. Using them to analyze space- and time-dependent phenomena
such as wave propagation or self-sustained oscillations is problematic. In fact, only
extremely simple solutions of general quantum kinetic equations (such as thermal
equilibrium, disturbances thereof due to weak external fields, and so on) are known;
theoretical analysis of these equations is lacking and numerical solutions describing
spatiotemporal phenomena are not available. One way to proceed is to adopt simple
collision models similar to the Bhatnagar–Gross–Krook (BGK) collision model for
classical kinetic theory [1]. We discuss in this paper how to implement a BGK collision
model for a quantum kinetic equation that is simple to handle yet keeps an important
quantum feature such as the broadening of energy levels [2]. Once we have a quantum
kinetic equation for a sufficiently general SL having two minibands, we implement a
Chapman–Enskog perturbation procedure to derive the sought balance equations and
solve them numerically for realistic SL configurations.

Previous to this work, Lei and coworkers derived quantum hydrodynamic equa-
tions describing SL having only one miniband [16, 15]. They use a closure assumption
to close a hierarchy of moment equations. For the case of quantum particles in an
arbitrary external 3D potential, Degond and Ringhofer [8] have used a similar pro-
cedure to derive balance equations. They close the system of moment equations by
means of a local equilibrium density obtained by maximizing entropy. The Chapman–
Enskog method has been used to derive drift-diffusion equations for single-miniband
SLs described by semiclassical [5] and quantum kinetic equations [2]. Earlier, Cercig-
nani, Gamba, and Levermore used the Chapman–Enskog method to derive balance
equations for a semiclassical BGK–Poisson kinetic description of a semiconductor with
one parabolic band under strong external bias [7].

The rest of this paper is as follows. In section 2, we review the simpler case of
nonlinear electron transport in a strongly coupled n-doped SL having only one pop-
ulated miniband [2]. Starting with a kinetic equation for the Wigner function, we
use the Chapman–Enskog perturbation method to derive balance equations for the
electron density and the electric field. When these equations are solved numerically
for a dc voltage–biased SL with finitely many QWs and realistic parameter values,
stable self-sustained oscillations of the current through the SL are found among their
solutions, in agreement with experimental observations [2]. Sections 3 to 5 contain
the main results of the present work. In section 3, we describe an SL having two
populated minibands by proposing a kinetic equation for the Wigner matrix. In sec-
tion 4, we derive balance equations for the miniband electron populations and the
electric field, using an appropriate Chapman–Enskog method and a tight-binding ap-
proximation to obtain explicit formulas. The case of an LSL having strong Rashba
spin-orbit interaction [18] is important for spintronic applications and has been con-
sidered in section 5. We derive and solve numerically the resulting balance equations.
Novel self-sustained oscillations of the spin current and polarization are obtained for
appropriate values of the parameters. Finally section 6 contains our conclusions, and
some technical matters are relegated to the appendix.
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2. Single miniband superlattice. The Wigner–Poisson–Bhatnagar–Gross–
Krook (WPBGK) system for 1D electron transport in the lowest miniband of a
strongly coupled SL is

∂f

∂t
+
i

�

[
E
(
k +

1
2i

∂

∂x

)
− E

(
k − 1

2i
∂

∂x

)]
f(2.1)

+
ie

�

[
W

(
x+

1
2i

∂

∂k
, t

)
−W

(
x− 1

2i
∂

∂k
, t

)]
f

= Q[f ] ≡ −νen
(
f − fFD

)
− νimp

f(x, k, t) − f(x,−k, t)
2

,

ε
∂2W

∂x2
=
e

l
(n−ND),(2.2)

n(x, t) =
l

2π

∫ π/l

−π/l
f(x, k, t)dk =

l

2π

∫ π/l

−π/l
fFD(k;n(x, t))dk,(2.3)

fFD(k;n) =
m∗kBT

π�2

∫ ∞

−∞
ln
[
1 + exp

(
μ− E

kBT

)] √
2Γ3/π

[E − E1(k)]4 + Γ4
dE.(2.4)

Here f , n, ND, E(k), dB, dW , l = dB + dW , W , ε, m∗, kB, T , Γ, νen, νimp, and
−e < 0 are the one-particle Wigner function, the 2D electron density, the 2D doping
density, the miniband dispersion relation, the barrier width, the well width, the SL
period, the electric potential, the SL permittivity, the effective mass of the electron
in the lateral directions, the Boltzmann constant, the lattice temperature, the energy
broadening of the equilibrium distribution due to collisions [12, p. 28], the frequency
of the inelastic collisions responsible for energy relaxation, the frequency of the elastic
impurity collisions, and the electron charge, respectively.

The left-hand side of (2.1) can be straightforwardly derived from the Schrödinger–
Poisson equation for the wave function in the miniband using the definition of the 1D
Wigner function [2]:

(2.5) f(x, k, t) =
2l
S

∞∑
j=−∞

∫
R2
〈ψ†(x+ jl/2, y, z, t)ψ(x− jl/2, y, z, t)〉eijkldx⊥

(the second quantized wave function ψ(x,x⊥, t) =
∑

q,q⊥
a(q, q⊥, t)φq(x)eiq⊥·x⊥ , x⊥ =

(y, z), is a superposition of the Bloch states corresponding to the miniband and S is
the SL cross section [2]). The right-hand side of (2.1) is the sum of −νe

(
f − fFD

)
,

which represents energy relaxation towards a 1D effective Fermi–Dirac distribution
fFD(k;n) (local equilibrium), and −νi[f(x, k, t) − f(x,−k, t)]/2, which accounts for
impurity elastic collisions [5]. For simplicity, the collision frequencies νe and νi are
fixed constants. Exact and Fermi–Dirac distribution functions have the same electron
density, thereby preserving charge continuity as in the classical BGK collision mod-
els [1]. The chemical potential μ is a function of n resulting from solving (2.3) with
the integral of the collision-broadened 3D Fermi–Dirac distribution over the lateral
components of the wave vector (k,k⊥) = (k, ky, kz):

fFD(k;n) =
∫ ∞

−∞

DΓ (E − E1(k))

1 + exp
(
E−μ
kBT

) dE,(2.6)

DΓ(E) =
2

(2π)2

∫
R2
δΓ

(
�

2k2
⊥

2m∗ − E

)
dk⊥ =

m∗

π�2

∫ ∞

0

δΓ(E⊥ − E) dE⊥.(2.7)
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Using the residue theorem for a line-width,

(2.8) δΓ(E) =
√

2Γ3/π

Γ4 + E4
,

equation (2.7) yields

DΓ(E) =
m∗

π�2

{
1 +

1
4π

ln

[
E2 +

√
2ΓE + Γ2

E2 −
√

2ΓE + Γ2

]

− θ(
√

2|E| − Γ)
2π

[
2π − arctan

(
Γ√

2|E| + Γ

)
− arctan

(
Γ√

2|E| − Γ

)]

− θ(Γ −
√

2|E|)
2π

[
π + arctan

(
Γ√

2E + Γ

)
− arctan

(
Γ

Γ −
√

2E

)]

− θ(
√

2E − Γ)
2π

[
arctan

(
Γ√

2E + Γ

)
+ arctan

(
Γ√

2E − Γ

)]}
,(2.9)

which is equivalent to (2.4).1 Here θ(E) is the Heaviside unit step function. As
Γ → 0+, the line-width (2.8) tends to the delta function δ(E), DΓ(E) tends to the
2D density of states, D(E) = m∗θ(E)/(π�

2), and fFD tends to the 3D Fermi–Dirac
distribution function integrated over the lateral wave vector k⊥. In [2], a Lorentzian
line-width was used instead of (2.8) and the integral over E in (2.6) extended from 0
to ∞. The integral with the Lorentzian function is not convergent in E = −∞, which
is why we prefer using convolution with the “super-Lorentzian” function (2.8) in this
work. The integration in (2.7) cannot be carried out explicitly for other standard
line-widths such as a Gaussian or a hyperbolic secant. This unnecessarily complicates
the numerical integration of the balance equations we will obtain later. Note that,
following Ignatov and Shashkin [11], we have not included the effects of the electric
potential in our Fermi–Dirac distribution. These model equations can be improved
by including scattering processes with change of lateral momentum and an electric
field–dependent local equilibrium. However, the resulting model could only be treated
numerically and the qualitative features of our derivation and of the nonlocal drift-
diffusion equation would be lost in longer formulas.

A different way to introduce a quantum BGK collision model is to define a local
equilibrium density matrix operator by minimizing quantum entropy (defined with
the opposite sign of the convention that is usual in physics) under constraints giving
the electron density and energy density in terms of the density matrix. The resulting
expression involves an inverse Wigner transform, and another transform is needed to
deduce the local equilibrium Wigner function fFD entering the BGK formula [8]. This
fFD is nonlocal in space and can be found only by solving some partial differential
equation [8]. As a model for quantum collisions [10, 21], the resulting quantum BGK
model is not realistic, in the same way as the original BGK model is not a realistic
model for classical collisions. Moreover, the implicit manner in which the model is
defined defeats the main asset of the classical BGK collision model: its simplicity,
which makes it possible to obtain results analytically. Thus we prefer to introduce a
BGK model that can be handled more easily and still incorporates quantum effects.
The most important quantum effect affecting the collision term is the broadening of
energy levels due to scattering, Γ ≈ �/τ (where τ is the lifetime of the level) [12], and

1Integrate (2.6) by parts using (2.9).
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this is taken phenomenologically into account by the convolution with the line-width
function (2.8) in (2.6). In the semiclassical limit “� → 0,” Γ → 0 and we recover the
semiclassical Fermi–Dirac distribution.

The WPBGK system (2.1) to (2.4) should be solved for a Wigner function which
is 2π/l-periodic in k and satisfies appropriate initial and boundary conditions. It is
convenient to derive the charge continuity equation and a nonlocal Ampère’s law for
the current density. The Wigner function f is periodic in k; its Fourier expansion is

(2.10) f(x, k, t) =
∞∑

j=−∞
fj(x, t) eijkl .

Defining F = ∂W/∂x (minus the electric field) and the average

(2.11) 〈F 〉j(x, t) =
1
jl

∫ jl/2

−jl/2
F (x+ s, t) ds,

it is possible to obtain the following equivalent form of the Wigner equation [2]:

(2.12)
∂f

∂t
+

∞∑
j=−∞

ijl

�
eijkl

(
Ej

∂

∂x
〈f〉j + e 〈F 〉j fj

)
= Q[f ].

Here the nonzero Fourier coefficients of the dispersion relation are simply E0 = Δ/2
and E±1 = −Δ/4 for the tight-binding dispersion relation E(k) = Δ (1 − cos kl)/2
(Δ is the miniband width), which yields a miniband group velocity v(k) = Δl

2�
sin kl.

Integrating this equation over k yields the charge continuity equation

(2.13)
∂n

∂t
+

∂

∂x

∞∑
j=1

2jl
�

〈Im(E−jfj)〉j = 0.

Here we can eliminate the electron density by using the Poisson equation and then
integrate over x, thereby obtaining the nonlocal Ampère’s law for the total current
density J(t):

(2.14) ε
∂F

∂t
+

2e
�

∞∑
j=1

j〈Im(E−jfj)〉j = J(t).

To derive the quantum drift-diffusion equation, we shall assume that the electric
field contribution in (2.12) is comparable to the collision terms and that they dominate
the other terms (the hyperbolic limit) [5]. Let vM and FM be the electron velocity and
field positive values at which the (zeroth order) drift velocity reaches its maximum.
In this limit, the time t0 it takes an electron with speed vM to traverse a distance
x0 = εFM l/(eND), over which the field variation is of order FM , is much longer than
the mean free time between collisions, ν−1

e ∼ �/(eFM l) = t1. We therefore define the
small parameter λ = t1/t0 = �vMND/(εF 2

M l
2) and formally multiply the first two

terms on the left side of (2.1) or (2.12) by λ [5, 2]. The result is

(2.15) λ

⎛
⎝∂f
∂t

+
∞∑

j=−∞

ijl

�
eijklEj

∂

∂x
〈f〉j

⎞
⎠ = Q[f ] −

∞∑
j=−∞

iejl

�
eijkl〈F 〉j fj.
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The solution of (2.15) for λ = 0 is calculated in terms of its Fourier coefficients as

(2.16) f (0)(k;F ) =
∞∑

j=−∞

(1 − ijFj/τe) fFDj
1 + j2F2

j

eijkl,

where Fj = 〈F 〉j/FM , FM = �

el

√
νe(νe + νi) and τe =

√
(νe + νi)/νe.

The Chapman–Enskog ansatz for the Wigner function is [2]

f(x, k, t;λ) = f (0)(k;F ) +
∞∑
m=1

f (m)(k;F )λm,(2.17)

ε
∂F

∂t
+

∞∑
m=0

J (m)(F )λm = J(t).(2.18)

The coefficients f (m)(k;F ) depend on the “slow variables” x and t only through their
dependence on the electric field and the electron density. The electric field obeys a
reduced evolution equation (2.18) in which the functionals J (m)(F ) are chosen so that
the f (m)(k;F ) are bounded and 2π/l-periodic in k. After we keep the desired number
of terms and set λ = 1, (2.18) is the quantum drift-diffusion equation provided by our
perturbation procedure.

Differentiating Ampère’s law (2.18) with respect to x, we obtain the charge con-
tinuity equation. Moreover the compatibility condition

(2.19)
∫ π/l

−π/l
f (m)(k;n) dk =

2π
l
f

(m)
0 = 0, m ≥ 1,

is obtained by inserting the expansion (2.17) into (2.3). Inserting (2.17) and (2.18) in
(2.15), we find the hierarchy

Lf (1) = −∂f
(0)

∂t

∣∣∣∣
0

+
∞∑

j=−∞

ijlEjeijkl
�

∂

∂x
〈f (0)〉j ,(2.20)

Lf (2) = −∂f
(1)

∂t

∣∣∣∣
0

+
∞∑

j=−∞

ijlEjeijkl
�

∂

∂x
〈f (1)〉j − ∂

∂t
f (0)

∣∣∣∣
1

,(2.21)

and so on. Here

(2.22) Lu(k) ≡ ie

�

∞∑
−∞

jl〈F 〉jujeijkl +
(
νe +

νi
2

)
u(k) − νi

2
u(−k),

and the subscripts 0 and 1 on the right-hand side of these equations mean that ε ∂F/∂t
is replaced by J − J (0)(F ) and by −J (1)(F ), respectively.

The condition (2.19) implies that

(2.23)
∫ π/l

−π/l
Lf (m)dk = 0

for m ≥ 1. Using this, the solvability conditions for the linear hierarchy of equations
yield

(2.24) J (m) =
2e
�

∞∑
j=1

j〈Im(E−jf (m)
j )〉j ,

which can also be obtained by insertion of (2.17) into (2.14).
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Particularized to the case of the tight-binding dispersion relation and Γ = 0 in
the Fermi–Dirac distribution (2.4), the leading order of the Ampère law (2.18) is

ε
∂F

∂t
+
evM
l

〈nMV (F)〉1 = J(t),(2.25)

V (F) =
2F

1 + F2
, vM =

Δl I1(M)
4�τeI0(M)

, M
(

n

ND

)
=

I1(μ̃) I0(M)
I1(M) I0(μ̃)

,(2.26)

Im(s) =
∫ π

−π
cos(mk) ln

(
1 + es−δ+δ cos k

)
dk,(2.27)

provided F ≡ F1, δ = Δ/(2kBT ), and μ̃ ≡ μ/(kBT ). Here M (calculated graphically
in Figure 1 of [5]) is the value of the dimensionless chemical potential μ̃ at which (2.3)
holds with n = ND. The drift velocity vMV (F) has the Esaki–Tsu form with a peak
velocity that becomes vM ≈ ΔlI1(δ)/[4�τeI0(δ)] in the Boltzmann limit [11] (In(δ) is
the modified Bessel function of the nth order).

To find the first-order correction in (2.18), we first solve (2.20) and find J (m) for
m = 1. The calculation yields the first correction to (2.25) (here ′ means differentiation
with respect to n) [2]:

ε
∂F

∂t
+
evM
l

N
(
F,
∂F

∂x

)
= ε

〈
D

(
F,
∂F

∂x
,
∂2F

∂x2

)〉
1

+ 〈A〉1 J(t),(2.28)

A = 1 +
2evM

εFM l(νe + νi)
1 − (1 + 2τ2

e )F2

(1 + F2)3
nM,(2.29)

N = 〈nVM〉1 + 〈(A− 1)〈〈nVM〉1〉1〉1 −
Δlτe

FM�(νe + νi)

〈
B

1 + F2

〉
1

,(2.30)

D =
Δ2l2

8�2(νe + νi)(1 + F2)

(
∂2〈F 〉1
∂x2

− 4�vMτeC

Δl

)
,(2.31)

B =
〈

4F2nM2

(1 + 4F2
2 )2

∂〈F 〉2
∂x

〉
1

+ F
〈
nM2(1 − 4F2

2 )
(1 + 4F2

2 )2
∂〈F 〉2
∂x

〉
1

(2.32)

−4�vM (1 + τ2
e )F(nM)′

Δlτe(1 + F2)

〈
nM 1 −F2

(1 + F2)2
∂〈F 〉1
∂x

〉
1

,

C =
〈

(nM2)′

1 + 4F2
2

∂2F

∂x2

〉
1

− 2F
〈

(nM2)′F2

1 + 4F2
2

∂2F

∂x2

〉
1

(2.33)

+
8�vM (1 + τ2

e )(nM)′ F
Δlτe (1 + F2)

〈
(nM)′F
1 + F2

∂2F

∂x2

〉
1

.

Here M2(n/ND) ≡ I2(μ̃) I0(M)/[I1(M) I0(μ̃)]. If the electric field and the elec-
tron density do not change appreciably over two SL periods, 〈F 〉j ≈ F , the spatial
averages can be ignored, and the nonlocal quantum drift-diffusion equation (2.28)
becomes the local generalized drift-diffusion equation obtained from the semiclassical
theory [5]. The boundary conditions for the quantum drift-diffusion equation (2.28)
(which contains triple spatial averages) need to be specified on the intervals [−2l, 0]
and [Nl,Nl + 2l], not just at the points x = 0 and x = Nl, as in the case of the
parabolic generalized drift-diffusion equation. Similarly, the initial condition has to
be defined on the extended interval [−2l, Nl+ 2l]. For realistic values of the parame-
ters representing a strongly coupled SL under dc voltage bias, the numerical solution
of the quantum drift-diffusion equation yields a stable self-sustained oscillation of the
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current [2] in quantitative agreement with experiments [20]. Details of the numerical
procedure can be found in [9].

3. Wigner description of a two-miniband superlattice. We shall consider
a 2 × 2 Hamiltonian H(x,−i∂/∂x), in which [13]

H(x, k) = [h0(k) − eW (x)]σ0 + �h(k) · �σ]

≡
(

(α+ γ)(1 − cos kl) − eW (x) + g −iβ sin kl
iβ sin kl (α− γ)(1 − cos kl) − eW (x) − g

)
.(3.1)

Here

(3.2)
h0(k) = α (1 − cos kl), h1(k) = 0,

h2(k) = β sin kl, h3(k) = γ (1 − cos kl) + g,

and

(3.3) σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are the Pauli matrices.
The Hamiltonian (3.1) corresponds to the simplest 2×2 Kane model in which the

quadratic and linear terms (kl)2/2 and kl are replaced by (1−coskl) and sinkl, respec-
tively. For an SL with two minibands, 2g is the miniband gap and α = (Δ1 + Δ2)/4
and γ = (Δ1 − Δ2)/4, provided Δ1 and Δ2 are the miniband widths. In the case
of an LSL, g = γ = 0, and h2σ2 corresponds to the precession term in the Rashba
spin-orbit interaction [14]. The other term, the intersubband coupling, depends on
the momentum in the y direction, and we have not included it here. Small modifica-
tions of (3.1) represent a single miniband SL with dilute magnetic impurities in the
presence of a magnetic field B: g = γ = h2 = 0, and h1 = β(B) [19]. As in the case
of a single miniband SL, W (x) is the electric potential.

The energy minibands E±(k) are the eigenvalues of the free Hamiltonian H0(k) =
h0(k)σ0 + �h(k) · �σ and are given by

(3.4) E±(k) = h0(k) ± |�h(k)|.

The corresponding spectral projections are

(3.5) P±(k) =
σ0 ± �ν(k) · �σ

2
, where �ν(k) = �h(k)/|�h(k)|,

so that we can write

(3.6) H0(k) = E+(k)P+(k) + E−(k)P−(k).

We shall now write the WPBGK equations for the Wigner matrix written in terms
of the Pauli matrices:

(3.7) f(x, k, t) =
3∑
i=0

f i(x, k, t)σi = f0(x, k, t)σ0 + �f(x, k, t) · �σ.

The Wigner components are real and can be related to the coefficients of the Hermitian
Wigner matrix by

(3.8)
f11 = f0 + f3, f12 = f1 − if2,
f21 = f1 + if2, f22 = f0 − f3.
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Hereinafter we shall use the equivalent notation

(3.9) f =
(
f0

�f

)
=

⎛
⎜⎜⎝

f0

f1

f2

f3

⎞
⎟⎟⎠ .

The populations of the minibands with energies E± are given by the moments

(3.10) n±(x, t) =
l

2π

∫ π/l

−π/l

[
f0(x, k, t) ± �ν(k) · �f(x, k, t)

]
dk,

and the total electron density is n+ + n−. After some algebra, we can obtain the
following WPBGK equations for the Wigner components:

∂f0

∂t
+
α

�
sin klΔ−f0 +�b · Δ− �f − Θf0 = Q0[f ],(3.11)

∂ �f

∂t
+
α

�
sin klΔ− �f +�bΔ−f0 + �ω × �f − Θ�f = �Q[f ],(3.12)

ε
∂2W

∂x2
=
e

l
(n+ + n− −ND),(3.13)

whose right-hand sides contain collision terms to be described later. Here

(Δ±u)(x, k) = u(x+ l/2, k)± u(x− l/2, k),(3.14)
�ω = �ω0 + �ω1,(3.15)

�ω0 =
2g
�

(0, 0, 1),(3.16)

�ω1 =
1
�

(0, β sin klΔ+, 2γ − γ cos klΔ+),(3.17)

�b =
1
�

(0, β cos kl, γ sin kl),(3.18)

Θf i(x, k, t) =
∞∑

j=−∞

ejl

i�
〈F (x, t)〉jeijklf ij(x, t).(3.19)

Our collision model contains two terms: a BGK term which tries to send the miniband
Wigner function to its local equilibrium and a scattering term from the miniband with
higher energy to the lowest miniband:

Q0[f ] = −f
0 − Ω0

τ
,(3.20)

�Q[f ] = −
�f − �Ω
τ

− �νf0 + �f

τsc
,(3.21)

Ω0 =
φ+ + φ−

2
, �Ω =

φ+ − φ−

2
�ν,(3.22)

φ±(k;n±) =
m∗kBT

π�2

∫ ∞

−∞

√
2 Γ3/π

Γ4 + [E − E±(k)]4
ln
(

1 + e
µ±−E
kB T

)
dE,(3.23)

n± =
l

2π

∫ π/l

−π/l
φ±(k;n±) dk.(3.24)
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The chemical potentials of the minibands, μ+ and μ−, are calculated in terms of n+

and n−, respectively, by inserting (3.23) in (3.24) and solving the resulting equations.
Our collision model should enforce charge continuity. To check this, we first calculate
the time derivative of n± using (3.10) to (3.12):

∂n±

∂t
+
αlΔ−

2π�

∫ π/l

−π/l
sin kl (f0 ± �ν · �f) dk +

lΔ−

2π

∫ π/l

−π/l
(�b · �f ± �ν ·�bf0) dk(3.25)

± lΔ
−

2π

∫ π/l

−π/l
�ν · �ω × �f dk ∓ lΔ−

2π

∫ π/l

−π/l
�ν · Θ�f dk

=
lΔ−

2π

∫ π/l

−π/l
(Q0[f ] ± �ν · �Q[f ]) dk = ∓n

+

τsc
,

where we have employed
∫

Θf0dk = 0. Then we obtain

(3.26)
∂

∂t
(n+ + n−) + Δ−

[
l

π

∫ π/l

−π/l

(α
�

sinkl f0 +�b · �f
)
dk

]
= 0.

Noting that Δ−u(x) = l ∂〈u(x)〉1/∂x, we see that this equation corresponds to charge
continuity. Differentiating in time the Poisson equation (3.13), using (3.26) in the
result, and integrating with respect to x, we get the following nonlocal Ampère law
for the balance of current:

(3.27) ε
∂F

∂t
+

〈
el

π

∫ π/l

−π/l

(α
�

sinkl f0 +�b · �f
)
dk

〉

1

= J(t).

Here the space-independent function J(t) is the total current density. Since the
Wigner components are real, we can rewrite (3.27) in the following equivalent form:

(3.28) ε
∂F

∂t
− 2e

�

〈
α Imf0

1 − β Ref2
1 + γ Imf3

1

〉
1

= J(t).

4. Derivation of balance equations by the Chapman–Enskog method.
In this section, we shall derive the reduced balance equations for our two-miniband
SL using the Chapman–Enskog method. First of all, we should decide the order of
magnitude of the terms in the WPBGK equations (3.11) and (3.12) in the hyperbolic
limit. Recall that in this limit, the collision frequency 1/τ and the Bloch frequency
eFM l/� are of the same order, about 10 THz for the SL of section 2. Typically, 2g/�
is of the same order, so that the term containing �ω0 should also balance the BGK
collision term. What about the other terms?

The scattering time τsc is much longer than the collision time τ , and we shall
consider τ/τsc = O(λ)  1. Moreover, the gap energy is typically much larger than
the miniband widths or the spin-orbit coefficient, and a rich dominant balance is
obtained by assuming that β/g and γ/g are of order λ. Then we can expand the unit
vector �ν as follows:

�ν = (0, 0, 1) +
λβ

g
sin kl (0, 1, 0)− λ2

[
βγ

g2
sin kl(1 − cos kl) (0, 1, 0)(4.1)

+
β2 sin2 kl

2g2
(0, 0, 1)

]
+O(λ3).
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In this expansion, we have inserted the bookkeeping parameter λ, which is set equal
to 1 at the end of our calculations (cf. section 2). From (3.11) and (3.12), we can
write the scaled WPBGK equations as follows:

(4.2) Lf − Ω = −λ
(
τ
∂f

∂t
+ Λf

)
.

Here the operators L and Λ are defined by

Lf = f − τ Θf + δ1

⎛
⎜⎜⎝

0
−f2

f1

0

⎞
⎟⎟⎠ ,(4.3)

Λf = δ2

(
0

�f + �νf0

)
+
ατ

�
sin klΔ−f + Δ−

(
τ�b · �f
τ �b f0

)
+
(

0
τ �ω1 × �f

)
,(4.4)

where

(4.5) δ1 =
2gτ
�
, δ2 =

τ

τsc
.

The expansion of �ν in powers of λ gives rise to a similar expansion of Ω and Λ.
To derive the reduced balance equations, we use the following Chapman–Enskog

ansatz:

f(x, k, t;λ) = f (0)(k;n+, n−, F ) +
∞∑
m=1

f (m)(k;n+, n−, F )λm,(4.6)

ε
∂F

∂t
+

∞∑
m=0

Jm(n+, n−, F )λm = J(t),(4.7)

∂n±

∂t
=

∞∑
m=0

A±
m(n+, n−, F )λm.(4.8)

The functions A±
m and Jm are related through the Poisson equation (3.13), so that

(4.9) A+
m +A−

m = − l

e

∂Jm
∂x

.

Inserting (4.6) to (4.8) into (4.2), we get

Lf (0) = Ω0,(4.10)

Lf (1) = Ω1 − τ
∂f (0)

∂t

∣∣∣∣
0

− Λ0f
(0),(4.11)

Lf (2) = Ω2 − τ
∂f (1)

∂t

∣∣∣∣
0

− Λ0f
(1) − τ

∂f (0)

∂t

∣∣∣∣
1

− Λ1f
(0),(4.12)

and so on. The subscripts 0 and 1 on the right-hand side of these equations mean
that we replace ε ∂F/∂t|m = Jδ0m − Jm, ∂n±/∂t|m = A±

m. Moreover, inserting (4.1)
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and (4.6) into (3.10) yields the following compatibility conditions:

f
(1) 0
0 = 0, f

(1) 3
0 =

β

g
Imf (0) 2

1 ,(4.13)

f
(2) 0
0 = 0,(4.14)

f
(2) 3
0 =

β

g
Imf (1) 2

1 +
β2

4g2
(f (0) 3

0 − Ref (0) 3
2 ) − βγ

g2
Im

(
f

(0) 2
1 − f

(0) 2
2

2

)
,

etc.
To solve (4.10) for f (0) ≡ ϕ, we first note that

−τ Θϕ =
∞∑

j=−∞
iϑjϕje

ijkl,(4.15)

ϑj ≡
τejl

�
〈F 〉j .(4.16)

Then (4.10), (3.22), and (4.1) yield

(4.17) ϕ0
j =

φ+
j + φ−j

2
1 − iϑj
1 + ϑ2

j

, ϕ1
j = ϕ2

j = 0, ϕ3
j =

φ+
j − φ−j

2
1 − iϑj
1 + ϑ2

j

,

where we have used the fact that the Fourier coefficients

(4.18) φ±j =
l

π

∫ π/l

0

cos(jkl)φ± dk

are real because φ± are even functions of k. Similarly, the solution of (4.11) is f (1) ≡ ψ
with

ψmj = rmj
1 − iϑj
1 + ϑ2

j

(m = 0, 3),

ψ1
j =

(1 + iϑj) r1j + δ1 r
2
j

(1 + iϑj)2 + δ21
,(4.19)

ψ2
j =

(1 + iϑj) r2j − δ1 r
1
j

(1 + iϑj)2 + δ21
.

Here r is the right-hand side of (4.11). The balance equations can be found in two
ways. We can calculate A±

m for m = 0, 1 by using the compatibility conditions (4.13)
and (4.14) in (4.11) and (4.12), respectively. More simply, we can insert the solutions
(4.17) and (4.19) in the balance equations (3.25) and in the Ampère law (3.27). The
result is

∂n±

∂t
+ Δ−D±(n+, n−, F ) = ±R(n+, n−, F ),(4.20)

ε
∂F

∂t
+
e

�

〈
[α (φ+

1 + φ−1 ) + γ (φ+
1 − φ−1 )]

ϑ1

1 + ϑ2
1

〉
1

(4.21)

+
2e
�

[βRe〈ψ2
1〉1 − α Im〈ψ0

1〉1 − γ Im〈ψ3
1〉1] = J,

D± =
α± γ

�

[
φ±1 ϑ1

1 + ϑ2
1

− Im(ψ0
1 ± ψ3

1)
]

+
β

�
Reψ2

1 ± β2ϑ2

4g�
φ+

2 + φ−2
1 + ϑ2

2

,(4.22)

R = −δ2n
+

τ
− β2ϑ2

2(φ
+
2 − φ−2 )

8g2τ(1 + ϑ2
2)

+
β

gτ
ϑ1Reψ2

1 +
β

�
(2 − Δ+)Imψ1

1 .(4.23)
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The appendix justifies this second and more direct method by showing that equivalent
expressions are obtained from the compatibility conditions. Note that (4.21) can be
obtained from (4.20) and the Poisson equation.

5. Spintronics: Quantum drift-diffusion equations for an LSL with
Rashba spin-orbit interaction. In the simpler case of an LSL with the preces-
sion term of Rashba spin-orbit interaction (but no intersubband coupling), we can
obtain explicit rate equations for n± by means of the Chapman–Enskog method. In
the Hamiltonian (3.1), we have γ = g = 0, so that h3 = 0 and �ν = (0, 1, 0). However,
the Fermi–Dirac distribution is different from (2.6) for an LSL. We have to replace
En instead of �

2k2
z/(2m

∗), sum over n for all populated QW energy levels, and inte-
grate over ky only. Provided only E1 is populated, we obtain the following expression
instead of (3.23):

(5.1) φ±(k;n±) =
∫ ∞

−∞

DΓ (E − E±(k) − E1)

1 + exp
(
E−μ±

kBT

) dE,

where the broadened density of states is

(5.2) DΓ(E) =
1

2πLz

∫ ∞

−∞
dkyδΓ

(
�

2k2
y

2m∗ − E

)
=

√
2m∗

2π�Lz

∫ ∞

0

dEy
δΓ(Ey − E)√

Ey
.

Note that (5.2) becomes the 1D density of states D(E) =
√

2m∗θ(E)/(2π�Lz
√
E) as

Γ → 0+. We have not included a factor 2 in (5.2) because all the electrons in each of
the minibands (with energies E±(k)) have the same spin. Inserting (2.8) in (5.2) and
using the residue theorem to evaluate the integral, we obtain

DΓ(E) =
√
m∗

4π�Lz
(5.3)

×

⎡
⎣
√√

E2 +
√

2ΓE + Γ2 + E + Γ√
2
−
√√

E2 +
√

2ΓE + Γ2 − E − Γ√
2√

E2 +
√

2ΓE + Γ2

+

√√
E2 −

√
2ΓE + Γ2 + E − Γ√

2
+
√√

E2 −
√

2ΓE + Γ2 − E + Γ√
2√

E2 −
√

2ΓE + Γ2

⎤
⎦ .

As E → +∞, DΓ(E) ∼
√

2m∗/(2π�Lz
√
E), whereas DΓ(E) = O(|E|−5/2) as E →

−∞. Then the convolution integral (5.1) is convergent.
In the present case, minibands correspond to electrons with spin up or down

which have different energy. Scattering between minibands is the same as in (3.21),
−(�νf0 + �f)/τsc, which yields ∂n±/∂t+ · · · = ∓n±/τsc in (3.25), only if the chemical
potential of the miniband with lowest energy, μ−, is less than the minimum energy of
the other miniband, E+

min = mink E+(k). Otherwise (μ− > E+
min), the scattering term

should be −2�f/τsc, which yields ∂n±/∂t + · · · = ∓(n+ − n−)/τsc in (3.25), thereby
trying to equalize n+ and n−; cf. [19].

Now we shall derive the balance equations in the hyperbolic limit using the
Chapman–Enskog method as in section 4. In the scaled WPBGK equations (4.2),
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the operators L and Λ are

Lf = f − τ Θf,(5.4)

Λf = δ2

(
0

2�f + (�νf0 − �f) θ(E+
min − μ−)

)
+
ατ

�
sin klΔ−f(5.5)

+
βτ

�
cos klΔ−

⎛
⎜⎜⎝

f2

0
f0

0

⎞
⎟⎟⎠+

βτ

�
sin klΔ+

⎛
⎜⎜⎝

0
f3

0
−f1

⎞
⎟⎟⎠ ,

where δ2 is given by (4.5), θ(x) is the Heaviside unit step function, and Ω0 = (φ+ +
φ−)/2, �Ω = (0, 1, 0) (φ+ − φ−)/2. The hierarchy of equations (4.10)–(4.12) is simply

Lf (0) = Ω,(5.6)

Lf (1) = − τ
∂f (0)

∂t

∣∣∣∣
0

− Λf (0),(5.7)

Lf (2) = − τ
∂f (1)

∂t

∣∣∣∣
0

− Λf (1) − τ
∂f (0)

∂t

∣∣∣∣
1

,(5.8)

and so on. The compatibility and solvability conditions are

(5.9) f
(m) 0
0 = f

(m) 2
0 = 0 =⇒ (Lf (m) 0)0 = (Lf (m) 2)0 = 0, m ≥ 1.

The solution f (0) ≡ ϕ of (5.6) is

(5.10) ϕ0
j =

φ+
j + φ−j

2
1 − iϑj
1 + ϑ2

j

, ϕ1
j = ϕ3

j = 0, ϕ2
j =

φ+
j − φ−j

2
1 − iϑj
1 + ϑ2

j

,

where we have used the fact that the Fourier coefficients φ±j are real because φ± are
even functions of k. Similarly, the solution of (5.7) is f (1) ≡ ψ with

(5.11) ψmj = rmj
1 − iϑj
1 + ϑ2

j

(m = 0, 2), ψ1
j = ψ3

j = 0.

Here r is the right-hand side of (5.7). The balance equations can be found in two
ways. We can calculate A±

m for m = 0, 1 by using the solvability conditions (5.9)
in (5.7) and (5.8), respectively. More simply, we can insert the solutions (5.10) and
(5.11) in the balance equations (3.25) and in the Ampère law (3.27). In both cases,
the result is

∂n±

∂t
+ Δ−D±(n+, n−, F ) = ∓R(n+, n−, F ),(5.12)

ε
∂F

∂t
+ e 〈D+ +D−〉1 = J,(5.13)

D± = −α
�

Δ−Im(ϕ0
1 ± ϕ2

1 + ψ0
1 ± ψ2

1) ± β

�
Δ−Re(ϕ0

1 ± ϕ2
1 + ψ0

1 ± ψ2
1),(5.14)

R =
n+ − n− θ(μ− − E+

min)
τsc

.(5.15)
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A straightforward calculation of (5.14) yields

D± =
(αϑ1 ± β)φ±1

� (1 + ϑ2
1)

∓ τ (φ+
1 − φ−1 ) [2αϑ1 ± β(1 − ϑ2

1)]
2�τsc(1 + ϑ2

1)2
(5.16)

+
[2αϑ1 ± β(1 − ϑ2

1)]ατ
�2(1 + ϑ2

1)2
∂φ±1
∂n±

[
Δ−

(
αϑ1 ± β

� (1 + ϑ2
1)
φ±1

)
± �

ατsc
(n+ − n−)

]

+
α (3ϑ2

1 − 1) ± βϑ1(3 − ϑ2
1)

�(1 + ϑ2
1)3

lτ2φ±1
�ε

(
J

e
−
〈〈

α (φ+
1 + φ−1 )ϑ1

�(1 + ϑ2
1)

〉
1

〉
1

−
〈〈

β (φ+
1 − φ−1 )

�(1 + ϑ2
1)

〉
1

〉
1

)
− (α2 + β2)τ

2�2(1 + ϑ2
1)

Δ−n±

+
τ

2�2(1 + ϑ2
1)

[
(α2 − β2 ∓ 2αβϑ1)Δ−

(
φ±2

1 + ϑ2
2

)

+[(β2 − α2)ϑ1 ∓ 2αβ] Δ−
(
ϑ2φ

±
2

1 + ϑ2
2

)]
.

We have numerically solved the system of equations (5.12)–(5.16), with the fol-
lowing boundary conditions in the interval −2l ≤ x ≤ 0:

ε
∂F

∂t
+ σ F = J,(5.17)

n+ = n− =
ND
2
,(5.18)

whereas in the collector Nl ≤ x ≤ Nl + 2l,

(5.19)
∂n±

∂x
=
∂F

∂x
= 0

hold. We have used the following values of the parameters: α = Δ1/2 = 8 meV,
β = 2.63 meV, dW = 3.1 nm, dB = 1.96 nm, l = dW + dB = 5.06 nm, Lz = 3.1 nm,
T = 5 K, τ = 5.56 × 10−14 s, τsc = 5.56 × 10−13 s, ND = 4.048 × 1010 cm−2,
m∗ = (0.067dW+0.15dB)m0/l, V = 3 V, N = 110. We have used a large conductivity
of the injecting contact σ = 11.78 Ω−1m−1. With these values, we select the follow-
ing units to present our results graphically: FM = �/(elτ) = 23.417 kV/cm, x0 =
εFM l/(eND) = 19.4 nm, t0 = �/α = 0.082 ps, J0 = αeND/(2�) = 3.94 × 104 A/cm2.

Figure 5.1(b)–(d) illustrates the resulting stable self-sustained current oscillations.
They are due to the periodic formation of a pulse of the electric field at the cathode
x = 0 and its motion through the LSL. Figure 5.1(b) depicts the pulse when it is far
from the contacts, and the corresponding spin polarization is shown in Figure 5.1(d).
It is interesting to consider the influence of the broadening Γ and the Fermi–Dirac
statistics on the oscillations. At high temperatures, Boltzmann statistics and a semi-
classical approximation should provide a good description. The semiclassical approx-
imation is equivalent to dropping all spatial averages in our previous formulas. Since
x0 � l, the effect of dropping spatial averages should be rather small. Using Boltz-
mann statistics yields explicit formulas for μ± in terms of n±. In fact, we only have
to replace e(μ

±−E)/(kBT ) instead of the 3D Fermi distribution [1 + e(E−μ±)/(kBT )]−1

in (5.1). Using the relation (3.24) between n± and φ±, we obtain

(5.20) φ± = n±
π exp

(
α cos kl∓β | sin kl|

kBT

)
∫ π
0 dK exp

(
α cosK∓β sinK

kBT

) ,
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Fig. 5.1. (a) Electron current vs. field in a spatially uniform stationary state for different values
of the broadening Γ using the Fermi–Dirac distribution and for the Boltzmann distribution without
broadening. (b) Total current density vs. time, and the (c) electric field and (d) spin polarization
profiles during current self-oscillations for Γ = 0 (solid line) and 1 meV (dashed line). Parameter
values are N = 110, ND = 4.048 × 1010 cm−2, dB = 1.96 nm, Lz = dW = 3.1 nm, l = 5.06 nm,
τ = 0.0556 ps, τsc = 0.556 ps, V = 3 V, σ = 11.78Ω−1m−1 T = 5 K,mα = 8 meV, β = 2.63 meV.
With these values, Δ1 = 16 meV, x0 = 19.4 nm, t0 = 0.082 ps, J0 = 3.94 × 104 A/cm2.

and therefore,

(5.21) φ±j = n±

∫ π
0
dK cos(jK) exp

(
α cosK∓β sinK

kBT

)
∫ π
0 dK exp

(
α cosK∓β sinK

kBT

)

for j = 0, 1, . . . . Similar relations hold for the case of an SL with Boltzmann statistics
in the tight-binding approximation.

The results are shown in Figure 5.1. Figure 5.1(a) depicts the relation between
electron current and field for a spatially uniform stationary solution with n± = ND/2.
We observe that all curves are similar. However, the curves for Γ = 0 and Γ = 1 meV
are close, while the curve for Γ = 5 meV has dropped noticeably. The shapes of J(t)
for Γ = 0 and Γ = 1 meV in Figure 5.1(b) are close and quite different from that for
Γ = 5 meV. If we look at the corresponding field profiles in Figure 5.1(c) and (d),
for Γ = 0 and Γ = 1 meV the oscillations of the current are caused by the periodic
nucleation of a pulse of the electric field at x = 0 and its motion towards the end of
the LSL. The pulse far from the contacts shown in Figure 5.1(c) is larger in the case
of Γ = 0 than for Γ = 1 meV. In the case of Γ = 5 meV (not shown), the pulse created
at x = 0 becomes attenuated and disappears before arriving at x = Nl. This seems
to indicate that the lowest voltage at which there exist stable self-sustained current
oscillations is an increasing function of Γ: If we fix the voltage at 3 V and increase Γ,
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the critical voltage threshold to have stable oscillations approaches our fixed voltage
of 3 V. Then the observed oscillations are smaller and the field profiles correspond to
waves that vanish before reaching the end of the device, as it also occurs in models of
the Gunn effect in bulk semiconductors [4].

6. Conclusions. We have presented a Wigner–Poisson–BGK system of equa-
tions with a collision broadened local Fermi–Dirac distribution for strongly coupled
SLs having only one populated miniband. In the hyperbolic limit in which the colli-
sion and Bloch frequencies are of the same order and dominate all other frequencies,
the Chapman–Enskog perturbation method yields a quantum drift-diffusion equation
for the field. Numerical solutions of this equation exhibit self-sustained oscillations of
the current due to recycling and motion of charge dipole domains [2].

For strongly coupled SLs having two populated minibands, we have introduced
a periodic version of the Kane Hamiltonian and derived the corresponding Wigner–
Poisson–BGK system of equations. The collision model comprises two terms, a BGK
term trying to bring the Wigner matrix closer to a broadened Fermi–Dirac local equi-
librium at each miniband, and a scattering term that brings down electrons from the
upper to the lower miniband. By using the Chapman–Enskog method, we have de-
rived quantum drift-diffusion equations for the miniband populations which contain
generation-recombination terms. As it should be, the recombination terms vanish if
there is no interminiband scattering and the off-diagonal terms in the Hamiltonian
are zero. These terms may represent a Rashba spin-orbit interaction for an LSL. For
an LSL under dc voltage bias in the growth direction, numerical solutions of the cor-
responding quantum drift-diffusion equations show self-sustained current oscillations
due to periodic recycling and motion of electric field pulses. The periodic changes of
the spin polarization and spin-polarized current indicate that this system acts as a
spin oscillator.

Appendix. Balance equations from compatibility conditions We know
that ϕ1 = ϕ2 = 0 from (4.11). Then the compatibility conditions (4.13) and (4.14)
become

ψ0
0 = 0, ψ3

0 = 0,(A.1)

f
(2) 0
0 = 0, f

(2) 3
0 =

β

g
Imψ2

1 +
β2

4g2
(ϕ3

0 − Reϕ3
2).(A.2)

Equations (A.1) imply that (Lψ)m0 = 0 for m = 0, 3 in (4.11). Since ϕ0
0 = (n++n−)/2

and ϕ3
0 = (n+ − n−)/2, these conditions yield

τ

2
∂(n+ + n−)

∂t

∣∣∣∣
0

− ατ

�
Δ−Imϕ0

1 −
γτ

�
Δ−Imϕ3

1 = 0,

τ

2
∂(n+ − n−)

∂t

∣∣∣∣
0

+ δ2n
+ − ατ

�
Δ−Imϕ3

1 −
γτ

�
Δ−Imϕ0

1 = 0,

wherefrom we obtain

(A.3) A±
0 = ∓n

+

τsc
+
α± γ

�
Δ−Im(ϕ0

1 ± ϕ3
1).
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Let us now calculate A±
1 . Equations (A.2) imply (Lf (2))00 = 0 and (Lf (2))30 =

f
(2) 3
0 given by (A.2) in (4.12). After a little algebra, we find

A±
1 =

α± γ

�
Δ−Im(ψ0

1 ± ψ3
1) −

β

�
(Δ−Reψ2

1 ± Δ+Imψ1
1)(A.4)

∓ β

gτ
Imψ2

1 ± β2

8g2τ
[2Reϕ3

2 + φ+
2 − φ−2 − 2(n+ − n−)].

We will now transform (A.4) into an equivalent form by eliminating Reϕ3
2 and

Imψ2
1 in favor of Reϕ3

2 and Imψ2
1 , respectively. Equation (4.10) implies that (1 +

iϑ2)ϕ3
2 = (φ+

2 − φ−2 )/2, and therefore

(A.5) Reϕ3
2 = ϑ2 Imϕ3

2 +
φ+

2 − φ−2
2

.

Similarly, (4.11) implies that (1 + iϑ1)ψ2
1 + δ1 ψ

1
1 = r21 , and therefore

(A.6) Imψ2
1 = −ϑ1 Reψ2

1 − δ1 Imψ1
1 + Imr21 .

The right-hand side of (4.11) yields

r21 =
β

2g

(
1 − e−i2kl

2i
(φ+ − φ−)

)
0

− βτ

�
Δ−

(
1 + e−i2kl

2
ϕ0

)
0

,

wherefrom

(A.7) Imr21 =
β

4g
(φ+

2 − φ−2 − n+ + n−) − βτ

2�
Δ−Imϕ0

2.

Inserting (A.5), (A.6), and (A.7) into (A.4), we obtain the equivalent form

A±
1 =

α± γ

�
Δ−Im(ψ0

1 ± ψ3
1) −

β

�
(Δ−Reψ2

1 ± Δ+Imψ1
1)(A.8)

±2β
�

Imψ1
1 ± β

gτ
ϑ1Reψ2

1 ± β2

4g2τ
ϑ2 Imϕ3

2 ±
β2

2�g
Δ−Imϕ0

2.

Inserting (A.3) and this expression into (4.8) and using (4.17) yield (4.20), (4.22), and
(4.23). Up to order λ2, we have thus proven the following statement:

By using the compatibility conditions in the hierarchy of (4.11), (4.12), we obtain
the same balance equations for n± as by direct substitution of the solutions of the
hierarchy into (3.25) (which arise from integration of the kinetic equation over k).
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Abstract. The problem of thermal blow-up in a subdiffusive medium is examined within the
framework of a fractional heat equation with a nonlinear source term. This model establishes that a
thermal blow-up always occurs when a finite strip of subdiffusive material is exposed to the effects
of a localized, high-energy source. This behavior is distinctly different from the classical diffusion
case in which a blow-up can be avoided by locating the site of the energy source sufficiently close to
one of the cold ends of the strip. The asymptotic growth of the solution near blow-up is determined
for a nonlinear source whose output increases with temperature in either an algebraic or exponential
manner. The blow-up growth rate is found to depend upon the anomalous diffusion parameter that
defines the subdiffusive medium. This suggests that such media might be characterized by their
response to a reaction-diffusion process.
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1. Introduction. The problem of a thermal blow-up in a subdiffusive medium is
examined. The diffusion of heat is retarded in materials with subdiffusive properties,
thereby allowing the presence of a high-energy source to be considerably more effective
in producing extreme temperature growth. The results here will demonstrate that a
thermal blow-up will always occur, regardless of the proximity of a cold boundary.

The underlying physics of subdiffusion is associated with a medium in which the
mean square displacement of Brownian motion evolves on a slower-than-normal time
scale. That is,

(1)
〈
X2

〉
∼ C tα, 0 < α < 1,

where α is the anomalous diffusion parameter. The limiting case of α = 1 corresponds
to classical (Gaussian) diffusion. From the viewpoint of a random walk, a subdiffusive
process exhibits an infinitely long average time for the occurrence of a finite jump,
thereby implying a diminished capacity for the flux of thermal energy.

Subdiffusion occurs in a variety of applications as discussed in the review papers
[4], [5], [11]. For the problem presented here, it is convenient to think of the application
to certain porous materials in which microscopic pores are filled with a substance that
has a lower conductivity than that of the basic matrix material as described in [1],
[3]. A continuum model of a subdiffusive material is consistent with the scenario in
which the pore size is small in comparison to

√
〈X2〉.

The modeling of subdiffusive phenomena that obeys (1) has motivated the imple-
mentation of fractional differential operators as discussed in [4]. For the initial-
boundary value problem considered here, a fractional diffusion equation with a lo-
calized, high-energy source will be defined for a finite strip of subdiffusive material.
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The ends of the strip are maintained at zero temperature so that some energy can be
dissipated into the surroundings. In the context of a porous material, this model can
be viewed as the thermal response associated with localized combustion of the porous
material.

The investigation of a blow-up solution is carried out by converting the initial-
boundary value problem to a nonlinear integral equation that governs the temperature
at the site of the localized source. The resulting Volterra equation lends itself to the
analytical techniques presented in [2], [6], [8], [9], and [10].

The results developed here for blow-up in a subdiffusive medium can be compared
with those of [6] for the case of classical diffusion. In the classical diffusive problem,
the results of [6] demonstrate that the occurrence of a blow-up with Dirichlet boundary
conditions depends upon the proximity of the localized source to one of the ends of the
strip. In particular, if the site of the source is located sufficiently close to either end,
a blow-up will not occur. This implies that in the case of classical diffusion, the cold
boundary can draw away enough heat from a nearby source to keep the temperature
bounded throughout the strip.

In contrast to classical diffusion, the results here for the subdiffusive case will
demonstrate that a blow-up will always occur, no matter how close the localized source
is placed to a cold boundary. This behavior will be found to hold for all values of
the anomalous diffusion parameter that correspond to the subdiffusive range. Further
results developed here will show that the temporal growth of the temperature near
blow-up can be characterized by the anomalous diffusion parameter.

2. Mathematical formulation. It is assumed that the temperature T (x, t)
in the strip of subdiffusive material satisfies the one-dimensional fractional diffusion
equation given by

(2)
∂T (x, t)
∂t

=
∂2

∂x2
D1−α
t [T (x, t)] + δ(x − a)g[T (a, t)], 0 < x < �, t > 0,

T (0, t) = 0, T (�, t) = 0, t > 0,(3)
T (x, 0) = 0, 0 ≤ x ≤ �.(4)

The fractional derivative operator D1−α
t is defined by

(5) D1−α
t [T (x, t)] ≡ 1

Γ(α)
∂

∂t

∫ t

0

(t− t′)α−1
T (x, t′) dt′, 0 < α < 1,

where Γ(α) is the gamma function. This operator is introduced to model diffusive
behavior that is consistent with (1). The particular form of (5) is known as the
Riemann–Liouville fractional derivative. This form, as well as other alternative ver-
sions, is discussed in [7]. The limiting case of α = 1 is associated with classical
diffusion since D0

t is the identity operator.
The energy source term in (2) has been both localized and intensified by intro-

ducing the multiplicative delta function δ(x− a), 0 < a < �. The nonlinearity g(T ) is
assumed to have the properties

(6) g(T ) > 0, g′(T ) > 0, g′′(T ) > 0, T ≥ 0,

which is typical for reaction-diffusion phenomena.
A physical interpretation of (2)–(6) is the temperature distribution in a strip of

microscopically porous material that is capable of a chemical reaction only within a
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narrow zone centered at x = a. The source term in (2) includes a delta function to
localize and intensify the reaction at x = a, while the nonlinearity g(T ) approximates
an Arrhenius-type energy release.

3. Conversion to an integral equation. To investigate a possible blow-up
solution of (2)–(6), it is advantageous to convert the initial-boundary value problem
into an equivalent integral equation. This will be accomplished through the use of
the Green’s function Gα(x, t|ξ, 0) that satisfies

(7)
∂

∂t
Gα(x, t|ξ, 0) =

∂2

∂x2
D1−α
t [Gα(x, t|ξ, 0)] + δ(x− ξ)δ(t), 0 < x < �, t > 0−,

Gα(0, t|ξ, 0) = 0, Gα(�, t|ξ, 0) = 0, t > 0,(8)

Gα(x, 0−|ξ, 0) = 0, 0 ≤ x ≤ �.(9)

It follows from (2)–(4) and (7)–(9) that

(10) T (x, t) =
∫ t

0

∫ �

0

Gα(x, t− s|ξ, 0)δ(ξ − a)g[T (a, s)] dξ ds, 0 ≤ x ≤ �, t > 0.

Utilizing the sifting property of the delta function allows (10) to be reduced to

(11) T (x, t) =
∫ t

0

Gα(x, t− s|a, 0)g[T (a, s)] ds, 0 ≤ x ≤ �, t > 0.

It is clear from (11) that if T (a, t) is known, then T (x, t) is determined for 0 ≤ x ≤ �,
t ≥ 0. Moreover, it is seen from (11) that any blow-up solution of (2)–(6) must be
associated with a blow-up of T (a, t).

In order to determine T (a, t), set x = a in (11), which produces the integral
equation

(12) u(t) =
∫ t

0

k(t− s)g[u(s)] ds, 0 ≤ t <∞,

where

(13) u(t) ≡ T (a, t)

and

(14) k(t) ≡ Gα(a, t|a, 0).

Thus, the investigation of a possible blow-up solution of the initial-boundary value
problem (2)–(6) has been reduced to the analysis of the integral equation (12).

To analyze (12), it is essential to know the properties of the kernel k(t). Since
those properties follow from Gα(x, t|ξ, 0), it is necessary to solve (7)–(9). Results
presented in [12] imply that the solution of (7)–(9) can be expressed in terms of the
solution for the classical diffusion case in which α = 1. That is,

(15) Gα(x, t|ξ, 0) =
∫ ∞

0

fα(z)G1(x, tαz|ξ, 0) dz.
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To define fα(z), it is necessary to introduce the definition of the Mellin transform

(16) M [v(z); r] ≡
∫ ∞

0

zr−1v(z) dz.

In [12], fα(z) is introduced as an inverse Mellin transform as given by

(17) fα(z) = M−1

[
Γ(r)

Γ(1 − α+ αr)

]
=

∞∑
j=0

(−1)jzj

j! Γ(1 − α− αj)
, z ≥ 0.

It follows from (17) that

(18) fα(z) ≥ 0, z ≥ 0,

and

(19) fα(z) → 0 exponentially as z → ∞.

For the classical diffusion case in which α = 1, the solution of (7)–(9) can be
expressed either as a Fourier sine series expansion,

(20) G1(x, t|ξ, 0) =
2H(t)
�

∞∑
n=1

sin
nπξ

�
sin

nπx

�
exp

(
−n

2π2

�2
t

)
,

or as an image expansion,

(21) G1(x, t|ξ, 0) =
H(t)

2(πt)
1
2

∞∑
n=−∞

{
exp

[
(x− ξ − 2n�)2

−4t

]
− exp

[
(x+ ξ − 2n�)2

−4t

]}
,

where H(t) is the Heaviside function.
Two versions of the solution to (7)–(9) can be derived from (15), (20), and (21).

From (15) and (20) it follows that

(22) Gα(x, t|ξ, 0) =
2H(t)
�

∞∑
n=1

sin
nπξ

�
sin

nπx

�

∫ ∞

0

fα(z) exp
(
−n

2π2

�2
tαz

)
dz,

while from (15) and (21) it follows that

Gα(x, t|ξ, 0) =
H(t)

2π
1
2 t

α
2

∞∑
n=−∞

∫ ∞

0

z−
1
2fα(z)(23)

×
{
exp

[
(x− ξ − 2n�)2

−4tαz

]
−exp

[
(x+ ξ − 2n�)2

−4tαz

]}
dz.

Two alternate expressions for the kernel k(t), as defined by (14), follow from (22)
and (23) either as

(24) k(t) =
2
�

∞∑
n=1

sin2 nπa

�

∫ ∞

0

fα(z) exp
(
−n

2π2

�2
tαz

)
dz

or as

(25) k(t) =
1

2π
1
2 t

α
2

∞∑
n=−∞

∫ ∞

0

z−
1
2 fα(z)

{
exp

[
−n

2�2

tαz

]
− exp

[
− (a− n�)2

tαz

]}
dz.
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In (24)–(25), H(t) has been dropped since it is superfluous to the interpretation of
k(t− s) in (12).

Various properties of k(t) can be derived from (24)–(25). It is easily seen that
k(t) is a continuously differentiable function for 0 < t <∞, and

(26) k(t) > 0, k′(t) < 0, 0 < t <∞.

The asymptotic behavior of k(t) as t → 0 and as t → ∞ is important in the
analysis of (12). As t → 0, the integrals in (25) are all negligible compared to the
n = 0 term. It then follows that

(27) k(t) ∼ 1
2π

1
2 t

α
2

∫ ∞

0

z−
1
2 fα(z) dz =

1
2 Γ

(
1 − α

2

)
t

α
2

as t→ 0.

As t→ ∞, it is useful to rescale the integration variable in (24) to obtain

(28) k(t) =
2
�tα

∞∑
n=1

sin2 nπa

�

∫ ∞

0

fα(z/tα) exp
(
−n

2π2

�2
z

)
dz,

from which follows

(29) k(t) ∼
(

2�
π2

∞∑
n=1

1
n2

sin2 nπa

�

)
1

Γ(1 − α) tα
=

a(�− a)
�Γ(1 − α) tα

as t→ ∞.

4. Blow-up solution. A physical interpretation of a blow-up solution to (12),
and hence to (2)–(6), is that the subdiffusive medium is unable to conduct enough
heat away from the energy source to prevent a thermal runaway. A measure of the
subdiffusive medium’s ability to conduct heat is given by I(t), which is defined by

(30) I(t) ≡
∫ t

0

k(s) ds, t ≥ 0.

A measure of the strength of the energy source is given by κ, which is defined by

(31) κ ≡
∫ ∞

0

du
g(u)

<∞,

with the assumption that the integral is finite. Another measure of the strength of
the energy source is given by Λ, where

(32) Λ ≡ sup
0≤u<∞

[
u

g(u)

]
.

The properties of g(u) in (6) ensure that

(33) Λ ≤ κ <∞.

The essential results on existence and blow-up of a solution to (12) are derived in [2],
[6], [10]. The basic results on existence, uniqueness, and blow-up are given by the
following lemmas.

Lemma 1. Let k(t) ≥ 0 be continuous for 0 < t < ∞ and integrable as t → 0.
Then (12) has a unique continuous solution for 0 ≤ t < t∗, where t∗ <∞ if t∗ is such
that

(34) I (t∗) = Λ,
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while t∗ = ∞ if

(35) I(t) < Λ, 0 ≤ t <∞.

Lemma 2. Let k(t) ≥ 0 be continuous and nonincreasing for 0 < t < ∞ and
integrable as t→ 0. Then whenever there exists a t∗∗ <∞ such that

(36) I (t∗∗) = κ,

it follows that (12) cannot have a continuous solution for t ≥ t∗∗.
The nonexistence of a global solution to (12) is associated with the blow-up be-

havior

(37) u(t) → ∞ as t → t̂ <∞.

An implication of Lemmas 1 and 2 is that when (12) has a blow-up solution, the
blow-up time t̂ can be bounded as

(38) 0 < t∗ ≤ t̂ ≤ t∗∗ <∞,

where t∗ and t∗∗ are determined by (34) and (36), respectively.
In order to apply Lemmas 1 and 2, it is essential to know the properties of I(t).

From the properties of k(t) expressed by (26), (27), and (29), it follows that I(t) is
continuous for 0 ≤ t <∞ and

(39) I(t) > 0, I ′(t) > 0, 0 < t <∞, I(0) = 0,

with the asymptotic behavior

(40) I(t) ∼ 1
2
(
1 − α

2

)
Γ
(
1 − α

2

) t1−α
2 as t→ 0,

and

(41) I(t) ∼ a(�− a)
�Γ(2 − α)

t1−α as t→ ∞.

In view of the behavior of I(t) provided by (39)–(40), it is clear that (34) will be
satisfied by some t∗, 0 < t∗ < ∞. Moreover, the asymptotic growth of I(t) provided
by (41) ensures that (36) will be satisfied by some t∗∗ < ∞. Thus we obtain the
following theorem.

Theorem 3. The integral equation (12) has a unique, continuous solution for 0 ≤
t < t∗ < ∞. That solution ultimately becomes unbounded as t → t̂ < ∞, where t̂ > 0
satisfies (38).

It is important to note that the result of Theorem 3 relies upon the restrictions
that 0 < a < � and 0 < α < 1. Since (36) must be satisfied by some sufficiently large
but finite value of t∗∗ for the subdiffusion problem, a blow-up will ultimately occur no
matter how close the energy source is located to one of the cold endpoints of the strip.
This is contrary to the case of classical diffusion. For α = 1, it was demonstrated in
[6] that (35) could always be satisfied by making a(�− a) sufficiently small, thereby
ensuring a unique continuous solution of (12) for all t ≥ 0. This result is also implied
by (41) in the limit α→ 1, since I(t) remains bounded as t→ ∞.
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5. Blow-up growth rate. The growth rate of u(t) near blow-up can be deter-
mined from an asymptotic analysis of (12) as t → t̂. To carry out that analysis, it is
appropriate to follow the approach developed in [9] for a class of nonlinear Volterra
equations that includes (12). As shown in [9], the blow-up growth rate is determined
by the asymptotic behavior of k(t) as t → 0 and the asymptotic behavior of g(u) as
u→ ∞.

The asymptotic behavior of k(t) as t → 0 is given by (27), which indicates its
dependence on the anomalous diffusion parameter α. As for the asymptotic behavior
of g(u) near blow-up, the results here will be confined to the special cases in which
g(u) has either (i) algebraic growth or (ii) exponential growth as u→ ∞.

For the asymptotic analysis of (12), it is convenient to introduce the changes of
variables

(42) η =
(
t̂− t

)−1 − η0, η0 = t̂−1, w(η) = u(t).

This transformation converts (12) to the form
(43)

w(η) =
∫ η

0

k
{

(η − η′) [(η′ + η0)(η + η0)]
−1
}

(η′ + η0)−2g[w(η′)] dη′, 0 ≤ η <∞.

In terms of the new variables, the blow-up defined by (37) is expressed as

(44) w(η) → ∞ as η → ∞.

Following the methods of [9], let η′ = ητ so that (5) becomes

(45) w(η) = η Q(η), 0 ≤ η <∞,

where

(46) Q(η) =
∫ 1

0

k
{
η(1 − τ)[(ητ + η0)(η + η0)]−1

}
(ητ + η0)−2g[w(ητ)] dτ.

Thus, the blow-up growth rate of w(η) can be determined from an asymptotic analysis
of (45) as η → ∞. It is shown in [9] that the leading order behavior of Q(η) as η → ∞
is determined by the leading order behavior of k(t) as t → 0. It then follows from
(27) that

(47) Q(η) ∼ 1
2 Γ

(
1 − α

2

)
∫ ∞

0

(1 − τ)−
α
2 H(1 − τ)Ψ(ητ) dτ as η → ∞,

where H(τ) is the Heaviside function and

(48) Ψ(ητ) = (ητ + η0)−2+ α
2 g[w(ητ)].

Following the method of [9], the integral in (47) is converted to an integral in the
complex z-plane by the application of the Parseval formula for Mellin transforms.
This gives

(49) Q(η) ∼ 1
4πiΓ

(
1 − α

2

)
∫ c+i∞

c−i∞
M

[
(1 − τ)−

α
2 H(1 − τ); 1 − r

]
M [Ψ(ητ); r] dr.
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The Mellin transforms in (49) are consistent with the definition provided in (16).
Further simplification of (49) is achieved by noting that

(50) M
[
(1 − τ)−

α
2 H(1 − τ); 1 − r

]
=

Γ
(
1 − α

2

)
Γ(1 − r)

Γ
(
2 − α

2 − r
)

and

(51) M [(Ψ(ητ); r] = η−rM [Ψ(τ); r].

This allows the integral equation (45) to be replaced by the asymptotic equation

(52) w(η) ∼ 1
4πi

∫ c+i∞

c−i∞
η1−r Γ(1 − r)

Γ
(
2 − α

2 − r
)M [Ψ(τ); r] dr as η → ∞.

To proceed with the asymptotic analysis, it is necessary to introduce an assump-
tion about the growth of g(u). Consider the case in which g(u) has algebraic growth:

(53) g(u) ∼ um(η), m > 1 as η → ∞.

To obtain an asymptotic solution of (52) for this case, it is assumed that

(54) u(η) ∼ Aηp, p > 0 as η → ∞.

The constants A and p are to be determined by satisfying (52) to leading order.
From (48), (53), and (54), it follows that

(55) Ψ(η) ∼ Amη−2+ α
2 +mp as η → ∞.

By imposing the restriction that 1 > 2− α
2 −mp, it follows that M [Ψ; r] has a simple

pole at r = 2 − α
2 −mp < 1 and

(56) M [Ψ; r] ∼ − Am

r −
(
2 − α

2 −mp
) as r → 2 − α

2
−mp.

Now the leading asymptotic contribution from the integral in (52) comes from the
pole implied by (56). As the vertical path of integration is displaced to the right, that
pole is encountered before the pole at r = 1 arising from Γ(1 − r) ∼ −(r − 1)−1 as
r → 1. Thus (52) takes the form

(57) Aηp ∼
Am Γ

(
mp+ α

2 − 1
)

2 Γ(mp)
ηmp+

α
2 −1 as η → ∞.

From (57) it is concluded that

(58) p =
1 − α

2

m− 1
, A =

⎧⎨
⎩

2 Γ
[
m(1−α

2 )

m−1

]

Γ
[

(1−α
2 )

m−1

]
⎫⎬
⎭

1
m−1

.

These results are seen to be consistent with the original constraint that 1 > 2 −
α
2 − mp = 1 −

[(
1 − α

2

)
/(m− 1)

]
. The complement of this constraint leads to a

contradiction of any leading order asymptotic match in (52).
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In view of (54) and (58), the asymptotic growth of the solution to (12) near
blow-up is given by

(59) u(t) ∼ A(t̂− t)−p as t→ t̂

for the case in which g(u) grows algebraically as specified by (53).
Next consider the case in which g(u) has exponential growth,

(60) g(u) ∼ eu as η → ∞.

To obtain an asymptotic solution of (52) for this case, it is assumed that

(61) u(η) ∼ log (Aηp) ∼ p log η as η → ∞.

The constants A and p are to be determined by satisfying (52) to leading order.
From (48), (60), and (61), it follows that

(62) Ψ(η) ∼ Aη−2+ α
2 +p as η → ∞.

It follows that M [Ψ; r] has a simple pole at r = 2 − α
2 − p and

(63) M [Ψ; r] ∼ − A

r −
(
2 − α

2 − p
) as r → 2 − α

2
− p.

In order for the leading asymptotic contribution from the integral in (52) to yield a
logarithmic term that will match (61), it is necessary that the simple pole for M [Ψ; r]
coalesce with that arising from Γ(1 − r) ∼ −(r − 1)−1 as r → 1. This requires that

(64) p = 1 − α

2
.

As the vertical path of integration is displaced to the right, the leading order contri-
bution from the double pole reduces (52) to

(65)
(
1 − α

2

)
log η ∼ A

2 Γ
(
1 − α

2

) log η as η → ∞.

An asymptotic match in (65) is achieved by taking

(66) A = 2
(
1 − α

2

)
Γ
(
1 − α

2

)
= 2 Γ

(
2 − α

2

)
,

although this constant plays no role in the leading order behavior. In view of (61)
and (64), the leading order asymptotic growth of the solution to (12) near blow-up is
given by

(67) u(t) ∼
(
1 − α

2

)
log

(
1

t̂− t

)
as t→ t̂

for the case in which g(u) grows exponentially as specified by (60).
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6. Conclusions. For the case of a finite strip of subdiffusive material subjected
to a localized high-energy source, as modeled by (2)–(6), a thermal blow-up always
occurs. Unlike the case of classical (Gaussian) diffusion, the blow-up cannot be averted
by locating the site of the source sufficiently close to a cold boundary. This result is
consistent with the physics of subdiffusion in which the flux of energy is retarded.

The asymptotic growth of the temperature near blow-up was derived for nonlin-
ear energy sources that increase with temperature in either an (i) algebraic or (ii)
exponential manner. In each case, the explicit dependence of the growth rate on the
anomalous diffusion parameter was found. This suggests the possibility of experimen-
tally determining the anomalous diffusion parameter from data collected during an
appropriate reaction-diffusion process.
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STABILIZING ROLE OF A CURVATURE CORRECTION TO LINE
TENSION∗
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Abstract. We study the effects that a curvature correction to the line tension has on the
equilibrium and stability of liquid droplets laid upon a rigid substrate. In the simple case of cylindric
liquid bridges we prove that even a tiny curvature correction prevents the onset of wildly oscillating
perturbations that would make the contact line unstable if a negative line tension were present alone.
However, if the curvature correction is not large enough, unstable modes that are not related to the
classical Rayleigh instability can persist.
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1. Introduction. Since Gibbs’ fundamental paper [1] on the equilibrium of het-
erogeneous substances, there has been an increasing interest in modeling both the
statics and the dynamics of multiphase bodies. In particular, a faithful description
of the interface separating two different phases has been sought along different lines
originating from either the continuum point of view or the microscopic point of view
that relies upon statistical mechanics. In his original approach, Gibbs modeled the
thin interfacial three-dimensional region where the physical properties of two adjoining
phases rapidly change as a two-dimensional surface, called the dividing surface, that
separates two bulk regions where the phases are homogeneous. In general, extensive
properties like energy or entropy differ in the real system and in the idealized one.
Gibbs ascribed the excess energy or entropy to the dividing surface, adding surface
energy and entropy to the bulk terms characterizing the homogeneous phases. The
simplest surface energy introduced by Gibbs is proportional to the area of the dividing
surface; the constant of proportionality—called the surface tension—being positive
for stability reasons. Gibbs clearly stated that the surface energy he envisaged was
appropriate only for flat or weakly curved interfaces, while in the general case other
contributions depending on the interface curvature should enter the energy balance.
It was Tolman [2] who first analyzed curvature corrections by expanding the surface
tension pertaining to a spherical interface of radius R in powers of 1/R. The length
scale at which this correction is relevant is the Tolman length δT that has been found
to be a molecular length both in numerical simulations [3] of Lennard–Jones fluids
and in the analytic treatment of [4].

A general format to incorporate curvature corrections in the surface energy was
sketched by Gibbs himself and later exploited, for instance, in [5], where the following
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expression for the surface tension

(1.1) γ = γ0 + κ

(
c0H +

1
2
H2

)
+ κ̂K

was proposed, in which γ0 is the surface tension for a flat interface, c0 is the spon-
taneous curvature of the interface, and H and K are the total and the Gaussian
curvatures of the interface, respectively, while the constitutive parameters κ and κ̂
are bending rigidities. We record here that the Tolman length can be expressed as [5]

(1.2) δT =
κc0
γ0

.

Equation (1.1) is a truncated expansion that also covers the case of nonspherical
interfaces. It can also be noticed that the correction (1.1) to the surface tension
transforms the surface energy into the Canham–Helfrich Hamiltonian so successfully
employed in modeling biological membranes. To obtain more tractable expressions
for the curvature corrections, an alternative procedure was recently put forward in [6]
by performing a curvature expansion of the lowest order equation in the Born–Green–
Yvon hierarchy.

Up to this point we have considered interfaces separating two distinct phases.
However, contact lines where three different phases coexist at equilibrium also occur.
A line energy proportional to the length of the contact curve had been introduced by
Gibbs himself in [1] to model the excess free energy residing there. The constant of
proportionality is called the line tension. Since line tension effects on equilibrium are
detectable for systems in the submicron regime, its role had been neglected until ex-
perimental techniques became available, which allow explorations of these small-sized
droplets. As a consequence, the impact of line tension on the equilibrium [7, 8] and
the stability [9, 10, 11, 12, 13, 14, 15, 16, 17] of sessile droplets was studied thoroughly
during the past decade. In particular, a controversy arose on the admissibility of a
negative line tension within a continuum model. At variance with surface tension,
Gibbs did not put restrictions on the sign of line tension, but it was proved in [9] that
negative values of line tension would make the free-energy functional unbounded from
below, and so make any equilibrium configuration unstable. Precisely, if the contact
line is corrugated enough, a droplet at equilibrium can follow a path along which its
energy is reduced. It was pointed out [12, 17, 18], however, that the characteristic
wavelength induced by destabilizing perturbations on the equilibrium droplet could
be a molecular length, detectable at a length scale outside the realm of a continuum
model. In [18, 19] a criterion of marginal stability was proposed to estimate, roughly
speaking, the number of stable modes for a given equilibrium configuration and for a
given negative line tension. In this way, we could ascertain that negative line tensions
as those reported in [20] were compatible with a large set of stable modes, and that
the onset of instability was related to perturbations with so short a wavelength that
they presumably operate at a scale where also curvature corrections to the line tension
should be accounted for [18]. Incorporating these corrections into a continuum model
to study their impact on the stability of sessile droplets is the aim of this paper.

In fact Boruvka and Neumann introduced long ago [21] curvature corrections for
both the surface and the line energy, by building a formal theory where the free energy
contains contributions depending on both the normal and the geodesic curvatures
as well as on the geodesic torsion of the contact line, conceived as a curve lying
either on the substrate or on the free surface of the liquid droplet. Here we do
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not insist in making all these differential-geometric properties enter the free-energy
functional, as this would lead to a large number of constitutive parameters which,
in turn, would make predictions rather difficult, if at all possible. So, we simply
imagine that the line tension depends on the curvature σ of the contact line. In
this sense our approach departs from that of Boruvka and Neumann, who did not
consider corrections depending only on the curvature σ of the contact line since σ has
no relation with either the free surface of the droplet or the substrate. However, on
computing the first and the second variation of the line free energy, we will see that
it is natural to consider deformations of a sessile droplet that map contact lines into
contact lines. In this way, the geometry of the substrate is naturally coupled with
that of the contact line and both the first and the second variation of the line energy
depend on the geometric properties of the contact line, conceived as a curve on the
substrate.

It should also be recalled that recent studies [22] have focused on the dependence
of line tension upon the radius of curvature of the dividing line. We also mention
that a different kind of curvature correction to line tension was studied in [23], where
the dependence of line tension on the substrate’s curvature was examined within an
effective interfacial Hamiltonian approach, in the limit of weakly curved cylindric
substrates.

The reader might wonder why we do not treat line and surface tension on the
same footing, by assuming a dependence of the latter on curvature too. While in the
next section we will give a technical reason for neglecting such corrections, a simple
argument can be given, by comparing the typical energy of the term κc0

∫
S HdA

associated with Tolman’s correction with the energy β
∫
C σ

2d� associated with the
curvature correction of line tension. Taking a spherical capsule of radius R, and
recalling (1.2), the contribution due to curvature correction of line tension prevails
whenever

R �

√
β

γ0δT
.

Since δT is a molecular length, the set of values of the ratio β/γ0 that make this
inequality obeyed by micron-sized droplets is nonempty.

This paper is organized as follows. In section 2 we introduce the curvature correc-
tion to line tension and we discuss the length scales hidden in our model. In section 3
we compute the first variation of the curvature correction arriving at a modified Young
equation obeyed along the contact line. Here we also write down the second variation
of the curvature-dependent correction, deferring to an appendix the lengthly calcula-
tions needed to obtain it. As an application, in section 4 we address the stability of a
liquid bridge lying on a flat substrate that was explored without curvature correction
in [16] and [17]. We prove that the curvature correction cancels the systematic insta-
bility induced by negative line tension for modes with arbitrarily short wavelengths,
regardless of the magnitude of the correction. However, different stability scenarios
can be singled out, depending on the magnitude of both the bare line tension and
its curvature correction. The paper is closed by a section where we summarize our
results and we outline some possible applications.

2. Free energy. We consider a sessile droplet B consisting of incompressible
fluid (see Figure 1). Its boundary ∂B is naturally split as ∂B = S∗ ∪ S∗, where the
adhering surface S∗ is laid on a rigid substrate. The portion S∗ of ∂B that is not in
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S∗

S∗

ϑc

νS∗

νS∗

ν∗

ν∗

C

Fig. 1. A sessile droplet laid on a rigid substrate. The boundary of the droplet is split into a free
surface S∗ and an adhering surface S∗: on the former, the droplet is in contact with a vapor phase;
on the latter it is in contact with the substrate. These surfaces meet along the contact line C. The
outer unit normal vectors ν∗ and ν∗ to S∗ and S∗ are also shown, together with the conormal unit
vectors νS∗ and νS∗ to the contact line, conceived as a curve on S∗ and S∗, respectively. Finally,
the contact angle ϑc, defined as the angle between νS∗ and νS∗ , is also shown.

contact with the substrate is referred to as the free surface. The curve C := S∗ ∩ S∗
is the contact line, where three phases coexist at equilibrium. We shall assume, for
simplicity, that C is connected. The equilibrium shapes of a droplet are the critical
points of the free-energy functional

(2.1) F [B] := γ0

∫
S∗

da− w

∫
S∗

da+ τ0

∫
C

d�+ β

∫
C
σ2d� ,

subject to the incompressibility constraint

(2.2) vol(B) =
∫
B

dV = constant.

The functional (2.1) contains several contributions. First, γ0

∫
S∗ da accounts for the

surface tension γ0 := γlv > 0 associated with the interface between the liquid and
the vapor phase. Here a is the area-measure on either S∗ or S∗. The term −w

∫
S∗

da
is responsible for the excess energy at the solid-liquid interface. We introduced the
adhesion potential w > 0 that is often expressed as w = γlv−γls+γsv, that is, in terms
of the surface tensions γls and γsv associated with the liquid-solid and with the solid-
vapor interfaces. We then consider two line energy contributions: the former, τ0

∫
C d�,

models the bare line tension τ0, a constant associated with an ideal straight contact
line. The latter is β

∫
C σ

2d�, where σ is the curvature of the contact line C, β > 0
is a constant parameter, and � is the length-measure along C. This term measures
the curvature correction to the bare line tension and a squared dependence upon σ
has been chosen to parallel the curvature correction to surface tension contained in
(1.1): a linear term

∫
C σd� is discarded as it would simply contribute a constant to

F , since C is a closed curve. If, for a moment, we consider the contact curve alone,
leaving the droplet out of consideration, we are modelling C as an Euler’s elastic curve.
Pursuing this analogy, we could interpret β as a torsional rigidity of the contact line.
In studying the relevance of curvature corrections on the stability of liquid droplets,
Tolman length plays an ancillary role. In fact, we learned in previous work on this
topic [16, 18] that the stability is determined by the natural boundary condition along
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the contact line that arises in the minimization of the second variation of the free-
energy functional. Incorporating a curvature correction to the surface tension would
add to this boundary condition terms depending on the curvature of the contact line
that are qualitatively equivalent to those considered here. Moreover, this dependence
would lead to a nonconstant mean curvature in the free surface profile that would
render the normal mode analysis more intricate to follow. Hence, we think that
the essential effects of curvature corrections are captured by just taking a curvature-
dependent line tension. In the same vein, we did not consider bulk terms in (2.1) so
that both gravity and a diluted interaction between the substrate and the droplet (see,
e.g., [24]) are disregarded. It is true that, since bulk terms modify the equilibrium
profile of the free surface, they could influence the stability analysis. However, the
instability we are concerned with is driven by line tension and it seems plausible that
bulk terms do not modify the qualitative features of the stability analysis.

We aim at exploring the stabilizing role of a curvature correction to the line
tension and so we will assume hereafter τ0 < 0 since negative line tensions play a
systematic, destabilizing effect. As we discussed in several geometries [16, 18, 19],
conditionally stable equilibria in the presence of negative line tension are possible
provided that |τ0| is sufficiently small. In this case, it can be shown that the typical
wavelength of destabilizing modes is a molecular length that lies outside the realm
of application of the continuum picture adopted here. We expect that a curvature
correction penalizing wild oscillations of the contact line could enhance the stability
of an equilibrium configuration, even if line tension is negative.

We now digress slightly to introduce the characteristic lengths hidden in our
model. A first length scale �τ can be defined as the typical linear dimension of a
droplet for which the surface energy and the line energy associated with bare line
tension τ0 have the same order of magnitude:

γ0

∫
S∗

da ≈ |τ0|
∫
C

d� .

If S∗ is a spherical capsule of radius �τ so that C is a circumference of radius R ∝ �τ , we
obtain �τ ≈ |τ0|/γ0. Estimates for �τ can be obtained from line tension measurements
like those in [20], and range from 10−8 to 10−6 m. The ratio

(2.3) ξ :=
τ0
γ0

will be employed in the application shown in section 4. Finally, we can define a length
�β as the typical size of a droplet for which

|τ0|
∫
C

d� ≡ β

∫
C
σ2d�

so that �β ≈
√
β/|τ0|. We are unaware of any measure or estimate of �β . Although

it might be reasonable to assume �β � �τ , we will not make such a restriction in
this paper. In any case, we do not need to apply our model up to the small lengths
discussed here to appreciate the effects of line energies. As we will see in section 4, for
instance, β could affect the stability of equilibrium configurations both quantitatively
and qualitatively, even if it does not modify the equilibrium profile of C at all.

3. Equilibrium and stability. The first and the second variation of the free-
energy functional F in (2.1) have been computed in [13] for β = 0. Here we simply
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arrive at the first variation δF∗ of the reduced functional

(3.1) F∗[C] :=
∫
C
σ2d�.

The equilibrium equation obeyed by the droplet B is obtained by adding βδF∗ to
the Young equation (equation (2.44)2 of [13]) specialized to the case where both the
surface and the bare line tension are constant. It will be useful to write the functional
F as

F = F0 + βF∗,

where F0 is the free-energy functional when β = 0.
Since F∗ is concentrated along the contact line, it cannot affect the equilibrium

shape of the free surface S∗ which, in the absence of bulk contributions, is a surface
with constant mean curvature.

To compute δF∗ we perturb C by mapping points p ∈ C into points

(3.2) p 	→ pε := p+ εu + ε2v,

where the regular fields u and v are defined on ∂B. Since we do not repeat the
computations for the complete functional F , here we can deal with the restrictions of
these fields along C. In general, u and v are subject to the constraints [13]

(3.3) u · ν∗ = 0 and v · ν∗ = −1
2
u · (∇sν∗)u on S∗,

where ∇sν∗ := (∇ν∗)(I − ν∗ ⊗ ν∗) is the surface gradient of the outer unit normal
ν∗ of S∗. Equations (3.3) guarantee that the perturbed contact line glides on the
substrate both at the first-order—(3.3)1—and at the second-order—(3.3)2—in the
perturbation parameter ε. The field v does not enter into the equilibrium equations,
but it plays a crucial role into the stability of the equilibrium configurations.

Let s be the arc-length of the contact line C, and t∗ its unit-tangent vector. We
will frequently use the Darboux trihedron associated with C: it is the set {t∗,ν∗,νS∗}
formed by three orthogonal unit vectors: t∗, ν∗, and νS∗ := t∗ ∧ ν∗, the conormal
unit vector of C on S∗ (see Figure 1). When a point moves along C, the associated
Darboux trihedron obeys the following Darboux equations (see p. 241 of [26]):

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt∗
ds

= κ∗gνS∗ + κ∗nν∗,

dνS∗

ds
= −κ∗gt∗ − τ∗g ν∗,

dν∗
ds

= −κ∗nt∗ + τ∗g νS∗ ,

where

(3.5) κ∗n :=
dt∗
ds

· ν∗, κ∗g :=
dt∗
ds

· νS∗ , and τ∗g :=
dν∗
ds

· νS∗

are, respectively, the normal curvature, the geodesic curvature, and the geodesic tor-
sion of C, viewed as a curve on the substrate S∗. Hereafter, to avoid clutter, we keep
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the star ∗ only when we are referring to the unit normal ν∗ of S∗, and when confusion
might occur. No ambiguity should arise, since we always imagine C as a curve on S∗.

By (3.2), we obtain

dpε
ds

= t + εu′ + ε2v′

and so

ds
dsε

=
∣∣∣∣dpεds

∣∣∣∣
−1

= [1 + 2εu · t + ε2(u′ · u′ + 2v′ · t)]−1/2,

where a prime denotes differentiation with respect to s. Since

tε =
dpε
dsε

=
dpε
ds

ds
dsε

,

it follows that

tε = t+ε[u′−(u′·t)t]+ε2
[
v′ − 1

2
(u′ · u′)t − (v′ · t)t +

3
2
(u′ · t)2t − (u′ · t)u′

]
+O(ε3) .

We introduce the vector fields

(3.6) a := u′ − (u′ · t)t and c := v′ − (v′ · t)t

that satisfy a · t = c · t = 0. By setting a2 := a ·a, we have u′ ·u′ = a2 + (u′ · t)2 and
so we can recast tε as

(3.7) tε = t + εa + ε2
[
c − a2

2
t − (u′ · t)a

]
+O(ε3) .

For a regular curve, the first Frenet–Serret equation states that

(3.8)
dt

ds
= σn,

where n is the principal unit normal to the curve. Hence, on Cε we have

σε =
[

dtε
dsε

· dtε
dsε

]1/2

which, after rearrangements, yields

(3.9) σ2
ε

dsε
ds

=
dtε
ds

· dtε
ds

ds
dsε

.

By use of (3.7) and (3.8) and after tedious but straightforward computations we
obtain

(3.10)

σ2
ε

dsε
ds

= σ2 + ε

[
2σa′ · n − σ2(u′ · t)] + ε2[a′ · a′ + 2σn · c′−

−2σ(u′ · t)′n · a − 4σ(u′ · t)n · a′ − 3
2
a2σ2 + σ2(u′ · t)2 − σ2v′ · t

]
.
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By definition, the first variation δF∗ of F∗ is given by

(3.11) δF∗ :=
dF∗[Cε]

dε

∣∣∣∣
ε=0

=
∫
C
[2σa′ ·n−σ2(u′ ·t)]ds =

∫
C
[(σ2t)′ ·u−2(σn)′ ·a]ds,

where integration by parts has been used in the last passage. By recalling the defi-
nition of a in (3.6) and by performing several integrations by parts to get rid of the
derivatives u′, we obtain

δF∗ =
∫
C
{(σ2t)′ + 2(σn)′′ − 2[((σn)′ · t)t]′} · uds.

Since the second Frenet–Serret equation reads

dn

ds
= −(σt + τ̃b) ,

where τ̃ and b := t ∧ n are the torsion and the unit binormal vector of C, we finally
arrive at

δF∗ =
∫
C

u · [3(σ2t)′ + 2(σn)′′]ds.

The differential properties of C as a curve on S∗ enter the scene when (3.4)1 is com-
pared with (3.8) so that δF∗ reads as

δF∗ =
∫
C

u · [6σσ′t + 3σ3n + 2(κgνS∗ + κnν∗)′′]ds.

Since, by (3.3)1,

(3.12) u = utt + usνS∗

along C, by applying repeatedly the Darboux equations (3.4), by performing several
integrations by parts, and by using the identity

(3.13) σ2 = κ2
g + κ2

n,

we obtain

δF∗ =
∫
C
{[κgσ2 + 2(τ ′gκn + 2τgκ′n + κ′′g − κgτ

2
g )]us

+ 2[σσ′ − κgκ
′
g − κnκ

′
n]ut}ds =

∫
C
[κgσ2 + 2(τ ′gκn + 2τgκ′n + κ′′g − κgτ

2
g )]usds,

where (3.13) was differentiated with respect to s to suppress the term multiplying
ut. The first variation δF∗ is thus independent of the component ut of u along the
unit-tangent vector t of C, as it should be, since ut simply reparameterizes C. One
could assume a pragmatic attitude by setting ut ≡ 0 from the very beginning. We
prefer to keep this term since its disappearance from both the first and the second
variation serves as a check of consistency for our computations.

If βδF∗ is added to the first variation of F0 as given in (2.44) of [13], the following
equilibrium equation should be obeyed along C:

(3.14) γ0 cosϑc + γ0 − w − τ0κg + βκgσ
2 + 2β(τ ′gκn + 2τgκ′n + κ′′g − κgτ

2
g ) = 0,
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Fig. 2. (a) Sketch of a liquid bridge, conceived as a straight circular cylinder of radius R,
with symmetry axis along ez. The bridge is laid on a flat substrate. Here L denotes the typical
length along which the cylinder is perturbed. (b) The cylindric polar coordinates z and ϑ used to
parameterize the free surface of the bridge are shown together with the contact angle ϑc, which is
constant along the contact line. The conormal unit vectors νS∗ and νS∗ of C as a curve on either
the free or the adhering surface of the bridge have been drawn together with the unit normal vector
ν of the free surface along C.

where ϑc is the contact angle, that is, the angle between the conormal unit vectors
νS∗ and νS∗ of C viewed as a curve on either S∗ or S∗, respectively (see Figure 1). At
variance with (2.44) of [13], the subscript ∗ has been dropped since no confusion can
arise here. Although we will not study (3.14) in general, we note that setting β �= 0
makes the curvature of the contact line appear at higher powers. This suggests that
new branches of solutions might exist in this case.

The format just employed also gives the second variation of F∗. Since computa-
tions are much more involved, however, we prefer to move the details into an appendix,
while here we simply record the final result:

δ2F∗ =
∫
C
(u′′s )

2ds+
∫
C
(6τ2

g − κ2
g − 3

2σ
2)(u′s)

2ds+
∫
C

{
τ4
g + (τ ′g)

2 + σ2(κ2
g − 3

2τ
2
g )

+ (κnτg)2 + 2κnκ′gτg − 4τ2
g κ

2
g + 4κgτgκ′n + [2τgκgκn + 3κgκ′g]

′

+ (H − κn)(
1
2
σ2κn + κ′′n − 2τgκ′g − κgτ

′
g − κnτ

2
g )
}
u2
sds,

(3.15)

where H is the total curvature of S∗. By adding βδ2F∗ to (3.16) of [13] we obtain the
complete second variation of the functional F . We remind the reader that us∗ in [13]
coincides with us employed here.

4. Application. We apply the results of the previous sections to study the sta-
bility of a liquid bridge, conceived as a straight circular cylinder with radius R laid
on a flat substrate (see Figure 2(a)). Since a cylinder is a surface with constant mean
curvature, it represents an admissible equilibrium free surface. By (3.14), we see that
a straight equilibrium contact line is unaffected by both the line tension and its cur-
vature correction: the contact angle has a constant value ϑc along C. We assume that
the cylinder’s axis lies along the ez direction and we parameterize the free surface
of the cylinder by using the angle ϑ ∈ [−ϑc, ϑc] and z ∈ R (see Figure 2(b)). Since
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σ = κn = κg = τg = 0, by (3.15) we have

βδ2F∗ = β

∫
C
(u′′s )

2ds,

which, when added to the second variation of F0 (see equation (3) of [16])

δ2F0[u] = γ0

∫
S∗

{
|∇suν |2 −

1
R2

u2
ν

}
da+

∫
C

{
τ0(u′s)

2 − γ0

R
cosϑc sinϑcu2

s

}
ds,

yields the second variation of the functional F
(4.1)

δ2F [u] = γ0

∫
S∗

{
|∇suν |2−

1
R2

u2
ν

}
da+

∫
C

{
β(u′′s )

2+τ0(u′s)
2− γ0

R
cosϑc sinϑcu2

s

}
ds.

We warn the reader that in [16] the line tension was denoted by γ, and the surface
tension by τ . In (4.1), ∇suν = (I − ν ⊗ ν)∇uν is the surface gradient of the scalar
field uν , the component of u along the outer unit normal vector of the free surface
S∗. Along C, uν is related to us, the projection of u along νS∗ , through the equation
(see Figure 2(b))

(4.2) uν = sinϑcus

to satisfy the gliding constraint (3.3)1. Equation (4.2) can be obtained by expanding
u along C as

(4.3) u = utt + uνν + usνS∗ ,

which, together with (3.12), yields (4.2) after the scalar product with ν has been
formed and the equation ν · νS∗ = 0 has been used too. With the aid of (4.2), δ2F
becomes a quadratic functional of uν and so, either its minimum is zero, or it is
unbounded from below. To deal with finite minima, we minimize δ2F on the set of
functions obeying the constraint

(4.4)
∫
S∗
u2
νda = 1.

If the minimum of δ2F on this set is positive, δ2F is positive definite, and so the
equilibrium configuration is locally stable, whereas if the minimum of δ2F on the set
(4.4) is negative, the equilibrium configuration is unstable [13]. Since we assume that
the liquid bridge is made of incompressible fluid, uν should also obey the constraint
(2.2). At first-order in ε (2.2) amounts to requiring [13]

(4.5)
∫
S∗
uνda = 0 .

The constraint (4.5), together with its second order implementation (equation
(2.29)2 of [13]) have been used in [13, 16] to obtain both the first and the second
variation of F0. Until now we did not need them since we dealt only with F∗ which
is unaffected by this constraint, as it is concentrated on C. However, to proceed we
need to study δ2F and so we have to enforce incompressibility as well. Precisely,
the first-order requirement (4.5) is needed since we have to compute only the first
variation of δ2F . Hence, we minimize the quadratic functional

G[uν ] := δ2F [uν ] −
μ

2

∫
S
u2
νda+ λ

∫
S∗
uνda,
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where μ/2 and λ are Lagrange multipliers corresponding to the constraints (4.4) and
(4.5). The scalar field uν is perturbed according to

uν 	→ uνε := uν + ε h,

where h is a regular scalar field. Here we focus on the contribution arising from
curvature correction. Much in the spirit of Rayleigh instability, we imagine that the
cylinder has infinite length and we call L the length of C over which perturbations are
effective. As a consequence, we require

(4.6) uν(ϑ, 0) = uν(ϑ, L) = 0, ∀ϑ ∈ [−ϑc, ϑc]

so that h also has to vanish at z = 0, L. By setting χ := 1/ sinϑc, using (4.2), and
integrating by parts twice, we obtain
(4.7)∫
C
(u′′sε)

2d� =
∫ L

0

(u′′sε)
2dz = χ2

∫ L

0

(u′′ν)
2dz+2χ2

∫ L

0

hu(iv)
ν dz+u′′ν(L)h′(L)−u′′ν(0)h′(0),

where a prime stands for differentiation along the arc-length z of C, and use of (4.6)
has been made. Since in this case C is an open curve we need to require

(4.8) u′′ν(ϑ, 0) = u′′ν(ϑ, L) ∀ϑ ∈ [−ϑc, ϑc] .

By adding (4.7) to the terms of the first variation of G that were computed in equations
(7), (8) of [16], we conclude that finding the minimum of G on the set (4.4) amounts
to finding the smallest eigenvalue μ of the following problem:

�suν +
(
μ+

1
R2

)
uν + λ = 0 on S∗,(4.9)

sin2 ϑc∇suν · νS +
β

γ0
u(iv)
ν − ξu′′ν −

1
R

sinϑc cosϑcuν = 0 along C,(4.10)

where �s is the surface-Laplacian defined on S and ξ is defined according to (2.3).
Hereafter we drop the subscript ν from uν . As proved in [13], the smallest value μmin

of μ that solves the problem (4.9), (4.10) coincides with the minimum value of δ2F
on the constraint (4.4) and so we conclude that an equilibrium configuration is locally
stable or not according to whether μmin is positive or not.

To analyze (4.9), (4.10), we expand u as a sine series

(4.11) u(ϑ, z) =
∞∑
n=1

an sin
(

2nπ
L

z

)
un(ϑ) ,

where un(ϑ) are unknown functions of ϑ. In this class, we can satisfy the boundary
conditions (4.6) and (4.8) as well as the incompressibility constraint (4.5), so that we
can set λ = 0 in (4.9). The reader might wonder whether the second variation just
obtained, as well as that computed in [13, 16] for sessile droplets with closed contact
line are valid here, where the contact line is open. A glance at the derivations of the
second variation in the appendix and in [13, 16] shows that terms at the end-points of
the contact line are always coupled with the curvature—normal or geodesic—or with
the geodesic torsion of C which vanish identically along a straight contact line and so
never contribute.
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We split our discussion into two parts, according to whether un(ϑ) is symmetric
with respect to the plane ϑ = 0, or if it is skew-symmetric. We call peristaltic modes
those in the former class, for which

(4.12)
∂un
∂ϑ

∣∣∣∣
ϑ=0

= 0 ∀z ∈ [0, L]

holds and we call varicose the modes in the latter class, which in turn obey

(4.13) un(0) = 0 ∀z ∈ [0, L] .

4.1. Peristaltic modes. When a mode

(4.14) u(ϑ, z) = sin
(

2nπ
L

z

)
un(ϑ)

in the expansion (4.11) is inserted into (4.9) with λ = 0 and the multiplier μ is scaled
to R2, un(ϑ) has to satisfy

1
R2

ün −
(

2nπ
L

)2

un +
(
μ+ 1
R2

)
un = 0,

where we exploited the expression

�sf =
1
R2

∂2f

∂ϑ2
+
∂2f

∂z2

of the surface-Laplacian acting on a scalar function f = f(ϑ, z) defined on S∗ and
where a superimposed dot denotes differentiation with respect to ϑ. The dimensionless
ratio

(4.15) �n :=
(

2πnR
L

)2

is a relative measure of the typical size R of a cross-section of the liquid bridge
compared to the wavelength L/2πn induced on C by the perturbation (4.14). For
given R and L, the larger the �n, the more corrugated the contact line. By (4.12) and
setting

(4.16) σn := μ+ 1 − �n,

the peristaltic modes are given by

(4.17) un(ϑ) =

⎧⎨
⎩

A cos(
√
σnϑ) if σn > 0,

A if σn = 0,
A cosh(

√
−σnϑ) if σn < 0,

where A is an inessential constant that can be adjusted by imposing the constraint
(4.4). If the mode (4.14) is inserted into (4.10), and we use (4.17), we conclude that
u(ϑ, z) is an acceptable eigenfunction if

(4.18)
β

γ 0

(
2nπ
L

)4

un(ϑc) +
1
R
u̇n(ϑc) + ξ

(
2nπ
L

)2

�nun(ϑc) −
1
R
un(ϑc) sinϑc cosϑc = 0
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holds, where we noted that

∇su · νS =
∂u

∂ϑ
= u̇(ϑ) .

By recalling (2.3) we introduce the dimensionless parameters

ω :=
ξ

R
=

τ0
γ0R

and η :=
β

γ0R3

that compare the length scales |τ0|/γ0 and 3
√
β/γ0 hidden in the model with R, a

characteristic length of the liquid bridge. By setting

(4.19) xn :=
{ √

σnϑc if σn > 0,√−σnϑc if σn < 0,

we can recast (4.18) as

η�2
n + ω�n = sinϑc

[
cosϑc +

sinϑc
ϑc

xn tanxn

]
if σn > 0,(4.20)

η�2
n + ω�n = sinϑc

[
cosϑc −

sinϑc
ϑc

xn tanhxn

]
if σn < 0,(4.21)

and

(4.22) η�2
n + ω�n = sinϑc cosϑc if σn = 0 .

Following [16], modes satisfying (4.20), (4.21), and (4.22) are called circular, hyper-
bolic, and linear modes, respectively. Compared to the analysis performed in [16], the
left-hand side of (4.20)–(4.22) is a second- instead of a first-degree polynomial in �n:
in this sense, the curvature correction acts as a singular perturbation term. As we
remarked before, stable modes correspond to positive values of μ, whereas unstable
modes correspond to μ < 0. To ascertain the stability of a particular mode, it is then
crucial to localize the marginal modes, corresponding to μ = 0. By the definitions
(4.16) and (4.19) we can write

(4.23) μ =

⎧⎪⎪⎨
⎪⎪⎩

�n − 1 +
(
xn

ϑc

)2

if σn > 0,

�n − 1 −
(
xn

ϑc

)2

if σn < 0,
�n − 1 if σn = 0 .

From (4.23)1 we conclude that points in the quadrant Q := {(xn, �n) | xn ≥ 0, �n ≥ 0}
of the (xn, �n)-plane that lie below the parabola

(4.24) �n = 1 −
(
xn
ϑc

)2

are unstable against circular modes, whereas points in Q above this parabola are
stable against circular modes. Similarly, it follows from (4.23)2 that points of Q
below the parabola

(4.25) �n = 1 +
(
xn
ϑc

)2
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are unstable against hyperbolic modes, whereas points above it are stable against
hyperbolic modes. Finally, points in Q that lie below the straight line

(4.26) �n = 1

are unstable against linear modes, while points above this line are stable. We now
replace �n in (4.20)–(4.22) with the appropriate expressions found in (4.24)–(4.26),
and we divide (4.20)–(4.22) by ω and define the functions

gc(xn) := φ

⎧⎨
⎩η

[
1 −

(
xn
ϑc

)2
]2

− sinϑc[cosϑc +
sinϑc
ϑc

xn tanxn]

⎫⎬
⎭ ,

gh(xn) := φ

⎧⎨
⎩η

[
1 +

(
xn
ϑc

)2
]2

− sinϑc[cosϑc −
sinϑc
ϑc

xn tanhxn]

⎫⎬
⎭ ,

and

gl(xn) := φ[η − sinϑc cosϑc],

where, for simplicity, we set φ := 1/|ω|. Increasing values of φ correspond to line
tensions with decreasing magnitude. By (4.23), the marginal modes are the smaller
pairs (xn, �n) in Q that obey the equation

(4.27)

⎧⎪⎪⎨
⎪⎪⎩

1 −
(
xn

ϑc

)2

= gc(xn) if σn > 0,

1 +
(
xn

ϑc

)2

= gh(xn) if σn < 0,
1 = gl(xn) if σn = 0.

The pairs (φ, �n) that solve (4.27) and yield the most restrictive stability condition
lie on the marginal curve which divides the (φ, �n)-plane into a stable and an unstable
set. Figure 3 shows the marginal curves for ϑc = 65◦ and for several values of η: no
qualitative differences occur if other values of ϑc < π/2 are chosen. To follow the
discussion the reader is also urged to look at Figure 4, where the semilogarithmic plot
of the marginal curves of Figure 3 is shown. The numerical solution of (4.27) (and of
(4.28) below) has been performed in a Matlab environment by resorting to a simple
bisection algorithm. An educated guess based on an a priori analytical study of the
equation has been used to select the intervals in which the solutions are first sought.
We stress that, by definition of φ and since we consider only negative line tensions,
moving along the φ-axis from left to right amounts to spanning the interval (−∞, 0)
for the line tension.

Hyperbolic modes are most effective and, depending on the value of η, we can
single out three stability diagrams, according to the profile of the marginal curve.
If η = 0 the marginal curve has a turning point and the stability diagram coincides
with that obtained in [16]. A straight line φ = φ0 = const. either intersects the
marginal curve twice or it does not intersect it at all, according to the value of φ0.
When two intersections (φ0, �

(1)
n ) and (φ0, �

(2)
n ) exist (�(1)

n < �
(2)
n ), Rayleigh instability

makes liquid bridges unstable when �n < �
(1)
n . When �n ∈ (�(1)

n , �
(2)
n ) liquid bridges

are locally stable and they become unstable again when �n > �
(2)
n . Since �n is

proportional to n, modes with n = 1 are more likely to induce Rayleigh instability:
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Fig. 3. Stability diagram for peristaltic modes when ϑc = 65◦. Each curve is labelled by the
corresponding value of η: η = 0, η = 10−3, η = 10−1, and η = 1). Only hyperbolic modes are
effective. For a given value of η, the region bounded by the coordinate axes and the marginal curve
is unstable, while the remaining portion of the (φ, �n)-plane is stable. On increasing η, Rayleigh
instability persists while the instability induced by negative line tension for large values of n is
reduced, since the marginal curve diverges only in the limit as φ → 0, that is, when the magnitude
of line tension is exceedingly high (see also Figure 4 for further details).

in fact, we leave the unstable set �n < �
(1)
n earlier and earlier on increasing n at fixed

L and R. The effects of line tension are more related to the unstable set �n > �
(2)
n .

In this case, modes with large n are most likely to cause instability. However [16], n
cannot be increased arbitrarily in a coherent theory since the typical length scale L/n
associated with the corrugations induced on the contact line by the perturbation falls
below the smallest scale that can be reached within a continuum approach. Hence,
only a finite number of values of n can be considered and it is clear from Figure 3
that the smaller the line tension, the more values of n will fall within the region of
local stability. When φ = φ0 does not intersect the marginal curve, and so the line
tension has a large magnitude, no stable modes survive, and no stable equilibrium
liquid bridge exists.

If η ∈ (0, ηc(ϑc)] (curves labelled by η = 10−3 in Figures 3 and 4) the marginal
curve has two turning points. A line φ = φ0 crosses the marginal curve three times if
φ0 ∈ [φm0 , φ

M
0 ] and only once elsewhere. In this latter case only Rayleigh instability

occurs: it is slightly reduced by a curvature correction when φ0 > φM0 (i.e., when line
tension is small), but it becomes more and more restrictive if φ0 < φm0 (i.e., when
line tension is large), since the marginal curve diverges along the �n axis. When
φ0 ∈ [φm0 , φ

M
0 ] the points (φ0, �

(1)
n ), (φ0, �

(2)
n ), and (φ0, �

(3)
n ) (�(1)

n < �
(2)
n < �

(3)
n ) on

the marginal curve impose the following scenario: a liquid bridge is unstable when
either �n < �

(1)
n (Rayleigh instability) or � ∈ (�(2)

n , �
(3)
n ) and stable when either
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Fig. 4. Semilogarithmic plot of the stability diagram for peristaltic modes shown in Figure 3.
The four curves are labelled by the corresponding values of η. The region of Rayleigh instability
can be perceived only for η = 10−1 and η = 1. Three regimes exist, depending on the value of η.
When η = 0 a line φ = φ0 either crosses the marginal curve twice or it does not cross it at all.
This mirrors the destabilizing role of negative line tension when there are no curvature corrections.
The second regime covers the case η ∈ (0, ηc]: here, η = 10−3. Then, when φ is either very small
or large, φ = φ0 crosses the marginal curve only once, and only Rayleigh instability occurs. There
is an intermediate set of values of φ0 for which three intersections exist between φ = φ0 and the
marginal curve. Finally, when η > ηc—here η = 10−1 and η = 1—there is always one intersection
between a line φ = φ0 and the marginal curve: only Rayleigh instability occurs.

� ∈ (�(1)
n , �

(2)
n ) or � > �

(3)
n . In particular, the local stability when � > �

(3)
n mirrors

the stabilizing role of even a tiny curvature correction. The undulating behavior for
�n ∈ (�(1)

n , �
(3)
n ) disappears when η attains a critical value ηc(ϑc) at which φm0 = φM0 .

For larger values of η (curves labelled by η = 10−1 and η = 1 in Figures 3 and 4) the
marginal curve has a monotonic profile and it is crossed by a line φ = φ0 at a unique
point (φ0, �

(1)
n ): only liquid bridges such that �n < �

(1)
n are unstable: a Rayleigh

instability occurs which becomes stronger and stronger when the magnitude of line
tension increases (i.e., when φ→ 0+). Figure 5 shows the graph of ηc(ϑc) against the
contact angle ϑc. We conclude that small and large values of ϑc require lower values
of η to wash out the instability at large n typical of a negative line tension. To prove
that the marginal curve cannot diverge in the limit φ→ ∞ and when η assumes any
fixed, nonvanishing value, we simply look at (4.27) before division by ω is performed.
By applying the method of dominant balance [27], we conclude that �n → ∞ and
φ→ ∞ would yield

η�2
n = − sin2 ϑc

ϑc
xn tanhxn,

which is clearly inconsistent because of the different sign of the two sides. Similarly,
we exclude that �n could diverge at a finite value of φ. Hence, given a fixed value
of η > 0 �n could diverge only in the limit where φ → 0, that is, if the negative
line tension has a large magnitude. This argument corroborates the outcomes of the
numerical analysis of (4.27).

Figure 6 shows the stability diagram of a liquid bridge against peristaltic modes,
when the contact angle is larger than π/2: precisely, here ϑc = 125◦. Both circular
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Fig. 5. The critical value ηc of η is plotted against the contact angle ϑc for peristaltic modes.
When η exceeds ηc, the marginal curve is a monotonic function of φ.
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Fig. 6. Stability diagram against peristaltic modes when ϑc = 125◦. The marginal curves
plotted here are labelled with the corresponding values of η. Both circular and hyperbolic modes are
effective in this case. The portion of a given marginal curve that lies above the circle consists of
hyperbolic modes, while the portion below the circle consists of circular modes. Linear modes never
affect the stability diagram. Apart from the presence of two families of modes, there is no qualitative
difference with respect to the case ϑc < π/2.

and hyperbolic modes are effective in this case but, apart from this, there is no
substantial difference from the case where ϑc < π/2. Similarly, the semilogarithmic
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Fig. 7. Semilogarithmic plot of the stability diagram for peristaltic modes shown in Figure 6.
Each marginal curve is labelled by the corresponding value of η.

ez

ey

Fig. 8. The unperturbed (dashed lines) and the perturbed (solid lines) contact lines of a
marginally stable peristaltic mode are plotted here when ϑc = 65◦, R = 1, and L = 10. The
two sinusoidal profiles are symmetric with respect to the axis of the bridge (dotted line).

plot in Figure 7 does not have new features as compared with that in Figure 4.
Finally, Figures 8 and 9 show, respectively, the perturbed contact lines and the

perturbed cross-section of a liquid bridge induced by a marginal mode. We chose
an equilibrium liquid bridge with ϑc = 65◦, R = 1, and L = 10. The value of �n
corresponding to the marginal mode is �n = 30 and the amplitude of the marginal
mode has been magnified to appreciate its structure.
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ex

ey

Fig. 9. Cross-section in a plane z = z0 of an unperturbed liquid bridge (dashed line) and of a
marginally stable peristaltic mode (solid line). The geometric parameters are ϑc = 65◦, R = 1, and
L = 10. For this value of z0, the perturbed cross-section has larger area than the unperturbed one
but, to obey the incompressibility constraint, the opposite is true for other values of z0.

To obtain the perturbed profile of the contact lines in Figure 8 we noted that
the straight contact lines of the unperturbed bridge satisfy y = ±R sinϑc and so, by
(3.2), (4.2), and (4.14) we can write on them

pε −O = ± sinϑcez ± ε
1

sinϑc
un(±ϑc, z)ey .

Since ∇sν∗ = 0, by (3.3)2 we have v ·ν∗ = 0 and so v in (3.2) is not needed here. To
obtain the cross-section at z = z0 of a perturbed profile we first note that the outer
unit normal ν to the unperturbed free surface is (see Figure 2(b))

ν(ϑ) = cosϑex + sinϑey .

We then introduce a vector, still called νS∗ , which is tangent to the unperturbed
cylinder and that coincides with the conormal unit vector νS∗ at the contact line
y = R sinϑc, that is,

νS∗(ϑ) = sinϑex − cosϑey .

By combining (4.2) and (4.3) and recalling that νS∗ ·νS∗ = cosϑc along C, we conclude
that

us(ϑc, z) = us(ϑc, z) cosϑc = uν(ϑc, z) cotϑc .

The value of us in the bulk is irrelevant since it simply amounts to a different
parametrization of the cross-section. We are then free to select

us(ϑ, z) =
ϑ

ϑc
us(ϑc, z) ϑ ∈ [0, ϑc]

that satisfies the only constraint it has to obey, namely to have a prescribed value
along the contact line. Hence, the perturbed marginal profile is given by

pε −O = Rν + εu(ϑ, z0)ν + εus(ϑ, z)νS∗(ϑ) ϑ ∈ [0, ϑc],

where u(ϑ, z) is given by (4.14). The profile of the perturbed cross-section for ϑ ∈
[−ϑc, 0] is obtained by symmetry about the ex-axis.

4.2. Varicose modes. In this class, un(0) ≡ 0 and so, by retracing the same
steps as before, we obtain

un =
{
A sin(

√
σnϑ) if σn > 0,

A sinh(
√
−σnϑ) if σn < 0,
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Fig. 10. Stability diagrams for varicose—both circular and hyperbolic—modes. Here, ϑc = 65◦

and the marginal curves are labelled by the corresponding values of η. The portion of a given
marginal curve that lies above the circle consists of hyperbolic modes, while the portion below the
circle consists of circular modes. The marginal curves coalesce along the φ axis, since �n = 0
always solves (4.28)1. This solution does not cause instability since only positive values of �n are
meaningful. For any given value of η the region bounded by the marginal curve and the �n-axis is
unstable against varicose modes.

for circular and hyperbolic modes, respectively, while linear modes are absent. From
this point, the analysis of section 4.1 can be repeated verbatim. After introducing the
functions

kc(xn) := φ

⎧⎨
⎩η

[
1 −

(
xn
ϑc

)2
]2

− sinϑc[cosϑc −
sinϑc
ϑc

xn cotxn]

⎫⎬
⎭ ,

kh(xn) := φ

⎧⎨
⎩η

[
1 +

(
xn
ϑc

)2
]2

− sinϑc[cosϑc −
sinϑc
ϑc

xn cothxn]

⎫⎬
⎭ ,

marginal modes are obtained by determining the smallest pairs in Q that obey

(4.28)

⎧⎪⎨
⎪⎩

1 −
(
xn

ϑc

)2

= kc(xn) if σn > 0

1 +
(
xn

ϑc

)2

= kh(xn) if σn < 0 .

Figure 10 shows the stability diagram of a liquid bridge against varicose modes, when
ϑc = 65◦. The branch of the marginal curve corresponding to Rayleigh instability
disappears. When φ → ∞, varicose modes are stable, as it should be, since they do
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Fig. 11. Semilogarithmic plot of the stability diagrams for varicose modes shown in Figure 10.

not affect Rayleigh instability in the absence of line tension. Let us first consider the
case η = 0. When the magnitude of negative line tension is progressively decreased,
instability occurs for large values of �n. To grasp the behavior of the marginal curve
in the limit where φ → ∞, we still employ the method of dominant balance. Since
large values of �n also imply large values of xn by (4.25), we can look for solutions
to (4.28)2 in the form xn = bφα, where b and α are two positive numbers to be
determined. When we replace this ansatz into (4.28)2 and discard negligible terms,
we arrive at

b

ϑc
φα
[
b

ϑc
φα − φ sin2 ϑc

]
= 0

whence α = 1 and b = ϑc sin2 ϑc follow. Figure 10 points out a difference between
peristaltic and varicose modes since for these latter the marginal curves emanate from
a precise point φ(ϑc) of the φ axis: φ(65◦) = 2.66. As for peristaltic modes, at any
fixed, nonvanishing value for η, the marginal curve diverges along the �n axis (see the
semilogarithmic plot shown in Figure 11), confirming the stabilizing role of curvature
corrections. The same regimes discussed for peristaltic modes exist here, apart from
the absence of Rayleigh instability when φ > φ(ϑc).

Figure 12 shows the stability diagram when ϑc = 125◦. As already discussed for
peristaltic modes, there are no essential differences with respect to the case ϑc ≤ π/2.
Similar remarks hold for the semilogarithmic counterpart shown in Figure 13. Finally,
Figure 14 shows the critical value of ηc(ϑc) at which the marginal curve follows a
monotonic profile: it has the same qualitative behavior as that computed for peristaltic
modes.

5. Conclusions. We determined the effects of a curvature correction to line
tension on both the equilibrium and the stability of sessile droplets through a gen-
eral variational analysis. While the effects on the equilibrium could even be absent,
those on stability are relevant in any case. As a first consequence, we proved for
liquid bridges that the curvature correction makes wildly oscillating perturbations
unrewarding, and so the systematic instability against all modes with short wave-
length induced by negative line tensions is removed, regardless of the magnitude of
the correction. This magnitude, however, plays a crucial role in determining whether



CURVATURE CORRECTIONS TO LINE TENSION 545

|

10 0
10−310−1

1

�n

φ|
4

Fig. 12. Stability diagram against varicose modes when ϑc = 125◦. The marginal curves plotted
here are labelled by the corresponding values of η. Both circular and hyperbolic modes are effective,
but the transition between them is too close to the φ axis to be shown here. Linear modes never
affect the stability diagram. Also in this case, the diagram is similar to that for the case ϑc < π/2.
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Fig. 13. Semilogarithmic plot of the stability diagrams for varicose modes shown in Figure 12.
The marginal curves are labelled by the corresponding values of η.

only Rayleigh instability occurs or not. As a general result, Rayleigh instability is the
only destabilizing mechanism whenever the curvature correction is large enough. The
analysis employed here for liquid bridges could serve to explore the stabilizing effects
of curvature corrections on droplets with a closed geometry like spherical caps. We
expect that the stabilizing mechanism discussed here will work also in that context,
although the computations will be more cumbersome.

Appendix. Second variation of F∗. We show in detail how to arrive at the
expression (3.15) for the second variation δ2F∗ of F∗, obtained by integrating along
C the terms in (3.10) that are quadratic in ε. We start with

I1 :=
∫
C
[2σc′ · n − σ′v · t]ds,

which contains contributions related to the field v defined in (3.2). The integral I1 has
the same structure as the first variation of F∗ given in (3.11), with u and a replaced
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When η exceeds ηc, the marginal curve is a monotonic function of φ.

by v and c. The crucial difference in this formal change is that, at variance with u,
the field v has also a nontrivial component along the unit normal vector ν∗ of S∗. By
retracing the same steps as in section 3, we can check that the component v · t does
not contribute and the component along νS∗ vanishes by virtue of the equilibrium
equation (3.14). Hence, we are left with the component v ·ν∗ which, by use of (3.3)2,
can be recast as

I1 = −
∫
C

1
2
u · (∇sν∗)u[σ2κn + 2κ′′n − 4τgκ′g − 2κgτ ′g − 2κnτ2

g ]ds ,

where perusal of Darboux equations (3.4) has been made. By recalling that [25]

(A.1) ∇sν∗ = −κnt ⊗ t − κn⊥νS ⊗ νS + τg(νS ⊗ t + t ⊗ νS) ,

where κn⊥ := H − κn is expressed in terms of the total curvature H of S∗, we finally
arrive at

(A.2) I1 =
∫
C

1
2
[κnu2

t−2τgutus+(H−κn)u2
s]{σ2κn+2κ′′n−4τgκ′g−2κgτ ′g−2κnτ2

g }ds.

It is also expedient to expand u′ and a along the Darboux trihedron of C, by resorting
to (3.4), (3.6)1, and (3.13):

(A.3) u′ = (u′t − κgus)t + (u′s + κgut)νS + (κnut − τgus)ν

and

(A.4) a = (u′s + κgut)νS + (κnut − τgus)ν,

from which

a2 = u2
tσ

2 + u′2s + τ2
g u

2
s + 2κgutu′s − 2τgκnutus

easily follows. By differentiating a with respect to s we also obtain, by (3.4),

(A.5)
a′ = [κnτgus − κgu

′
s − σ2ut]t + [(u′s + κgut)′ + τg(κnut − τgus)]νS

+ [(κnut − τgus)′ − τg(u′s + κgut)]ν,
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whence, after straightforward computations also involving differentiation of the iden-
tity (3.13), we arrive at

I2 :=
∫
C
a′ · a′ds =

∫
C
[σ4 + (κ′g)

2 + (κ′n)
2 + σ2τ2

g + 2τg(κnκ′g − κgκ
′
n)]u

2
t

+
∫
C
(σ2)′utu′t +

∫
C
σ2(u′t)2ds+

∫
C
2[κgσ2 − 2τg(κ′n − τgκg)]utu′s

−
∫
C
2[κnτgσ2 + τ2

g (κ′g + κnτg) + τ ′g(κ′n − τgκg)]utus −
∫
C
2[τg(κnκg + 2τ ′g)]usu′s

+
∫
C
(κ2
g + 4τ2

g )(u′s)
2 +

∫
C
[(κnτg)2 + τ4

g + (τ ′g)
2]u2

s +
∫
C
(u′′s )

2 +
∫
C
2κgu′tu

′′
s

−
∫
C
2[κgτ2

g + τ ′gκn]usu
′
t +
∫
C
2[κ′g + κnτg]utu′′s −

∫
C
2τ2
g usu

′′
s −

∫
C
4τgκnu′su

′
t .

(A.6)

To proceed, we consider the terms

I3 :=
∫
C
σ2[(u′ · t)2 − 3

2
a2]ds,

which, by use of (A.3)–(A.4), can be recast as

I3 =
∫
C
σ2(u′t)

2 +
∫
C
σ2

(
κ2
g −

3
2
τ2
g

)
u2
s −

∫
C
2κgσ2usu

′
t −
∫
C

3
2
σ4u2

t −
∫
C

3
2
σ2(u′s)

2−

−
∫
C
3σ2κgutu

′
s +

∫
C
3κnτgσ2utus .

(A.7)

Finally, by integration by parts we change

I4 := −2
∫
C
[(u′ · t)′σn · a + 2(u′ · t)a′ · σn]ds

into

I4 = 2
∫
C

a · σn(u′ · t)′ds+ 4
∫
C

a · (σn)′(u′ · t)ds,

which, also by use of (3.4)1, (3.13), and (A.3), yields

I4 =
∫
C
2σ2utu

′′
t +

∫
C
2κgu′su′′t −

∫
C
2κnτgusu′′t +

∫
C
4[(κ′g + κnτg)]u′tu′s

−2
∫
C
κ2
g(u

′
s)

2 −
∫
C
2[κg[κnτg + 3κ′g]]usu

′
s +

∫
C
2[κ′gκnτg − 2κg(κgτ2

g − τgκ
′
n)]u

2
s

−
∫
C
2(σ2κg)′usut +

∫
C
2(σ2)′utu′t +

∫
C
4(κgτg − κ′n)τgu

′
tus − 2

∫
C
κgσ

2utu
′
s .

(A.8)
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As already mentioned for δF∗, the component ut cannot appear in the final
expression of δ2F∗. To prove this, we collect terms in δ2F∗ with the same dependence
on ut and its derivatives with respect to s, and integrate repeatedly by parts.

• Terms containing u′2t and utu′′t in I3 and I4 are

(A.9) 2
∫
C
σ2(u′2t + utu

′′
t )ds = −2

∫
C
(σ2)′utu′tds,

which are combined with the term 3
∫
C σ

2utu
′
tds found in I2 and I4 to obtain, by

(3.13),

(A.10)
∫
C
(σ2)′utu′tds = −1

2

∫
C
(σ2)′′u2

tds = −
∫
C
(κ′2g + κ′2n + κgκ

′′
g + κnκ

′′
n)u

2
tds .

• Further terms containing u2
t in I1–I3 are collected together to yield, also by use

of (3.13),
∫
C

[
−σ

4

2
+ (κ′g)

2 + (κ′n)
2 + τ2

g κ
2
g − 2τgκgκ′n +

σ2

2
κ2
n + κnκ

′′
n − κgκnτ

′
g

]
u2
tds,

which, when added to (A.10), gives

(A.11)
∫
C

[
−σ

4

2
+
κg
2

(2κgτ2
g − 4τgκ′n − 2κ′′g − 2κnτ ′g) +

σ2

2
κ2
n

]
u2
tds .

Now, terms in ut should simplify separately for each integral in F . Hence, we can use
the reduced equilibrium equation

(A.12) κgσ
2 + 2(τ ′gκn + 2τgκ′n + κ′′g − κgτ

2
g ) = 0,

obtained by setting δF∗ = 0 together with (3.13) to show that the integral (A.11)
vanishes identically on any equilibrium configuration.

We now prove that mixed terms containing products of ut and us or of their
derivatives do not enter into δ2F∗.

• The terms in I2 containing the product utu′′s can be transformed via integration
by parts as

2
∫
C
(κ′g + κnτg)utu′′sds = −2

∫
C
(κ′g + κnτg)u′tu

′
sds− 2

∫
C
utu

′
s(κ

′′
g + κ′nτg + κnτ

′
g)ds,

to which we add the term in I4

2
∫
C
κgu

′′
t u

′
sds = −2

∫
C
(κgu′′su

′
t + κ′gu

′
su

′
t)ds,

containing u′′t u
′
s and then add the term in I2 that contains u′′su

′
t: as a result, we are

left with

(A.13) −2
∫
C
(2κ′g + κnτg)u′tu

′
sds− 2

∫
C
utu

′
s(κ

′′
g + κ′nτg + κnτ

′
g)ds .

Since the remaining terms in I2 and I4 containing u′tu
′
s reduce to

4
∫
C
κ′gu

′
tu

′
sds,
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we finally arrive at

(A.14) −2
∫
C
{[κ′′g + (τgκn)′]utu′s + κnτgu

′
tu

′
s}ds .

• The term

−2
∫
C
κnτgusu

′′
t ds = 2

∫
C
[κnτgu′tu

′
s + (κnτg)′usu′t]ds

of I4 can be added to the integral (A.14) to arrive at

(A.15) 2
∫
C
{usu′t(κnτg)′ − [κ′′g + (κnτg)′]utu′s}ds,

or, after integration by parts, at

(A.16) −2
∫
C
{usut(κnτg)′′ + utu

′
s[κ

′′
g + 2(κnτg)′]}ds .

• We then consider the following terms in I2–I4 that contain u′tus:

2
∫
C
u′tus[κgτ

2
g − τ ′gκn − κgσ

2 − 2τgκ′n]ds.

We integrate them by parts, obtaining

(A.17) 2
∫
C
{u′sut[−κgτ2

g+τ ′gκn+κgσ2+2τgκ′n]+utus[τ
′
gκn+κgσ2+2τgκ′n−κgτ2

g ]′}ds .

• Further integrals containing u′sut in I2–I4 are collected to give

(A.18) −
∫
C
[3κgσ2 + 4τg(κ′n − τgκg)]u′sutds,

which, after algebraic manipulations and the use of (A.12), when added to (A.16) and
(A.17) yield

2
∫
C
usut{[τ ′gκn + κgσ

2 + 2τgκ′n − κgτ
2
g ]′ − (κnτg)′′}ds.

This simplifies to zero when it is added to the remaining terms in I1–I4 containing
usut, namely,

2
∫
C
usut[τ2

g κ
′
g + 2τgτ ′gκg − τ ′gκ

′
n − (κgσ2)′ − κ′′nτg]ds,

as can be easily checked.
Hence, we proved that only terms containing u′′s , u′s, and us appear in the second

variation of F∗. Precisely, we can recast δ2F∗ into a diagonal form in which only
(u′′s )2, (u′s)2, and (us)2 appear.

• In I2 we consider the terms
∫
C
[(u′′s )

2 − 2τ2
g usu

′′
s ]ds =

∫
C
{(u′′s)2 + 2τ2

g (u′s)
2 + 4τgτ ′gusu

′
s}ds,
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which, when added to the remaining terms in I2–I4 containing (u′s)
2, yield

(A.19)
∫
C

{
(u′′s )

2 +
(

6τ2
g − κ2

g −
3
2
σ2

)
(u′s)

2 + 4τgτ ′gusu
′
s

}
ds .

• We now add to (A.19) the terms in I2 and I4 with usu
′
s arriving at

(A.20)
∫
C

{
(u′′s )

2 +
(

6τ2
g − κ2

g −
3
2
σ2

)
(u′s)

2 − 2[2τgκgκn + 3κgκ′g]usu
′
s

}
ds .

Finally, if we add the remaining contributions in I1–I4 that contain u2
s and then

integrate by parts the last term in (A.20), we obtain the expression (3.15) for δ2F∗.
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STATISTICS OF POLARIZATION-MODE DISPERSION
EMULATORS WITH UNEQUAL SECTIONS∗

BRENTON R. STONE† , GINO BIONDINI‡ , AND WILLIAM L. KATH§

Abstract. We study two models for the generation of polarization-mode dispersion (PMD) with
unequal, fixed-length sections: an isotropic model, in which the orientations of all the sectional PMD
vectors are taken to be randomly and uniformly varying across the Poincaré sphere, and a rotator
model, in which all sections are taken to be linearly birefringent waveplates randomly rotatable
with respect to one another. We describe the implementation of importance sampling for first- and
second-order PMD in both models, including a targeting method for first-order PMD. We then use
analytical and numerical methods to reconstruct the statistics of first- and second-order PMD for
the two models. Our results show that the statistical properties of PMD depend significantly on the
specific details of how PMD is generated.

Key words. optical fiber communications, Monte Carlo methods, importance sampling
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1. Introduction. Polarization-mode dispersion (PMD) is one of the major chal-
lenges facing the next generation of optical fiber communication systems [20]. Optical
fiber is slightly birefringent due to slight deviations from circular symmetry, bend-
ing, stresses, etc. To first order in frequency, birefringence splits a pulse between the
fast and the slow axes in an optical fiber; higher orders of birefringence induce depo-
larization and polarization-dependent chromatic dispersion. Also, the birefringence
properties change randomly with distance, temperature, time, and wavelength, and
these random variations are referred to as PMD. In system design, a certain power
penalty is usually allotted to PMD, and one demands that the outage probability (the
probability of the PMD-induced penalty exceeding this allowed value) be very small
(typical requirements are a minute per year). Because of this stringent requirement, it
has been difficult to use either Monte Carlo (MC) simulations or laboratory measure-
ments to fully assess system outage probabilities, due to the extremely large number
of PMD configurations that are necessary to obtain reliable estimates. Recently, it
was shown that the technique of importance sampling (IS) [7, 8, 11] can often obviate
this problem and allow efficient computation of PMD-induced transmission penalties
and outage probabilities [6, 24, 25].

A measure of PMD is provided by the PMD vector [16]. The magnitude of the
PMD vector, called differential group delay (DGD), quantifies the amount of local
pulse splitting between fast and slow axes of birefringence. It has long been assumed
that the probability density function (PDF) of the DGD follows a Maxwellian distri-
bution [12], and that the process is ergodic, in the sense that time averages coincide
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with frequency averages. Recent measurements of installed fiber links, however, have
reported variations in the temporal statistics of DGD between different frequency
channels in wavelength-division-multiplexed (WDM) systems [9, 19]. This more com-
plicated behavior is consistent with a so-called hinge model of PMD [9], in which
the system is composed of a concatenation of a small number of long, stable sections
(long stretches of fiber which are buried underground) joined by short, unprotected
sections, or “hinges” (bridges, amplifiers, service huts, etc.), which are more subject
to environmental effects. While the hinges themselves bring little or no contribution
to the total DGD of the system, their random fluctuations appear to be responsible
for the temporal dynamics of PMD within each channel, whereas the longer sections
appear to be essentially frozen in time. In the traditional model of PMD (which
can be thought of as the limit in which the number of hinges is large and the stable
sections are short), different wavelength bands behave independently but share the
same statistical properties. In contrast, in the hinge model different wavelength bands
are not statistically identical (because the individual PMD vector of each section is
different for each wavelength). Thus, the ergodic hypothesis is not satisfied in the
hinge model.

The properties of PMD in the hinge model have been well characterized [1, 2, 3,
10, 17, 21, 23, 26] under the assumption that the hinges randomize the orientation of
the PMD vectors uniformly across the Poincaré sphere. In particular, analytical ex-
pressions for the PDF of the DGD are available [1, 17]. No analytical expressions exist,
however, for the PDF of higher-order PMD, including second-order PMD. Moreover,
some of the features of the hinge model also apply for different mechanisms of PMD
generation that give rise to concatenations of fixed-length sections. No analytical ex-
pressions, however, are known for the statistics of PMD if one relaxes the assumption
that the individual sections are uniformly distributed on the Poincaré sphere.

Here we address both of the above issues, and we discuss the PMD statistics
produced by a finite concatenation of fixed-length sections for two specific PMD gen-
eration models. In the first model we take the orientation of the individual sections
to be uniformly distributed on the Poincaré sphere. In the second model we take
the individual sections to be linearly birefringent, with randomly oriented axes with
respect to one another. We refer to the first and second models, respectively, as the
“isotropic” and the “rotator” models of PMD. For both models, we study the case in
which the individual section lengths are not all identical. Previously, we discussed the
implementation of IS techniques for both models in the special case of equal-length
sections [7, 8, 11]. Here we extend those results to the case of nonequal lengths,
discussing the generation of large values of DGD, second-order PMD, as well as any
combination of the two, plus a targeting method that allows one to concentrate sam-
ples where desired. Finally, we apply these methods to reconstruct PMD statistics of
both models and show that significant differences exist among them.

2. Isotropic and rotator PMD models. The action of any lossless transmis-
sion element on an optical pulse can be described, up to a polarization-independent
factor, by a unitary 2 × 2 frequency-dependent transmission matrix U(z, ω) called
the Jones matrix, which describes the evolution of the transverse components of the
optical field. Polarization effects can then be uniquely characterized by the real three-
component PMD vector, �τ (ω, z), defined by [16]

(2.1) �τ (ω, z) · �σ = 2i
∂U

∂ω
U−1 ,
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where �σ is a vector of Pauli matrices. Consider a concatenation a finite number of
fixed-length fiber sections. The growth of PMD is governed, at each frequency, by the
PMD concatenation equations. For first and second order, these are [16]

�τ (n+1) = Rn+1�τ
(n) + Δ�τn+1,(2.2a)

�τ (n+1)
ω = Rn+1�τ

(n)
ω + Δ�τn+1 × �τ (n+1) + Δ�τω,n+1 .(2.2b)

Here �τ (n) is the total PMD vector after the nth section, the fixed vector Δ�τn is the
PMD vector of the nth section, Δ�τω,n is its frequency derivative, and the 3×3 matrix
Rn is the Müller matrix of the nth section, which is related to the Jones matrix of
that section by [16] R(ω, z)�σ = U−1�σU .

As is customary in both the traditional and the hinge model of PMD, we assume
the sectional PMD vectors Δ�τn to be constant in time and to have independent,
identically distributed components that follow a normal distribution with mean zero
and variance σ2 with respect to wavelength. This of course implies that the sectional
DGDs Δτn = |Δ�τn| are Maxwellian-distributed with respect to wavelength. Moreover,
we assume that each section is linearly birefringent in frequency, namely, Δ�τω,n = 0.
The matrix Rn then describes a rotation about an angle φn about the axis r̂n =
Δ�τn/|Δ�τn|, namely,

(2.3) Rn = exp [φn r̂n × ] = cosφn I3 + (1 − cosφn) r̂nr̂Tn + sinφn r̂n × ,

where I3 is the 3 × 3 identity matrix and the superscript T denotes the matrix trans-
pose. If hinges are present, a hinge rotation matrix Hn precedes Rn+1 in (2.2).

In other words, mathematically there are two distinct random processes taking
place. The first one governs the selection of the fiber sections, resulting in a set of
wavelength-dependent sectional PMD vectors. These PMD vectors are stable over
long periods of time (often months). The second random process is the one that
governs the fast temporal variations due to environmental effects, and affecting the
rotation angles in the matrices (2.3) as well as Hn. We model this situation by taking
the section lengths to be fixed and by assuming that the only temporal variation in
(2.2) arises from the rotation matrices Rn+1 and, if present, from Hn. If the action of
the hinges is sufficient to scatter the orientation of the PMD vectors uniformly across
the Poincaré sphere, it is convenient to rewrite (2.2) as

�τ (n+1) = Rn+1Hn
(
�τ (n) + Δ�τ ′n+1

)
,(2.4a)

�τ (n+1)
ω = Rn+1Hn

(
�τ (n)
ω + Δ�τ ′n+1 × �τ (n)

)
,(2.4b)

where Δ�τ ′n+1 = (Rn+1Hn)−1Δ�τn+1 is now uniformly distributed across the Poincaré
sphere. We refer to this as the “isotropic” model of PMD. If one is interested only
in first-order PMD, the problem is then equivalent to a 3-dimensional random walk.
The DGD in the isotropic model and its impact on system behavior has been well
characterized [1, 2, 3, 21, 26]. The isotropic hypothesis is a convenient assumption,
since it makes an analytical treatment of the model possible. We emphasize, however,
that it has not been experimentally validated, and that the question of whether or
not it is accurate is an open issue.

When PMD is generated by birefringent waveplates, the individual PMD vectors
lie on the equatorial plane of the Poincaré sphere. Since optical fiber is naturally
linearly birefringent [14], the same statement holds for short fiber sections. Therefore,
here we also consider the case in which the vectors Δ�τn+1 in (2.2) are uniformly
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distributed on the equatorial plane of the Poincaré sphere. We refer to this as the
“rotator” model of PMD. Of course, because the fiber birefringence axes change with
distance, the concatenated total PMD vector will wander off the equatorial plane.
Since the fiber correlation length (which is the distance over which the birefringence
properties become uncorrelated) is below a hundred meters [15], any fiber span longer
than a few kilometers will have a PMD vector that does not lie in the equatorial plane.
(At the same time, however, significant nonuniformities in the angular distribution of
PMD persist up to medium-to-long distances [28].) Note also that the rotator model
neglects the action of the hinge rotation matrix. Thus it is an oversimplification of
the actual PMD generation mechanism in installed systems.

Even though both of the above-mentioned fixed-length models may not be a
fully accurate representation of the actual mechanism of PMD generation, in the
absence of more complete models or conclusive experimental data the comparison
between them will serve to demonstrate that the statistical properties of PMD depend
significantly on the physical details of how PMD is generated in the system. (These
results generalize those previously obtained for the case of equal-length sections [7,
11].)

The case of unequal-length sections has recently received renewed interest (e.g.,
see [17, 18, 26]), but only within the framework of the isotropic assumption. The case
of unequal lengths is worthy of study because, while no analytical expressions exist
for the PDF of the DGD (for the rotator model) or second-order PMD (for either
model), most installed systems are composed of sections with unequal lengths. We
also emphasize that a key assumption in both of the models considered here is that
the individual sections have fixed length, namely, that the sectional PMD vectors are
essentially frozen. A different model, in which the individual PMD vectors are also
varying and in which, in particular, they are Maxwellian-distributed, was studied in
[5, 22]. Note, however, that allowing the section lengths to vary on the same temporal
scales as the rotation matrices results in very different PMD properties from those
of the models considered here, even in the isotropic case (e.g., the PDF of the total
DGD is exactly Maxwellian-distributed for any number of sections).

3. Importance sampling for unequal sections. Here we extend the IS meth-
ods that were derived in [7, 8, 11] for equal-length sections to the case of unequal
section lengths, when the individual sections are either uniformly distributed on the
Poincaré sphere or linearly birefringent. As mentioned previously, analytical expres-
sions for the PDF of the DGD for the isotropic model are of course available both for
equal and for unequal section lengths [1, 4, 17]. No similar expressions are known,
however, when PMD is generated by birefringent waveplates. Moreover, no ana-
lytic expressions are known for the PDF of second-order PMD in either model. It was
shown [24] that in systems which employ PMD compensation, knowledge of first-order
PMD is not enough to accurately characterize PMD-induced transmission penalties.
At the same time, it has also been shown that control of both first- and second-order
PMD is enough in most cases of interest [24]. Finally, we should note that one of the
advantages of IS is that, whether one is biasing for first- or second-order PMD, the
method automatically generates PMD of all orders (due to the wavelength dependence
of the sectional PMD vectors). This means that biasing for large DGDs can also be
useful in the isotropic model (even though the PDF of the DGD is known), since the
simultaneous presence of all orders of PMD can lead to a more accurate evaluation of
PMD-induced distortions [24].
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3.1. IS for the DGD. The first step when applying IS is to determine the
most likely system configurations that lead to the event of interest. For first-order
PMD, this proceeds exactly in the same way as in the case of equal-length sections
[7]. Namely, one must choose the next PMD contribution Δ�τn+1 to be preferentially
aligned with the previous PMD vector �τ (n). For the isotropic model, this is done
choosing the angle θn between Δ�τn+1 and �τ (n) to be preferentially close to 0. For the
rotator model, instead, since Δ�τn+1 must lie in the equatorial plane of the Poincaré
sphere, the biasing is done by choosing the angle θn between Δ�τn+1 and the projection
of �τ (n) onto the equatorial plane to be preferentially close to 0.

To achieve this preferential alignment, for the isotropic model we take cos θ =
2x1/α − 1, while for the rotator model we take θ = π sgn(2x − 1)|2x − 1|α, in both
cases with x uniform in [0, 1]. These choices correspond respectively to the biasing
distributions

pα,iso(θ) = (α/2) sin θ [(1 + cos θ)/2]α−1, pα,wav(θ) = (1/απ) |θ/π|1−α.(3.1)

For both the isotropic and the rotator models the value α = 1 reproduces the unbiased
case, while larger values of α concentrate the samples θ near 0. In both models, the
likelihood ratio is given by [8]

(3.2) L(θ1, . . . , θN ) =
N∏
n=1

p1(θn)
pα(θn)

,

where N is the total number of sections. Of course, other choices of biasing distribu-
tions might work equally well, as long as the reference angles are correctly identified.
Also, in both models the rotation angle φn is not important for IS purposes, and is
taken to be varying and uniformly distributed in [0, 2π].

3.2. IS for first- and second-order PMD. Consider the orthogonal frame of
reference defined by the unit vectors

û
(n)
1 = �τ (n)/|�τ (n)| , û

(n)
2 = �τ

(n)
ω,⊥/|�τ

(n)
ω,⊥| , û

(n)
3 = û

(n)
1 × û

(n)
2 ,(3.3)

where �τω,‖ and �τω,⊥ are, respectively, the parallel and perpendicular components of
�τω with respect to τ . As in [8], it is convenient to consider the continuum limit of
(2.2). In the isotropic model, factoring out the inessential rotation Rn+1Hn in (2.4),
one then obtains

dτ

dz
= b1 ,

dτω,||
dz

= b2
τω,⊥
τ

,
dτω,⊥
dz

= b3τ − b2
τω,||
τ

,(3.4)

where �b(z) = limΔz→0 Δ�τn+1/Δz quantifies the rate at which PMD is added, and
(b1, b2, b3) are the components of �b with respect to the reference frame {û1, û2, û3}.

As shown in [8], (3.4) can be solved exactly for any �b(z). One can then use
calculus of variations to find the choice of �b(z) which maximizes second-order PMD.
In the case of equal-length sections, that is, |�b(z)| = b = const, it was shown in [11]
that the solution of this maximization problem is

(3.5) �b(z) = b
(
û1 cos[Φ(z)] + û3 sin[Φ(z)]

)
,

where the biasing angle is Φ(z) = (z/zmax)Φmax and where Φmax = π/2. Other choices
of Φmax maximize linear combinations of DGD and second-order PMD (Φmax = 0 is
simply first-order biasing).
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As we show next, the solution of the maximization problem in the case of unequal
section lengths can be obtained from the case of equal section lengths by a simple
change of variable. Given a function b(z) = |�b(z)| that describes the magnitude of the
local birefringence, define the rescaled distance

(3.6) ζ(z) =
∫ z

0

b(z′)dz′ .

Written in terms of ζ, equations (3.4) then are

dτ

dζ
= e1 ,

dτω,||
dζ

= e2
τω,⊥
τ

,
dτω,⊥
dζ

= e3τ − e2
τω,||
τ

,(3.7)

where ê(z) = �b(z)/|�b(z)| has unit magnitude. One can now use the results of the
calculations for equal-length sections described above, obtaining

(3.8) ê(ζ) = û1 cos[Φ(ζ)] + û3 sin[Φ(ζ)] ,

with Φ(ζ) = (ζ/ζmax)Φmax. In terms of the original variable z one then obtains (3.5),
with b replaced by b(z) and where now

(3.9) Φ(z) = Φmax

∫ z

0

b(z′)dz′
/∫ zmax

0

b(z′)dz′ ,

with the same meaning for Φmax. (Of course, (3.9) reduces to the linearly varying
profile (3.10) in the case of equal section lengths.) In the discrete version, with
section lengths Δτn, we then obtain Φn, which gives the proper biasing direction
after n sections as a function of n:

(3.10) Φn = Φmax

n∑
m=1

Δτm/τmax,

where

(3.11) τmax =
N∑
n=1

Δτn .

As with the DGD, the biasing directions for the rotator model are just the projection
of the vector �b onto the equatorial plane. Moreover, once the deterministic biasing
directions have been found, for both the isotropic and the rotator model, one selects
the biasing distributions in order to concentrate the MC samples around the deter-
ministic biasing directions exactly as when biasing for the DGD. When more than
one choice of biasing is necessary, multiple IS can be used, and samples from different
biasing distributions can be combined using the balance heuristic [8].

3.3. Targeted IS. It is sometimes useful to be able to choose where to concen-
trate the MC samples, especially when one is interested in only a small region of the
PDF. We now obtain an estimate of the values of the biasing strength α that are
needed to generate values of DGD concentrated near a given target.

A simple bound on α can be obtained by looking at the component of the next
PMD vector, τ (n+1), that is parallel to the previous PMD vector, τ (n). From (2.4a)
it is

(3.12) τ
(n+1)
|| = τ (n) + Δτn+1 cos θn+1,
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where θn+1 is the angle between the differential contribution of the next section,
Δτn+1, and the previous PMD vector. Since it is obviously true that |�τ (n)| ≥ |τ (n)

|| |,
from (3.12) we have

(3.13) τ
(N)
|| ≥

N∑
n=1

Δτn cos θn.

Then, since the section lengths are fixed, taking expectation values we have

(3.14) 〈τ (N)〉 ≥
N∑
n=1

Δτn〈cos θn〉 = 〈cos θ〉 τmax ,

where we used 〈τ (N)〉 ≥ 〈τ (N)
|| 〉, and where τmax is the maximum DGD, defined in

(3.11). For the biased probability distribution for the isotropic model, (3.1), it is

(3.15) 〈cos θ〉 = (α− 1)/(α+ 1).

Therefore in this case (3.14) yields

(3.16) 〈τ (N)〉 ≥ [(α− 1)/(α+ 1)] τmax .

Note that as α increases, 〈τ (N)〉 approaches τmax, as expected.
Equation (3.16) yields an upper bound on the value of the biasing parameter α

that is necessary to obtain samples distributed near 〈τ (N)〉 = τtarget, namely, αtarget ≤
αo, where

(3.17) αo = (τmax + τtarget)/(τmax − τtarget) .

Note, however, that the above result is only an upper bound, and the actual value
of αtarget that concentrates the samples around a desired target is often a great deal
smaller than αo, particularly if τmax − τtarget is small. In those cases, the heuristic
correction α = αo/

√
1 + αo/4, where αo is given by (3.17), provides a better estimate

of αtarget which is valid over the whole range of DGDs.
The bound on αtarget is independent of the particular values of the section lengths,

and therefore it holds equally well for equal as well as unequal lengths. Moreover, it
also appears to hold for the rotator model. It should be noted that for PMD generation
models in which the section lengths are also variable and are Maxwellian-distributed,
one could also concentrate the samples around a target value of second-order PMD
[5]. Note also that, using the so-called Brownian bridge method, one could hit exactly
any value of DGD [27]. To the best of our knowledge, however, no targeting method
was known for fixed-length sections.

4. Numerical simulations and PMD statistics. We now proceed to compare
statistical measures of PMD for the isotropic and the rotator models of PMD defined
in section 2, using the methods discussed in section 3.

4.1. PDF of the DGD. An exact formula for the PDF of the DGD in the
isotropic model, hereafter pDGD(τ), was obtained in [1]. That expression, however,
involves a sum over 2N terms, where as before N is the number of sections. Hence,
the computational cost of evaluating it increases exponentially with N . As a result,
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the use of that formula is impractical except for very small values of N . Fortunately,
an alternative exact expression exists for the PDF of the DGD, in terms of a Fourier
sine series [4]:

(4.1) pDGD(τ) =
2πτ
τ2
max

∞∑
m=1

m sin
(
mπτ

τmax

) N∏
n=1

sin(mπΔτn/τmax)
mπΔτn/τmax

.

The evaluation of (4.1) is of course always affected by truncation error due to the
finite number of Fourier modes. Nonetheless, (4.1) produced the same results as the
formula in [1] up to roundoff error in all the cases we tested (which included situations
where the DGD of one section is larger than the sum of all the others). In our tests the
two methods had about the same execution time for N = 6 sections when 210 Fourier
modes were used in (4.1). The computational cost of evaluating (4.1), however, is
essentially given by the number of Fourier modes used, and depends only very weakly
on the number of sections [23]. For this reason we used (4.1) in our calculations.
For the rotator model one must use importance-sampled MC (IS-MC) simulations
as discussed in section 3.1, using a combination of biasing strengths, to cover the
whole range of DGDs. The PDF of the DGD is then reconstructed from the IS-MC
simulations using the likelihood ratios as described in [8].

Figure 4.1 shows the PDF of the DGD for the isotropic model (thick dashed
line) and the rotator model (thick solid line) for two particular realizations of N = 8
section lengths, while Figure 4.2 shows the PDF of the DGD for a specific realization
of N = 20 sections. The specific values of the sectional DGDs are given in Table 4.1;
the corresponding values of τmax are, respectively, 10.99 ps, 16.19 ps, and 21.60 ps for
cases A, B, and C. In each case, the sectional DGDs were all drawn from an identical
Maxwellian distribution

(4.2) pdgd(τ) =
√

2 τ2

√
π σ3

e−τ
2/2σ2

,

where σ2 = (π/8)〈Δτ〉2. In particular, we set 〈Δτ〉 = 〈τ〉/
√
N with 〈τ〉 = 5ps in all

cases, so as to obtain a nominal Maxwellian distribution with mean DGD of 5 ps for
the whole line. Note, however, that due to the finite sample size (i.e., the finite value
of N), the samples will generate a PDF of the DGD which is better approximated by
an “effective” Maxwellian, obtained by (4.2) with σ2

eff = (π/8)
∑N
n=1(Δτn)2. These

effective Maxwellian distributions are shown in Figure 4.1 as dot-dashed lines. Of
course the difference between the nominal and effective Maxwellians will tend to zero
on average as N goes to infinity.

For the rotator model we used the biasing strengths α = 1 (unbiased), 4, 12,
and 24 to perform IS-MC simulations in the cases with N = 8, and we used α = 1, 2,
4, and 6 in the caseN = 20 (since in this case smaller biasing strengths are sufficient to
cover the desired range of values of the PDF). In all cases 400,000 samples per biasing
strength were used. Note how, in all cases, the tails of the PDF for the isotropic model
(that is, the values of the PDF for values of DGD near τmax) are orders of magnitudes
below those of the rotator model. This behavior occurred in all cases we studied, but
it is not clear at present whether it is a general property, namely, whether it holds
for any choice of section lengths and for any number of sections (as is indeed the case
with equal lengths). As is to be expected, the PDF in the case of N = 20 sections
agrees with a Maxwellian distribution over a larger range of DGDs.
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Fig. 4.1. PDF of the DGD for a concatenation of N = 8 sections, for two particular choices
of individual section DGDs drawn from an identical Maxwellian distribution with mean 5/

√
N ps

(cases A and B in Table 4.1). Dashed lines: isotropic model; solid lines: rotator model. The
dot-dashed lines show the effective Maxwellian distribution. Left: logarithmic scale; right: linear
scale.
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Fig. 4.2. Same as Figure 4.1, but for a concatenation of N = 20 sections drawn from a
Maxwellian distribution with mean 5/

√
N ps (case C in Table 4.1).

Table 4.1

Sectional DGDs (in ps) used in the MC simulations.

A 1.149 2.077 1.390 2.094 1.260 0.2761 1.812 0.9307
B 1.632 2.278 1.678 3.584 2.034 0.948 1.164 2.868

C
1.170 1.624 0.554 1.127 1.232 0.450 0.916 0.589 1.094 1.236
1.230 0.824 1.243 0.997 0.511 0.628 1.397 1.853 0.841 2.089
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Fig. 4.3. PDF of second-order PMD (SOPMD) for the same section DGDs as in Figure 4.1.
Dashed lines: isotropic model; solid lines: rotator model. The dot-dashed line shows a sech-tanh
distribution with 〈τ〉 = 5 ps. Left: logarithmic scale; right: linear scale.

0 20 40 60 80 100 120
10

−8

10
−6

10
−4

10
−2

10
0

SOPMD [ps2]

pd
f(

S
O

P
M

D
)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

SOPMD [ps2]

pd
f(

S
O

P
M

D
)

Fig. 4.4. Same as Figure 4.3, but for N = 20 and with the same section DGDs as in Figure 4.2.

4.2. PDF of second-order PMD. No analytical solutions exist for the PDF
of second-order PMD generated by a concatenation of a finite number of fixed-length
sections, even in the isotropic case and even in the case of equal-length sections.
Therefore, one must resort to numerical simulations for both the isotropic and the
rotator model. We used IS-MC simulations as discussed in section 3.2 with Φmax =
π/2, again with a combination of biasing strengths to cover the whole range of second-
order PMD. More precisely, we used the same values of biasing strength as when
biasing for large values of DGD.

Figure 4.3 shows the PDF of second-order PMD for the isotropic and the rotator
model for the same section lengths as in Figure 4.1, while Figure 4.4 does the same for
the same section lengths as in Figure 4.2. In all cases the solid line shows the nominal
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Fig. 4.5. Left: The estimated value of the biasing strength needed to obtain a given fraction

of the maximum DGD. Dashed line: uncorrected value; solid line: value with the heuristic cor-
rection. Also shown are the means of the biased MC samples obtained with the biasing strengths
α = 1, 2, 4, 8, 12 for both the isotropic and the rotator model with N = 8 and N = 20. Right: The
relative frequency of the total DGD obtained with the biasing values for N = 8 in the isotropic model
(dashed curves) and the rotator model (solid curves) in case A.

“sech-tanh” distribution obtained in the limit of large number of sections [13], namely,

(4.3) psopmd(x) =
8

π〈τ〉2 y(x) sech[y(x)] tanh[y(x)] ,

where y(x) = 4x/〈τ〉2. For both the isotropic and the rotator model, the simulations
were done with the same biasing strengths as for the DGD, with 200,000 samples
per biasing strength for both models. As with the DGD, the tails of the PDF of
the rotator model are significantly larger than those of the isotropic model. (The
maximum second-order PMD for an isotropic concatenation of sections was obtained
in [18].) Here, however, the difference between the two models seems to be less
pronounced than for the PDF of the DGD.

It should be clear from the figures that the overall PDFs of both DGD and second-
order PMD can depend significantly on how much of the Poincaré sphere is being
sampled by the hinge rotation matrix. It should also be clear that since the maximum
DGD and maximum second-order PMD of any PMD emulator are determined by the
particular values of the individual DGDs, the resulting PDFs can vary quite a bit for
different choices of the section DGDs, even though the individual DGDs are all drawn
from an identical Maxwellian distribution. In particular, these PDFs can occasionally
differ significantly from the average Maxwellian and sech-tanh distributions, even at
moderate values of DGD and second-order PMD, and even with a relatively large
number of sections. This is indeed evident from Figures 4.1 and 4.3.

4.3. Targeting. Figure 4.5 shows (to the left) a comparison of the estimate (3.17)
of the biasing strength αo (dashed line) required to obtain a given target DGD versus
the heuristic correction α (solid line). Both are plotted against the normalized total
DGD (namely, the ratio τ/τmax). Also plotted is the mean of the biased MC samples
obtained for both the isotropic and the rotator model with α = 1 (unbiased), 2, 4,
8, and 12, computed for both N = 8 and N = 20 with the section lengths listed in
Table 4.1. (The results from cases A and B are indistinguishable from each other.)
As is evident from this comparison, a good agreement exists between the analytical
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approximation and the actual mean of the MC samples for both the isotropic and the
rotator model for values of N up to 20, except for small values of α. (For α = 1,
(3.17) yields the unphysical value 〈τ〉 = 0.) Note, however, that the agreement be-
comes worse for larger values of N . This is to be expected, since 〈τ〉/τmax → 0 in the
limit N → ∞, even when the mean DGD per section is scaled as 〈τ〉/

√
N so as to

keep 〈τ〉 fixed.
Also shown (to the right) are histograms showing the expected relative frequency

of the values of total DGD (as estimated from biased MC simulations) for case A for
both the isotropic (dashed lines) and the rotator (solid lines) models for the same
values of α as above, illustrating how the IS-MC samples indeed cluster around the
expected mean for both the isotropic and the rotator model.

5. Conclusions. We have discussed two models of PMD generation, both con-
sisting of a concatenation of unequal-length sections: a conventional, isotropic model,
based on the assumption that the action of the hinges connecting the individual fiber
sections causes their relative orientations to vary uniformly across the Poincaré sphere;
and a rotator model, based on linearly birefringent elements that rotate relative to
one another. We have presented the implementation of IS for both the isotropic model
and the rotator model with sections of arbitrary length, and we have used analytical
and numerical methods to compute the statistics of first- and second-order PMD in
both models. The results show that the PMD statistics depend significantly upon the
details of how PMD is generated.

We should reiterate that even though only first- and second-order PMD are biased,
a full range of higher-order PMD is also being generated. Moreover, it has been
shown [24] that multiple IS with a proper choice of biasing strengths which cover
the whole (DGD, second-order PMD) plane is sufficient to accurately capture the
statistical distribution of PMD-induced transmission penalties even when multistage
PMD compensators are used and even when first-order and second-order PMD are
completely compensated.

Thus, the present methods can be employed to compute PMD-induced pulse
distortions in systems with various configurations. The present work also provides a
further demonstration that the PMD-induced penalties depend on the specific physical
details of how PMD is generated in the system. More specifically, for the hinge model
they depend on how much of the Poincaré sphere is sampled by the hinge rotation
matrix. If the actual PMD generation mechanism in some realistic situation can be
considered to be a hybrid between the isotropic and the rotator models, these two
models could then provide useful upper and lower limits for the actual penalties in
the system.
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Abstract. In this work we present a new hybrid imaging technique that combines electrical
impedance tomography (EIT) with acoustic tomography. The novel technique makes use of the fact
that the absorbed electrical energy inside the body raises its temperature, thus leading to expansion
effects. The expansion then induces an acoustic wave which can be recorded outside the body and
consequently be used to calculate the absorbed energy inside the body, from which the electrical
conductivity can be reconstructed. In other words, we try to combine the high contrast of EIT with
the high resolution of ultrasound.
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1. Introduction. In electrical impedance tomography (EIT) an electrical volt-
age f(x) is applied to the surface S of a body B, thus giving rise to an electrical
potential u(x) inside the body. One then measures the resulting surface current j
and tries to reconstruct the conductivity inside the body from one or several voltage-
current pair(s) (f(x), j(x)) on the boundary.

The problem is known to be severely ill-posed, and though a number of commercial
EIT systems exists, a stable reconstruction algorithm still seems to be out of reach.
As a starting point we refer the interested reader to the survey articles of Cheney,
Isaacson, and Newell [7], Borcea [4, 5], Lionheart [19], and Bayford [3]. A recent
study reporting on the high permittivity and conductivity contrast of different breast
tissues over the frequency range 40Hz–100MHz can be found in Stoneman et al. [27].
It has to be noted, however, that the conductivity value alone does not seem to be
a sufficient criterion to distinguish cancerous from healthy breast tissue; cf. also the
studies of Lazebnik et al. [16, 17] for the microwave frequency range 0.5–20GHz.

A promising approach to overcoming the intrinsic ill-posedness of the problem is
to combine EIT with another imaging system that provides additional information.
The most prominent example is magnetic resonance electrical impedance tomography
(MREIT), which combines EIT with measurements of the magnetic flux from which
one obtains the current density inside the body; cf. the works of Kwon et al. [14],
S. Kim et al. [12], Y. J. Kim et al. [11], and the recent work of Nachman, Tamasan,
and Timonov [22]. Another approach is magnetoacoustic imaging, where an exterior
magnetic field is used to generate displacements in the body via the Lorentz force.
The resulting pressure wave is measured by ultrasound transducers and provides in-
formation about the interior current density; cf., e.g., Ma and He [20] and the preprint
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[2] of Ammari et al. [1] for recent references. Independently of this work, Ammari et
al. have recently proposed using ultrasound to produce localized elastic perturbations
to locally change the conductivity inside a body. From the resulting change in the EIT
measurements they obtain the energy density inside the body and use this additional
information to reconstruct the conductivity.

In this work we propose a new method to obtain additional interior information
for EIT by combining it with ultrasound tomography. Similarly to magnetoacoustic
imaging, we obtain our additional information from creating a pressure wave inside
the body. However, we do not rely on an externally applied magnetic field and the
Lorentz force but on thermal expansion. The resulting additional interior information
is the same that Ammari et al. obtain by elastic deformations, i.e., the interior energy
density.

To be more specific, we will make use of the fact that the absorbed energy inside
the body raises its temperature, thus leading to expansion effects. The expansion
then induces an acoustic wave which can be recorded outside the body and conse-
quently be used to calculate the absorbed energy inside the body. The advantage of
using acoustical rather than electromagnetic measurements for the reconstruction is
that we can then choose the excitation frequency small with respect to the speed of
electromagnetic waves (so that the model of impedance tomography holds true) but
large with respect to the speed of sound (so that the we obtain a high resolution in
the reconstructions). In other words, we try to combine the high contrast of EIT with
the high resolution of ultrasound. The ideas for this combination stem from thermoa-
coustic computerized tomography, where a body is illuminated and thus heated up
with a short pulse of light and the resulting acoustic pressure wave is recorded. For
an introduction to the field of thermoacoustic tomography, we refer the reader to the
recent special section in the journal Inverse Problems [23]. A survey on experimental
setups for thermoacoustic imaging can be found in Xu and Wang [28].

The outline of this work is as follows. We start by developing the model of
impedance-acoustic tomography in section 2.1 and study the well-posedness of the
resulting direct problem in section 2.2. In section 3 we study the associated inverse
problems and derive first reconstruction algorithms. Finally, we show preliminary
numerical examples for the simulation of impedance-acoustic tomography as well as
for the reconstruction algorithms in section 4.

2. Impedance-Acoustic Computerized Tomography (ImpACT).

2.1. Derivation of the modeling equations. If a stationary electrical voltage
f(x) is applied to the surface S of a body B ⊂ Rn, n = 2 or n = 3, this gives rise to
an electrical potential u(x) inside the body. In the state of equilibrium the potential
is given by the solution u of

∇ · (σ(x)∇u(x)) = 0 in B,(2.1)
u(x)|S = f(x) on S,(2.2)

where σ(x) is the specific conductivity of the body. One can then measure the resulting
surface current

j(x) = σ(x)∂νu(x)|S

(ν = ν(x) is the outer normal vector at a surface point x ∈ S) and try to reconstruct
σ(x) from one or several voltage-current pair(s) (f(x), j(x)).
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An electrical potential almost instantly reaches its state of equilibrium, so that
if we apply a time-dependent voltage F (x, t) = f(x)

√
g(t) that varies slowly in time

(compared to the speed of electromagnetic waves), the induced electric potential is
given by its quasi-static limit U(x, t) = u(x)

√
g(t), where u(x) solves (2.1), (2.2). (We

choose the notation
√
g(t) in order to have g proportional to the amount of applied

electrical power in (2.3) below.)
When electrical currents are flowing through a body, three effects can be observed:

stimulation of nerves, electrolysis, and thermal heating; cf., e.g, [9]. We concentrate
on the heating effect and suggest using high frequency currents, which have less stimu-
lating effects on the nerves. Indeed, the effect of thermal heating with high frequency
currents is exploited in high frequency surgery; cf., e.g., [9, 13].

We will make use of the usual convention that “∇” and “Δ” are taken only with
respect to spatial variables and that first, respectively, second, partial time-derivatives
are denoted by one, respectively, two, dots. Joule’s law describes the relation between
the rate of variation of energy Q, i.e., the absorbed electrical power density Q̇(x, t),
and the electric potential by

(2.3) Q̇(x, t) = σ(x)|∇U(x, t)|2 = σ(x)|∇u(x)|2g(t).

If the voltage is applied only for a short time, we can neglect thermal diffusion so
that the change of temperature T (x, t) is given by

(2.4) Ṫ (x, t) =
1

ρ(x, t)c(x)
Q̇(x, t),

where c(x) is the specific heat capacity (i.e., the amount of energy needed to heat
up a unit mass of the material by one unit of temperature) and ρ(x, t) is the mass
density.

Before we continue with our modeling equation, let us give a rough quantitative
estimate of practically realizable temperature changes. We use the standard SI-units
cm, m for centimeters and meters, μs for microseconds, g for grams, Ω for ohm, A for
ampere, MHz for megahertz, J for joule, and mK and K, for millikelvin and kelvin. For
the specific heat capacity and density we take the values of breast fat from Robinson
et al. [24, Table 5], c = 2.43J/(gK) and ρ = 0.934g/cm3. The specific electrical
conductivity of adipose tissue at a frequency of 1MHz is about σ = 0.4/(Ωm); cf. [27,
Fig. 5]. Thus, a specimen cube of 1cm side length has a mass of M = 0.934g, and
its electrical resistance is R = σ−1 length

area = 250Ω. Applying a pulse of Δt = 1μs with
σ|∇u| = I = 3A will change the temperature of this cube by

ΔT =
1
M

1
c
RI2Δt ≈ 990

K Ω A2 μs
J

= 0.99 mK.

This temperature rise seems enough to produce ultrasound waves, which can be mea-
sured with ultrasound transducers while still being unharmful to biological tissue.

We now proceed as in the derivation of the equations of thermoacoustic tomogra-
phy in the book of Scherzer et al. [26]; cf. also the publication of Haltmeier, Schuster,
and Scherzer [10] or the recent review article of Xu and Wang [28]. The change in
the material’s temperature can be related to the change in its density ρ and to the
change in its pressure p via the so-called (linearized) expansion equation

(2.5) β(x)Ṫ (x, t) =
1
v2
s

ṗ(x, t) − ρ̇(x, t),
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where vs is the speed of sound and β(x) is the thermal expansion coefficient that
specifies the increase of volume per increase of temperature. Under the assumption
that the density ρ is only slightly varying from a constant value ρ0 and only small ve-
locities occur, the velocity v and the density ρ are coupled by the linearized continuity
equation

(2.6) ρ̇(x, t) = −ρ0∇ · v(x, t).

Furthermore, assuming an inviscid, nonturbulent flow of material with just slightly
varying pressure, the velocity v is related to the pressure p by the linearized Euler
equation

(2.7) ρ0v̇(x, t) = −∇p(x, t).

Combining (2.3)–(2.7) and again applying our assumption that the density ρ is
only slightly varying from ρ0, we obtain

1
v2
s

p̈(x, t) − Δp(x, t) =
β(x)
ρ0c(x)

σ(x)|∇u(x)|2ġ(t).

If the electric energy is applied only for a very short time (compared to the speed
of sound), we can replace g(t) by a δ-peak and obtain that p is the solution of

1
v2
s

p̈(x, t) − Δp(x, t) = 0 in R
n,

p(x, 0) =
β(x)
ρ0c(x)

σ(x)|∇u(x)|2χB(x) in R
n,

ṗ(x, 0) = 0 in R
n,

where χB is the characteristic function of B. We furthermore assume that the specific
heat capacity and the thermal expansion coefficient are approximately constant and
known. By a standard change of units we can then eliminate vs, β, ρ0, and c from
the equations and obtain, together with (2.1) and (2.2), the equations of impedance-
acoustic tomography:

∇ · σ∇u(x) = 0 in B,(2.8)
u(x)|S = f on S,(2.9)

p̈(x, t) − Δp(x, t) = 0 in R
n,(2.10)

p(x, 0) = σ(x)|∇u(x)|2χB(x) in R
n,(2.11)

ṗ(x, 0) = 0 in R
n.(2.12)

The forward problem of impedance-acoustic tomography can now be stated as fol-
lows: Given the conductivity σ and the applied voltage f on S, determine the resulting
currents σ∂νu|S and the resulting pressure wave p(x, t) that solves (2.8)–(2.12). The
inverse problem of impedance-acoustic tomography consists of reconstructing the con-
ductivity σ from knowledge of the applied voltage f and measurements of the resulting
currents σ∂νu|S and the resulting pressure wave p on some part of R3. In this work
we will restrict ourselves to the case where p is measured on the whole surface S for
some time interval [0, T ], and we will furthermore assume that σ is known in a small
neighborhood of this surface S.
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Finishing this subsection, let us recapitulate the crucial assumptions regarding the
time-scale in our model and give a rough estimate of feasible parameters. The applied
voltage must vary slowly in time compared to the speed of electromagnetic waves, so
that the (quasi-static) equations of impedance tomography are valid. The maximum
frequency of Rensselaer’s ACT 4 EIT system is 1MHz; cf. Saulnier et al. [25]. At
the same time, the voltage must be applied only for such a small time that thermal
diffusion can be neglected and that the applied energy takes the form of a delta-pulse
in the time-scale of sound waves, i.e., also that stress propagation can be neglected
during the application of the pulse. The latter two conditions are commonly referred
to as thermal and stress confinements in thermoacoustic tomography; cf. Xu and
Wang [28]. The stress confinement is the more stringent condition and, for a pulse of
1μs, limits the expected spatial resolution to 1.5mm; cf. [28].

2.2. Well-posedness of the direct problem. Throughout this work we will
assume that B ⊂ Rn, n = 2 or n = 3, is a smoothly bounded domain, T > 0,
f ∈ W 7/4,4(S), and σ ∈ W 1,∞

+ (B), where the subscript + denotes the subspace of
functions with positive essential infima. Under this assumption we obtain the following
lemma.

Lemma 2.1. For every σ ∈ W 1,∞
+ (B), there exists a unique solution u ∈W 2,4(B)

of (2.8) and (2.9). Setting

E(σ) := σ|∇u|2, where u solves (2.8) and (2.9),

defines a mapping E : W 1,∞
+ (B) → H1(B).

Proof. Note that the space W 7/4,4(S) is the space of traces of functions from
W 2,4(B). From standard regularity results for elliptic equations, we obtain that for
every σ ∈ W 1,∞

+ (B) there exists a unique solution u ∈ W 2,4(B) of (2.8) and (2.9)
(cf., e.g., Miranda [21, Thm. 38,VI]). Thus the result follows from the product rule
for Sobolev functions.

Some caution has to be taken in the treatment of the acoustic equations (2.10)–
(2.12). Though we have just seen that our regularity assumptions guarantee that the
initial condition is an H1-function in B, its continuation by zero to R

n will in general
have a jump across S. Roughly speaking, this jump persists in the pressure wave, so
that our measurements p|S are in general not well defined (as a function). Of course,
from a practical point of view, there cannot be ambiguity in the measurement data;
thus this problem shows that the idealization of a pressure wave appearing instantly
in a sharply bounded body is not consistent with the idealization of a measurement
surface with zero thickness.

However, using our additional assumption that we know the conductivity σ on S,
we can circumvent this problem without giving up one of these two idealizations. The
quantity σ(x)|∇u(x)|2|S can be calculated from σ|S , the measured surface currents
σ(x)∂νu(x)|S , and the applied voltage u(x)|S = f(x). Using a function p̃0(x) ∈ H1(B)
with the same boundary values p̃0(x)|S = σ(x)|∇u(x)|2|S , we can define the solution
p̃ of

¨̃p(x, t) − Δp̃(x, t) = 0 in R
n,(2.13)

p̃(x, 0) = p̃0(x)χB(x) in R
n,(2.14)

˙̃p(x, 0) = 0 in R
n.(2.15)

The difference q := p− p̃ then solves the wave equation with an initial condition in
W 1(Rn), and thus its trace on S is well defined. Before we state this in a rigorous form
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below, let us comment on the practical realization of this approach. One can easily
compute a smooth approximation to p̃ and evaluate this on S. The difference of the
measurement of p on S and this quantity can then be regarded as an approximation
to the well-defined, idealized model measurements q|S .

We now restate the above arguments in a rigorous form.
Lemma 2.2. Denote by

γ : H1(B) → H1/2(S), v �→ v|S ,

the trace operator on S, and let γ− : H1/2(S) → H1(B) be a continuous right inverse
of γ, i.e., γγ− = Id.

For every σ ∈ W 1,∞
+ (B) there exists a unique solution p̃ ∈ C(0, T, L2(Rn)) of

(2.13)–(2.15) with p̃0 := γ−γE(σ) and a unique solution p ∈ C(0, T, L2(Rn)) of (2.10)
and (2.12) with p(x, 0) = E(σ)χB . Their difference q := p − p̃ is an element of
C(0, T,W 1(Rn)) and it is the unique solution of

q̈(x, t) − Δq(x, t) = 0 in R
n,(2.16)

q(x, 0) = q0(x)χB(x) in R
n,(2.17)

q̇(x, 0) = 0 in R
n,(2.18)

with q0 = (I − γ−γ)E(σ) ∈ H1
0 (B). Also, the mapping

F : H1
0 (B) → C(0, T,H1/2(S)), q0 �→ q|S , where q solves (2.16)–(2.18),

is continuous and linear.
Proof. This follows from classical results on the wave equation; cf., e.g., Lions

and Magenes [18, Chp. 3, Thm. 9.3] for the unique existence of p̃, p ∈ C(0, T, L2(Rn))
and [18, Chp. 3, Thm. 8.2] for the unique existence of a solution q ∈ C(0, T,W 1(Rn))
of (2.16)–(2.18).

3. Inverse problems of ImpACT. In the last section we saw that, using
the known boundary values of the conductivity σ|S , the measured surface currents
σ(x)∂νu(x)|S , and the applied voltage f(x), we can calculate γE(σ) = σ|∇u|2|S and
thus the modified pressure measurements q|S from the real measurement data. The
dependence of q|S from the unknown conductivity σ is given by

q|S = F(I − γ−γ)E(σ).

Hence, the inverse problems of determining the conductivity from the measure-
ments leads to the problems of inverting the two linear operators F , (I − γ−γ) and
the nonlinear operator E . Since γE(σ) is known, the inversion of (I − γ−γ) consists
simply of adding γ−γE(σ). It therefore remains to invert F , i.e., to determine the
initial value of a pressure wave from its trace on S, and to invert E , i.e., to determine
the conductivity of a body from its electrical energy density.

3.1. Determining the initial condition of the pressure wave. Recall that
F : H1

0 (B) → C(0, T,H1/2(S)) maps the initial value q0 ∈ H1
0 to the boundary values

q|S , where q ∈ C(0, T,H1(Rn)) solves

q̈(x, t) − Δq(x, t) = 0 in R
n,

q(x, 0) = q0(x)χB(x) in R
n,

q̇(x, 0) = 0 in R
n.
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The inverse problem of determining q0 from q|S has been studied to some extent
in the context of thermoacoustical tomography. We will use a conceptionally simple
time-reversal algorithm that is also mentioned in the work of Finch, Patch, and Rakesh
[8, Thm. 5] and for which Burgholzer et al. show numerical results in the recent work
[6]. Assume that T > diam(B); then in the case of three spatial dimensions, the
pressure wave q will have completely left the body B, so that q(x, T )|B = 0 and
q̇(x, T )|B = 0. Thus the time-reversed pressure wave r(x, t) := q(x, T − t)|B solves
the initial boundary value problem

r̈(x, t) − Δr(x, t) = 0 in B,(3.1)
r(x, t)|S = g on S,(3.2)
r(x, 0) = 0 in B,(3.3)
ṙ(x, 0) = 0 in B,(3.4)

where the boundary data g = q(x, T − t)|S are just the time-reversed measurements.
Lemma 3.1. For every g ∈ C(0, T,H1/2(S)), there exists a unique solution

r ∈ C(0, T, L2(B)) to (3.1)–(3.4).
Proof. Under the weaker assumption that g ∈ L2(0, T, L2(S)), this was shown by

Lasiecka, Lions, and Triggiani in [15, Thm. 2.3].
Since q(x, T − t) solves (3.1)–(3.4), the initial condition q(x, 0)|B = r(x, T ) can

thus be reconstructed from q(x, t)|S by solving (3.1)–(3.4) with g = q(x, T − t)|S .
Physically this can be interpreted as a combination of a time-reversal of waves and
the restriction to a bounded domain.

In the case of two spatial dimensions, the wave does not leave the body completely;
thus the solution of (3.1)–(3.4) will not completely agree with q(x, T − t). However,
if T is chosen large enough, then only a small part of the wave will still be in B, so
that one can expect that the above method will still yield a good approximation to
q(x, 0).

3.2. Determining the conductivity from the electrical energy. We now
turn to the determination of the conductivity from the electrical energy, i.e., to the
inversion of the nonlinear mapping

E : W 1,∞
+ (B) → H1(B), σ �→ σ(x)|∇u(x)|2 ,

where u solves

∇ · σ∇u(x) = 0 in B, and u|S = f.

(Note we keep the applied voltage f fixed throughout this work.)
In [1], Ammari et al. reformulate this problem using the 0-Laplacian and propose

an iterative reconstruction strategy that relies on the measurement of two different
current patterns. We derive here a similar iterative scheme that is based on a formal
Newton algorithm. Denote by uσ the solution of

∇ · σ∇u = 0, u|S = f.

It is well known (and easily shown) that (for supp τ ⊂ B) the directional derivative

vτ := lim
h→0

uσ+hτ − uσ
h
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is the solution of

(3.5) ∇ · σ∇vτ = −∇ · τ∇uσ, v|S = 0.

It follows immediately that

E ′(σ)τ = τ |∇uσ|2 + 2σ∇uσ · ∇vτ .

If Ê = σ̂(x)|∇uσ̂(x)|2 is the reconstructed energy density and σn is an approxi-
mation to the true conductivity σ̂, then a Newton-step would consist of solving

E ′(σn)δ = Ê − σn|∇uσn(x)|2

and the update σn+1 = σn + δ.
To get around the computationally expensive inversion of E ′(σ), we can split it

into two parts,

E ′(σ)τ = (Mσ + Pσ)τ,

with

Mστ := τ |∇uσ|2 and Pστ := 2σ∇uσ · ∇vτ .

Apart from the problem that |∇u| might be zero, the inversion of the multiplication
operator M is computationally easy. Instead of using the exact inverse (Mσ +Pσ)−1,
one can use the approximate inverse (I−M−1

σ Pσ)M−1
σ , which is justified whenM−1

σ Pσ
is small. Notably, this approximation results in the same algorithm that Ammari et
al. propose in [1] and that is therein motivated by a 0-Laplacian formulation:

Given Ê, f , and σn,
• calculate ∇uσn ,
• set τ := Ê

|∇uσ |2 − σn,
• calculate the solution vτ of (3.5),
• update σn+1 := Ê−2σ∇uσ ·∇vτ

|∇uσ |2 .

4. Numerical examples. We have tested our inversion algorithm on simulated
two-dimensional data. The left side of Figure 4.1 shows the exact conductivity dis-
tribution σ that we chose as our test example. A background conductivity of 1 is
distorted by two discs centered at (−0.4,−0.15) and (0.4, 0.15) in which the conduc-
tivity is given by

1 +Aj exp(R−1
j − (R2

j − ρ2
j)

−1/2), j = 1, 2,

where R1 = R2 = 0.3 are the radii of the two discs, ρj is the respective distance to
the center of the jth disc, and A1 = 2, A2 = 0.5, so that the conductivity is smoothly
raised to 3, respectively, lowered to 0.5, inside the discs.

Using the commercial finite element software Comsol, we calculated the corre-
sponding electrical energy E(σ) and evaluated it using linear interpolation on the
part of an equidistant 200× 200 grid on [−1, 1]2 that belongs to the unit circle. E(σ)
is shown on the right side of Figure 4.1.

As the continuous right inverse γ− of the trace operator we take the solution
operator for the Dirichlet operator for the Laplace equation, which is implemented by
expanding γE(σ) into the L2-orthonormal functions{

1√
2π
,

1√
π

sin(mϕ),
1√
π

cos(mϕ)
∣∣∣ m = 1, . . . , 100

}
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Fig. 4.1. Exact conductivity and electrical energy distribution.

Fig. 4.2. Exact and reconstructed (modified) energy distribution.

and using the analytical solutions for the corresponding Dirichlet problems
{

1√
2π
,

1√
π

sin(mϕ)rm,
1√
π

cos(mϕ)rm
∣∣∣ m = 1, . . . , 100

}
,

where (r, ϕ) denote the polar coordinates. Accordingly, the left side of Figure 4.2
shows the quantity (I − γ−γ)E(σ).

The operator F is simulated by solving the wave equation with a standard central
finite difference scheme on a sufficiently large domain. The values of q on the boundary
S are then evaluated using linear interpolation on an equidistant grid on S. Thus,
simulated (modified) measurements q|S are obtained.

We then tested our inversion algorithm on these simulated measurements. The
Dirichlet problem for the wave equation was solved using the commercial finite element
software Comsol. The reconstructed distribution r(x, T ), T = 4, is then evaluated
using linear interpolation on the part of an equidistant 200×200 grid on [−1, 1]2 that
belongs to the unit circle. Figure 4.2 compares the exact (modified) energy distri-
bution q(x, 0) = (I − γ−γ)E(σ) (on the left side) with the reconstructed distribution
r(x, T ), T = 4 (on the right side). Figure 4.3 shows profiles of the exact (solid black
line) and of the reconstructed energy (dashed red line) on the x-axis (left plot) and
on a line connecting the peaks of the true conductivity.

The known quantity γ−γE(σ) is then added to r(x, T ), and the Newton algorithm
described in section 3.2 is used on this data. As an initial guess we used a constant
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Fig. 4.3. Profiles of exact and reconstructed (modified) energy.

Fig. 4.4. Exact and reconstructed conductivity distribution.
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Fig. 4.5. Profiles of exact and reconstructed conductivity.

conductivity of 1. The equations appearing in the Newton algorithm were again solved
using the commercial finite element software Comsol. Note that thus the same finite
element grid is used for the simulation of E as well as for its inversion. However,
the energy is not given, respectively, evaluated, on this grid but on the independent
equidistant grid described above, which minimizes the risk of an inverse crime. For
the convenience of the reader we show on the left side of Figure 4.4 again the true
conductivity to compare it with the best reconstruction that was obtained in the 24th
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Newton step (shown on the right side). We observed that the reconstructions do not
improve afterward, which seems to be due to accumulated errors. Figure 4.5, which
is organized in the same way as Figure 4.3, compares profiles of the true conductivity
with the reconstruction.
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INCLUSION PAIRS SATISFYING ESHELBY’S UNIFORMITY
PROPERTY∗

HYEONBAE KANG† , EUNJOO KIM‡ , AND GRAEME W. MILTON§

Abstract. Eshelby conjectured that if for a given uniform loading the field inside an inclusion
is uniform, then the inclusion must be an ellipse or an ellipsoid. This conjecture has been proved to
be true in two and three dimensions provided that the inclusion is simply connected. In this paper
we provide an alternative proof of Cherepanov’s result that an inclusion with two components can
be constructed inside which the field is uniform for any given uniform loading for two-dimensional
conductivity or for antiplane elasticity. For planar elasticity, we show that the field inside the
inclusion pair is uniform for certain loadings and not for others. We also show that the polarization
tensor associated with the inclusion pair lies on the lower Hashin–Shtrikman bound, and hence the
conjecture of Pólya and Szegö is not true among nonsimply connected inclusions. As a consequence,
we construct a simply connected inclusion, which is nothing close to an ellipse, but in which the field
is almost uniform.

Key words. Eshelby’s conjecture, Pólya–Szegö conjecture, uniformity property, inclusions with
multiple components, polarization tensor, Weierstrass zeta function
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1. Introduction. Consider a conducting or elastic inclusion subject to a uniform
applied field. For certain shapes of inclusions the field inside the inclusion is also
uniform, and if this is the case, we say the inclusion has Eshelby’s uniformity property.
Eshelby showed in [9] that ellipses and ellipsoids have the uniformity property and
conjectured in [10] that these are the only inclusions with the uniformity property.
See also [15]. This conjecture of Eshelby has been proved to be true within the
class of simply connected inclusions by Sendeckyj [28] for planar elasticity and by
Ru and Schiavone [26] for antiplane elasticity or, equivalently, for two-dimensional
conductivity. Recently, a completely different proof of the Eshelby conjecture in two
dimensions based on the hodographic transformation was given by Kang and Milton
[18]. In the same paper, Eshelby’s conjecture in three dimensions was resolved as
well. They showed that if a simply connected inclusion with Lipschitz boundary has
the uniformity property, then the inclusion must take the shape of an ellipse or an
ellipsoid. Independently, Liu (private communication) also established this. As a
consequence of Eshelby’s conjecture, the conjecture of Pólya and Szegö [25], which
asserts that the domain whose polarization tensor has the minimal trace is a disk or
a ball, is also proved [17].

Finding a structure inside which the field is uniform is important in the study of
composite materials since such a property is required in order to reduce the internal
stress of the structure [31]. In fact, it was proved by Grabovsky and Kohn [12] that

∗Received by the editors May 14, 2007; accepted for publication (in revised form) August 4, 2008;
published electronically December 3, 2008. The research of the first two authors was partly supported
by grant KOSEF R01-2006-000-10002-0.

http://www.siam.org/journals/siap/69-2/69135.html
†Department of Mathematics, Inha University, Incheon 402-751, Korea (hbkang@inha.ac.kr).
‡Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea (kej@ewha.ac.kr).
§Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (milton@math.utah.

edu). This author’s research was supported by the National Science Foundation through grant
DMS-0411035.

577



578 HYEONBAE KANG, EUNJOO KIM, AND GRAEME W. MILTON

ellipses are the low volume fraction limit of the periodic Vigdergauz microstructure
[29, 30], which contains a single inclusion per unit cell. The Vigdergauz microstructure
is known to have minimal internal stress among periodic composites. There are also
periodic geometries, based on the construction of Hashin [14], that contain a countable
number of disks in the unit cell, having Eshelby’s uniformity property as follows from
section 4 of [6].

In this paper we continue our investigation on the shape of inclusions with the uni-
formity property. The primary concern of this paper is the construction of inclusions
(structures) with two components having smooth boundaries which satisfy Eshelby’s
uniformity property. This was first solved by Cherepanov [8], and here we provide an
alternative proof of Cherepanov’s results and give explicit numerical computations of
the inclusion shapes.

Another closely related question considered here is whether Eshelby’s conjecture
is true in a “practical” sense: If the field inside the inclusion is very close to being
uniform in some sense, does it follow that the inclusion is very close to an ellipse? (By
close to an ellipse we specifically mean that the symmetric difference of the inclusion
and an ellipse has small measure.) It is a question of stability.

We construct, in a mathematically rigorous way, inclusions with two components
inside which the field is uniform. Figure 2.1 in section 2 shows typical shapes of
the inclusion pair. The field inside the inclusion is uniform for any uniform loading
in the case of antiplane elasticity, as will be proved in section 3. In the case of
linear elasticity, the field is uniform for certain loadings and not for other loadings.
Using these inclusions, we also answer the question of stability. If we connect two
components of the inclusion by a thin bridge, as in Figure 5.1, the field does not
change much while the bridged inclusion is simply connected, but far from the shape
of an ellipse. In order to construct the structures in this paper, we use the Weierstrass
zeta function and the Schwarz–Christoffel formula to solve the free boundary problem.
The method of construction in this paper is similar to that of Vigdergauz [29, 30] and
Grabovsky and Kohn [12], where the Weierstrass P-function is used to construct the
Vigdergauz microstructure.

Eshelby’s uniformity property is closely related to the conjecture of Pólya and
Szegö on the polarization tensor. In [17] Kang and Milton showed that the polar-
ization tensor satisfies the lower Hashin–Shtrikman bound; then the field inside the
inclusion must be uniform, and thus the inclusion is an ellipse provided that it is sim-
ply connected. See section 4 for the Hashin–Shtrikman bounds on the polarization
tensor. The Pólya–Szegö conjecture follows as an immediate consequence of it. It
turns out that the polarization tensor associated with the structure constructed in
this paper satisfies the lower Hashin–Shtrikman bound. Therefore, the Pólya–Szegö
conjecture does not hold among nonsimply connected inclusions. In the same way as
above we are also able to show that stability for the Pólya–Szegö conjecture fails to
hold among simply connected inclusions: the bridged inclusion is nothing close to a
disk, but the trace of its polarization tensor is very close to being minimal.

This paper is organized as follows: In section 2, we construct inclusions with two
components using the Weierstrass zeta function and the Schwarz–Christoffel formula.
In section 3, we show that these inclusions enjoy the uniformity property for antiplane
elasticity. Section 4 shows that the polarization tensor of the inclusions satisfies the
lower Hashin–Shtrikman bound, and hence the Pólya–Szegö conjecture fails to be true
among nonsimply connected inclusions. In section 5, we discuss the instability of the
uniformity property by connecting the inclusion pair by a thin bridge. In section 6,
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we analyze the planar elasticity case. We prove that the field inside the inclusion is
uniform for certain types of loadings and then show, by numerical computations, that
the field is not uniform for some other types of loadings.

2. Construction of the inclusions. This paper is concerned with a structure
consisting of two components, each with a smooth (specifically, Lipschitz) bound-
ary, which satisfy Eshelby’s uniformity property in antiplane elasticity or for two-
dimensional conductivity. More precisely, we construct an inclusion with two compo-
nents, B1 and B2, such that the solution u to the problem

(2.1)

{
∇ ·

(
1 + (k − 1)χ(B1 ∪B2)

)
∇u = 0 in R

2,

u(x, y) − a · (x, y) = O(r−1) as r → ∞

is such that ∇u is constant in B1 ∪B2. Here χ(B1 ∪B2) is the indicator function of
B1 ∪B2, a is a constant vector representing the direction of the uniform loading, and
r =

√
x2 + y2. The conductivity coefficient 1 + (k − 1)χ(B1 ∪ B2) in (2.1) indicates

that the conductivity of the inclusion B1 ∪B2 is k �= 1 while that of the background
R

2 \ B1 ∪B2 is 1. It is worth mentioning that since ∇u is constant (and not 0) in
B1 ∪ B2, ∂B1 and ∂B2 are analytic due to a regularity result of Alessandrini and
Isakov [2, Corollary 2.2].

In order to construct such inclusions B1 and B2, we will construct a holomorphic
function f in C \B1 ∪B2 satisfying

(2.2) f(z) = �(cz) + qj , z ∈ ∂Bj ,

for some complex constants c and qj , j = 1, 2, and

(2.3) f(z) = αz +O(1) as |z| → ∞

for some complex number α. Here and afterward, we identify z with x + iy. Let us
first briefly see why it is enough to construct such a function.

Suppose that there are such simply connected inclusions B1 and B2, and let u
be the solution to (2.1). Let ue := u|

R2\B1∪B2
and ui := u|B1∪B2 . Then there exist

holomorphic functions Ue in C \ B1 ∪B2 and U i in B1 ∪ B2 such that �Ue = ue

and �U i = ui. To see the existence of Ue, it suffices to note that
∫
C
∂ue

∂ν ds = 0 for
any closed piecewise C1-curve C in C \ B1 ∪B2, which can be easily verified using
Green’s theorem. By (2.1), the solution u satisfies the transmission conditions along
the interface ∂B1 and ∂B2:

(2.4) u|+ = u|− and
∂u

∂ν

∣∣∣
+

= k
∂u

∂ν

∣∣∣
−

on ∂Bj, j = 1, 2,

where the subscripts + and − denote the limits from outside and inside ∂Bj , respec-
tively. It then follows from the Cauchy–Riemann equation that

(2.5)
k + 1

2
U i − k − 1

2
U i = Ue + iλj on ∂Bj , j = 1, 2,

for some real constant λj . See [16]. Since ui is linear in each Bj , so is U i, say,

U i(z) = bjz + dj , z ∈ Bj , j = 1, 2.



580 HYEONBAE KANG, EUNJOO KIM, AND GRAEME W. MILTON

The constancy of ∇u in B1 ∪B2 implies b1 = b2(= b). Then (2.5) takes the form

(2.6)
k + 1

2
(bz + dj) −

k − 1
2

(bz + dj) = Ue(z) + iλj on ∂Bj , j = 1, 2.

If we put

(2.7) f(z) = Ue(z) − kbz,

then f is holomorphic in C \ B1 ∪B2 and satisfies (2.2) and (2.3). By reversing the
previous arguments we see that if B1 and B2 admit a holomorphic function satisfying
(2.2) and (2.3), then B1 ∪B2 has the uniformity property.

For the rest of this section we deal with the problem of constructing two inclu-
sions B1 and B2 which admit a function f holomorphic in C \ B1 ∪B2 satisfying
(2.2) and (2.3). It turns out that this problem was solved by Cherepanov [8] in a
more general setting. Cherepanov showed that there are inclusions with an arbitrary
number of components which admit a holomorphic function (outside the inclusion)
satisfying (2.2) and (2.3), and then constructed such inclusions with single and dou-
ble components. The construction of this paper is different from that of [8], and it is
more elementary using the explicit formula of the Weierstrass zeta function and the
Schwarz–Christoffel formula.

Suppose that f is a holomorphic function in C\B1 ∪B2 satisfying (2.2) and (2.3).
Since such an f maps C \B1 ∪B2 onto the complex plane with two slits, it is natural
to construct an appropriate holomorphic function G on the complex plane with two
slits and then define f as the hodographic transform (or the inverse) of G. The use of
hodographic transforms is a well-known technique for solving free boundary problems.

Let 0 < a < b be two fixed real constants and consider the complex plane with
two slits [−b,−a] and [a, b]. We first construct a holomorphic function F so that its
real parts are constant on each slit while its imaginary part vanishes on the other
parts of the real axis. Once we construct such a function F , then the desired function
G will be defined as G(z) = F (z) + αz for some real constant α, as we shall see
later. For the construction of F , we make use of the Weierstrass zeta function and
the Schwarz–Christoffel formula.

For given positive real numbers c and d, let t1 = 2c and t2 = i2d. Then the
Weierstrass zeta function ζ(w) is defined by

(2.8) ζ(w) :=
1
w

+
∑
t�=0

(
1

w − t
+

1
t

+
w

t2

)
,

where the sum is over all t = n1t1 + n2t2 with integers n1 and n2 not both zero. The
function ζ has the periodicity properties

(2.9) ζ(w + t1) = ζ(w) + η1, ζ(w + t2) = ζ(w) + iη2,

where η1 and η2 are constants satisfying

(2.10) dη1 − cη2 = π.

See [1]. For each t = n1t1 + n2t2, its conjugate t̄ = n1t1 − n2t2 is on the same lattice
of points as t lies on. Thus one can easily see that

(2.11) ζ(w̄) = ζ(w),
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and hence ζ(w) is real when w is real. We also have

(2.12) ζ(−w̄) = −ζ(w),

from which it follows that ζ(w) is purely imaginary when w is purely imaginary. It
then follows from (2.9) that η1 and η2 are real.

Note that by (2.11)

(2.13) ζ(w̄ − 2id) = ζ(w + t2) = ζ(w) + iη2,

and hence

(2.14) ζ(w) − ζ(w̄ − 2id) = −iη2.

Thus we deduce that if w = u− id with u real, then

(2.15) 	ζ(u − id) = −η2
2
.

Similarly, using the first identity in (2.9) and (2.12), one can see that if w = −c+ iv
with v real, then

(2.16) �ζ(−c+ iv) = −η1
2
,

and if w = c+ iv with v real, then

(2.17) �ζ(c+ iv) =
η1
2
.

We will also need the following lemma.
Lemma 2.1. When d > c the following inequality holds:

(2.18) 	ζ(±c+ iv) ≥ η2
2d
v, −d < v < 0.

Proof. Note first that 	ζ(−c + iv) = 	ζ(c + iv) because of the first identity in
(2.9). By scaling we may assume that 2c = 1. Put 2d = τ to shorten notation, and
note that τ > 1. Let

h(v) := 	ζ(c+ iv) − η2
2d
v, −τ

2
< v < 0.

Since h(0) = h(− τ
2 ) = 0, it suffices to show that h is concave in (− τ

2 , 0). Observe
that

h′′(v) = −2	
∑
n1,n2

1
(1
2 + i(v − n2τ) − n1)3

.

From the well-known identity (see [1])

∞∑
m=−∞

1
(z −m)2

=
π2

sin2 πz
,

we have
∞∑

m=−∞

1
(z −m)3

=
π3 cosπz
sin3 πz

.
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Therefore, we get

h′′(v) = −2π3	
∞∑

n2=−∞

cosπ
(

1
2 + i(v − n2τ)

)
sin3 π

(
1
2 + i(v − n2τ)

)

= 2π3
∞∑

n=−∞

sinhπ(v − nτ)
cosh3 π(v − nτ)

= 2π3 sinhπv
cosh3 πv

+ 2π3
∞∑
n=1

sinhπ(v − nτ) cosh3 π(v + nτ) + sinhπ(v + nτ) cosh3 π(v − nτ)
cosh3 π(v − nτ) cosh3 π(v + nτ)

.

Straightforward but tedious computation yields

sinhπ(v − nτ) cosh3 π(v + nτ) + sinhπ(v + nτ) cosh3 π(v − nτ)

=
1
2

sinh 2πv
[
2 + cosh 2πv cosh 2πnτ − cosh2 2πnτ

]
,

and hence

h′′(v) = 8π3 sinhπv

[
1

4 cosh3 πv
+

∞∑
n=1

2 + cosh 2πv cosh 2πnτ − cosh2 2πnτ

(cosh 2πv + cosh 2πnτ)3

]
.

Since v < 0, it is now enough to show that the quantity inside the bracket, which we
call I(v), is positive. Indeed, we have

I(v) >
1

4 cosh3 πv
−

∞∑
n=1

1
cosh 2πv + cosh 2πnτ

.

Since − τ
2 < v < 0 and τ > 1, we now have

I(v) >
1

4 cosh3 πτ
2

− 2
∞∑
n=1

e−2πnτ

=
1

4 cosh3 πτ
2

− 2
1 − e−2πτ

e−2πτ

= 2
[(
e−

1
6πτ + e−

7
6πτ

)−3

− 1
1 − e−2πτ

]
e−2πτ

> 2
[(
e−

1
6π + e−

7
6π
)−3

− 1
1 − e−2π

]
e−2πτ > 0.

This completes the proof. We remark that the inequality is proved not only when
d > c, but also when τ is such that the second to last line in the above chain of
inequalities is positive.

For a positive real number β, define h by

(2.19) h(w) := β
(
ζ(w − id) − η2

2d
w + i

η2
2

)
.

Then h is a meromorphic function with poles at 2n1c+ 2in2d+ id and satisfies

(2.20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�h(−c+ iv) = −βc0,
�h(c+ iv) = βc0,

	h(u) = 0,
	h(u+ id) = 0
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for u and v real, where

(2.21) c0 =
η1
2

− cη2
2d

=
π

2d

because of (2.10). Since β > 0, we also have from (2.18)

(2.22) 	h(±c+ iy) > 0, 0 < y < d, when d > c.

Since ζ(w) = 1
w +O(1) as w → 0, we have

(2.23) h(w) =
β

w − id
+O(1) as w → id.

Restricting our attention to the rectangle R = {z = x + iy | − c < x < c, 0 <
y < d}, we now construct a conformal mapping from the upper half of the complex
plane onto R. To this end, it is natural to use the Schwarz–Christoffel formula.

For b > a > 0, let

g(z) : = (z2 − a2)−1/2(z2 − b2)−1/2

= (z + b)−1/2(z + a)−1/2(z − a)−1/2(z − b)−1/2,

and define for z in the upper half plane

(2.24) w = Φ(z) := −
∫ z

0

g(ξ)dξ.

The mapping Φ maps the upper half plane onto the rectangle R = {z = x+ iy | −c <
x < c, 0 < y < d}, where

(2.25) c =
∫ a

0

dx√
(a2 − x2)(b2 − x2)

and d =
∫ b

a

dx√
(x2 − a2)(b2 − x2)

.

Note that the intervals [−b,−a] and [a, b] on the real axis get mapped onto the vertical
sides {−c+ iy | 0 ≤ y ≤ d} and {c+ iy | 0 ≤ y ≤ d} of R, [−a, a] onto the bottom of
R, and (−∞,−b) ∪ (b,∞) into the top of R. The point ∞ is mapped to w = id, and

(2.26) Φ(z) = id+O

(
1
|z|

)
as |z| → ∞.

To see this, we have

Φ(z) = −
∫ z

0

g(ξ)dξ = −
∫ ∞

0

g(ξ)dξ +
∫ ∞

z

g(ξ)dξ

= id+
∫ ∞

z

g(ξ)dξ = id+
∫ ∞

z

O(|ξ|−2)dξ

= id+O(|z|−1)

as |z| → ∞.
We now define F in the upper half of C by

(2.27) F (z) := (h ◦ Φ)(z),
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where Φ is defined by (2.24). It then follows from (2.20) that

(2.28)

⎧⎪⎨
⎪⎩
�F (x+ i0) = −βc0, x ∈ (−b,−a),
�F (x+ i0) = βc0, x ∈ (a, b),
	F (x+ i0) = 0, x ∈ (−∞,−b) ∪ (b,∞) ∪ (−a, a),

and from (2.22) that

(2.29) 	F (x+ i0) ≥ 0, x ∈ (−b,−a) ∪ (a, b).

It also follows from (2.23) and (2.26) that

(2.30) F (z) = βz +O(1) as |z| → ∞.

Because of (2.28), F has an obvious extension as a holomorphic function in C \
([−b,−a] ∪ [a, b]) satisfying

(2.31) F (z̄) = F (z).

For a positive real number α, define G by

(2.32) G(z) := F (z) + αz,

and then define curves C+
j , j = 1, 2, by

C+
1 :=

{
lim
y→0+

G(x + iy) | − b ≤ x ≤ −a
}
,(2.33)

C+
2 :=

{
lim
y→0+

G(x + iy) | a ≤ x ≤ b

}
.(2.34)

Observe from (2.29) that, at least when d > c and β > 0, the curves C+
j (except the

endpoints) lie in the upper half plane and their endpoints lie on the real axis. In fact,
the endpoints of C+

1 are

(2.35) G(−b) = −β π
2d

− αb and G(−a) = −β π
2d

− αa,

and those of C+
2 are

(2.36) G(a) = β
π

2d
+ αa and G(b) = β

π

2d
+ αb.

The positivity of α is necessary to ensure that G(b) > G(a). We now define C−
j to be

the reflection of C+
j about the real axis, i.e.,

(2.37) C−
j := {z | z ∈ C+

j }, j = 1, 2.

Assuming d > c, we then define the domain Bj to be the domain whose boundary is
C±
j for j = 1, 2. These domains are determined by the choice of the four parameters a,

b, α, and β. However if we replace a, b by k1a, k1b, then the corresponding inclusions
are just rescaled by the factor k1. The reason is as follows.
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−6 0 6
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a = 1, b = 2, α = 1, β = 1

−20 0 20
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0
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a = 1, b = 10, α = 1, β = 1
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0

15
a = 1, b = 20, α = 1, β = 1

−10 0 10
−5

0

5
a = 1, b = 50, α = 0.1, β = 0.1

Fig. 2.1. The typical shapes of inclusions. The scales for the figures are different. In the
bottom right figure α = β = 0.1, and the figure for α = β = 1 is a similar one magnified ten times.
In all figures, c < d.

Let h1, Φ1, F1, and G1 be the functions defined by (2.19), (2.24), (2.27), (2.32),
corresponding to k1a, k1b. Let h0, etc., be those functions corresponding to a, b. Then
we can see the following relations easily:

h1(w) = k1h0(k1w),

Φ1(z) =
1
k1

Φ0

(
z

k1

)
.

Therefore, we have

G1(z) = k1G0

(
z

k1

)
.

This relation shows that the image of [k1a, k2b] under G1 is k1C
+
2 , where C+

2 is the
image of [a, b] under G0 as given in (2.34).

If we replace α, β by k2α, k2β, then the corresponding inclusions are just rescaled
by k2. This is more obvious. Thus without loss of generality one can choose α = β = 1.
If we just replace α by k3α, one can check that (2.28) implies that the boundary of
each inclusion undergoes a linear stretching in the x-direction by a factor of k3 (which
is not in proportion to the change in the distance 2G(a) separating the inclusion pair).
Thus, among all variations of the four parameters, changing only the ratio a/b leads
to a nontrivial change in the inclusion shape. Figure 2.1 shows the shapes of B1 and
B2, which are obtained numerically for various ratios a/b. Figure 2.2 shows a shape
when c > d.

The following proposition shows that the inclusion constructed above enjoys the
desired property.

Proposition 2.2. Let B = B1 ∪ B2 be the inclusion constructed above. Then
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−15 0 15−15
−7.5

0

7.5−7.5
a = 1, b = 1.2, α = 5, β = 5

Fig. 2.2. A shape when c < d. In this figure, c = 1.7227 and d = 1.4310.

there is f holomorphic in C \B satisfying

(2.38) f(z) = z +O(|z|−1) as |z| → ∞

and

f(z) = px+ q1 for z = x+ iy ∈ ∂B1,(2.39)
f(z) = px+ q2 for z = x+ iy ∈ ∂B2,(2.40)

for some real constant p and complex constants q1 and q2.
Proof. One can see from (2.33) and (2.34) that G is a homeomorphism from

[−b,−a] ∪ [a, b] onto C+
1 ∪ C+

2 . One can also see that G is monotonically increasing
on (−∞,−b], [−a, a], and [b,+∞). Thus G is a homeomorphism from ∂Π+ onto
∂(Π+ \ B1 ∪B2), where Π+ is the complex upper half plane. Let ϕ and ψ be the
conformal mappings from the unit disc Δ onto Π+ and Π+ \ B1 ∪B2, respectively.
Then ψ−1 ◦ G ◦ ϕ : Δ → Δ is holomorphic and a homeomorphism on ∂Δ. Thus by
Rado’s theorem [27, p. 4], ψ−1 ◦ G ◦ ϕ : Δ → Δ is conformal, and hence univalent.
Therefore, G : Π+ → Π+ \ B1 ∪B2 is univalent. Since G(z̄) = G(z) and C+

j lies on
the upper half plane, we conclude that G is univalent from C \ ([−b,−a]∪ [a, b]) onto
C \ B1 ∪B2. We emphasize that in order for G to be univalent, the upper part of
∂Bj , C+

j should lie on the upper half plane, as we proved before under the assumption
that d > c. When c < d, the mapping G can sometimes be univalent and thus lead
to other inclusion shapes, but we do not explore this possibility here.

Since G is univalent, G−1 is holomorphic in C \B1 ∪B2 and satisfies

(2.41) G−1(z) =
1

α+ β
z +O(1) as |z| → ∞,

and

G−1(z) =
1
α
x+

βd

2πα
for z = x+ iy ∈ ∂B1,(2.42)

G−1(z) =
1
α
x− βd

2πα
for z = x+ iy ∈ ∂B2.(2.43)

Let

(2.44) f(z) := (α + β)[G−1(z) − γ],
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Fig. 3.1. ux and uy are solutions corresponding to the e1 and e2 fields, respectively. The top
figures are |∇ux| and |∇uy|, and the bottom figures are equipotential lines of ux and uy.

where γ is chosen so that f satisfies (2.38). By putting

(2.45) p =
α+ β

α
, q1 = (α+ β)

[
βd

2πα
− γ

]
, q2 = (α+ β)

[
− βd

2πα
− γ

]
,

we have (2.39) and (2.40). This completes the proof.
We note that the most important property of f is that

(2.46) −p
2
z + f(z) =

p

2
z + qj on ∂Bj ,

so that the function on the left-hand side of this equation, which is antiholomorphic
outside the inclusion, can be extended inside Bj as a linear holomorphic function.

3. The uniformity property for antiplane elasticity. We now show that
the inclusions B1 and B2 have the uniformity property for antiplane elasticity (or for
two-dimensional conductivity): For any uniform loading the field inside the inclusions
is uniform. Before proving this, it may be helpful to the reader to refer to Figure 3.1,
which clearly exhibits the uniformity property. This figure was obtained by solving
(2.1) numerically using the boundary integral method.

We now prove the following theorem, which is a precise statement of the unifor-
mity property for two-dimensional conductivity.

Theorem 3.1. Let B = B1 ∪ B2 be the inclusion constructed in section 2 with
α > 0 and β > 0. Let k �= 1. For each nonzero constant vector a, let u be the solution
to (2.1). Then ∇u is constant in B.

Proof. Define Ue and U i by

Ue(z) : =
(
k +

1 − k

p

)−1 (
kz +

1 − k

p
f(z)

)
, z ∈ C \B1 ∪B2,(3.1)

U i(z) : =
(
k +

1 − k

p

)−1

(z + cj), z ∈ Bj , j = 1, 2,(3.2)
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where f is defined by (2.44). Choosing the complex constants cj for j = 1, 2 properly,
one can easily see that Ue and U i satisfy (2.5) and Ue(z) = z+O(|z|−1) as |z| → ∞.
Let u := �Ue in R2 \ B1 ∪B2 and u := �U i in B1 ∪ B2. Then u satisfies (2.4), and
hence u is the solution to (2.1) with a = (1, 0). Note that we have

(3.3) ∇u =
α+ β

α+ kβ
e1 in Bj , j = 1, 2,

where e1 = (1, 0). Thus for the uniform loading e1 = (1, 0), the field inside B1 and
B2 is given by (3.3).

One can show that the field inside the inclusion due to the loading e2 = (0, 1)
is also uniform using Keller’s duality argument [19]. In fact, for a given k �= 1, let
k0 = 1/k and let u0 be the solution to (2.1) with a = e1 and k replaced with k0. Let
ve be the harmonic conjugate of u0 in C \B1 ∪B2 so that

(3.4) ve(x, y) − y = O(r−1) as r → ∞.

The existence of such a harmonic conjugate is proved in [5]. Let vi be the harmonic
conjugate of u0 in B1 ∪B2. Define w by

(3.5) w(x, y) =

{
ve(x, y), (x, y) ∈ R

2 \B1 ∪B2,

k0v
i(x, y) + C, (x, y) ∈ B1 ∪B2,

where the constant C is chosen so that w is continuous across ∂Bj, j = 1, 2. Then
using the Cauchy–Riemann equations one can show (see [5]) that w is the solution
to (2.1) with a = (0, 1). We also have from (3.3) and the Cauchy–Riemann equation
that

(3.6) ∇w =
α+ β

kα+ β
e2 in Bj , j = 1, 2.

This completes the proof.
So far we have shown that the inclusions B := B1 ∪ B2 have the uniformity

property for the antiplane elasticity model: Given the applied field e1, the field inside
B is uniform and given by α+β

α+kβ e1, and for the applied field e2, the field inside B is
uniform and given by α+β

kα+β e2.

4. Polarization tensors: Polyá–Szegö conjecture. In this section we com-
pute the polarization tensor associated with B = B1 ∪B2 and show that the Polyá–
Szegö conjecture fails to be true among inclusions with multiple components. To
explain the polarization tensor associated with the inclusion B consisting of m com-
ponents B1, . . . , Bm, we consider the following problem: For a vector ξ ∈ R2,

(4.1)

{
∇ ·

(
1 + (k − 1)χ(B)

)
∇u = 0 in R

2,

u(x, y) − ξ · (x, y) = O(r−1) as r → ∞.

The solution u to (4.1) admits the asymptotic expansion

(4.2) u(x, y) = ξ · (x, y) +
1
2π
ξ ·M (x, y)T

r2
+O(r−2) as r → ∞

for some 2×2 matrixM . This matrix M = M(B) is the polarization tensor associated
with B. It should be noted that the polarization tensor associated with the inclusion
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consisting of multiple components B1, . . . , Bm is not the sum or a combination of the
polarization tensors of individual inclusions. It incorporates the interactions among
components.

It is known that the eigenvalues of the polarization tensor must be confined within
the so-called Hashin–Shtrikman bounds [21, 7] (see also [20, 23]):

(4.3) Tr(M) ≤ (k − 1)
(

1 +
1
k

)
|B|

and

(4.4) Tr(M−1) ≤ 1 + k

(k − 1)|B| ,

where Tr denotes the trace and |B| is the area of B. If M has minimal trace, then
M satisfies (4.4) and M is diagonal. These bounds are known to be optimal in the
sense that all the points inside the bound, except the upper bound, are realized as
the pair of eigenvalues of the polarization tensor associated with a certain shape—
coated ellipses [7] and crosses [3]. The lower bound (4.4) is attained by ellipses. Thus
a conjecture, which implies the Polyá–Szegö conjecture, is that if (4.4) holds for an
inclusion, then that inclusion must be an ellipse.

Kang and Milton [18] proved this new conjecture affirmatively in two dimensions
(and three dimensions) within the class of simply connected inclusions with Lipschitz
boundaries. In fact, in [17], they showed that if the polarization tensor M(B) satisfies
the lower bound (4.4), then B must have the uniformity property and is therefore an
ellipse by Eshelby’s conjecture. The Pólya–Szegö conjecture, which asserts that the
inclusion whose polarization tensor has the minimal trace is a disk, follows from this.

We now show that the polarization tensor associated with the inclusion con-
structed in section 2 satisfies (4.4), and hence the Pólya–Szegö conjecture is not true
among nonsimply connected inclusions. To do that, let u1 and u2 be solutions to (2.1)
with a = e1 and a = e2, respectively, and put u := (u1, u2). Then, the polarization
tensor M is given by

(4.5) M = (k − 1)
∫
B

∇u dxdy,

where ∇u is the Jacobian matrix. See [4], for example, for the proof of (4.5). As an
immediate consequence of (3.3) and (3.6) we obtain the following corollary.

Corollary 4.1. The polarization tensor associated with the inclusion con-
structed in section 2 is given by

(4.6) M = (k − 1)|B|

⎛
⎜⎝
α+ β

α+ kβ
0

0
α+ β

kα+ β

⎞
⎟⎠ .

Note that this tensor satisfies

(4.7) Tr(M−1) =
k + 1

(k − 1)|B| ,

which is the lower Hashin–Shtrikman bound. It is quite interesting to observe that the
polarization tensor (4.6) is the same as that for the ellipse x2

α2 + y2

β2 ≤ 1. In particular,
the inclusion in Figure 2.1, which has α = β, has the same polarization tensor as that
of a circular disk.
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Fig. 5.1. Bridged inclusion.

5. Instability of the uniformity property. For a given ε > 0, let δ be a
positive number such that the rectangle (−δ, δ)× (ε, ε) is contained in the convex hull
of B1 and B2. Let Bε := B ∪ ((−δ, δ) × (ε, ε)). Bε is B1 and B2 connected by a thin
bridge. Figure 5.1 shows the bridged inclusion.

Let γ and γε be the conductivity distributions with inclusions B and Bε, respec-
tively, namely,

(5.1) γ = 1 + (k − 1)χ(B), γε = 1 + (k − 1)χ(Bε).

Let h(x, y) be a harmonic function in R2, e.g., h(x, y) = x or y. Let u be the solution
to

(5.2)

{
∇ · γ∇u = 0 in R

2,

u(x, y) − h(x, y) = O(r−1) as r → ∞

and uε be the solution to (5.2) with γ replaced with γε. Then a standard regularity
theory of elliptic equations shows that

(5.3) ‖∇(u− uε)‖2 → 0 as ε→ 0.

Here ‖ · ‖2 is the norm of the square integral. In fact, if we put w = u − uε, then w
satisfies

(5.4)

{
∇ · γε∇w = ∇ · (γε − γ)∇u in R

2,

w(x, y) = O(r−1) as r → ∞.

Thus it follows from a regularity theorem for the elliptic operator ∇ · γε∇ (see [11])
that provided k is strictly positive

(5.5) ‖w‖H1(R2) ≤ C

(∫
Rε

|∇u|2
)1/2

for some constant C independent of ε, where Rε = Bε \ B. In particular, we have
(5.3).

If h(x, y) = x or y, ∇u is constant in B1 and B2, as we have seen in section 3.
Therefore, by (5.3), ∇uε is almost uniform (in the H1 sense) if ε is small. It is obvious
that Bε is simply connected but nothing similar to an ellipse. Figure 5.2 shows the
absolute value of the gradient of uε.
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Fig. 5.2. The graph of the absolute value of the gradient of the solutions corresponding to the
bridged inclusion.

We note that (5.5) implies that

(5.6) ‖M(B) −M(Bε)‖ ≤ Cε,

where M(B) is the polarization tensor of B and M(Bε) is that of Bε. In the case
when α = β, this equation shows that from a practical standpoint the Polyá–Szegö
conjecture is false in two dimensions: a simply connected inclusion can have a polar-
izability tensor arbitrarily close to that of a circular disk yet not resemble a disk at
all. We remark that in the extreme cases not treated here, when k = 0 or k = ∞,
the insertion of even an infinitesimal bridge drastically changes the polarization ten-
sor. So it is still an open question whether a void or perfectly conducting region is
necessarily close in shape to an ellipse if it is simply connected and almost has the
polarizability tensor of an ellipse.

6. Uniformity property: The elasticity case. In this section we consider
the uniformity property of the inclusion B1 ∪ B2 for planar elasticity and show that
for a certain loading the field inside B1 ∪B2 is uniform while for other loadings it is
not uniform.

Let C = (Cijkl) be the elasticity tensor of the inclusion-matrix composite, namely,

Cijkl :=
(
λχ(R2 \B) + λ̃ χ(B)

)
δijδkl+

(
μχ(R2 \B) + μ̃ χ(B)

)
(δikδjl + δilδjk),

whereB = B1∪B2. The elasticity tensor C indicates that the matrix (the background)
has Lamé parameters (λ, μ), while the inclusion has parameters (λ̃, μ̃). It is always
assumed that

μ > 0, dλ+ 2μ > 0, μ̃ > 0, and dλ̃ + 2μ̃ > 0

for ellipticity. For given constants aij , i, j = 1, 2, consider the following linear elastic
problem:

(6.1)

⎧⎪⎪⎨
⎪⎪⎩

∇ ·
(
C(∇u + ∇uT )

)
= 0 in R2,

u(x) −
2∑

i,j=1

aijxiej = O(|x|−1) as |x| → ∞,

where ej , j = 1, . . . , d, denotes the standard basis for R2. The uniform applied loading
is determined by the matrix (aij).

Let us first seek a type of loading which yields a uniform field inside the inclusions.
The existence of such a loading is expected due to the link between conductivity
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problems and elasticity problems in composites when the field in one phase is uniform
[13]. We first invoke the following complex representation of the solution to (6.1) from
[24, 4]: Let u = (u, v) be the solution of (6.1) and let ue := u|

C\B and ui := u|B.
Then there are unique functions ϕe and ψe holomorphic in C \ B and ϕi and ψi
holomorphic in B such that

2μ(ue + ive)(z) = κϕe(z) − zϕ′
e(z) − ψe(z), z ∈ C \B,(6.2)

2μ̃(ui + ivi)(z) = κ̃ϕi(z) − zϕ′
i(z) − ψi(z), z ∈ B,(6.3)

where

(6.4) κ =
λ+ 3μ
λ+ μ

, κ̃ =
λ̃+ 3μ̃

λ̃+ μ̃
.

Moreover, the following hold on ∂Bj , j = 1, 2:

1
2μ

(
κϕe(z) − zϕ′

e(z) − ψe(z)
)

=
1
2μ̃

(
κ̃ϕi(z) − zϕ′

i(z) − ψi(z)
)
,(6.5)

ϕe(z) + zϕ′
e(z) + ψe(z) = ϕi(z) + zϕ′

i(z) + ψi(z) + c,(6.6)

where c is a constant. Equation (6.5) expresses continuity of displacement, and (6.6)
expresses continuity of traction.

Let f be the function in (2.44) and let

(6.7) ϕe(z) = Aez, ψe(z) = Ce

[
−p

2
z + f(z)

]
, z ∈ C \B,

where Ae and Ce are complex and real constants, respectively. As was observed in
(2.46), ψ on ∂Bj has an extension to Bj as the linear holomorphic function Ce(p2z+qj).
Therefore, on ∂Bj, j = 1, 2, (6.5) and (6.6) now take the forms

(
κ̃ϕi(z) − zϕ′

i(z) − ψi(z)
)

=
μ̃

μ

(
κAe −Ae −

Cep

2

)
z +Dj,(6.8)

ϕi(z) + zϕ′
i(z) + ψi(z) =

(
Ae +Ae +

Cep

2

)
z + Ej(6.9)

for some constants Dj and Ej . Equations (6.8) and (6.9) force us to take ϕi(z) =
Aiz + constant and ψi = constant, and the complex number Ai should satisfy

(6.10)

⎧⎪⎪⎨
⎪⎪⎩

κ̃Ai −Ai =
μ̃

μ

(
κAe −Ae −

Cep

2

)
,

Ai +Ai = Ae +Ae +
Cep

2
.

Let Ae = a1 + ia2. Equation (6.10) has a solution Ai if and only if

(6.11) Ce =
4
p

[
1 +

2μ̃
μ(κ̃− 1)

]−1 [
μ̃(κ− 1)
μ(κ̃− 1)

− 1
]
a1,

and in this case

(6.12) 2μ
(
ue
ve

)
=
(

(κ− 1)a1 − Ce(1 − p
2 ) −(κ+ 1)a2

(κ+ 1)a2 (κ− 1)a1 + Ce(1 − p
2 )

)(
x
y

)
+O(r−1)
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Fig. 6.1. Equipotential lines of the solution u = (u1, u2) for the loading (x, 0) (top) and (0, y)
(bottom). ∇u2 is not uniform for the top, while ∇u1 is not uniform for the bottom.

as r → ∞. Putting t = (κ−1)a1
2μ and s = (κ+1)a2

2μ and simplifying expressions using
(2.45) and (6.4), we arrive at the following: If the loading (aij) is of the form

(6.13) (aij) =
(

(1 − θ)t −s
s (1 + θ)t

)
,

where t and s are real constants and

(6.14) θ =
(α− β)(λ̃ + μ̃− λ− μ)

(α+ β)(μ+ λ̃+ μ̃)
,

then ∇u is constant in B where u is the solution to (6.1). In particular, when α = β,
this corresponds to a hydrostatic loading. We mention that the inclusions constructed
in this paper depend on the parameters α and β. In summary, we have proved the
following theorem.

Theorem 6.1. If the (aij) are given by (6.13) for some real numbers s and t
where θ is defined by (6.14), then the solution u to (6.1) has the property that ∇u is
constant in B.

We do not have a complete characterization of those loadings which yield a uni-
form strain field inside the inclusion, but numerical computations show that for certain
loadings the field is not uniform. Figure 6.1 shows the equipotential lines for the so-
lution u = (u1, u2) for the loadings (x, 0) and (0, y). It is worthwhile to compare
the result of this paper with that for the simply connected inclusion in [28, 18]. For
a simply connected inclusion, if the field inside the inclusion is uniform for a single
loading, then the inclusion is of elliptical shape, and hence the field is uniform for
any loading. Here we established that it is not the case for an inclusion with multiple
components. It is an open question whether the uniformity of the interior field for all
uniform applied loadings forces the inclusion (with possibly multiple components) to
be an ellipse or not.

Conclusion. Providing an alternative proof to that of Cherepanov [8], we con-
structed a family of inclusions with two components which have the uniformity prop-
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erty for antiplane elasticity: for any loading the field inside the inclusions is uniform.
In the case of planar elasticity the field is uniform for certain types of loadings but not
uniform for other loadings. These results show that the conjectures of Eshelby and
Pólya–Szegö are not true among nonsimply connected inclusions. By connecting two
inclusions by a thin bridge we showed that these conjectures do not hold in a practical
sense even for simply connected inclusions: even if the field inside an inclusion is very
close to being uniform, the inclusion need not be close to an ellipse.

Acknowledgments. The authors are grateful to the referees for comments and
in particular to one referee for drawing our attention to the work of Cherepanov. Also,
after this work was submitted, the authors became aware of the beautiful paper of
Liu [22], which treats multiple inclusions with the Eshelby property not only in two
dimensions but also in three dimensions.
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Abstract. In this paper, we propose a diffusive prey-predator model with stage structure for the
predator. We first analyze the stability of the nonnegative steady states for the reduced ODE system
and then study the same question for the corresponding reaction-diffusion system with homogeneous
Neumann boundary conditions. We find that a Hopf bifurcation occurs in the ODE system, but no
Turing pattern happens in the reaction-diffusion system. However, when a natural cross diffusion
term is included in the model, we can prove the emergence of stationary patterns (i.e., nonconstant
positive stationary solutions) for this system; moreover, these stationary patterns do not exist in the
considered parameter regime when there is no cross diffusion.
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1. Introduction and the mathematical model. The life histories of plants,
insects, and animals exhibit enormous diversity. Most species go through several
stages during their lifetime, such as immature and mature stages; more specialized
stages may exist for dispersal or dormancy. The vital rates (rates of survival, devel-
opment, and reproduction) almost always depend on the development stage, among
many other factors. Such stage structures have been largely ignored in early popula-
tion modeling but have received much attention in recent years; see [2, 9, 11, 16, 22, 23,
31, 41, 42, 44, 45] and the references therein. Generally speaking, population growth
models that include stage structure predict more complex population dynamics than
those without taking this factor into account.

Hitherto, a common assumption in stage-structured prey-predator models is that
the immature predator has no direct effect on the prey or the mature predator, and
the immature prey is not subject to predation.

For example, in [22], the authors studied the following predator-prey models with
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stage structure for the predator:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rx(t)
(

1 − x(t)
K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

dy
dt

=
nbe−djτx(t− τ)y(t − τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

dyj
dt

=
nbx(t)y(t)

1 + k1x(t) + k2y(t)
− nbe−djτx(t− τ)y(t − τ)

1 + k1x(t− τ) + k2y(t− τ)
− djyj(t),

(1.1)

where x, y, and yj are the densities of the prey, mature predator, and immature
predator, respectively, dj is the through-stage death rate of the immature predator,
and the time delay τ is the duration that each immature predator needs to reach
maturity. Thus e−djτ is the surviving rate of the immature predator (to mature
predator). We note that the first two equations in this model are independent of the
immature predator yj, and they completely determine the dynamics of the system.

In this paper we propose a diffusive prey-predator model with stage structure for
the predator which includes an explicit interaction between the immature predator
and the prey as well as the mature predator. In particular, the interaction between
the immature predator and the mature predator gives rise to a cross diffusion term
(see (1.6) below). The resulting mathematical model is a strongly coupled system
of three equations which is mathematically much more complex than those consid-
ered earlier. In particular, we will demonstrate several special features of the model
which cannot be captured by the corresponding ODE model or by the corresponding
reaction-diffusion model without cross diffusion.

To describe our model, we start with the classical Lotka–Volterra ODE model.
Let x and y be the densities of the prey and the predator, respectively. We divide
the predator y into two parts, the immature y1 and mature y2, with y = y1 + y2.
Taking into account several biological considerations not adequately addressed before
and with the view of simplicity, we make the following assumptions:

(i) The immature predators do not yield offspring.
(ii) The interaction terms are of Lotka–Volterra type, i.e., based on linear func-

tional response.
(iii) The predation rate of the immature predator (which could be indirect, through

increased consumption of prey by the mothers, for example) is positive but
less than that of the mature predator. We denote them by εC and C, respec-
tively, with 0 < ε < 1.

(iv) The rate of conversion of prey to immature predator is proportional to the
prey and is denoted byKx. (In some literature, the constantK/C is called the
rate of conversion of nutrients into the production of the immature predator.)
The death rate of the immature predator is a constant denoted by M .

(v) In general, the rate of transition from immature predator to mature predator
is a function of the prey. For simplicity, we assume that this rate is a constant
denoted by D. The death rate of the mature predator is a constant denoted
by P .

Under the above assumptions, the ODE prey-predator model with stage structure
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for the predator can be written as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= Ax−Bx2 − εCxy1 − Cxy2, t > 0,

dy1
dt

= Kxy2 −Dy1 −My1, t > 0,

dy2
dt

= Dy1 − Py2, t > 0.

(1.2)

Using the scaling u = Bx/(M + D), v = Cy1/(M + D), w = Cy2/(M + D), τ =
(M +D)t, and denoting τ by t again, the system (1.2) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du
dt

= au− u2 − εuv − uw, t > 0,

dv
dt

= kuw − v, t > 0,

dw
dt

= bv −mw, t > 0,

(1.3)

where a = A/(M +D), b = D/(M +D) < 1, k = K/B, and m = P/(M +D).
Two obvious nonnegative steady states of the system (1.3) are u0 = (0, 0, 0) and

ua = (a, 0, 0). Moreover, the problem (1.3) has a positive steady state if and only if
m < abk, in which case the positive steady state is uniquely given by ũ = (ũ, ṽ, w̃),
where

ũ =
m

bk
, ṽ =

m(abk −m)
bk(b+mε)

, w̃ =
abk −m

k(b+mε)
.(1.4)

Now, the ODE model reflects only population changes due to predation in a
situation where predator and prey densities are not spatially dependent. It does not
take into account the fact that population is usually not homogeneously distributed,
or the fact that the movements of the predator and prey are also caused by interactions
within the same species or with other species. These considerations may be modeled
by diffusion processes which can be quite intricate as different concentration levels
of prey and predator cause different population movements. Such movements can be
determined by the concentration of the same species (diffusion) and that of the other
species (cross diffusion).

The role of diffusion in the modeling of many physical, chemical, and biological
processes has been extensively studied. Starting with Turing’s seminal 1952 paper
[37], diffusion has been observed as causes of the spontaneous emergence of ordered
structures, called patterns, in a variety of nonequilibrium situations. More recently,
cross diffusion, in addition to diffusion, has also been used in some of these problems.
There is a great variety of models that involve the applications of diffusion and cross
diffusion; some examples are the Gierer–Meinhardt model [14, 18, 46], the Sel’kov
model [20, 38], the chemotaxis diffusion model [21, 43], the competition model [24, 25,
26], the predator-prey model [7, 13, 19, 33, 34, 35, 40], and models of semiconductors,
plasmas, chemical waves, combustion systems, embryogenesis, etc.; see, e.g., [3, 5, 10,
36] and references therein.

A stable stationary solution for an ODE system may lose its stability when re-
garded as a stationary solution of the corresponding reaction-diffusion system (i.e.,
with diffusion added to the system) over a bounded domain with Neumann boundary
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conditions and induce space dependent stationary solutions through local bifurcation.
Turing [37] first observed this phenomenon and suggested that this may be used to
model pattern formation. Such diffusion-driven instability, now known as Turing in-
stability, has been verified empirically [4, 32]. Patterns arising from such a situation
are called Turing patterns.

For our model, taking into account the inhomogeneous distribution of the prey
and the predator in different spatial locations within a fixed bounded domain Ω at
any given time, and the natural tendency of each species to diffuse to areas of smaller
population concentration, we are naturally led to the following corresponding reaction-
diffusion system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = au− u2 − εuv − uw, x ∈ Ω, t > 0,

vt − d2Δv = kuw − v, x ∈ Ω, t > 0,

wt − d3Δw = bv −mw, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) ≥ 0, v(x, 0) ≥ 0, w(x, 0) ≥ 0, x ∈ Ω,

(1.5)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and ν is the outward
unit normal vector of the boundary ∂Ω. The homogeneous Neumann boundary con-
dition indicates that this system is self-contained with zero population flux across the
boundary. The constants d1, d2, and d3, called diffusion coefficients, are positive. By
standard theory of parabolic equations we can prove that (1.5) has a unique classical
solution (u, v, w) defined for all t > 0 and that this solution is positive when the initial
data u(x, 0), v(x, 0), w(x, 0) are nonnegative and are positive somewhere in Ω. It is
obvious that (ũ, ṽ, w̃) given by (1.4) is the only positive constant steady state of (1.5)
if m < abk.

From the analysis in section 3, we can see that Turing patterns do not occur
for (1.5), because the constant nonnegative steady states ua and ũ have the same
stability properties whether viewed as stationary solutions of (1.3) or (1.5). This
suggests (though does not prove) that the dynamics of (1.5) could be similar to that
of (1.3).

However, in (1.5), only diffusion of each individual species is taken into account.
The reality of the interaction between the mature members and their young is that
the latter tend to stay close to the former. We model this by the cross diffusion
term Δ[d4v/(σ +w2)] for the immature predator, where d4, called the cross diffusion
coefficient, and σ are positive constants. Combined with (self-)diffusion, the immature
predator thus diffuses with flux

J = −∇
(
d2v +

d4v

σ + w2

)
= −

(
d2 +

d4

σ + w2

)
∇v +

2d4vw

(σ + w2)2
∇w.

We observe that, as 2d4vw(σ+w2)−2 ≥ 0, the part {2d4vw(σ+w2)−2}∇w of the flux
is directed toward increasing w, that is, increasing population density of the mature
predator.

Mathematically, this choice of the cross diffusion is one of the simplest functions
that is biologically sound. There is also a technical point for this choice. We can
replace w2 in the cross diffusion term by wτ , and the results in this paper can be
proved for all τ > 1. However, if τ ≤ 1, then our Propositions 2 and 3 in section 4
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and Theorems 5 and 6 in section 7 are no longer true. Please also see section 9 for
further discussion on the choice of the cross diffusion term.

Thus, the cross diffusion system that we shall study is the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = G1(u), x ∈ Ω, t > 0,

vt − Δ
(
d2v +

d4v

σ + w2

)
= G2(u), x ∈ Ω, t > 0,

wt − d3Δw = G3(u), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) ≥ 0, v(x, 0) ≥ 0, w(x, 0) ≥ 0, x ∈ Ω,

(1.6)

where u = (u, v, w)T and

G(u) =

⎛
⎜⎜⎝

G1(u)

G2(u)

G3(u)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u(a− u− εv − w)

kuw − v

bv −mw

⎞
⎟⎟⎠ .

The general theory in [1] guarantees that (1.6) has a unique nonnegative local solution
(u, v, w). In this paper, we will mainly consider the steady-state solutions of (1.6), as
a complete analysis of the dynamics of the system seems out of reach at the moment.

In section 2, we will determine the stability of ua and ũ as stationary solutions
of (1.3) and show that a Hopf bifurcation occurs. In section 3, we prove that ua and
ũ have the same stability properties when regarded as stationary solutions of (1.5);
therefore, no Turing pattern can be found for the reaction-diffusion system (1.5). In
the remaining sections, we study the problem (1.6). First, in section 4, we analyze the
linearized eigenvalue problem of (1.6) at ũ in order to calculate the fixed point index
of ũ, which is important for our later discussions on the existence of nonconstant
positive steady states, i.e., stationary patterns, of (1.6). In section 5, we establish a
priori upper and lower bounds for all possible positive steady states of (1.6). In section
6, we establish the nonexistence of nonconstant positive steady states of (1.6) when
the cross diffusion coefficient d4 = 0, that is, when no cross diffusion occurs in the
model. In section 7, we study the existence of nonconstant positive steady states for
suitable values of the parameters. This is done by using the Leray–Schauder degree
theory and the results obtained in sections 4 and 5. In section 8, we briefly discuss
the bifurcation of nonconstant positive steady states of (1.6). This is followed by
concluding discussions in section 9.

It is perhaps worth emphasizing that our results in sections 6 and 7 show that in
(1.6) stationary patterns can arise in suitable parameter ranges only if cross diffusion
is included in the model (i.e., d4 > 0). This is in sharp contrast to most existing
studies for predator-prey models with cross diffusion, such as [6, 7, 8, 39], where
stationary patterns already arise with the introduction of the diffusion term for each
species.

The mathematical approach in this paper is similar in spirit to that of [35], where
a two-predator one-prey system was studied, and it was shown that the system has a
unique positive constant steady state, which is the global attractor for the correspond-
ing ODE and reaction-diffusion systems, but becomes unstable in certain parameter
ranges when a cross diffusion term is included, and nonconstant positive stationary
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solutions emerge. However, our problem (1.6) is much more complex. For example,
its ODE version, namely, (1.3), already exhibits much richer dynamical behavior (e.g.,
a Hopf bifurcation occurs; see section 2 for details). As a result, our analysis here,
especially in sections 5 and 6, is much more difficult and requires techniques beyond
those of [35]. On the other hand, our results here reinforce the point demonstrated
in [35]; namely, cross diffusion may have crucial impact on the dynamics of certain
predator-prey models.

2. Stability of ua and ũ and Hopf bifurcation for the ODE system (1.3).
We first consider the stability of ua.

Theorem 1. If m > abk, then ua is the only nontrivial nonnegative stationary
solution of (1.3), and every nonnegative solution (u, v, w) of (1.3) with u �≡ 0 satisfies
limt→∞(u, v, w) = (a, 0, 0).

Proof. As m > abk, there exists a δ > 0 such that m > (a+ δ)bk. It follows from
the first equation of (1.3) that lim supt→∞ u(t) ≤ a. Therefore, we can find T > 0
such that u(t) ≤ a+ δ for all t ≥ T .

Consider the nonnegative solution (v̂, ŵ) of the following problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dv̂
dt

= k(a+ δ)ŵ − v̂, t > T,

dŵ
dt

= bv̂ −mŵ, t > T,

v̂(T ) = v(T ), ŵ(T ) = w(T ).

Then v(t) ≤ v̂(t) and w(t) ≤ ŵ(t) for all t ≥ T . As (a+ δ)bk < m, it is obvious that
limt→∞(v̂(t), ŵ(t)) = (0, 0). Consequently, limt→∞(v(t), w(t)) = (0, 0).

Applying the first equation of (1.3) once again, we deduce that limt→∞ u(t)
= a.

Next we consider the case m < abk. In this case, (1.3) has two nontrivial non-
negative stationary solutions: ua and ũ.

Theorem 2. Suppose m < abk. Then ua is unstable. Moreover,
(i) if

b ≤ ε
(
1 +

m

bk

)
,(2.1)

then ũ is asymptotically stable;
(ii) if (2.1) does not hold, then there exists a unique a∗ > m/(bk), determined

by ε, b, k, and m, such that ũ is asymptotically stable for a ∈ (m/(bk), a∗)
and is unstable for a > a∗; moreover, a branch of periodic solutions bifurcates
from ũ at a = a∗.

Proof. Since m < abk, one easily checks that the linearization matrix of (1.3) at
ua has one positive and two negative eigenvalues; therefore, ua is unstable.

We now consider the stability of ũ. A straightforward calculation shows that
the linearization matrix of the system (1.3) at ũ has the characteristic polynomial
g(λ) = λ3 +A1λ

2 +A2λ+A3, where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 = 1 +m+
m

bk
> 0,

A2 =
m

bk

(
1 +m+

ε(abk −m)
b+mε

)
> 0,

A3 =
m(abk −m)

bk
> 0.

(2.2)
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Therefore,

A1A2 −A3 =
m

bk(b+mε)

{
(1 +m)(b +mε)

(
1 +m+

m

bk

)

− (abk −m)
[
b− ε

(
1 +

m

bk

) ]}
Δ=

m

bk(b+mε)
f(ξ), where ξ = abk −m.

Clearly, if (2.1) holds, then f(ξ) > 0 for all ξ ≥ 0; hence A1A2 −A3 > 0. If (2.1) does
not hold, then f(0) > 0 and f(ξ) < 0 for all large ξ. Thus the linear function f(ξ)
has a unique positive zero point ξ0 where f(ξ) > 0 for ξ ∈ [0, ξ0) and f(ξ) < 0 for
ξ > ξ0. It follows that A1A2 − A3 > 0 when a ∈ (m/(bk), a∗) and A1A2 − A3 < 0 if
a > a∗, where a∗ = (m+ ξ0)/(bk).

We can now apply the Routh–Hurwitz criterion (see, e.g., [27, Appendix 2]) to
conclude that ũ is linearly stable (and hence asymptotically stable) if (2.1) holds or
a ∈ (m/(bk), a∗); and is linearly unstable (and hence unstable) if (2.1) does not hold
and a > a∗.

It remains to show that a Hopf bifurcation occurs at a = a∗ when (2.1) does not
hold. Since A1, A2, A3 are all positive, clearly the characteristic polynomial g(λ) has
no nonnegative root. Since g(λ) → −∞ as λ → −∞, it always has a negative root.
We now have two possibilities:

(i) g(λ) has three negative roots: λ1, λ2, λ3;
(ii) g(λ) has one negative root λ1 and a pair of complex roots: λ2 = α+βi, λ3 =

α− βi, β �= 0.
When a is close to a∗, λ1λ2λ3 = −A3 < −(1/2)mξ0/(bk) < 0. Therefore, no

eigenvalue is close to 0 (in the complex plane) when a is close to a∗, say, |λi| ≥ σ0 > 0,
i = 1, 2, 3. We show next that this implies that case (i) cannot happen when a is close
to a∗. Indeed, if (i) happens with a close to a∗, then A1A2 − A3 = −

[
λ2

1(λ2 + λ3) +
λ2

2(λ1 + λ3) + λ2
3(λ1 + λ2) + 2λ1λ2λ3

]
≥ 8σ3

0 for all a close to a∗, which is impossible
since, by our choice of a∗, A1A2 − A3 = 0 when a = a∗. Therefore, case (ii) must
happen when a is close to a∗. It then follows that A1A2 −A3 = −2α[(α+ λ1)2 + β2].
If we regard α, β, and λ1 as functions of ξ, we can rewrite the above identity as

m

bk(b+mε)
f(ξ) = −2α(ξ)

[
(α(ξ) + λ1(ξ))2 + β2(ξ)

]
.

It follows that

α(ξ0) = 0,
m

bk(b+mε)
f ′(ξ0) = −2α′(ξ0)[λ2

1(ξ0) + β2(ξ0)].

Hence dα/da
∣∣
a=a∗

= α′(ξ0)bk �= 0, and the Hopf bifurcation theorem can be applied
to conclude that (1.3) has a branch of periodic solutions bifurcating from ũ at a =
a∗.

Remark 1. Note that if ε ≥ 1, then (2.1) always holds (since d < 1); hence ũ
is stable and Hopf bifurcation never occurs. On the other hand, if ε = 0, then (2.1)
never holds.

3. Stability of ua and ũ for the PDE system without cross diffusion
(1.5). In this section, we show that ua and ũ have the same stability properties as
in section 2.
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First, assume that abk < m, and let (u, v, w) be an arbitrary nonnegative solution
of (1.5) with u �≡ 0. From the first equation in (1.5) we deduce that lim supt→∞ u(x,
t) ≤ a uniformly in x ∈ Ω̄. Therefore, we can find T > 0 such that u(x, t) ≤ a+ δ for
all t ≥ T , where δ > 0 is small so that (a+ δ)bk < m.

Consider the nonnegative solution (v̂, ŵ) of the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dv̂
dt

= k(a+ δ)ŵ − v̂, t > T,

dŵ
dt

= bv̂ −mŵ, t > T,

v̂(T ) = max
x∈Ω̄

v(x, T ), ŵ(T ) = max
x∈Ω̄

w(x, T ).

Then, v(x, t) ≤ v̂(t) and w(x, t) ≤ ŵ(t) for all t ≥ T and x ∈ Ω̄. As (a+ δ)bk < m, we
have, as before, limt→∞(v̂(t), ŵ(t)) = (0, 0), and thus limt→∞(v(x, t), w(x, t)) = (0, 0)
uniformly in x ∈ Ω̄.

Applying the first equation of (1.5) once again, we deduce that limt→∞ u(x, t) = a.
Therefore, ua is globally attractive, as in section 2.

Next we assume that m < abk. By Theorem 2, we find that ua is unstable. It
remains to check the stability of ũ.

Let 0 = μ1 < μ2 < μ3 < · · · be the eigenvalues of the operator −Δ on Ω with
the homogeneous Neumann boundary condition, and let E(μi) be the eigenspace
corresponding to μi in H1(Ω). Let X = [H1(Ω)]3, {φij ; j = 1, . . . , dimE(μi)} be an
orthonormal basis of E(μi), and let Xij = {cφij : c ∈ R3}. Then,

X =
∞⊕
i=1

Xi and Xi =
dimE(μi)⊕

j=1

Xij .(3.1)

Theorem 3. Suppose that m < abk. Then the constant positive steady state ũ
of (1.5) is linearly stable, and hence asymptotically stable in the sense of [17], when
(2.1) holds or a ∈ (m/(bk), a∗); and is unstable when (2.1) does not hold and a > a∗.

Proof. We note that when ũ is unstable for (1.3), it is also unstable for (1.5). Thus,
we need only to prove the asymptotic stability of ũ when our stability assumptions
hold.

Let D =diag(d1, d2, d3) and L = DΔ + Gu(ũ). The linearization of (1.5) at
ũ is ut = Lu. For each i ≥ 1, Xi is invariant under the operator L, and λ is an
eigenvalue of L if and only if it is an eigenvalue of the matrix −μiD+Gu(ũ) for some
i ≥ 1, in which case there is an eigenvector in Xi. The characteristic polynomial of
−μiD + Gu(ũ) is given by ψi(λ) = λ3 +B1λ

2 +B2λ+B3, where

B1 = μi(d1 + d2 + d3) + 1 +m+ ũ > 0,
B2 = μ2

i (d1d2 + d1d3 + d2d3) + μi[(1 +m)d1 + (m+ ũ)d2 + (1 + ũ)d3]
+ (1 +m+ εkw̃)ũ > 0,

B3 = μ3
i d1d2d3 + μ2

i (md1d2 + d1d3 + ũd2d3) + μi(md2 + d3 + εkw̃d3)ũ
+ (b+mε)kũw̃ > 0.

A direct calculation yields B1B2−B3 = c3μ
3
i +c2μ

2
i +c1μi+A1A2−A3, where A1, A2,

and A3 are given by (2.2), and c1, c2, c3 are positive. Hence B1B2−B3 ≥ A1A2−A3.
From the proof of Theorem 2 we see that A1A2 − A3 > 0 under our conditions for
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stability. So, B1B2 −B3 > 0. It thus follows from the Routh–Hurwitz criterion that,
for each i ≥ 1, the three roots λi,1, λi,2, λi,3 of ψi(λ) = 0 all have negative real parts.

In the following we shall prove that there exists a positive constant δ such that

Re{λi,1}, Re{λi,2}, Re{λi,3} ≤ −δ ∀ i ≥ 1.(3.2)

Consequently, the spectrum of L, which consists of eigenvalues, lies in {Reλ ≤ −δ},
and the asymptotical stability of ũ follows [17, Theorem 5.1.1].

To see (3.2), let λ = μiξ. Then ψi(λ) = μ3
i ξ

3 + B1μ
2
i ξ

2 + B2μiξ + B3
Δ= ψ̃i(ξ).

Since μi → ∞ as i→ ∞, it follows that limi→∞{ψ̃i(ξ)/μ3
i } = ξ3 + (d1 + d2 + d3)ξ2 +

(d1d2 + d1d3 + d2d3)ξ + d1d2d3
Δ= ψ̄(ξ). Clearly ψ̄(ξ) = 0 has three negative roots:

−d1, −d2, −d3. By continuity, we see that there exists i0 such that the three roots
ξi,1, ξi,2, ξi,3 of ψ̃i(ξ) = 0 satisfy Re{ξi,1}, Re{ξi,2}, Re{ξi,3} ≤ −δ̄/2 for all i ≥ i0,
where δ̄ = min{d1, d2, d3}. In turn, Re{λi,1}, Re{λi,2}, Re{λi,3} ≤ −μiδ̄/2 ≤ −δ̄/2
for all i ≥ i0.

Let −δ̃ = max1≤i≤i0{Re{λi,1},Re{λi,2},Re{λi,3}}. Then δ̃ > 0, and (3.2) holds
for δ = min{δ̃, δ̄/2}.

4. Fixed point index of ũ for the stationary PDE system with cross
diffusion. Let Φ(u) = (d1u, d2v+d4v/(σ+w2), d3w)T . Then the stationary problem
of (1.6) can be written as

−ΔΦ(u) = G(u), x ∈ Ω;
∂u
∂ν

= 0, x ∈ ∂Ω.(4.1)

In this section, we study the linearization of (4.1) at ũ and then proceed to calculate
the fixed point index of ũ when it is an isolated solution.

Let Y = [C1(Ω̄)]3, and define Y+ = {u ∈ Y : u, v, w > 0 on Ω̄} and, for C > 0,
B(C) = {u ∈ Y : C−1 < u, v, w < C on Ω̄}.

Since the determinant of Φu(u) is positive for all nonnegative u, Φ−1
u (u) exists

and det Φ−1
u (u) is positive. Hence, u is a positive solution to (4.1) if and only if

F(u) Δ= u− (I − Δ)−1{Φ−1
u (u)[G(u) + ∇uΦuu(u)∇u] + u} = 0 in Y+,

where (I − Δ)−1 is the inverse of I − Δ under homogeneous Neumann boundary
conditions. As F(·) is a compact perturbation of the identity operator, for any B =
B(C), the Leray–Schauder degree deg(F(·), 0, B) is well defined if F(u) �= 0 on ∂B.

Further, we note that DuF(ũ) = I − (I − Δ)−1{Φ−1
u (ũ)Gu(ũ) + I} and recall

that, if DuF(ũ) is invertible, the fixed point index of F at ũ is well defined and

index(F(·), ũ) = (−1)γ ,

where γ is the sum of the algebraic multiplicities of all the negative eigenvalues of
DuF(ũ) [29, Theorem 2.8.1].

Since the eigenvalues of DuF(ũ) and their algebraic multiplicities are the same
regardless of whether it is considered an operator in X or in Y, it is convenient
to use the decomposition (3.1) in our discussion of the eigenvalues of DuF(ũ). A
straightforward calculation shows that, for each integer i ≥ 1 and each integer 1 ≤
j ≤ dimE(μi), Xij is invariant under DuF(ũ). Moreover, λ is an eigenvalue of
DuF(ũ) if and only if, for some i ≥ 1, it is an eigenvalue of the matrix

Bi := I − 1
1 + μi

[Φ−1
u (ũ)Gu(ũ) + I] =

1
1 + μi

[μiI − Φ−1
u (ũ)Gu(ũ)].
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Thus, DuF(ũ) is invertible if and only if the matrix Bi is nonsingular for all i ≥ 1.
Let λ be an eigenvalue of DuF(ũ). We now calculate its algebraic multiplicity,

which we denote by σ(λ). By definition, σ(λ) = dim(Eλ), whereEλ :=
⋃∞
n=1 Ker

[
λI−

DuF(ũ)
]n.

For any φ ∈ X, we can uniquely express it in the form φ =
∑∞

i=1

∑dimE(μi)
j=1 Cijφij ,

where Cij ∈ R
3 and φij is defined as before. Since Xij is invariant under DuF(ũ), it

is also invariant under
[
λI −DuF(ũ)

]n for any n ≥ 1. Thus, φ ∈ Ker
[
λI −DuF(ũ)

]n
if and only if

[
λI −DuF(ũ)

]n
Cijφij = 0 for all i ≥ 1 and 1 ≤ j ≤ dimE(μi). A direct

calculation shows that
[
λI −DuF(ũ)

]n
Cijφij = 0 if and only if

[
λI − Bi]nCij = 0.

It follows that

dimEλ =
∞∑
i=1

[
dimE(μi) × dim

( ∞⋃
n=1

Ker(λI − Bi)n
)]

.

Now, dim
(⋃∞

n=1 Ker(λI−Bi)n
)

is just the algebraic multiplicity of λ as an eigenvalue
of the 3 × 3 matrix Bi. Writing

H(μ) = H(ũ; μ) Δ= det
{
μ I− Φ−1

u (ũ)Gu(ũ)
}

= det
{
(μ− μi)I + (1 + μi)Bi

}
,(4.2)

we easily see that λ = (μi−μ)/(1+μi) is an eigenvalue of Bi if and only if H(μ) = 0.
Moreover, if H(μi) �= 0, then the number of negative eigenvalues (counting algebraic
multiplicity) of Bi is odd if and only if H(μi) < 0. Therefore,

σ(λ) = dimEλ =
∑

i≥1, H(μi)<0

dimE(μi) (mod 2).

As a consequence, we have the following proposition.
Proposition 1. Suppose that, for all i ≥ 1, H(μi) �= 0. Then

index(F(·), ũ) = (−1)γ , where γ =
∑

i≥1, H(μi)<0

dimE(μi).

To facilitate our computation of index(F(·), ũ), we need to determine the sign
of H(μi). In particular, as the aim of this paper is to study the existence of station-
ary patterns of (1.6) with respect to the cross diffusion coefficient d4 and diffusion
coefficient d1, we will concentrate on the dependence of H(μi) on d4 and d1. At
this point, we note that H(μ) = det{Φ−1

u (ũ)} det{μΦu(ũ) − Gu(ũ)}. Since we
have already established that detΦ−1

u (ũ) is positive, we will need only to consider
det{μΦu(ũ) − Gu(ũ)}.

As

Φu(ũ) =

⎛
⎜⎜⎜⎜⎝

d1 0 0

0 d2 +
d4

σ + w̃2
− 2d4ṽw̃

(σ + w̃2)2

0 0 d3

⎞
⎟⎟⎟⎟⎠ ,

we have

det{μΦu(ũ) − Gu(ũ)} = C3(σ, d1, d4)μ3 + C2(σ, d1, d4)μ2 + C1(σ, d1, d4)μ(4.3)
+ k(b+mε)ũw̃

Δ= C(σ, d1, d4; μ),
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where

C3(σ, d1, d4) = d1d3

(
d2 +

d4

σ + w̃2

)
,

C2(σ, d1, d4) = (md1 + d3ũ)
(
d2 +

d4

σ + w̃2

)
+ d1d3 − bd1

2d4ṽw̃

(σ + w̃2)2
,

C1(σ, d1, d4) = mũ
(
d2 +

d4

σ + w̃2

)
+ d3ũ− bũ

2d4ṽw̃

(σ + w̃2)2
+ εkd3ũw̃.

First we consider the dependence of C on d4. Let μ̃1(d4), μ̃2(d4), and μ̃3(d4) be the
three roots of C(σ, d1, d4; μ) = 0 with Re{μ̃1(d4)} ≤ Re{μ̃2(d4)} ≤ Re{μ̃3(d4)}. Then
μ̃1(d4)μ̃2(d4)μ̃3(d4) < 0, at least one of μ̃1(d4), μ̃2(d4), μ̃3(d4) is real and negative,
and the product of the other two is positive.

Consider the following limits:

lim
d4→∞

C3(σ, d1, d4)
d4

=
d1d3

σ + w̃2

Δ= a3(σ, d1),

lim
d4→∞

C2(σ, d1, d4)
d4

=
1

σ + w̃2

(
md1 + d3ũ− 2bd1

ṽw̃

σ + w̃2

)
Δ= a2(σ, d1),

lim
d4→∞

C1(σ, d1, d4)
d4

=
ũ[m(σ + w̃2) − 2bṽw̃]

(σ + w̃2)2
=
mũ(σ − w̃2)
(σ + w̃2)2

Δ= a1(σ).

Therefore, a1(σ) < 0 when σ < w̃2. In the following, we restrict our attention to
0 < σ < w̃2. In this range, a1(σ) < 0, and C1(σ, d1, d4) < 0 for all sufficiently large
d4. Note that

lim
d4→∞

C(σ, d1, d4; μ)
d4

= a3(σ, d1)μ3 + a2(σ, d1)μ2 + a1(σ)μ

= μ[a3(σ, d1)μ2 + a2(σ, d1)μ+ a1(σ)],

and a1(σ) < 0 < a3(σ, d1). A continuity argument shows that, when d4 is large,
μ̃1(d4) is real and negative. Furthermore, as μ̃2(d4)μ̃3(d4) > 0, μ̃2(d4) and μ̃3(d4) are
real and positive, and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
d4→∞

μ̃1(d4) =
−a2(σ, d1) −

√
a2
2(σ, d1) − 4a1(σ)a3(σ, d1)
2a3(σ, d1)

< 0,

lim
d4→∞

μ̃2(d4) = 0,

lim
d4→∞

μ̃3(d4) =
−a2(σ, d1) +

√
a2
2(σ, d1) − 4a1(σ)a3(σ, d1)
2a3(σ, d1)

Δ= μ̃ > 0.

(4.4)

Thus we have the following proposition.
Proposition 2. Assume that 0 < σ < w̃2. Then there exists a positive number

d∗4 such that, when d4 ≥ d∗4, the three roots μ̃1(d4), μ̃2(d4), μ̃3(d4) of C(σ, d1, d4; μ) = 0
are all real and satisfy (4.4). Moreover, for all d4 ≥ d∗4,⎧⎪⎪⎨

⎪⎪⎩

−∞ < μ̃1(d4) < 0 < μ̃2(d4) < μ̃3(d4),

C(σ, d1, d4; μ) < 0 when μ ∈ (−∞, μ̃1(d4)) ∪ (μ̃2(d4), μ̃3(d4)),

C(σ, d1, d4; μ) > 0 when μ ∈ (μ̃1(d4), μ̃2(d4)) ∪ (μ̃3(d4), ∞).

(4.5)
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Next we consider the dependence of C on d1. In this case, we consider the limits

lim
d1→∞

C3(σ, d1, d4)
d1

= d3

(
d2 +

d4

σ + w̃2

)
Δ= b3(σ, d4),

lim
d1→∞

C2(σ, d1, d4)
d1

= md2 + d3 +
md4

(σ + w̃2)2
(σ − w̃2) Δ= b2(σ, d4),

lim
d1→∞

C1(σ, d1, d4)
d1

= 0,

lim
d1→∞

C(σ, d1, d4; μ)
d1

= μ2[b3(σ, d4)μ+ b2(σ, d4)].

When the parameters satisfy b2(σ, d4) < 0, i.e.,

md2 + d3 +
mσd4

(σ + w̃2)2
<

mw̃2d4

(σ + w̃2)2
,(4.6)

one can establish the following similarly to Proposition 2.
Proposition 3. Assume that (4.6) holds. Then there exists a positive constant d∗1

such that, when d1 ≥ d∗1, the three roots μ̄1(d1), μ̄2(d1), μ̄3(d1) of C(σ, d1, d4; μ) = 0
are all real and satisfy limd1→∞ μ̄1(d1) = limd1→∞ μ̄2(d1) = 0 and

lim
d1→∞

μ̄3(d1) =
−b2(σ, d4)
b3(σ, d4)

Δ= μ̄ > 0.(4.7)

Moreover, when d1 ≥ d∗1, we have
⎧⎪⎪⎨
⎪⎪⎩

−∞ < μ̄1(d1) < 0 < μ̄2(d1) < μ̄3(d1),

C(σ, d1, d4; μ) < 0 when μ ∈ (−∞, μ̄1(d1)) ∪ (μ̄2(d1), μ̄3(d1)),

C(σ, d1, d4; μ) > 0 when μ ∈ (μ̄1(d1), μ̄2(d1)) ∪ (μ̄3(d1), ∞).

(4.8)

Remark 2. Assume that σ < w̃2. If (i) d4 is large, or (ii) d4 is positive and d2, d3

are sufficiently small, then the inequality (4.6) holds.

5. A priori estimates. The main purpose of this section is to give a priori
positive upper and lower bounds for the positive solutions to (4.1). For this, we shall
make use of the following two results.

Proposition 4 (Harnack inequality [21]). Let z ∈ C2(Ω) ∩ C1(Ω̄) be a positive
solution to Δz(x) + c(x)z(x) = 0, where c ∈ C(Ω̄), satisfying the homogeneous Neu-
mann boundary condition. Then there exists a positive constant C which depends only
on B where ‖c‖∞ ≤ B such that maxΩ̄ z ≤ CminΩ̄ z.

Proposition 5 (maximum principle [25]). Suppose that g ∈ C(Ω̄) and bj ∈
C(Ω̄), j = 1, 2, . . . , N.

(i) If z ∈ C2(Ω) ∩ C1(Ω̄) satisfies

Δz(x) +
N∑
j=1

bj(x)zxj + g(x) ≥ 0 in Ω,
∂z

∂ν

∣∣∣
∂Ω

≤ 0,

and z(x0) = maxΩ̄ z, then g(x0) ≥ 0.
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(ii) If z ∈ C2(Ω) ∩ C1(Ω̄) satisfies

Δz(x) +
N∑
j=1

bj(x)zxj + g(x) ≤ 0 in Ω,
∂z

∂ν

∣∣∣
∂Ω

≥ 0,

and z(x0) = minΩ̄ z, then g(x0) ≤ 0.
For clarity, we write the problem (4.1) explicitly:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1Δu = au− u2 − εuv − uw, x ∈ Ω,

−Δ
(
d2v +

d4v

σ + w2

)
= kuw − v, x ∈ Ω,

−d3Δw = bv −mw, x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω.

(5.1)

In the rest of this section, we fix the parameters a, b, k,m, ε, and σ and estimate
the upper and lower positive bounds of positive solutions to (5.1) with respect to
the diffusion and cross diffusion coefficients di. The generic constants C,Ci to be
used below will depend on the parameters a, b, k,m, ε, and σ. As they are fixed, this
dependence will not be stated explicitly.

Proposition 6. Let d and d∗ be two fixed positive constants. Then there is a
positive constant C(d, d∗) such that, for any d1, d2, d3 ≥ d, and 0 ≤ d4 ≤ d∗, every
possible positive solution (u, v, w) of (5.1) satisfies

‖u, v, w‖C2+α(Ω̄) ≤ C(d, d∗).(5.2)

Proof. We first prove the estimate

max
Ω̄

u, max
Ω̄

v, max
Ω̄

w ≤ C(d, d∗).(5.3)

Applying the maximum principle to the equation of u, it is directly deduced that
maxΩ̄ u ≤ a. If the estimate (5.3) is not true, then there exist (d1n, d2n, d3n, d4n)
satisfying d1n, d2n, d3n ≥ d, and 0 ≤ d4n ≤ d∗, and a corresponding positive solution
(un, vn, wn) of (5.1) with (d1, d2, d3, d4) = (d1n, d2n, d3n, d4n), such that

max
Ω̄

vn + max
Ω̄

wn → ∞ as n→ ∞.(5.4)

Applying the maximum principle to the equation of wn, we have

max
Ω̄

wn ≤ (b/m)max
Ω̄

vn.(5.5)

Let ϕn = d2nvn + d4nvn

σ+w2
n

and x0 ∈ Ω̄ be such that ϕn(x0) = maxΩ̄ ϕn. Applying
the maximum principle to the equation of vn, we have vn(x0) ≤ kun(x0)wn(x0) ≤
kamaxΩ̄wn. Hence,

d2n max
Ω̄

vn ≤ max
Ω̄

ϕn = ϕn(x0) = d2nvn(x0) +
d4nvn(x0)
σ + w2

n(x0)

≤ vn(x0)
(
d2n +

d∗

σ

)
≤ kamax

Ω̄
wn

(
d2n +

d∗

σ

)
,



PREY-PREDATOR MODEL WITH STAGE STRUCTURE 609

which implies that

max
Ω̄

vn ≤ ka

(
1 +

d∗

σd

)
max

Ω̄
wn.(5.6)

It follows from (5.4)–(5.6) that limn→∞ maxΩ̄ vn = limn→∞ maxΩ̄ wn = ∞. Set
v̂n = vn

‖vn‖∞
and ŵn = wn

‖wn‖∞
. Then (un, v̂n, ŵn) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1nΔun = un
[
a− un − ε‖vn‖∞v̂n − ‖wn‖∞ŵn

]
, x ∈ Ω,

−Δ
(
v̂n +

d4nv̂n
d2n(σ + ‖wn‖2

∞ŵ
2
n)

)
=

1
d2n

(
kun

‖wn‖∞
‖vn‖∞

ŵn − v̂n

)
, x ∈ Ω,

−Δŵn =
1
d3n

(
b
‖vn‖∞
‖wn‖∞

v̂n −mŵn

)
, x ∈ Ω,

‖v̂n‖∞ = ‖ŵn‖∞ = 1,
∂un
∂ν

=
∂v̂n
∂ν

=
∂ŵn
∂ν

= 0, x ∈ ∂Ω.

(5.7)

In view of (5.5) and (5.6) we have A‖vn‖∞ ≤ ‖wn‖∞ ≤ B‖vn‖∞ for some positive
constants A and B. Since 0 ≤ un ≤ a and 0 ≤ v̂n, ŵn ≤ 1, subject to a subsequence
we may assume that ‖vn‖∞/‖wn‖∞ → θ for some positive constant θ, and

din → di with d1, d2, d3 ≥ d, and 0 ≤ d4 ≤ d∗,

un → u strongly in Lp(Ω), v̂n → v̂ weakly in Lp(Ω),
ϕ̂n → ϕ̂, ŵn → ŵ weakly in W 2,p(Ω), and ‖ŵ‖∞ = 1,

where p > N and ϕ̂n = v̂n+ d4nv̂n

d2n(σ+‖wn‖2
∞ŵ2

n) . Hence ϕ̂, ŵ ∈ C1+α(Ω̄) for some α > 0,
and ϕ̂n → ϕ̂, ŵn → ŵ in C1+α(Ω̄).

If d3 = ∞, then ŵ satisfies

−Δŵ = 0 in Ω,
∂ŵ

∂ν
= 0 on ∂Ω, ‖ŵ‖∞ = 1,

which implies that ŵ = 1. If d3 <∞, then ŵ satisfies ‖ŵ‖∞ = 1 and

−d3Δŵ = bθv̂ −mŵ in Ω,
∂ŵ

∂ν
= 0 on ∂Ω.(5.8)

By the strong maximum principle and the Hopf boundary lemma for the W 2,N(Ω)
solution (see [15, Theorem 9.6] and [12, Theorem 2.11]), we see that ŵ > 0 on Ω̄.

The above analysis shows that, for both cases d3 = ∞ and d3 <∞, we have ŵ > 0
on Ω̄. Hence, there is a positive constant δ such that ŵ ≥ δ on Ω̄. Consequently,
ŵn ≥ δ/2 on Ω̄ for all large n. Since ‖wn‖∞ → ∞ as n → ∞, from the equation of
un in (5.7) we have that, for large n,

⎧⎪⎪⎨
⎪⎪⎩

−d1nΔun = un
[
a− un − ε‖vn‖∞v̂n − ‖wn‖∞ŵn

]
≤ un

[
a− (δ/2)‖wn‖∞

]
< 0, x ∈ Ω,

∂un
∂ν

= 0, x ∈ ∂Ω.

This is impossible since
∫
Ω

Δundx = 0.
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Now, we prove the estimate (5.2). Due to (5.3), by the regularity for elliptic
equations we have that u, w, and v

[
d2 + d4/(σ + w2)

]
belong to C1+α(Ω̄), and the

C1+α(Ω̄) norms of them depend only on the parameters d, d∗ and the parameters
a, b, k,m, ε, σ. It follows that v ∈ C1+α(Ω̄) and ‖v‖C1+α(Ω̄) depends only on the
parameters d, d∗ and a, b, k,m, ε, σ. Using the regularity of elliptic equations again,
the estimate (5.2) follows.

In the following we estimate the positive lower bound of positive solutions. We
first state a lemma whose proof we shall omit.

Lemma 1. Let din ∈ (0,∞), i = 1, 2, 3, 4, and (un, vn, wn) be the correspond-
ing positive solution of (5.1) with di = din. Assume that din → di ∈ [0,∞] and
(un, vn, wn) → (u∗, v∗, w∗) uniformly on Ω̄. If u∗, v∗, and w∗ are constants, then
(u∗, v∗, w∗) must satisfy a− u∗ − εv∗ −w∗ = 0, ku∗w∗ − v∗ = 0, and bv∗ −mw∗ = 0.
In particular, if u∗, v∗, and w∗ are positive constants, then (u∗, v∗, w∗) = (ũ, ṽ, w̃),
the unique positive constant solution of (5.1).

Proposition 7. Let d and d∗ be two fixed positive constants. Then there is a
positive constant C(d, d∗) such that, for any d1, d2, d3 ≥ d, and 0 ≤ d4 ≤ d∗, every
possible positive solution (u, v, w) of (5.1) satisfies

min
Ω̄
u, min

Ω̄
v, min

Ω̄
w ≥ 1

C(d, d∗)
.

Proof. If the conclusion does not hold, then there exist a sequence {(d1n, d2n, d3n,
d4n)} which satisfies d1n, d2n, d3n ≥ d, and 0 ≤ d4n ≤ d∗ and a sequence of corre-
sponding positive solutions (un, vn, wn) of (5.1) with di = din, such that min{minΩ̄ un,
minΩ̄ vn, minΩ̄wn} → 0. As d1n, d2n, d3n ≥ d, subject to a subsequence, we may as-
sume that din → di ∈ [d,∞] for i = 1, 2, 3, and d4n → d4 ∈ [0, d∗]. By (5.2), we
may also assume that (un, vn, wn) → (u, v, w) in [C2+α(Ω̄)]3 for some nonnegative
functions u, v, w. It is easy to see that (u, v, w) also satisfies the estimate (5.2), and
minΩ̄ u = 0 or minΩ̄ v = 0 or minΩ̄w = 0. Moreover, we observe that, if d1, d2, d3 <∞,
then (u, v, w) satisfies (5.1). If d1 = ∞, as (un, vn, wn) satisfies (5.3), then u satisfies
−Δu = 0 in Ω and ∂u/∂ν = 0 on Ω̄, and hence u is constant. Analogous conclusions
hold for d2 and d3.

Next we derive a contradiction for every possible case.

Step 1. We consider the case d1, d2, d3 <∞. First, in view of (5.3), the Harnack
inequality shows minΩ̄ u = 0 implies that u = 0 on Ω̄. In that case, by the strong
maximum principle and the Hopf boundary lemma, it follows that v = w = 0 on Ω̄.
But this is a contradiction to Lemma 1. Thus, minΩ̄ u > 0.

Next, we show that minΩ̄ v = minΩ̄w = 0. By our assumption, at least one of
these is 0. If minΩ̄w = 0, we denote w(x0) = minΩ̄ w. By the maximum principle we
have bv(x0) ≤ mw(x0) = 0, and so minΩ̄ v = 0. Conversely, if v(x1) = minΩ̄ v = 0,
then v(x1)[d2 + d4/(σ + w2(x1))] = 0 = minΩ̄ v[d2 + d4/(σ + w2)]. Applying the
maximum principle to the second equation of (5.1), we have ku(x1)w(x1) ≤ v(x1) = 0.
As u(x1) > 0, we conclude that w(x1) = 0, and so minΩ̄ w = 0. In conclusion, we
always have minΩ̄ v = minΩ̄w = 0; that is, limn→∞ minΩ̄ vn = limn→∞ minΩ̄ wn = 0.

Define

v̂n =
vn

‖vn‖∞ + ‖wn‖∞
, ŵn =

wn
‖vn‖∞ + ‖wn‖∞

.(5.9)
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Then (un, v̂n, ŵn, wn) satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1nΔun = un(a− un − εvn − wn), x ∈ Ω,

−Δ
(
d2nv̂n +

d4nv̂n
σ + w2

n

)
= kunŵn − v̂n, x ∈ Ω,

−d3nΔŵn = bv̂n −mŵn, x ∈ Ω,

∂un
∂ν

=
∂v̂n
∂ν

=
∂ŵn
∂ν

= 0, x ∈ ∂Ω.

Similarly to the above, we can prove that there exist a subsequence of {(v̂n, ŵn)},
denoted by itself, and nonnegative functions v̂ and ŵ, such that (v̂n, ŵn) → (v̂, ŵ)
in [C2+α(Ω̄)]2 and ‖v̂‖∞ + ‖ŵ‖∞ = 1. Moreover, if ‖vn‖∞ + ‖wn‖∞ ≥ δ for some
constant δ > 0, then (u, v̂, ŵ, w) satisfies minΩ̄ v̂ = minΩ̄ ŵ = 0 and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d1Δu = u(a− u− εv − w), x ∈ Ω,

−Δ
(
d2v̂ +

d4v̂

σ + w2

)
= kuŵ − v̂, x ∈ Ω,

−d3Δŵ = bv̂ −mŵ, x ∈ Ω,

∂u

∂ν
=
∂v̂

∂ν
=
∂ŵ

∂ν
= 0, x ∈ ∂Ω.

(5.10)

If limn→∞
(
‖vn‖∞ + ‖wn‖∞

)
= 0, then v = w = 0 and (u, v̂, ŵ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−d1Δu = u(a− u), x ∈ Ω,

−(d2 + d4/σ)Δv̂ = kuŵ − v̂, x ∈ Ω,

−d3Δŵ = bv̂ −mŵ, x ∈ Ω,

∂u

∂ν
=
∂v̂

∂ν
=
∂ŵ

∂ν
= 0, x ∈ ∂Ω.

(5.11)

In the case where (5.10) holds, writing the equation of ŵ as

−d3Δŵ +mŵ = bv̂ ≥ 0 in Ω, ∂ŵ/∂ν = 0 on ∂Ω,

using minΩ̄ ŵ = 0, and applying the strong maximum principle and the Hopf boundary
lemma, we derive that ŵ = 0, and in turn v̂ = 0. This is a contradiction to ‖v̂‖∞ +
‖ŵ‖∞ = 1.

When (5.11) holds, as u > 0, from the equation of u we conclude that u = a.
Thus we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(d2 + d4/σ)Δv̂ = kaŵ − v̂, x ∈ Ω,

−d3Δŵ = bv̂ −mŵ, x ∈ Ω,

∂v̂

∂ν
=
∂ŵ

∂ν
= 0, x ∈ ∂Ω.

(5.12)

Since the parameters a, b, k,m are positive, and v̂ and ŵ are nonnegative and satisfy
‖v̂‖∞ + ‖ŵ‖∞ = 1, by the strong maximum principle and the Hopf boundary lemma,
we find that v̂ and ŵ are positive functions. Let xi, yi ∈ Ω̄ be such that v̂(x1) = minΩ̄ v̂,
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v̂(y1) = maxΩ̄ v̂, ŵ(x2) = minΩ̄ ŵ, and ŵ(y2) = maxΩ̄ ŵ. Applying the maximum
principle to (5.13), we have v̂(x1) ≥ kaŵ(x1) ≥ kaŵ(x2), v̂(y1) ≤ kaŵ(y1) ≤ kaŵ(y2),
mŵ(x2) ≥ bv̂(x2) ≥ bv̂(x1), mŵ(y2) ≤ bv̂(y2) ≤ bv̂(y1). Since v̂(x1) > 0, it follows
that m = abk, which is a contradiction to the condition m < abk.

Step 2. We now consider the remaining cases.
Since (un, vn, wn) satisfies

∫
Ω vndx = k

∫
Ω unwndx and m

∫
Ωwndx = b

∫
Ω vndx,

we have that ∫
Ω

vdx = k

∫
Ω

uwdx, m

∫
Ω

wdx = b

∫
Ω

vdx.(5.13)

(i) If d1 = ∞, then u = u∗ = constant. If u∗ = 0, from (5.13), we have in turn
that v = w = 0. This contradicts Lemma 1. So, u∗ > 0.

(ia) If d2, d3 < ∞, then since either minΩ̄ v = 0 or minΩ̄w = 0, similar to the
arguments of Step 1, we have that minΩ̄ v = minΩ̄ w = 0. Note that the functions
v̂n, ŵn defined by (5.9) satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δ
(
d2nv̂n +

d4nv̂n
σ + w2

n

)
= kunŵn − v̂n, x ∈ Ω,

−d3nΔŵn = bv̂n −mŵn, x ∈ Ω,

∂v̂n
∂ν

=
∂ŵn
∂ν

= 0, x ∈ ∂Ω.

(5.14)

Similar to the above, we may assume that (v̂n, ŵn) → (v̂, ŵ) in [C2+α(Ω̄)]2 for some
nonnegative functions v̂ and ŵ, and (v̂, ŵ) satisfies ‖v̂‖∞ + ‖ŵ‖∞ = 1.

If ‖vn‖∞ + ‖wn‖∞ ≥ δ for some constant δ > 0, then (v̂, ŵ) satisfies minΩ̄ v̂ =
minΩ̄ ŵ = 0 and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δ
(
d2v̂ +

d4v̂

σ + w2

)
= ku∗ŵ − v̂, x ∈ Ω,

−d3Δŵ = bv̂ −mŵ, x ∈ Ω,

∂v̂

∂ν
=
∂ŵ

∂ν
= 0, x ∈ ∂Ω.

Similar to the discussion of the problem (5.10) we can get a contradiction. If limn→∞(
‖vn‖∞ + ‖wn‖∞

)
= 0, then v = w = 0 and (v̂, ŵ) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(d2 + d4/σ)Δv̂ = ku∗ŵ − v̂, x ∈ Ω,

−d3Δŵ = bv̂ −mŵ, x ∈ Ω,

∂v̂

∂ν
=
∂ŵ

∂ν
= 0, x ∈ ∂Ω.

(5.15)

As (u, v, w) = (u∗, 0, 0), by Lemma 1, we have u∗ = a. Thus, (5.15) is exactly
(5.12). Similar to the arguments of the last part of Step 1, we arrive at m = abk—a
contradiction.

Similarly, we can derive contradictions for all the other cases.

6. Nonexistence of nonconstant positive solutions of (5.1) without cross
diffusion. In this section we shall prove that, when d4 = 0, the problem (5.1) has no
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nonconstant positive solution if d1 is large. When d4 = 0, (5.1) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−d1Δu = au− u2 − εuv − uw, x ∈ Ω,

−d2Δv = kuw − v, x ∈ Ω,

−d3Δw = bv −mw, x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω.

(6.1)

The main result of this section is the following theorem.
Theorem 4. Let the parameters d2, d3, a, b, k,m, and ε be fixed positive constants,

and m < abk. Then there exists a positive constant d̂1 such that, when d1 ≥ d̂1, (6.1)
has no nonconstant positive solutions.

To prove this theorem, we will make use of the following lemma, which can be
proved using results and methods of section 5. We shall omit the details.

Lemma 2. Let (u, v, u) be the positive solution of (6.1). Then we have

lim
d1→∞

(u, v, w) = (ũ, ṽ, w̃) in [C2(Ω̄)]3,(6.2)

where (ũ, ṽ, w̃) is the positive constant solution of (6.1) given by (1.4).
Proof of Theorem 4. Define W 2,2

ν (Ω) = {u ∈ W 2,2(Ω) : ∂u
∂ν |∂Ω = 0} and

W 2,2
ν,0 (Ω) = W 2,2

ν (Ω) ∩ L2
0(Ω), where L2

0(Ω) = {u ∈ L2(Ω) :
∫
Ωudx = 0}. Denote

ρ = d−1
1 and decompose u = h+ z with h ∈ R

1 and z ∈ W 2,2
ν,0 . Let

F (ρ, h, z, v, w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Ω

(h+ z)(a− h− z − εv − w)dx

Δz + ρ(h+ z)(a− h− z − εv − w)

d2Δv − v + k(h+ z)w

d3Δw −mw + bv

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Then F : R2 ×W 2,2
ν,0 (Ω) × [W 2,2

ν (Ω)]2 → R1 × L2
0(Ω) × [L2(Ω)]2, and, for any ρ > 0,

(u, v, w) solves (6.1) if and only if F (ρ, h, z, v, w) = 0. It is obvious that, for any ρ,
we have F (ρ, ũ, 0, ṽ, w̃) = 0.

Let Ψ be the Fréchet derivative of F at (0, ũ, 0, ṽ, w̃) with respect to (h, z, v, w).
A direct computation yields

Ψ(h, z, v, w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ũ
∫

Ω

(h+ z + εv + w)dx

Δz

d2Δv − v + kw̃(h+ z) + kũw

d3Δw −mw + bv

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We prove that Ψ is injective and surjective: It suffices to show that for any given
(h1, z1, v1, w1) ∈ R1 × L2

0(Ω) × [L2(Ω)]2, the equation Ψ(h, z, v, w) = (h1, z1, v1, w1)
has a unique solution (h, z, v, w) ∈ R1 ×W 2,2

ν,0 (Ω) × [W 2,2
ν (Ω)]2, or equivalently, the
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following system has a unique solution:∫
Ω

(h+ z + εv + w)dx = −h1

ũ
,(6.3)

Δz = z1 in Ω,
∂z

∂ν

∣∣∣
∂Ω

= 0,
∫

Ω

zdx = 0,(6.4)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2Δv − v + kw̃(h+ z) + (m/b)w = v1, x ∈ Ω,

d3Δw −mw + bv = w1, x ∈ Ω,

∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω.

(6.5)

Since z1 ∈ L2
0(Ω), (6.4) has a unique solution z. From (6.5) we have that

⎧⎨
⎩

Δ(bd2v + d3w) + bkw̃(h+ z) = bv1 + w1, x ∈ Ω,

∂(bd2v + d3w)
∂ν

= 0, x ∈ ∂Ω.
(6.6)

Since
∫
Ω zdx = 0, (6.6) has a solution if and only if h satisfies

bkw̃h|Ω| =
∫

Ω

(bv1 + w1)dx.(6.7)

With such an h, which is obviously uniquely determined, (6.6) has a solution of the
form bd2v+d3w = g(x)+λ, where λ is a constant (which will be uniquely determined
later) and g(x) is uniquely determined and satisfies

∫
Ω
g(x)dx = 0. The equation of

w in (6.5) now becomes

d3Δw −
(
m+

d3

d2

)
w +

g + λ

d2
= w1 in Ω,

∂w

∂ν
= 0 on ∂Ω.

For a given constant λ, this problem has a unique solution w = wλ(x) that satisfies
∫

Ω

w1dx+
(
m+

d3

d2

)∫
Ω

wdx =
1
d2

∫
Ω

g(x)dx +
λ

d2
|Ω| =

λ

d2
|Ω|.(6.8)

As a result, we have
∫

Ω

(εv + w)dx =
∫

Ω

(
ε
g(x) + λ− d3w

bd2
+ w

)
dx

=
λε

bd2
|Ω| +

(
1 − εd3

bd2

)∫
Ω

wdx

= λ
(b+mε)|Ω|
b(md2 + d3)

− d2

md2 + d3

(
1 − εd3

bd2

)∫
Ω

w1dx.

Substituting this identity into (6.3) and making use of (6.7), we find that λ is uniquely
determined by

−h1

ũ
− 1
bkw̃

∫
Ω

(bv1 + w1)dx = λ
(b+mε)|Ω|
b(md2 + d3)

− d2

md2 + d3

(
1 − εd3

bd2

)∫
Ω

w1dx,

and thus w and hence v are uniquely determined. In conclusion, for any given
(h1, z1, v1, w1) ∈ R1 × L2

0(Ω) × [L2(Ω)]2, the equation Ψ(h, z, v, w) = (h1, z1, v1, w1)
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has a unique solution. This proves that Ψ is a one-to-one and surjective map between
two Banach spaces. Therefore, Ψ−1 exists and is a bounded linear operator.

To complete the proof of Theorem 4, we note that, by the implicit function
theorem, there is a constant δ > 0 such that, for all 0 < ρ < δ, in a small neighborhood
of (ũ, 0, ṽ, w̃), the equation F (ρ, h, z, v, w) = 0 has a unique solution, which must be
(ũ, 0, ṽ, w̃). Correspondingly, when d1 is large, in a small neighborhood of (ũ, ṽ, w̃),
the problem (6.1) has only the constant solution (ũ, ṽ, w̃). This fact, combined with
Lemma 2, concludes the proof.

7. Existence of stationary patterns for the PDE system with cross dif-
fusion (1.6). In this section we shall discuss the existence of nonconstant positive
solutions to (5.1). These solutions are not close to a constant solution and are ob-
tained for large cross diffusion coefficient d4, or for large diffusion coefficient d1 (and
d4 > 0), with the other parameters d2, d3, a, b, k,m, ε, and σ suitably fixed. Those
stationary patterns which are close to a positive constant solution are discussed in
the next section, through bifurcation analysis. Our results here are as follows.

Theorem 5. Let the parameters d1, d2, d3, a, b, k,m, ε, and σ be fixed such that
m < abk and σ < w̃2. Let μ̃ be given by the limit (4.4). If μ̃ ∈ (μn, μn+1) for some
n ≥ 2 and the sum

∑n
i=2 dimE(μi) is odd, then there exists a positive constant d∗4

such that, for d4 ≥ d∗4, (5.1) has at least one nonconstant positive solution.
Theorem 6. Let the parameters d2, d3, d4, a, b, k,m, ε, and σ be fixed so that

m < abk and (4.6) holds. Let μ̄ be given by the limit (4.7). If μ̄ ∈ (μn, μn+1) for
some n ≥ 2 and the sum

∑n
i=2 dimE(μi) is odd, then there exists a positive constant

d∗1 such that, for d1 ≥ d∗1, (5.1) has at least one nonconstant positive solution.
Remark 3. The allowable values of μ̃ and μ̄ in Theorems 5 and 6 may cover a

wide range as the parameters vary. For example, μ̃ is large when d1 and d3 are small
while all the other parameters in Theorem 5 are fixed; μ̄ is large when d3 is small and
d4 is large while all the other parameters in Theorem 6 are fixed and the required
conditions are satisfied. Another way to see that the conditions μ̃ ∈ (μn, μn+1) and
μ̄ ∈ (μn, μn+1) are easily satisfied is to fix all the parameters but vary the underlying
domain Ω. For example, if we replace Ω by sΩ = {sx : x ∈ Ω}, then μi is changed to
s−2μi, and therefore the above conditions for μ̃ and μ̄ are satisfied, respectively, for
all s in a certain bounded interval.

Remark 4. Theorems 4 and 6 imply that when d1 is large, stationary patterns
arise only when cross diffusion is present, that is, d4 > 0.

As the proofs of Theorems 5 and 6 are similar, we will prove only Theorem 6.
Proof of Theorem 6. By Proposition 3 and our assumption on μ̄, there exists a

positive constant d∗1 such that, when d1 ≥ d∗1, (4.8) holds and

μ̄1(d1) < 0 = μ1 < μ̄2(d1) < μ2, μ̄3(d1) ∈ (μn, μn+1).(7.1)

We shall prove that for any d1 ≥ d∗1, (5.1) has at least one nonconstant positive
solution. The proof, which is by contradiction, is based on the homotopy invariance
of the topological degree.

Suppose on the contrary that the assertion is not true for some d1 = d̄1 ≥ d∗1. In
what follows we fix d1 = d̄1.

For t ∈ [0, 1], define Φ(t; u) =
(
[td1 + (1 − t)d̂1]u, d2v + td4v/(σ + w2), d3w

)T ,
and consider the problem⎧⎨

⎩
−ΔΦ(t; u) = G(u), x ∈ Ω,

∂u
∂ν

= 0, x ∈ ∂Ω,
(7.2)



616 YIHONG DU, PETER Y. H. PANG, AND MINGXIN WANG

where the positive constant d̂1 is determined by Theorem 4. Then u is a positive
nonconstant solution of (5.1) if and only if it is such a solution of (7.2) for t = 1. It
is obvious that ũ is the unique constant positive solution of (7.2) for any 0 ≤ t ≤ 1.
As we observed in section 4, for any 0 ≤ t ≤ 1, u is a positive solution of (7.2) if and
only if

F(t; u) Δ= u− (I − Δ)−1
{
Φ−1

u (t; u)[G(u) + ∇uΦuu(t; u)∇u] + u
}

= 0 in Y+.

It is obvious that F(1; u) = F(u). Theorem 4 shows that ũ is the only solution of
F(0; u) = 0 in Y+. By a direct computation,DuF(t; ũ) = I−(I−Δ)−1{Φ−1

u (t; ũ)Gu(ũ)
+I}. In particular, DuF(0; ũ) = I − (I − Δ)−1{D−1Gu(ũ) + I} and DuF(1; ũ) =
I− (I − Δ)−1{Φ−1

u (ũ)Gu(ũ) + I} = DuF(ũ), where D = diag(d̂1, d2, d3). From (4.2)
and (4.3) we see that

H(μ) = det{Φ−1
u (ũ)}C(σ, d1, d4;μ).(7.3)

In view of (4.8) and (7.1), it follows from (7.3) that

⎧⎪⎪⎨
⎪⎪⎩

H(μ1) = H(0) > 0,

H(μi) < 0, 2 ≤ i ≤ n,

H(μi) > 0, i ≥ n+ 1.

Therefore, zero is not an eigenvalue of the matrix μiI − Φ−1
u (ũ)Gu(ũ) for all i ≥ 1.

Applying Proposition 1, we have that

γ =
∑

i≥1,H(μi)<0

dimE(μi) =
n∑
i=2

dimE(μi), which is odd,

and

index(F(1; ·), ũ) = (−1)γ = −1.(7.4)

By Theorem 3 and its proof (where B3 > 0), we can easily show that

index(F(0; ·), ũ) = (−1)0 = 1.(7.5)

Now, by Propositions 6 and 7, there exists a positive constant C such that, for
all 0 ≤ t ≤ 1, the positive solutions of (7.2) satisfy 1/C < u, v, w < C. Therefore,
F(t; u) �= 0 on ∂B(C) for all 0 ≤ t ≤ 1. By the homotopy invariance of the topological
degree,

deg (F(1; ·), 0, B(C)) = deg (F(0; ·), 0, B(C)).(7.6)

On the other hand, by our supposition, both equations F(1; u) = 0 and F(0; u) =
0 have only the positive solution ũ in B(C), and hence, by (7.4) and (7.5), deg (F(0; ·),
0, B(C)) = index(F(0; ·), ũ) = 1 and deg (F(1; ·), 0, B(C)) = index(F(1; ·), ũ) =
−1. This contradicts (7.6), and the proof is complete.
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8. Bifurcation. In this section, we discuss the bifurcation of nonconstant posi-
tive solutions of (5.1) with respect to the cross diffusion coefficient d4 and the diffusion
coefficient d1.

In the consideration of bifurcation with respect to d4, we recall that, for a constant
solution u∗, (d̃4; u∗) ∈ (0, ∞)×X is a bifurcation point of (5.1) if, for any δ ∈ (0, d̃4),
there exists d4 ∈ [d̃4 − δ, d̃4 + δ] such that (5.1) has a nonconstant positive solution
close to u∗. Otherwise, we say that (d̃4; u∗) is a regular point. Bifurcation and regular
points with respect to d1 are defined analogously.

We shall consider the bifurcation of (5.1) at the equilibrium points (d̃4; ũ), d̃4 > 0,
and (d̃1; ũ), d̃1 > 0, respectively, while all other parameters are fixed. Let Sp =
{μ1, μ2, μ3, . . .} and Σ = {μ > 0 | H(μ) = 0}, where H(μ) is as defined in (4.2). To
emphasize the dependence of H(μ) and Σ on d4 or d1, we write H(d4; μ) or H(d1; μ),
and Σd4(d4) or Σd1(d1), respectively. We note that for each d4 > 0 and d1 > 0, Σ
may have 0 or 2 elements.

The results of this section are contained in the following two theorems. Their
proofs are based on the topological degree arguments used earlier in this paper. We
shall omit them but refer the reader to similar treatments in [34].

Theorem 7 (bifurcation with respect to d4).

(1) If Sp ∩ Σd4(d̃4) = ∅, then (d̃4; ũ) is a regular point of (5.1).
(2) Suppose Sp∩Σd4(d̃4) �= ∅ and the positive roots of H(d̃4; μ) = 0 are all simple.

If the number of elements in Sp ∩ Σd4(d̃4) is odd, then (d̃4; ũ) is a bifurcation point
of (5.1). In this case, there exists an interval (α, β) ⊂ R+, where

(i) d̃4 = α < β <∞ and Sp ∩ Σd4(β) �= ∅, or
(ii) 0 < α < β = d̃4 and Sp ∩ Σd4(α) �= ∅, or
(iii) (α, β) = (d̃4,∞),

such that for every d4 ∈ (α, β), (5.1) admits a nonconstant positive solution.
Theorem 8 (bifurcation with respect to d1).

(1) If Sp ∩ Σd1(d̃1) = ∅, then (d̃1; ũ) is a regular point of (5.1).
(2) Suppose Sp∩Σd1(d̃1) �= ∅ and the positive roots of H(d̃1; μ) = 0 are all simple.

If the number of elements in Sp ∩ Σd1(d̃1) is odd, then (d̃1; ũ) is a bifurcation point
of (5.1). In this case, there exists an interval (c, d) ⊂ R+, where

(i) d̃1 = c < d <∞ and Sp ∩ Σd1(d) �= ∅, or
(ii) 0 < c < d = d̃1 and Sp ∩ Σd1(c) �= ∅, or
(iii) (c, d) = (d̃1, ∞), or
(iv) (c, d) = (0, d̃1),

such that for every d1 ∈ (c, d), (5.1) admits a nonconstant positive solution.

9. Discussion. In this paper, we have introduced a more realistic mathematical
model for a diffusive (spatially dependent) prey-predator system where the predator
has a stage structure comprising immature and mature members. In this model,
we have explicitly incorporated the interaction between the immature predator and
the prey (through increased intake by the mature predators), and the interaction
between the immature and the mature predator. In the latter interaction, we model
the tendency of the immature predator to stay close to the mature predator by a
cross diffusion. As a result, our model is a strongly coupled reaction-diffusion system,
which is mathematically more complex than systems used to model stage-structured
prey-predator behavior hitherto.

What is noteworthy about this model is that, as the cross diffusion term arises
naturally as a reflection of the most salient feature of the immature-mature interaction
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(namely, that the immature tends to stay close to the mature within a species), it
is precisely this cross diffusion that gives rise to stationary patterns for the model.
Indeed, we have shown that stationary patterns do not arise for the ODE (spatially
independent) model, nor the PDE model without cross diffusion.

We further remark that, besides capturing a salient biological behavior, this par-
ticular cross diffusion term is also significant from the mathematical point of view.
Indeed, we are able to show that, of all the possible cross diffusions in (a simplified
version of) this model (arising from various types of interactions between the different
species and subspecies), only this cross diffusion term causes Turing instability. We
therefore have the fortuitous situation where the biological and mathematical interests
converge on this cross diffusion term.

To be more precise, the following represents the most general form of cross diffu-
sions in the prey-predator model (1.5):

(9.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − div{K11(u)∇u +K12(u)∇v +K13(u)∇w} = G1(u), x ∈ Ω, t > 0,

vt − div{K22(u)∇v +K21(u)∇u +K23(u)∇w} = G2(u), x ∈ Ω, t > 0,

wt − div{K33(u)∇w +K31(u)∇u +K32(u)∇v} = G3(u), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) ≥ 0, v(x, 0) ≥ 0, w(x, 0) ≥ 0, x ∈ Ω,

where u and G are as in (1.6), and biological considerations require thatKij(u) satisfy
[28], [30, Ch.10]{

K11(u), K22(u), K33(u) > 0, K12(u), K13(u) ≥ 0,

K21(u), K23(u), K31(u), K32(u) ≤ 0.
(9.2)

A simpler version of (9.1) is the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut − Δ(d1u+ ud12(v) + ud13(w)) = G1(u), x ∈ Ω, t > 0,

vt − Δ(d2v + vd21(u) + vd23(w)) = G2(u), x ∈ Ω, t > 0,

wt − Δ(d3w + wd31(u) + wd32(v)) = G3(u), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

w(x, 0) ≥ 0, v(x, 0) ≥ 0, w(x, 0) ≥ 0, x ∈ Ω,

where dij are nonnegative C1 functions satisfying, according to (9.2), d′12(v), d′13(w) ≥
0, d′21(u), d′23(w), d′31(u), d′32(v) ≤ 0.

Our analysis along the lines of this paper for each dij revealed that d23(w) has
the most significant effect on the stability of ũ. Indeed, except for d23(w), each of the
other dij alone does not seem to cause instability of ũ.

Finally, we also remark that, while our choice of the cross diffusion term is mainly
mathematically motivated, as one of the simplest functions with the required property
d′23(w) ≤ 0 and also giving rise to Turing instability and stationary patterns, it also
reflects, as demonstrated earlier, the natural biological behavior of the immature and
mature predators. As mentioned in section 1, a slightly more general form of cross
diffusion can be adopted for essentially the same mathematical treatment.
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COEXISTENCE OF LIMIT CYCLES AND HOMOCLINIC LOOPS IN
A SIRS MODEL WITH A NONLINEAR INCIDENCE RATE∗
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Abstract. Recently, Ruan and Wang [J. Differential Equations, 188 (2003), pp. 135–163]
studied the global dynamics of a SIRS epidemic model with vital dynamics and a nonlinear saturated
incidence rate. Under certain conditions they showed that the model undergoes a Bogdanov–Takens
bifurcation; i.e., it exhibits saddle-node, Hopf, and homoclinic bifurcations. They also considered
the existence of none, one, or two limit cycles. In this paper, we investigate the coexistence of a limit
cycle and a homoclinic loop in this model. One of the difficulties is to determine the multiplicity
of the weak focus. We first prove that the maximal multiplicity of the weak focus is 2. Then
feasible conditions are given for the uniqueness of limit cycles. The coexistence of a limit cycle and a
homoclinic loop is obtained by reducing the model to a universal unfolding for a cusp of codimension
3 and studying degenerate Hopf bifurcations and degenerate Bogdanov–Takens bifurcations of limit
cycles and homoclinic loops of order 2.

Key words. degenerate Bogdanov–Takens bifurcation, degenerate Hopf bifurcation, limit cycle,
homoclinic loop, revised sign list
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1. Introduction. Periodic oscillations are common phenomena observed in the
incidence of many infectious diseases such as chickenpox, influenza, measles, mumps,
rubella, etc. (see Hethcote [10, 11], Hethcote and Levin [12], Hethcote, Stech, and van
den Driessche [13]). It is very important to understand such epidemic patterns in order
to introduce public health interventions and control the spread of diseases. Recent
studies have demonstrated that the incidence rate plays a crucial role in producing
periodic oscillations in epidemic models (Alexander and Moghadas [1, 2], Derrick and
van den Driessche [6], Hethcote and van den Driessche [14], Liu et al. [17, 18], Lizana
and Rivero [19], Moghadas [21], Moghadas and Alexander [22], Ruan and Wang [25],
Wang [26]).

In most epidemic models (see Anderson and May [3]), the incidence rate (the
number of new cases per unit time) takes the mass-action form with bilinear inter-
actions, namely, κS(t)I(t), where S(t) and I(t) are the numbers of susceptible and
infectious individuals at time t, respectively, and the constant κ is the probability of
transmission per contact. Epidemic models with such bilinear incidence rates usually
have at most one endemic equilibrium and do not exhibit periodicity; the disease
will be eradicated if the basic reproduction number is less than one and will per-
sist otherwise (Anderson and May [3], Hethcote [11]). There are many reasons for
using nonlinear incidence rates, and various forms of nonlinear incidence rates have
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been proposed recently. For example, in order to incorporate the effect of behavioral
changes, Liu, Levin, and Iwasa [18] used a nonlinear incidence rate of the form

(1.1) g(I)S =
κI�S

1 + αIh
,

where κI� measures the infection force of the disease, 1/(1+αIh) describes the inhibi-
tion effect from the behavioral change of the susceptible individuals when the number
of infectious individuals increases, �, h, and κ are all positive constants, and α is a
nonnegative constant. See also Alexander and Moghadas [1, 2], Derrick and van den
Driessche [6], Hethcote and van den Driessche [14], Moghadas [21], etc. Notice that
the bilinear interaction is a special case of (1.1) with α = 0 and � = 1.

The nonlinear function g(I) given by (1.1) includes three types. (a) Unbounded
incidence function: � > h. The case when � = h + 1 was considered by Hethcote
and van den Driessche [14]. The function is unbounded as the bilinear incidence
rate (see Figure 1(a)). (b) Saturated incidence function: � = h. The case when
� = h = 1, i.e., g(I) = κI/(1+αI), was proposed by Capasso and Serio [5] to describe
a “crowding effect” or “protection measures” in modeling the cholera epidemics in
Bari in 1973. A similar type of sigmoidal function was also used to represent dose-
response relationships observed in parasite infection experiments (Regoes, Ebert, and
Bonhoeffer [23]). The function tends to a saturation level as the number of infectious
individuals I becomes large (see Figure 1(b)). (c) Nonmonotone incidence function:
� < h. Such functions can be used to interpret the “psychological effects” (Capasso
and Serio [5]): for a very large number of infectious individuals the infection force may
decrease as the number of infectious individuals increases (see Figure 1(c)), because
in the presence of a large number of infectious individuals the population may tend
to reduce the number of contacts per unit time, as seen with the spread of SARS (see
Wang [26], Xiao and Ruan [28]).

From the graphs in Figure 1, one would expect that the dynamics of epidemic
models with unbounded incidence rates are similar to those with bilinear incidence
rates. In fact, Hethcote and van den Driessche [14] found that in a SEIRS model
with � = h + 1, the classical threshold results hold; namely, the disease dies out
below the threshold, and the disease level approaches the endemic equilibrium above
the threshold. For a SIRS model with the nonmonotone incidence function g(I) =
kI/(1 + αI2), Xiao and Ruan [28] demonstrated that either the number of infectious
individuals tends to zero as time evolves or the disease persists. We conjecture that
the dynamics of SIRS models with nonmonotone incidence rates are similar to those
observed by Xiao and Ruan [28].

On the other hand, the dynamics of epidemic models with saturated incidence
rates (when � = h) have been shown to be very rich and complex. For a SEIRS
model with � = h, Hethcote and van den Driessche [14] observed that the threshold
concept becomes more complicated since the asymptotic behavior can depend on both
the threshold and the initial values. The model can have none, one, or two endemic
equilibria, and the disease can die out above the threshold for some initial values.
Periodic solutions appear through Hopf bifurcation. The results are analogous to
those obtained by Liu, Hethcote, and Levin [17] for SIRS models with � = h. The
case � = h = 1 has been discussed briefly by Capasso and Serio [5] and recently in
some detail by Gomes et al. [8], who obtained the existence of backward bifurcations,
oscillations, and Bogdanov–Takens points in SIR and SIS models. These indicate that
the case when � = h ≥ 2 can be very complicated and deserves further investigation.
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Fig. 1. Graphs of the incidence function g(I) = kI�

1+αIh . (a) Top: Unbounded incidence when

� > h (� = 2, h = 1). (b) Bottom-left: Saturated incidence when � = h (� = h = 2). (c) Bottom-right:
Nonmonotone incidence when � < h (� = 1, h = 2). Here, k = 0.5, α = 1.

In order to better understand the generic bifurcations in SIRS models with satu-
rated incidence rates and also motivated by the work of Liu et al. [17, 18] and Hethcote
and van den Driessche [14], Ruan and Wang [25] studied the global dynamics of a SIRS
model with the nonlinear incidence function g(I) = κI2/(1 + αI2), i.e., � = h = 2 :

(1.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dS
dt

= b − δS − κI2S
1 + αI2 + νR,

dI
dt = κI2S

1 + αI2 − (δ + γ)I,

dR
dt

= γI − (δ + ν)R,

where b > 0 is the recruitment rate of the population, δ > 0 is the death rate of
the population, γ > 0 is the recovery rate of infectious individuals, and ν > 0 is the
rate of removed individuals who lose immunity and return to the susceptible class.
Summing up the three equations in (1.2), we obtain an equation dN/dt = b − δN
with N(t) = S(t) + I(t) + R(t). Obviously, all solutions of this equation tend to its
equilibrium N(t) ≡ N0 = b/δ as t → +∞. Thus, all important dynamical behaviors
of system (1.2) occur on the plane S + I +R = N0, and the restricted system on the
plane becomes

⎧⎪⎨
⎪⎩

dI
dt = κI2

1 + αI2 (N0 − I −R) − (δ + γ)I,

dR
dt

= γI − (δ + ν)R.
(1.3)

Under certain conditions Ruan and Wang [25] showed that the simplified model (1.3)
undergoes a Bogdanov–Takens bifurcation; i.e., it exhibits saddle-node, Hopf, and
homoclinic bifurcations. They also established the existence of none, one, or two
limit cycles by applying the Bendixson–Dulac criterion [32], the Poincaré–Bendixson
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theorem [9], and a classic method for uniqueness of limit cycles in the Liénard equation
[32], respectively. The coexistence (Theorem 2.9 in [25]) of two limit cycles is obtained
by assuming that the successor function [32] (denoted by d in [25]) can switch its signs.

In Ruan and Wang [25] the uniqueness of limit cycles was obtained under the
assumption that a polynomial h(x) of degree 6 is nonpositive for all x in a definite
interval, which is actually not easy to check. Moreover, only the first order Liapunov
value of the weak focus (I2, R2) in Theorem 2.6 of [25] was calculated. To have
a better understanding of the dynamics of the system, we need to calculate higher
order Liapunov values of the weak focus, which is difficult in general. In fact, the
weak focus (I2, R2) in Theorem 2.6 of [25] (E+ in this paper) may have multiplicity
2, two limit cycles may arise from a degenerate Hopf bifurcation, and a limit cycle
and a homoclinic loop may coexist via the degenerate Bogdanov–Takens bifurcation.

The study of model (1.3) is interesting and significant since it exhibits different
and complicated dynamics such as periodic solutions, homoclinic orbits, multiple en-
demic equilibria, etc. The global dynamics is still not well understood. In this paper
we further study the dynamical behavior of system (1.3). By rescaling the variables

x =
(√

κ

δ + ν

)
I, y =

(√
κ

δ + ν

)
R, dτ = (δ + ν)dt/(1 + pI2)

and parameters

p =
α(δ + ν)

κ
, A = N0

√
κ

δ + ν
, m =

δ + γ

δ + ν
, q =

γ

δ + ν
,

system (1.3) is transformed into an equivalent system

(1.4)

⎧⎨
⎩

dI
dt

= −I[(mp+ 1)I2 + (R−A)I +m] =: I(I, R),

dR
dt = (1 + pI2)(qI −R) =: R(I, R),

where we still use I, R, t to present x, y, τ for simplicity and I, R ≥ 0, A,m, p, q > 0.
We first calculate the second order Liapunov value at the weak focus and prove that
the maximal multiplicity of the weak focus is 2 by technically dealing with some
complicated multivariable polynomials, which implies that at most two limit cycles
can arise near the weak focus. Then, by reducing the determination of the sign for
polynomials of higher degrees to revised sign lists [31], we give some clean conditions
on the parameters for the uniqueness of limit cycles. Finally, we reduce system (1.4) to
a form of universal unfolding for a cusp of codimension 3 so as to give the bifurcation
surfaces and display all limit cycles and homoclinic loops of order up to 2, from which
the coexistence of limit cycles and homoclinic loops is established.

The paper is organized as follows. Some preliminary results on the existence and
properties of equilibria are reviewed in section 2. Section 3 is devoted to the study of
degenerate Hopf bifurcation. The uniqueness of limit cycles is considered in section 4.
In section 5, we study the degenerate Bogdanov–Takens bifurcation of the model. A
brief discussion on the models, motivations, methods, and results is given in section
6.

2. Preliminaries. We first recall some known results on the existence of equi-
libria. As shown in Ruan and Wang [25], system (1.4) has at most three equilibria
O = (0, 0), E− = (I−, R−), and E+ = (I+, R+) in the first quadrant, where

I± =
A± (A2 − 4m(mp+ q + 1))1/2

2(mp+ q + 1)
, R± = qI±.



A SIRS MODEL WITH A NONLINEAR INCIDENCE RATE 625

It is easy to see that O is the disease-free equilibrium of system (1.4) and is a stable
node. Moreover, there are no positive equilibria if A2 < 4m(mp + q + 1) and two
positive ones E− and E+ if A2 > 4m(mp+ q + 1). They coincide at E0 = (I0, R0) =
(A/2(mp+ q + 1), qA/2(mp+ q + 1)) if A2 = 4m(mp+ q + 1). It is indicated in [25]
that E− is a saddle and E+ is a node, a focus, or a center. Moreover, the following
results are given in Theorem 2.1 in [25].

Lemma 2.1. The equilibrium E+ is stable if one of the following inequalities
holds:

A2 > A2
c , m ≤ 1, q <

2mp+ 1
m− 1

,

where

A2
c =:

(mq + 2m− 1 − q + 2m2p)2

(m− 1)(mp+ p+ 1)
.

E+ is unstable if

A2 < A2
c , m > 1, and q >

2mp+ 1
m− 1

.

When the parameters lie in the region

(2.1) Ω = {(A,m, p, q)|m > 1, q > (2mp+ 1)/(m− 1), A2 = A2
c},

the linearization of system (1.4) at E+ has a pair of purely imaginary eigenvalues.
Let

(2.2) μ = (1+2m− q(m−1))+(4+2m+4q−6mq+6m2+2m2q)p+4m(m2 +2)p2.

The following results on Hopf bifurcation are given in Theorem 2.6 in [25].
Lemma 2.2. Suppose that conditions in Ω hold. If μ < 0, then there is a stable

periodic orbit in (1.4) as A2 decreases from A2
c . If μ > 0, there is an unstable periodic

orbit in (1.4) as A2 increases from A2
c . If μ = 0, a Hopf bifurcation with codimension

2 may occur.
Obviously, in [25] a question remains open: Is E+ possibly a center when μ = 0?

A negative answer will be given in section 3. Regarding μ as a quadratic polynomial
of p, we can easily see that the case μ = 0 happens if and only if the discriminant of
(2.2) is ≥ 0.

As shown previously, when A = A0 =: 2
√
m(mp+ q + 1), the equilibrium E0

appears in the interior of the first quadrant and is degenerate because the Jacobian
matrix of the linearized system of (1.4) at E0 has determinant 0.

Lemma 2.3. When A = A0, E0 is either a saddle-node if p �= ((m−1)q−1)/(2m)
or a cusp otherwise.

Proof. For p = ((m − 1)q − 1)/(2m) it was proved in [25] that system (1.4) has
a cusp at E0. Consider the case that p �= ((m − 1)q − 1)/(2m). With the change of
variables (I, R) �→ (x, y) defined by

x = − (1 + q + 2mp)(I − I0)
1 + q +mp

+
m(R −R0)
1 + q +mp

, y = −mq(I − I0)
1 + q +mp

+
m(R−R0)
1 + q +mp

,
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system (1.4) is rewritten as

(2.3)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = −d0
√

1+mp+q
√
m

(b0q−d0)2 x2 + 2(pqb20+b0d0+b0d0mp−b0pd0+d20)
√
m

b0
√

1+mp+q(b0q−d0)2 xy

− (2pqb20−b0d0q+b0d0−2b0pd0+b0d0mp+2d20)
√
m

b0
√

1+mp+q(b0q−d0)2
y2 +O(|(x, y)|3) =: X1(x, y),

ẏ = (d0 − b0q)y − b0q
√

1+mp+q
√
m

(b0q−d0)2 x2 + 2(b0q+qmpb0+qpb0+qd0−pd0)
√
m√

1+mp+q(b0q−d0)2 xy

− (−b0q2+b0q+qmpb0+2qpb0+2qd0−2pd0)
√
m√

1+mp+q(b0q−d0)2 y2 +O(|(x, y)|3) =: Y1(x, y),

where b0 = −m/(1+ q+mp), d0 = −(1+ q+2mp)/(1+ q+mp), and E0 is translated
to the origin. By the implicit function theorem, there is a unique function y = ς(x)
such that ς(0) = 0 and Y1(x, ς(x)) = 0. Actually, we can solve from Y1(x, y) = 0 that

ς(x) = −qb0
√

1 + q +mp
√
m

(b0q − d0)3
x2 +O(|x|3).

Substituting y = ς(x) into the first equation of (2.3), we get

(2.4) ẋ = X1(x, ς(x)) = −d0

√
1 + q +mp

√
m

(b0q − d0)2
x2 + O(|x|3).

Theorem 7.1 in Chapter 2 of [32] implies that the origin is a saddle-node of system
(2.3). Thus, E0 is a saddle-node of system (1.4).

3. Degenerate Hopf bifurcation. This section is a complement to the Hopf
bifurcation analysis in Ruan and Wang [25]. In Lemma 2.2 the sign of μ is the same
as the sign of the first Liapunov value of (1.4) if E+ is a weak focus, but [25] does not
determine the sign of the higher order Liapunov values and whether E+ is a center. In
this section, we overcome some technical difficulties in the computation of the higher
order Liapunov values and prove that E+ is a weak focus of multiplicity at most 2.

As in section 2, we consider those parameters in the region Ω, defined in (2.1),
where the Jacobian matrix at E+ has a pair of purely imaginary eigenvalues and the
parameters A,m, p, and q satisfy A2 = A2

c > 4m(mp + q + 1). In this case, the
first coordinate of E+ takes the form I+ = (2m2p− q +mq − 1 + 2m)/(A(mp+ p+
1)). A simple transformation (I, R) �→ (x, y), which translates E+ to the origin and
diagonalizes the linear part, reduces system (1.4) to

⎧⎪⎨
⎪⎩

dx
dt

= −wy +ma1x
2 + 2a1wxy −ma2

1x
3 − a2

1wx
2y,

dy
dt = wx− a1b2x

2 − 2a1xy + a2
1b1x

3 + a2
1x

2y,

(3.1)

where

w =
√
k1, k1 = − (2mp+1)(2mp−mq+1+q)

(mp+p+1)2 , a1 = mp+p+1√
(m−1)(mp+p+1)

,

b1 = 2m3p2+pqm2+3m2p+2mp2−2pqm+m+p+qp
(mp+p+1)2w ,

b2 = 2m3p2−2m2p2+3m2p+2qm2p+4mp2−4pqm−mp+m+2qp+2p
(mp+p+1)2w .

Obviously, k1 > 0 because m > 1 and q > (2mp + 1)/(m − 1). Using the polar
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coordinates x1 = r cos θ, y1 = r sin θ, we obtain from (3.1) that

(3.2)
dr
dθ

= G2(θ)
w r2 + (G3(θ)

w − G2(θ)H1(θ)
w2 )r3 + (−G3(θ)H1(θ)

w2 − G2(θ)H2(θ)
w2 + G2(θ)H

2
1 (θ)

w3 )r4

+(−G3(θ)H2(θ)
w2 + 2G2(θ)H1(θ)H2(θ)

w3 + G3(θ)H
2
1(θ)

w3 − G2(θ)H
3
1 (θ)

w4 )r5 + h.o.t.,

where

G2(θ) = a1(m+ 2) sin3 θ + a1(2w − b2) sin2 θ cos θ − 2a1 sin θ,
G3(θ) = −a2

1(m+ 1) sin4 θ + a2
1(b1 − w) sin3 θ cos θ + a2

1 sin2 θ,
H1(θ) = a1(2w − b2) sin3 θ − a1(m+ 2) sin2 θ cos θ − 2a1w sin θ,
H2(θ) = a2

1(b1 − w) sin4 θ + a2
1(m+ 1) sin3 θ cos θ + a2

1w sin2 θ,

and

G4(θ) = G5(θ) = H3(θ) = H4(θ) = H5(θ) = 0.

Consider solutions of (3) in the formal series r(θ, r0) =
∑+∞

j=1 rj(θ)r
j
0 together with

the initial condition r(0, r0) = r0, where |r0| is sufficiently small. Obviously, r1(0) =
1, r2(0) = r3(0) = · · · = 0. Substituting the series into (3) and comparing the
coefficients, we obtain a system of differential equations for rj(θ), j = 1, 2, . . ., i.e.,
(3.3)
dr1
dθ

= 0,
dr2
dθ

= r21
G2(θ)
w

,
dr3
dθ

= r31

(
G3(θ)
w

− G2(θ)H1(θ)
w2

)
+ 2r1r2

G2(θ)
w

, . . . .

Solving them together with the initial conditions, we get

r1(θ) ≡ 1, r2(θ) =
∫ θ

0

G2(ξ)
w

dξ,

r3(θ) =
∫ θ

0

{
G3(ξ)
w

− G2(ξ)H1(ξ)
w2

+
2G2(ξ)r2(ξ)

w

}
dξ, . . . .

Using Maple V.7 software, we compute the Liapunov value as follows:

(3.4) L3(m,w, a1, b1, b2) =
1
2π
r3(2π) =

a2
1(m− 1)(2b2 − w)

8w2
.

For parameters in Ω, the sign of L3 is determined by 2b2 − w and therefore is the
same as the sign of μ, which demonstrates the corresponding results in Lemma 2.2.

If w = 2b2 (i.e., μ = 0), then L3(m,w, a1, b1, b2) = 0. In this case the Liapunov
value of order 5 can be calculated as follows:

(3.5) L5(m,w, a1, b1, b2) =
1
2π
r5(2π) =

a4
1(m− 1)κ(m,w, a1, b1, b2)

768w4
> 0,

where, using (3.1) and the fact that μ = 0, we have

κ(m,w, a1, b1, b2) = 121w3 − 332w2b2 + 143w2b1 − 75wm2 − 218wm− 190wb2b1
−8w + 155wb22 + 150b2m2 + 436mb2 + 16b2 + 50b32

=
(2p+ 1)(mp+ p+ 1)3(−4mp+ 8p+ 2)1/2

64(m− 1)(2mp+ 1)2(m2p+mp+m)1/2
> 0.
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By the theory of Hopf bifurcation [20, 32], we obtain the following results.
Theorem 3.1. Suppose that A2 > 4m(mp+ q + 1) and conditions in Ω hold.
(i) If μ �= 0, then the equilibrium E+ of system (1.4) is a weak focus of multiplicity

1 and at most one limit cycle arises from the Hopf bifurcation. Moreover, E+ is stable
and the limit cycle is also stable when μ < 0, or E+ is unstable and the limit cycle is
also unstable when μ > 0.

(ii) If μ = 0, then the equilibrium E+ is a weak focus of multiplicity 2 and at most
two limit cycles arise from the Hopf bifurcation. Moreover, E+ is unstable and the
outer cycle is also unstable, but the inner cycle (if it appears) is stable.

To carry out numerical simulations on two limit cycles, we choose parameters
m = 3, p = 0.1, q = 15, and A = 21.99. We can verify that the conditions of result (ii)
in Theorem 3.1 are satisfied. In this case the two limit cycles can be simulated by using
MATLAB 6.5 software. In Figure 2, the trajectory started at the point P1 = (1, 5)
spirals inward as the time t→ −∞ and the trajectory started at P2 = (1.2, 12) spirals
inward as t → ∞. Hence, an unstable outer limit cycle exists and lies in the annular
region bounded by these two trajectories. Similarly, the orbit started at P3 = (1.5, 15)
spirals inward as t → ∞ and the orbit started at P4 = (1.3, 17) spirals outward as
t → ∞. Therefore, there is a stable inner limit cycle lying in the annular region
bounded by these two orbits. The equilibrium E+ = (1.195073225, 17.92609838) is
unstable.

1
P

2
P

3
P

4
P

�
E

Fig. 2. Two limit cycles bifurcate from the weak focus of multiplicity 2.

4. Uniqueness of limit cycles. In this section we consider the uniqueness of
limit cycles of system (1.4) and provide a relatively simpler proof compared to that
of [25]. As shown in Theorem 2.2 of [25] and section 2, it suffices to discuss the case
when m > 1 and A2 > 4m(mp + q + 1), in which system (1.4) possibly has closed
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orbits and E+ lies in the first quadrant.
Our strategy is to reduce system (1.4) to the form of the Liénard system

ẋ = y − F (x), ẏ = −g(x)(4.1)

and apply the known Theorem 1.1 in Kooij and Zegeling [15] and Theorem 2.1 in Xiao
and Zhang [29]. Rearranging terms in the order of powers of R, we rewrite system
(1.4) as

İ = g0(I) − g1(I)R, Ṙ = qI −R,(4.2)

where g0(I) = (A− I)I2/(1 + pI2) −mI and g1(I) = I2/(1 + pI2). We need only to
consider I > 0 because I = 0 is an orbit. Thus g1(I) > 0, and system (4.2) has the
same phase portrait as the system

İ = R− g0(I)
g1(I)

, Ṙ =
R

g1(I)
− qI

g1(I)
.(4.3)

With the transformation

I = x, y = R−
∫ x

I+

1
g1(x)

dx,(4.4)

system (4.3) is reduced to the Liénard system (4.1) with

F (x) =
g0(x)
g1(x)

−
∫ x

I+

1
g1(x)

dx, g(x) =
qx

g1(x)
− g0(x)
g2
1(x)

.(4.5)

Lemma 4.1. Suppose that m > 1 and A2 > 4m(mp+ q + 1). Then system (4.2)
has at most one closed orbit in the interior of the first quadrant if either the function
F ′(x)/g(x), where F ′ denotes the derivative of F , is neither decreasing nor a constant
or F ′(I+) ddx(F ′(x)/g(x)) < 0 for x �= I+. Moreover, the closed orbit is hyperbolic if
it exists.

Proof. Note that limit cycles of system (4.2) (if any exist) lie in the stripe region
between the vertical lines �0 : I = I− and �1 : I = ID, where

ID =
A+ (A2 − 4m(mp+ 1))1/2

2(mp+ 1)
.

In fact, a vertical isocline of (4.2) intersects the I-axis at D = (ID, 0), i.e., (mp +
1)I2

D − AID + m = 0. Restricted to �1 in the interior of the first quadrant, the
derivative İ satisfies

İ|�1 = ID{[−m+AID − (mp+ 1)I2
D] −RID} = −RI2

D < 0.

This implies that limit cycles of system (4.2) (if any exist) lie on the left of �1 because
I+ < ID (i.e., the equilibrium E+ lies on the left of �1). On the other hand, limit
cycles lie on the right of �0; otherwise, a limit cycle intersects �0 because I+ > I−
(i.e., E+ lies on the right of �0), implying that İ = 0 at a point on �0. This is a
contradiction because on �0 the derivative

İ = I−{[−m+ (A−R−)I− − (mp+ 1)I2
−] +R−I− −RI−} = (R− −R)I2

− �= 0



630 Y. TANG, D. HUANG, S. RUAN, AND W. ZHANG

except at the saddleE−. Let S(I−, ID) denote the stripe region. Since transformations
between (4.2) and (4.1) do not change x, it suffices to discuss (4.1) in S(I−, ID), i.e.,
I− < x < ID.

Transformation (4.4) is one-to-one for I > 0 and R > 0, so it is equivalent to
discuss the uniqueness of closed orbits for system (4.1) where x > 0. Corresponding
to E+, system (4.1) has an equilibrium (x+, y+) with the same coordinates, i.e.,
x+ = I+ and y+ = R+. From (4.5) we have F ′(x) = −{(mp+ p+ 1)x2 + 1 −m}/x2

and g(x) = ρ(x)(1 + px2)/x3, where ρ(x) = (mp+ q+1)x2 −Ax+m has exactly two
zeros at I− and I+. It follows that

g(x+) = −g0(I+) − g1(I+)R+

g2
1(I+)

= 0, (x− x+)g(x) =
(

1 + px2

x3

)
(x− x+)ρ(x) > 0

in S(I−, ID), verifying partly either the condition in [29, Theorem 2.1] (as F ′(x)/g(x)
is neither decreasing nor a constant) or the condition in [15, Theorem 1.1] (as F ′(I+)
·(d/dx){F ′(x)/g(x)} < 0 for x �= I+). The other conditions can be checked explicitly
by the assumptions in our lemma. Thus the lemma is proved.

In order to obtain conditions in terms of the original parameters for the uniqueness
of limit cycles and complete the results of the uniqueness in [25], we use the notation

c0 = m(m−1), c2 = 5m2p+mp+ 4m+mq − q − 1, c3 = 2A(1 + 2mp),
c4 = (5m2p2−mp2)+(4mpq−2pq)+(6mp−2p)+q+1, c6 = p(1+p+mp)(1+q+mp).

These constants are obviously all positive. Using the conditions in Lemma 4.1, we
obtain the following theorem.

Theorem 4.2. Suppose that m > 1 and A2 > 4m(mp + q + 1). If either (i)
c23 − 4c2c4 > 0 and σ− < I−, σ+ > ID, where σ± = (c3 ±

√
c23 − 4c2c4/(2c4), or (ii)

c23 − 4c2c4 < 0, F ′(I+) > 0, and both c6 and m(m− 1) are small enough, then system
(4.2) has at most one limit cycle in the interior of the first quadrant. Moreover, under
assumption (i) (resp., (ii)) the limit cycle is unstable (resp., stable) if it exists.

Proof. Calculate (d/dx){F ′(x)/g(x)} = h(x)/x6g2(x) in S(I−, ID), where

h(x) = c0 − c2x
2 + c3x

3 − c4x
4 + c6x

6.

By Lemma 4.1, we need to determine the sign of h(x). Our strategy is to discuss the
quadratic function η(x) = −c2 + c3x − c4x

2, for which we have h(x) = m(m − 1) +
c6x

6 + η(x)x2.
In case (i), the function η has exactly two real roots σ± and [I−, ID] ⊂ (σ−, σ+).

Since η has the leading coefficient c4 > 0, we see that η(x) > 0 for x ∈ (σ−, σ+),
i.e., η(x) > 0 in S(I−, ID). Since m > 1, as required in (2.1), we have h(x) > 0
or equivalently (d/dx){F ′(x)/g(x)} > 0 in S(I−, ID). Then Lemma 4.1 implies the
result in case (i).

In case (ii), c23 − 4c2c4 < 0, so η(x) �= 0. On the compact interval [I−, ID] the
function |η| is bounded by a positive number. Therefore, sgnh(x) = sgnη(x) for
x ∈ (I−, ID) as c6 and m(m− 1) are both sufficiently small. Since η has the leading
coefficient c4 > 0, we ensure that η(x) < 0 as x ∈ (I−, ID), implying that h(x) < 0 in
S(I−, ID). Thus, F ′(I+)(d/dx){F ′(x)/g(x)} < 0; i.e., the second condition in Lemma
4.1 holds in S(I−, ID). From the notion introduced at the beginning of the proof of
Lemma 4.1, it suffices to verify the condition in S(I−, ID). Therefore, the conclusion
in case (ii) is obtained.
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Consider p = q = εk, m = 1/ε, and (2A(2mp + 1))2 = a1c2c4, for example,
where ε > 0 is sufficiently small, k ≥ 3, and 4 < a1 < 9/2. These parameters satisfy
assumption (i) in Theorem 4.2. Another choice of parameters in which p = ε2k,
m = 1 + ε, and q = 1/εk, where ε > 0 is sufficiently small and k ≥ 3, verifies
assumption (ii) in Theorem 4.2.

For c6 and m(m − 1) to be sufficiently small in case (ii) of Theorem 4.2, we
have to restrict p and m near 0 and 1, respectively. Efforts are also made to extend
the restriction by some known results on the zeros of high degree polynomials (Yang
[31]). As shown in the above proof for Theorem 4.2 (ii), we can generally suppose
that m > 1, A2 > 4m(mp+ q + 1) and that h(I−) < 0, h(ID) < 0 and claim that h
has no real zeros in the interval (I−, ID). By Lemma 3.1 in [31], the number of real
zeros of h in (I−, ID) is equal to the number of negative zeros of the function

Ψ(x) = (1 − x)6h
(
ID − I−x

1 − x

)
= α0x

6 + α1x
5 + α2x

4 + α3x
3 + α4x

2 + α5x+ α6,

where

α0 = h(I−) = c0 − c2I
2
− + c3I

3
− − c4I

4
− + c6I

6
−,

α1 = −3c3IDI
2
− + 4c4IDI

3
− − 6c6IDI

5
− + 2c2IDI− + 2c4I

4
− − 6c0 + 4c2I

2
− − 3c3I

3
−,

α2 = 9c3IDI
2
− + 3c3I

2
DI− − 8c4IDI

3
− − 6c4I

2
DI

2
− + 15c6I

2
DI

4
− − 8c2IDI− − c4I

4
−

+15c0 − c2I
2
D − 6c2I

2
− + 3c3I

3
−,

α3 = −9c3IDI
2
− − 9c3I

2
DI− + 4c4IDI

3
− + 12c4I

2
DI

2
− + 4c4I

3
DI−

−20c6I
3
DI

3
− + 12c2IDI− − 20c0 + 4c2I

2
D + 4c2I

2
− − c3I

3
− − c3I

3
D,

α4 = 3c3IDI
2
− + 9c3I

2
DI− − 6c4I

2
DI

2
− − 8c4I

3
DI− + 15c6I

4
DI

2
− − 8c2IDI− + 15c0

−c4I4
D − 6c2I

2
D − c2I

2
− + 3c3I

3
D,

α5 = −3c3I
3
D − 3c3I

2
DI− − 6c6I

5
DI− + 4c2I

2
D + 2c2IDI− + 2c4I

4
D + 4c4I

3
DI− − 6c0,

α6 = h(ID) = c0 − c2I
2
D + c3I

3
D − c4I

4
D + c6I

6
D.

Let Discr(Ψ) be the discrimination matrix of the polynomial Ψ, constructed in
the appendix as in [31, Definition 2.1] and its following paragraph, and calculate its
principal minors �1, �2, . . . , �13 as in the appendix. Consider the sequence SE =
{�1�2, �2�3, . . . , �12�13} and its sign list S(SE) = {sgn(�1�2), . . . , sgn(�12�13)},
where sgn(x) denotes the sign of x. Now revise the signs according to the following
rule (Definition 2.3 in [31]): (S1) If {�i, �i+1, . . . , �i+j} is a section of S(SE) such
that �i �= 0, �i+1 = · · · = �i+j−1 = 0, �i+j �= 0, then replace the section with the finite
sequence {−�i,−�i, �i, �i,−�i,−�i, �i, �i, . . .} by truncating for the same number of
terms; (S2) otherwise, do not change. Let S′(SE) denote the revised sign list. By
Theorem 3.3 in [31], the number of distinct negative zeros of Ψ is equal to ξ1 − ξ,
where ξ is the number of sign changes in S′(SE) and 2ξ1 is the number of nonzero
members in S′(SE). Thus we conclude that Ψ has no negative zeros, i.e., h(x) < 0
in (I−, ID) if ξ = ξ1.

The above conclusion shows that the condition on parameters for h(x) < 0 can
be determined by the list S′(SE). It is easy to calculate that �1�2 = 6α3

0 < 0, i.e.,
sgn(�1�2) = −1. So in total we have 311(=177147) cases to discuss because each
of the remaining 11 elements in S′(SE) has three options: −1, 0, 1. We illustrate a
general method for conditions on parameters with a further discussion on �12�13.
In the case that �12�13 �= 0, S′(SE) contains 12 nonzero members, implying that
ξ1 = 6. So we need only to construct a revised sign list with ξ = 6. We easily
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find such a list {−1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1,−1}, which gives a condition
on parameters:

(C1) :�2�3 ≥ 0, �3�4 < 0, �4�5 > 0, �5�6 < 0, �6�7 > 0, �7�8 < 0,
�8�9 < 0, �9�10 < 0, �10�11 < 0, �11�12 < 0, �12�13 < 0.

In the case that �12�13 = 0, the number of nonzero members in S′(SE) is < 12, i.e.,
ξ1 ≤ 5. Note that the list {−1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 0, 0} has ξ = 5. Being a revised
sign list, it gives a condition of parameters:

(C2) :�2�3 ≥ 0, �3�4 < 0, �4�5 > 0, �5�6 < 0, �6�7 > 0, �7�8 > 0,
�8�9 > 0, �9�10 > 0, �10�11 > 0, �11�12 = �12�13 = 0.

Finally, Lemma 4.1 and the conclusion given in the last paragraph enable us to sum-
marize that if m > 1, A2 > 4m(mp+ q+1), h(I−) < 0, h(ID) < 0, F ′(I+) > 0, and if
either (C1) or (C2) holds, then system (4.2) has at most one limit cycle in the interior
of the first quadrant. Moreover, the limit cycle is stable if it exists. More conditions
other than (C1) and (C2) can similarly be obtained for the uniqueness of limit cycles.

5. Degenerate Bogdanov–Takens bifurcation. By Lemma 2.3, when A =
A0 =: 2

√
m(mp+ q + 1) and p = p0 =: ((m − 1)q − 1)/(2m), the equilibrium E0 =:

(A0/(2(mp0 + q + 1)), qA0/(2(mp0 + q + 1))) is a cusp, where the Bogdanov–Takens
bifurcation may occur by a perturbation. By the standard theory of the Bogdanov–
Takens bifurcation (of codimension 2), Ruan and Wang [25] assert only that the
system has at most one limit cycle and the obtained homoclinic loop is of order 1 (see
the definition in [16]).

In the following, we display the possible bifurcations of multiple limit cycles and
homoclinic loops of order higher than 1. Note that as A = A0 and p = p0, we have
(m − 1)q = 2mp0 + 1 > 0, implying m > 1. So we fix m0 > 1 near 1 arbitrarily and
consider three bifurcation parameters A, p,m near A0, p0,m0, respectively. Let

A = A0 + ε1, p = p0 + ε2, m = m0 + ε3,(5.1)

where ε3 > 0. Then, we discuss bifurcations of the equivalent system (1.4) for the
parameters ε = (ε1, ε2, ε3) near (0, 0, 0).

Lemma 5.1. For A, p,m close to A0, p0,m0, respectively, (1.4) is equivalent to
the system

dx

dt
= y,

dy

dt
= μ1 + x2 + (μ2 + μ3x+ x3 +O(|x|4))y +G(x, μ)y2,(5.2)

where μi’s are functions of ε1, ε2, ε3 such that ∂(μ1,μ2,μ3)
∂(ε1,ε2,ε3)

|ε=0 �= 0 and G(x, μ) is a C∞

function.
Proof. With the substitution (5.1), equation (1.4) can be written as

{
İ = I(I + A0

2((m0+ε3)(p0+ε2)+q+1) , R+ qA0
2((m0+ε3)(p0+ε2)+q+1) ),

Ṙ = R(I + A0
2((m0+ε3)(p0+ε2)+q+1) , R+ qA0

2((m0+ε3)(p0+ε2)+q+1) ),
(5.3)

where I and R are defined in (1.4). When ε = 0, system (5.3) has a cusp at the origin
O2 = (0, 0), as shown in [25]; i.e., the equilibrium E0 is translated to O2. Expanding
(5.3) at O2, rescaling time by t = τ(q + 1 + qm0)/(2qm0), and then applying a linear
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transformation T1: (I, R) �→ (Ĩ , R̃), defined by Ĩ = I and R̃ = I −R/q to reduce the
matrix of the linear part for ε = 0 to the Jordan canonical form, we can reduce (5.3)
further to the form

[ ˙̃I
˙̃R

]
=
[
ϑ1(ε)
ϑ2(ε)

]
+
[
ι11(ε) ι12(ε)
ι21(ε) ι22(ε)

] [
Ĩ

R̃

]
+
[
ω1(Ĩ , R̃, ε)
ω2(Ĩ , R̃, ε)

]
,(5.4)

where all ϑj , ιij , and ωj (i, j = 1, 2) are calculated as in the appendix, which satisfies
that ϑ1(0) = ϑ2(0) = 0, ι12(0) = 1, and ι11(0) = ι21(0) = ι22(0) = 0. Another
transformation T2: (Ĩ , R̃) �→ (X,Y ), defined by

Ĩ = X +
√

2m0(q+1+qm0)

2m0
X2, R̃ = Y +

√
2m0(q+1+qm0)(q+1+qm0)

4qm0
X2,(5.5)

reduces system (5.4) to

Ẋ = E11(X, ε) + E12(X, ε)Y, Ẏ = E21(X, ε) + E22(X, ε)Y,(5.6)

where

E1j(X, ε)= aj0(ε) + aj1(ε)X + aj2(ε)X2 + aj3(ε)X3 +O(|X4|), j = 1, 2,
E2j(X, ε)= bj0(ε) + bj1(ε)X + bj2(ε)X2 + bj3(ε)X3 +O(|X4|), j = 1, 2,

and all aij(ε)’s and bij(ε)’s are given in the appendix. Applying the change of variables
X̃ = X, Ỹ = E11(X, ε) + E12(X, ε)Y in (5.6), we obtain a system in which the first
equation is same as the first equation of (5.2), that is,

˙̃X = Ỹ , ˙̃Y = F1(X̃, ε) + F2(X̃, ε)Ỹ + F3(X̃, ε)Ỹ 2,(5.7)

where Fi(X̃, ε) =
∑3

j=0 cij(ε)X̃
j+O(|X̃ |4), i = 1, 2, and both cij(ε)’s and F3(X̃, ε) are

given in the appendix. Note that c12(0) = −
√

2m0(q + 1 + qm0)(q + 1 + qm0)/4qm0

< 0, which implies that c12(ε) < 0 for small ε, and it is reasonable to apply the
rescaling X̃ �→ −X̃, Ỹ �→ −

√
−c12(ε) Ỹ , τ �→ τ/

√
−c12(ε) to system (5.7) and

obtain

˙̃X = Ỹ , ˙̃Y = F̃1(X̃, ε) + F̃2(X̃, ε)Ỹ + F̃3(X̃, ε)Ỹ 2,(5.8)

where F̃1(X̃, ε) = c10(ε)/c12(ε)−(c11(ε)/c12(ε))X̃+X̃2+O(|X̃|3), F̃2(X̃, ε) = {c20(ε)−
c21(ε)X̃ + c22(ε)X̃2 − c23(ε)X̃3}/

√
−c12(ε) + O(|X̃ |4), and F̃3(X̃, ε) = −F3(−X̃, ε).

Thus, the coefficient of X̃2 in F̃1 in the second equation of (5.8) reduces to 1, the
same as the corresponding one in (5.2).

In order to reduce system (5.8) to the induced form (5.2), we need to remove the
term of X̃ in the second equation of (5.8). We achieve this by the affine transformation
u = X̃ − c11(ε)/2c12(ε), v = Ỹ in X̃, and change system (5.8) into

u̇ = v, v̇ = G1(u, ε) +G2(u, ε)v +G3(u, ε)v2,(5.9)

where G1(u, ε) = d10(ε) + u2 + O(|u|3, ε2), G2(u, ε) = d20(ε) + d21(ε)u + d22(ε)u2 +
d23(ε)u3 +O(|u|4), G3(u, ε) = −F3(−u− c11/(2c12), ε), and the coefficients dij(ε) are
displayed in the appendix. Because
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d23(0) =
2−

3
4 {m0(q + 1 + qm0)}1/4(q + 1 + qm0)1/2(3m0 − 1)(q + 1 + qm0)

m2
0(qm0)1/2

> 0,

for small ε �= 0 system (5.9) can be rescaled by ũ = d
2/5
23 (ε)u, ṽ = d

3/5
23 (ε)v, τ̃ =

d
−1/5
23 (ε)τ into the form

˙̃u = ṽ, ˙̃v = G̃1(ũ, ε) + G̃2(ũ, ε)ṽ + G̃3(ũ, ε)ṽ2,(5.10)

where G̃1(ũ, ε) = d
4/5
23 d10(ε) + ũ2 + O(|ũ|3), G̃2(ũ, ε) = d

1/5
23 d20(ε) + d

−1/5
23 d21(ε)ũ +

d
−3/5
23 d22(ε)ũ2 + ũ3 + O(|ũ|4), and G̃3(ũ, ε) = −d−2/5

23 F3(−d−2/5
23 ũ − c11/(2c12), ε), so

that the coefficient of the term ũ3ṽ in the second equation of (5.10) becomes 1, the
same as in the corresponding term in system (5.2). The invertibility of all undergone
transformations for small ε �= 0 implies that system (5.10) is topologically conjugate
to system (5.2) locally. Hence (5.3) is an induced family of vector fields from system
(5.2), the universal unfolding of the degenerate cusp as shown in the Main Theorem
in [7]. Comparing the 4-jet of (5.10) with (5.2), we obtain the relation between the
induced system and the universal unfolding, i.e.,

μ1(ε) = d
4/5
23 d10(ε), μ2(ε) = d

1/5
23 d20(ε), μ3(ε) = d

−1/5
23 d21(ε).(5.11)

In particular, μ1(0) = μ2(0) = μ3(0) = 0. Computing the Jacobian determinant of
relation (5.11) at (0, 0, 0) with Maple V.7 software, we get

∂(μ1, μ2, μ3)
∂(ε1, ε2, ε3)

∣∣∣∣
ε=0

=
1 + q + 4m0 + 3qm0 + 5qm2

0 −m2
0 −m3

0q)(q + 1 + qm0)2

2
,

which is > 0 for m0 near 1. This implies that the induced family (5.3) parameterized
by ε, and therefore (1.4), is locally equivalent to the unfolding (5.2). The proof is
completed.

Concerning the universal unfolding (5.2), Theorem 4 in [7] gives bifurcation sur-
faces

SN = {(μ1, μ2, μ3) ∈ V |μ1 = 0},
H = {(μ1, μ2, μ3) ∈ V |μ2 = μ3(−μ1)

1
2 + (−μ1)

3
2 +O((−μ1)

7
4 ), μ1 < 0},

HL =: {(μ1, μ2, μ3) ∈ V |μ2 = 5
7μ3(−μ1)

1
2 + 103

77 (−μ1)
3
2 +O((−μ1)

7
4 ), μ1 < 0},

L =: {(μ1, μ2, μ3) ∈ V |Ξ(μ1, μ2, μ3) = 0, μ1 < 0},

where V is a neighborhood of (0, 0, 0) and the surface Ξ(μ1, μ2, μ3) = 0 is defined by

μ2 = (−μ1)
3
2

(
− 6P (b)

11P ′(b)
+

6b
11

) + o((−μ1)
3
2

)
, μ3 = −μ1

(
− 6

11P ′(b)
− 15

11

)
+ o(−μ1)

for μ1 < 0 with the parameter b. Here P (b) is a solution of the Riccati equation
(9b2 − 4)P ′ = 7P 2 + 3bP − 5, as shown in [7]. Applying the inverse of (5.11) together
with (5.1), from SN ,H,HL, and L we can give for system (1.4) the corresponding
bifurcation surfaces SN ′,H′,HL′, and L′, respectively. Thus, Theorem 4 in [7] implies
the following.

Theorem 5.2. In the (A, p,m)-space there are four surfaces SN ′,H′,HL′, L′

near (A0, p0,m0), defined as above, such that system (1.4) produces a saddle-node bi-
furcation near E0 as (A, p,m) crosses SN ′, a Hopf bifurcation near E0 as (A, p,m)
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Υ

Fig. 3. Projections of SN ,H, HL, and L on the (μ2, μ3)-plane.

crosses H′, a homoclinic bifurcation near E0 as (A, p,m) crosses HL′, and a coales-
cence of two limit cycles near E0 as (A, p,m) crosses L′.

The expressions of these bifurcation surfaces given in Theorem 5.2 can be com-
puted by using (5.11) and (5.1). For example, consider A0 = 63.73, p0 = 4.45,m0 =
1.01, and q = 1000. The surface HL′ is presented as

5
7
(0.003018260808ε2 + 1.509170071ε3)Θ(ε1, ε2, ε3)

+
103
77

(Θ(ε1, ε2, ε3))3 + o(|(ε1, ε2, ε3)|3/2) = 0,

where Θ(ε1, ε2, ε3) =
√

0.09569545272ε1 − 0.003062992329ε2− 3.033146367ε3. Pa-
rameter values are given by the expression where the homoclinic bifurcation occurs.
Expressions of other bifurcation surfaces SN ′,H′, and L′ can be given similarly. For
a better understanding of the bifurcation diagram, let us observe bifurcation surfaces
SN ,H,HL, and L in Figure 3. Since each of them is a cone with vertex at the origin
(up to a homeomorphism in the parameter space), as in [7], it suffices to observe the
bifurcation diagram in a small half ball Sμ0 = {(μ1, μ2, μ3)|μ2

1+μ2
2+μ2

3 < μ0, μ1 < 0}
for sufficiently small μ0 > 0 and project the diagram to the plane SN (i.e., μ1 = 0). As
indicated in [7], projected on the disk Υ = Sμ0 ∩SN , the curve H intersects the curve
HL at a point s0 and L is tangent to curves H and HL at two points s1 and s2, respec-
tively. Thus the half ball Sμ0 is divided into five open regions Dj (j = I, II, . . . , V ),
as shown in Figure 3. Let D′

j (j = I, II, . . . , V ) be the corresponding regions in the
(A, p,m)-space and s′0, s

′
1, s

′
2 be the corresponding intersection points, which can be

calculated with (5.11). When (A, p,m) lies in these regions, by Theorem 3.1, system
(1.4) has two equilibria E+ and E− in the interior of the first quadrant and E− is
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Table 1

Qualitative properties for various parameters.

(A, p,m) E+ Limit cycles Homoclinic orbits
D′

I unstable focus or node no no

H′\{ŝ′0s′1} weak focus(order 1) no no
s′1 weak focus(order 2) no no

ŝ′0s
′
1 stable weak focus(order 1) 1(order 1) 0

D′
II stable focus or node 1(order 1) no

HL′\{ŝ′0s′2} focus or node no 1(order 1)
s′0 stable weak focus(order 1) no 1(order 1)
D′

III stable focus or node no no
D′

IV unstable focus or node 1(order 1) no
s′2 unstable focus or node no 1(order 2)

ŝ′0s
′
2 unstable focus or node 1(order 1) 1(order 1)

D′
V unstable focus or node 2(order 1) no

L′ unstable focus or node 1(order 2) 0

always a saddle but E+ is either a focus or a node. Furthermore, by Lemma 4.1 and
Theorem 5.2 together with the theorems in [7] and [25], we can list more detailed
dynamical behaviors in Table 1, where ŝ′0s

′
1 and ŝ′0s

′
2 denote the parts of bifurcation

surfaces determined by the arcs on H and HL, respectively, as shown in Figure 3.
More concretely, neither a limit cycle nor a homoclinic loop appears in D′

I ; a limit
cycle arises as parameters go through H′ from D′

I to D′
II ; the limit cycle expands,

deforms into a homoclinic loop and finally breaks as parameters go through HL′ from
D′
II to D′

III ; a limit cycle arises again as parameters go through H′ from D′
III to

D′
IV . By continuity, if parameters go through the part of HL′ below s′2 and return

to D′
I from D′

IV , the limit cycle disappears; if parameters go from D′
IV and hit the

arc ŝ′0s
′
2, the limit cycle coexists with a homoclinic loop. Furthermore, if parameters

enter the region D′
V , the limit cycle persists and another limit cycle arises as the

homoclinic loop breaks, i.e., two cycles coexist.

6. Discussion. The existence of limit cycles in epidemic models can be used to
explain oscillatory phenomena observed in the dynamics of some infectious diseases.
One of the mechanisms by which epidemic models exhibit periodic oscillations is
bifurcation, which occurs when the parameters vary. Early work on studying the
dynamics of epidemic models focused on Hopf bifurcation, homoclinic bifurcation, or
saddle-node bifurcation separately by using only one bifurcation parameter (Derrick
and van den Driessche [6], Hethcote and van den Driessche [14], Liu et al. [17,
18]). Recent studies indicate that some epidemic models undergo codimension 2
bifurcations near degenerate equilibria; i.e., a Bogdanov–Takens bifurcation, which
includes a Hopf bifurcation, a homocline bifurcation and a saddle-node bifurcation,
can occur when two parameters vary near their critical values (Lizana and Rivero [19],
Ruan and Wang [25], Alexander and Moghadas [1, 2], Moghadas [21], Wang [26]).
It is interesting to notice that not only epidemic models with nonlinear incidence
rates but also simple epidemic models with bilinear mass-action incidence rates can
have complex dynamics such as the occurrence of Bogdanov–Takens bifurcations.
For instance, Wang and Ruan [27] considered an epidemic model with a bilinear
mass-action incidence rate and a constant removal rate of infectious individuals and
showed that the model undergoes a sequence of bifurcations, including saddle-node
bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation.
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In those epidemic models exhibiting Bogdanov–Takens bifurcations, periodic so-
lutions can arise through a Hopf bifurcation for some parameter values and disappear
through a homoclinic bifurcation for some other parameter values, but neither the
existence of multiple limit cycles nor the coexistence of a limit cycle and a homoclinic
loop is revealed. However, recent work (Alexander and Moghadas [1, 2], Liu, Heth-
cote, and Levin [17], Moghadas and Alexander [22], Ruan and Wang [25], Wang [26])
indicates that some epidemic models can have two limit cycles. One may expect that
the appearance of two limit cycles is due to the fact that degenerate Hopf and degen-
erate Bogdanov–Takens bifurcations [4] may occur in such epidemic models as well.
However, to the best of our knowledge, so far there is no such study on the degenerate
Hopf bifurcation and degenerate Bogdanov–Takens bifurcation on epidemic models.
One of the difficulties is the lack of general criteria in calculating the multiplicity of a
weak focus (see Xiao and Zhu [30] for such a criterion for a predator-prey model; see
also Ruan and Xiao [24]).

In this paper, we continued studying the dynamics of a simplified epidemic model
(1.3) with a nonlinear incidence rate that was originally considered by Ruan and
Wang [25] (see also Liu et al. [17, 18] and Hethcote and van den Driessche [14]).
Under certain conditions Ruan and Wang [25] showed that the simplified model (1.3)
undergoes a Bogdanov–Takens bifurcation; i.e., it exhibits saddle-node, Hopf, and
homoclinic bifurcations. They also established the existence of none, one, or two
limit cycles. In this paper, we first calculated the second order Liapunov value of
the weak focus and proved that the maximal multiplicity of the weak focus is 2 by
technically dealing with some complicated multivariable polynomials, which implies
that at most two limit cycles can arise near the weak focus. Then, by reducing the
determination of the sign for polynomials of higher degrees to revised sign lists, we
re-established the uniqueness of the limit cycle. Finally, we reduced system (1.4) to
a form of universal unfolding for a cusp of codimension 3 and showed the coexistence
of limit cycles and homoclinic loops via a degenerate Bogdanov–Takens bifurcation.

The coexistence of limit cycles and homoclinic loops demonstrates that epidemic
models with saturated incidence rates exhibit very different and complex dynamics.
Furthermore, the results indicate that the dynamical behavior of the model is very
sensitive to the initial densities of the susceptible and infectious individuals. When the
initial values lie inside the homoclinic loop, the numbers of susceptible and infectious
individuals fluctuate periodically about the endemic levels. Such periodic patterns will
be helpful in designing control and intervention policies for the disease. When the
initial values lie outside the homoclinic loop, the disease will die out even if there are
two endemic equilibria (see Figure 3). This means that the disease can be controlled
and eradicated even above the threshold.

To the best of our knowledge, this is the first time that a limit cycle and a
homoclinic loop have been shown to coexist in a realistic epidemic model. Though
we focused on a simple case of SIRS models with a specific saturated incidence rate,
we believe that such rich and complex dynamics can occur in other epidemic models
with general saturated incidence rates as well as other types of nonlinear incidence
rates (Hethcote and van den Driessche [14], Liu et al. [17, 18]).

Appendix.

(A1) As claimed in section 4, for each j = 1, . . . , 13, the polynomial�j in variables
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α1, . . . , α6, being the jth principal minor of the matrix

Discr(Ψ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α1 α2 α3 α4 α5 α6 0 0 0 0 0 0
0 6α0 5α1 4α2 3α3 2α4 α5 0 0 0 0 0 0
0 α0 α1 α2 α3 α4 α5 α6 0 0 0 0 0
0 0 6α0 5α1 4α2 3α3 2α4 α5 0 0 0 0 0
0 0 α0 α1 α2 α3 α4 α5 α6 0 0 0 0
0 0 0 6α0 5α1 4α2 3α3 2α4 α5 0 0 0 0
0 0 0 α0 α1 α2 α3 α4 α5 α6 0 0 0
0 0 0 0 6α0 5α1 4α2 3α3 2α4 α5 0 0 0
0 0 0 0 α0 α1 α2 α3 α4 α5 α6 0 0
0 0 0 0 0 6α0 5α1 4α2 3α3 2α4 α5 0 0
0 0 0 0 0 α0 α1 α2 α3 α4 α5 α6 0
0 0 0 0 0 0 6α0 5α1 4α2 3α3 2α4 α5 0
0 0 0 0 0 0 α0 α1 α2 α3 α4 α5 α6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

can be calculated directly with Maple software. For example, �1 = α0, �2 =
6α2

0, �3 = α2
0α1, �4 = −α2

0(−5α2
1 + 12α2α0), �5 = α2

0(α
2
1α2 − 4α0α

2
2 + 3α0α3α1),

�6 = 2α2
0(24α2

0α4α2 − 27α2
0α

2
3 − 8α0α

3
2 + 24α0α3α1α2 − 10α0α4α

2
1 + 2α2

2α
2
1 − 5α3α

3
1).

The expressions for others will be much longer.
(A2) The polynomials ϑj , ιij , ωj claimed in (5.4), aij and bij in (5.6), cij and F3

in (5.7), and dij in (5.9) can be calculated directly with Maple software. Except for

c10 = a20b10 − a10b20, c11 = a20b11−a10b21+a21b10−a11b20, c12 = −
√

2m0(q+1+qm0)(q+1+qm0)/(4qm0) + O(|ε|),

c13 = −b22a11 + b13a20 − b23a10 + b10a23 − b21a12 + b12a21 − b20a13 + b11a22,

c20 = (a11a20 + b20a20 − a10a21)/a20, c21 = −(2a10a22a20 − bb21a
2
20 − 2a12a

2
20 + a21a11a20 − a10a

2
21)/a

2
20,

c22 = −(−3a13a
3
20 + 2a22a

2
20a11 + a21a12a

2
20 + 3a10a23a

2
20 − b22a

3
20 − 3a22a20a10a21 − a

2
21a11a20 + a10a

3
21)/a

3
20,

c23 = −{
√

2(3m0 − 1)(q + 1 + qm0)3}/{4m
2
0q
√

m0(q + 1 + qm0)} + O(|ε|),

d10 = (4c10c12 − c211)/(4c212) + O(|ε|2), d20 = −(−8c20c312 + 4c21c11c212 + c23c311 − 2c22c211c12)/(8c312
√

−c12) + O(|ε|2),

d21 = −(−4c22c11c12 + 4c21c
2
12 + 3c23c

2
11)/(4c

2
12
√

−c12) + O(|ε|2), d22 = (2c22c12 − 3c23c11)/(2c12
√

−c12) + O(|ε|2),

d23 = (
1

2
)3/4(

√
m0(q + 1 + qm0)(q + 1 + qm0)/(qm0))1/2(3m0 − 1)(q + 1 + qm0)/m

2
0 + O(|ε|),

F3(X̃) = a21/a20 + {(−a
2
21 + 2a22a20)/a

2
20}X̃ − {(3a21a22a20 − 3a23a

2
20 − a

3
21)/a

3
20}X̃

2 − {(4a21a23a
2
20 + 2a

2
22a

2
20

− 4a22a20a
2
21 + a

4
21)/a

4
20}X̃

3 + O(|X̃4 |).

The other polynomials have long expressions. Their presentations and the Maple
scripts are available upon request.
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Abstract. We derive a set of phase field models for biofilms using the one-fluid two-component
formulation in which the combination of extracellular polymeric substances (EPS, or polymer net-
works) and the bacteria is effectively modeled as one fluid component, while the collective ensemble
of nutrient substrates and the solvent are modeled as the other. The biofilm is assumed to be an
incompressible continuum, in which the motion of the polymer network and the solvent relative to
the average velocity is accounted for by binary mixing kinetics. Various constitutive stress models
are proposed for the effective polymer network component according to the property of the polymer
network. Steady states are identified, their stability is analyzed (where two long wave growth modes
are identified), and numerical solutions of different variations of the model in one space dimension
are discussed and compared.
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1. Introduction. Biofilms are ubiquitous in natural and industrial settings.
They exist on wet surfaces and consist of myriad microbes, their byproducts, and
trapped particles. A biofilm community can be formed by a single bacterial species,
but in nature biofilms almost always consist of rich mixtures of many species of bac-
teria, as well as fungi, algae, yeasts, protozoa, other microorganisms, debris, and
corrosion products. Biofilms are held together primarily by polysaccharides and
other long chain molecules, collectively termed “extracellular polymeric substances”
or EPS. The bacteria cells produce the EPS and are held together by EPS strands,
allowing them to develop complex, three-dimensional, resilient, attached communities
[7, 9, 11, 12, 17, 18, 19, 24].

The Center for Disease Control and National Institutes of Health recently esti-
mated that 65% to 85% of all chronic infections can be attributed to bacterial biofilms
[10]. In human diseases, biofilm infections are some of the most difficult to treat. Even
with rigorous antibiotic regimens, some biofilms, such as those within the thick airway
mucus of cystic fibrosis (CF) patients, persist throughout the course of the disease
process [16]. Bacterial biofilms can also be utilized in bioterrorism in which persistent
“bioterrorist agent biofilms” formed by Francisella tularensis can grow on surfaces
where environmental amoebas can phagocytose them, allowing for growth of fibrosis
[16].

Biofilms cost the U.S. literally billions of dollars every year in energy losses,
equipment damage, product contamination, and medical infections. Understanding
the dynamics of the growth, transport, and destruction of biofilms is important for
improving water treatment and medical treatment of diseases, protecting equipment
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or devices from corrosion, and even preventing bioterrorism. The improved under-
standing of biofilms will have a significant impact on environmental sciences, medicine,
civil engineering, naval sciences, military applications, and homeland security.

There have been increasing efforts to model biofilm structures and dynamics over
the last two decades [25, 26, 27, 28], in which methods based on cellular automata,
particle-based methods, continuum models, and multispecies modeling are attempted
[1, 13, 20, 21, 30]. Recently Cogan and Keener developed a two-fluid model for
biofilms, treating bacteria as a part of the polymer network [7]. The nutrient substrate
is also treated passively as a part of the solvent. This work extended the polymeric
mixture models of Tanaka [29] and Milner [23] and the work of Wolgemuth et al. [31]
for biological material mixtures. Similar multifluid modeling extension has also been
done by Klapper and colleagues [1, 20].

We briefly recall the multifluid theory of Cogan and Keener for biofilms next.
Let φn be the volume fraction of the polymer network, φs that of the solvent, vn the
velocity of the polymer network, vs the velocity of the solvent, c the concentration of
the nutrient substrate, p the pressure, and τn and τs the network and solvent stress
tensor, respectively. In the Cogan–Keener model, the substrate is passively treated as
a part of the solvent. This two-fluid model consists of the linear momentum balance
equation for each fluid, where inertia for all species are ignored, and the transport
equation for the nutrient concentration as well as the volume fraction of the polymer
network [7].

The momentum balance equation for each species is respectively given by

(1.1)
∇ · (φnτn) − hfφnφs(vn − vs) −∇Ψ − φn∇p = 0,

∇ · (φsτs) + hfφnφs(vn − vs) − φs∇p = 0,

where hf is the coefficient of friction and Ψ is the osmotic pressure due to the existence
of the polymer network; the transport equation of the polymer volume fraction and
the conservation of the volume fraction for the solvent are respectively given by

(1.2)

∂φn
∂t

+ ∇ · (φnvn) = gn,

∂φs
∂t

+ ∇ · (φsvs) = 0,

and the equation for the nutrient substrate consumption is given by

(1.3)
∂

∂t
(φsc) + ∇ · (cvsφs −Dsφs∇c) = −gc,

where gn is the production rate for the polymer network, gc is the consumption rate of
the nutrient substrate in the solvent, and Ds is the diffusion constant of the nutrient
substrate.

Both the polymer network and the solvent are assumed viscous in the Cogan–
Keener model. The extra stress tensor, the osmotic pressure, and the production as
well as consumption rates are given by the following constitutive laws:

(1.4)

τn = 2ηnDn,
τs = 2ηsDs,
gc = φnAc,

gn = εμφn
c

Kc + c
,

Ψ =
kT

v1

[
ln(1 − φn) +

(
1 − 1

N

)
φn + χφ2

n

]
,
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where ηn,s are the viscosity of the network and the solvent, respectively, Dn,s =
1
2 [∇vn,s + ∇vTn,s] is the rate of strain tensor for the network and the solvent, respec-
tively, A is the consumption rate of the substrate, μ is the maximum production rate,
Kc is the half-saturation constant, ε is a scaling parameter, N is the polymerization
index, v1 is the volume of the solvent molecule, k is the Boltzmann constant, T is
the temperature, and χ is the Flory–Huggins mixing parameter [14, 15]. We note
that the equation for the concentration of bacteria is a decoupled equation in the
Cogan–Keener model and is therefore not listed above.

Given that

(1.5) φn + φs = 1,

the following constraints arise:

(1.6)
∇ · (φnvn + φsvs) = gn,
∇ · (φnτn + φsτs) = ∇(Ψ + p).

We note that v = φnvn + φsvs is the volume averaged velocity. Clearly, it is not
divergence-free when gn �= 0, indicating that the material is in fact “compressible.”
The second constraint gives the force balance equation for the volume averaged stress.

We note that the constraint above leads the bulk volume of the two-fluid material
system to increase when gn �= 0. Practically, the individual velocity of each species
is hardly measurable; moreover, it is impossible to impose the boundary conditions
for velocities at inflow and outflow boundaries for each species. Therefore two-fluid
theories are not easy to adopt in fluid dynamics and rheological studies. The practical
use of the two-fluid models includes ignoring the solvent velocity [7], ignoring the stress
deformation [20], or simply imposing periodic boundary conditions. This clearly limits
the applicability of the multifluid biofilm theories.

In this paper, we embark on a different approach, assuming the biofilm-solvent
mixture is incompressible, whose bulk motion is measured by a divergence-free av-
eraged velocity field, adopting the one-fluid multicomponent formulation for mixture
theories [2]. We retain the effective treatment of the polymer network/bacteria and
substrate/solvent combinations. The excessive velocity in addition to the average one
is accounted for by polymer-solvent mixing dynamics. Through an essentially mean
field approach, we can couple the polymer network deformation and biofilm/solvent
interfacial dynamics into the fluid mixture motion, which to the best of our knowl-
edge has not been done to biofilm models systematically so far. The effective polymer
comprising the EPS and bacteria is modeled as a viscoelastic “solution” in which
the bacterium is the solution since it is viscous while the EPS is modeled as a linear
polymer strand of a network [3].

The rest of this paper is organized as follows. First we develop a set of phase
field models for biofilms by accounting for the transport of polymer networks, nutri-
ent substrates, and the response of the polymer network in flow in several plausible
ways within the theoretical framework of one-fluid multicomponent systems. We then
analyze the stability of some steady states to investigate possibly unstable modes. Fi-
nally, we numerically study the biofilm growth and expansion in one space dimension
and compare the results with respect to various formulations of the mixture theory.

2. Mathematical models. We study the biofilm in solvent as a fluid mixture
of two components: the effective polymer network encompassing the bacteria trapped
inside and the effective solvent which includes the nutrient substrates and pure solvent.
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We adopt the one-fluid two-component formalism for fluid mixtures to develop a
single-fluid, multicomponent model using the volume averaged velocity and the volume
fractions of the two distinctive components. The polymer network volume fraction φn
plays the role of a phase field variable in the theory. When φn = 0, the fluid consists of
entirely the solvent; otherwise, it is a true binary mixture when 0 < φn < 1. (The case
of φn = 1 is excluded in biofilms since they are never dry.) Therefore, the resulting
theory is an effective phase field model. The two distinctive phases are modeled by
φn = 0 and φn > 0, respectively. The inhomogeneity of the biofilm is accounted for
by the variation of φn.

2.1. Phase field formulation. When the fluid mixture is incompressible, the
average velocity is divergence-free. The bulk fluid is convected by the average velocity.
In addition to the bulk convection, the polymer network is also transported by an
additional flux due to mixing of two different components. Specifically, the local
instantaneous flux consists of two parts: the flux convected by the average velocity v
and the excessive flux due to polymer-solvent binary mixing. The latter contribution
to the flux of the polymer volume fraction is assumed proportional to the mixing force
given by the gradient of the free energy variation

(2.1) fn = −λch∇
δf

δφn
,

where λch is the proportionality parameter that has the same unit as the mobility.
This is consistent with the Ginzburg–Landau dynamics in condensed matter physics
[6]. The mixing free energy density f as a function of φn is given by the extended
Flory–Huggins free energy density [14, 15]

(2.2) f = kT

[
γ1

2
‖∇φn‖2 + γ2

(
φn
N

lnφn + (1 − φn) ln(1 − φn) + χφn(1 − φn)
)]

,

where γ1 and γ2 measure the strength of the distortional and bulk mixing free energy,
respectively, χ is the Flory–Huggins mixing parameter, N is the generalized polymer-
ization index, 1/γ2 is proportional to the specific volume of the solvent molecule, and
‖ · ‖ denotes the l2 norm of a vector in R3. The distortional free energy is included
in the extended Flory–Huggins mixing free energy to account for the surface tension
effect at the solvent-biofilm interface defined by {x|φn(x, t) = ε as ε → 0+} and pe-
nalizing spatial inhomogeneity in the mixture. The variation of f with respect to φn
(known as the chemical potential) is given by

(2.3)
δf

δφn
= −kT

[
γ1Δφn + γ2

[
− 1
N

− lnφn
N

+ ln(1 − φn) + 1 − χ+ 2χφn

]]
.

Representing the growth rate of the polymer network produced by bacteria as the
reaction rate for the polymer volume fraction, we propose the transport equation for
the volume fraction of the polymer network as follows:

(2.4)
∂φn
∂t

+ ∇ · (φnv) = ∇ ·
(
λch∇

δf

δφn

)
+ gn.

This is the Cahn–Hilliard equation [4, 5] with a reaction term (polymer production).
From the given excessive flux, we can identify the instantaneous excessive velocity as

(2.5) ven = −λch
1
φn

∇ δf

δφn
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when φn �= 0. It is zero when φn = 0.
Another form of the transport equation for φn can be obtained by arguing that

the excessive flux is due to an excessive velocity which is proportional to the mixing
force and takes the form ven = −λ∇ δf

δφn
, in which the excessive flux is given by

−λφn∇ δf
δφn

. Here λ is the mobility parameter. This can also be obtained from the
Ginzburg–Landau dynamics by assuming that λch is proportional to the polymer
volume fraction: λch = λφn. The transport equation for φn is given by

(2.6)
∂φn
∂t

+ ∇ · (φnv) = ∇ ·
[
λφn∇

δf

δφn

]
+ gn.

This is called the modified or singular Cahn–Hilliard equation. When the fluid is
entirely occupied by polymer networks, one of the extreme cases, we argue that mixing
will cease. Therefore, it is plausible to assume that the mobility matrix is proportional
to the solvent volume fraction as well:

(2.7) λ = λ0(1 − φn).

However, this perhaps would never happen in biofilm materials since biofilms always
contain solvent in their sponge-like structures. Both the Cahn–Hilliard and the mod-
ified Cahn–Hilliard models will be tested in the following. The numerical simulation
presented in later sections shows that the modified Cahn–Hilliard equation is more
appropriate for the transport of φn, especially with the polymer production included
in the transport.

The remaining governing equations for the mixture consist of the continuity equa-
tion, the momentum transport or balance equation, and the transport equation for
the nutrient:

(2.8)

∇ · v = 0,

ρ
dv
dt

= ∇ · (τextra) − [∇p+ γ1kT∇ · (∇φn∇φn)],

∂

∂t
(φsc) + ∇ · (cvφs −Dsφs∇c) = −gc,

where ρs and ρn are the density of the solvent and polymer, respectively, ρ = φsρs +
φnρn is the averaged density, and τextra is the total extra bulk stress for the mixture.
Here gn, gc are the reaction rates defined in (1.4). We note that when the densities of
the polymer network and solvent are equal, the density of the mixture is a constant
and the volume fraction averaged velocity is the mass averaged velocity.

In the above momentum balance equation, the presence of the extra term γ1kT∇·
(∇φn∇φn) is due to the spatial inhomogeneity resulting from a virtual work principle
[22]. The nutrient transport is assumed to be convected by the average velocity. The
incompressibility condition ∇ · v = 0 and the constraint φn + φs = 1 require that the
transport equation for φs have a decay term −gn, leading to

(2.9)
∂φs
∂t

+ ∇ · (φsv) = −∇ ·
(
λch∇

δf

δφn

)
− gn

in the Cahn–Hilliard model or

(2.10)
∂φs
∂t

+ ∇ · (φsv) = −∇ · λ
(
φn∇

δf

δφn

)
− gn
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in the modified Cahn–Hilliard model. In the Cahn–Hilliard model, the excessive
solvent velocity can be identified as

(2.11) ves = λch
1
φs

∇ δf

δφn
,

whereas the velocity is given by

(2.12) ves = λ
φn
φs

∇ δf

δφn

in the modified Cahn–Hilliard model. The actual solvent velocity can be calculated
by

(2.13) vs = v + ves.

Analogously, the polymer network velocity is given by

(2.14) vn = v + ven.

With this definition, we easily see that the average velocity is indeed the volume
averaged velocity

(2.15) v = φnvn + φsvs.

In the above formulation of the theory, the nutrient substrate is assumed to
be transported along with the average velocity. If we assume that the nutrient is
transported with the solvent velocity instead, the nutrient transport equation is given
by

(2.16)
∂

∂t
(φsc) + ∇ · (cvsφs −Dsφs∇c) = −gc.

2.2. Constitutive equations for effective polymer. The extra stress for
the polymer network–solvent mixture will supply the crucial link to complete the
governing system of equations for the biofilm model. The simplest choice is treating
the polymer-solvent mixture as an extended Newtonian fluid like in (2.17). When both
the solvent and the polymer are modeled as viscous fluids, the constitutive equations
for the extra stresses are given by

(2.17) τn = 2ηnD, τs = 2ηsD,

where D = 1
2 [∇v + ∇vT ] is the rate of strain tensor and ηn, ηs are the polymer

and solvent viscosities, respectively. Alternatively, we assume the extra stress to be
proportional to the rate of strain tensor given by the velocity field of each component:

(2.18) τn = 2ηnDn, τs = 2ηsDs,

where Dn = 1
2 (∇vn+∇vTn ), Ds = 1

2 (∇vs+∇vTs ). To account for the shear thinning
effect, the polymer viscosity could depend on the rate of strain tensor like the power-
law type [3].

However, because biofilms are hydrogels, they exhibit elastic and/or viscoelastic
behavior depending on the time-scale of interest. To account for these contributions
of the network, more sophisticated constitutive equations should be employed. We



PHASE FIELD MODELS FOR BIOFILMS 647

propose both an elastic and a viscoelastic model next. Given the composition of the
effective polymer network, the stress associated to it should contain a viscous part
accounting for the stress due to the viscous bacterial component denoted by τns. It
has two variations

(2.19) τns = 2ηnD or τns = 2ηnDn,

where ηn is the bacterial contribution to the polymeric viscosity in the effective poly-
mer.

Rubber-elastic model. We model the EPS network as a gel. According to rubber-
elastic theory, the elastic constitutive equation is given by

(2.20) τn = νkTF · FT = νkTB,

where F is the deformation gradient tensor, B = F ·FT is the Finger tensor, and v is
the polymer number density. The time evolution of the deformation gradient tensor
in the absence of solvent is given by

(2.21)
dF
dt

= ∇vn ·F,

where vn is the polymer network velocity. The time evolution of the elastic stress
tensor (as well as Finger tensor B) follows the equation

(2.22)
∂τn
∂t

+ vn · ∇(τn) − [∇vn · τn + τn · ∇vTn ] = 0.

An alternative choice for the rate-of-strain tensor is the rate of strain associated
with the average velocity. Then, the constitutive equation for the elastic stress tensor
is given by

(2.23)
dτn
dt

− [∇v · τn + τn · ∇vT ] = 0,

where d
dt (•) = ∂

∂t (•) + v · ∇(•) is the material derivative and the polymer network is
assumed to deform with the average velocity gradient.

Johnson–Segalman model. Considering the creation and annihilation rate for
the network strands or segments in the network, we adopt the temporary network
model for the viscoelastic EPS [3]. When the two rates are balanced, the constitutive
equation for the elastic stress tensor is given by the following Johnson–Segalman
model:

(2.24)
∂τn
∂t

+ νn∇· (vnτn)−Wn · τn + τn ·Wn− a[Dn · τn+ τn ·Dn]+
τn
λ1

=
2ηp
λ1

Dn,

where a is a rate parameter between −1 and 1, λ1 is the EPS relaxation time, and ηp
is the EPS polymer network viscosity in the effective polymer [3]. a = 1 yields the
Oldroyd-B model with the upper convected derivative, and a = −1 corresponds to
the lower convected derivative. The rubber-elastic model can be viewed as a limiting
case of the current model as λ1 → ∞ and a = 1; the viscous limit is recovered if
λ1 → 0; whereas the highly elastic model is the limit of λ1 → ∞, ηp

λ1
→ G, where G

is the elastic modulus.
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An alternative formulation is to replace the network velocity vn by the average
velocity v analogous to the rubber-elastic case. The constitutive equation for the
extra stress is then given by

(2.25)
dτn
dt

− W · τn + τn ·W − a[D · τn + τn ·D] +
τn
λ1

=
2ηp
λ1

D.

In summary, the phase field theories for biofilms consist of four sets of equations
of multiple variations. In the following, the suffix A indicates that the average velocity
is used, while N denotes that the network and the solvent velocity, respectively, are
used.

Momentum and continuity equation.

(2.26)

∇ · v = 0,

ρ
dv
dt

= ∇ · (τextra) − [∇p+ γ1kT∇ · (∇φn∇φn)],

τextra = φn(aτn + τns) + φsτs.

Transport equation for nutrients.

(2.27)

∂

∂t
(φsc) + ∇ · (cvφs −Dsφs∇c) = −gc, (CA-model)

∂

∂t
(φsc) + ∇ · (cvsφs −Dsφs∇c) = −gc. (CN-model)

Transport equation for the polymer network volume fraction.

(2.28)

∂φn
∂t

+ ∇ · (φnv) = ∇ ·
[
λch∇

δf

δφn

]
+ gn, (CH-model)

∂φn
∂t

+ ∇ · (φnv) = ∇ ·
[
λφn∇

δf

δφn

]
+ gn. (MCH-model)

Constitutive equations.
(2.29)

τn = 2ηnD, τns = 0, τs = 2ηsD, a = 1, (VA-model)

τn = 2ηnDn, τns = 0, τs = 2ηsDs, a = 1, (VN-model)

dτn
dt

− W · τn + τn ·W − a[D · τn + τn ·D] +
τn
λ1

=
2ηp
λ1

D,

τns = 2ηnD, τs = 2ηsD, (JSA-model)
∂τn
∂t

+ ∇ · (vnτn) − Wn · τn + τn ·Wn − a[Dn · τn + τn ·Dn] +
τn
λ1

=
2ηp
λ1

Dn,

τns = 2ηnDn, τs = 2ηsDs. (JSN-model)

The production rate for polymer network and the consumption rate for the nutrient
follow those of the Cogan–Keener model defined in section 1. In the MCH model, the
mobility parameter λ can also be assigned to λ0φs in case the solvent volume fraction
is low and varies drastically in space.

3. Nondimensionalization. We use a characteristic time-scale t0 and length-
scale h, whose values will be specified in specific applications, to nondimensionalize
the variables

(3.1) t̃ =
t

t0
, x̃ =

x
h
, ṽ =

vt0
h
, p̃ =

pt20
ρ0h2

, τ̃n =
τnt

2
0

ρ0h2
, c̃ =

c

c0
,
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where c0 is a characteristic substrate concentration. The following dimensionless
quantities arise:
(3.2)

Λ =
λρ0

t0
, Γ1 =

γ1kT t
2
0

ρ0h4
, Γ2 =

γ2kT t
2
0

ρ0h2
, Res =

ρ0h
2

ηst0
, Ren =

ρ0h
2

ηnt0
, Rep =

ρ0h
2

ηpt0
,

D̃s =
Dst0
h2

, Λ1 =
λ1

t0
, ρ̃ = φs

ρs
ρ0

+ φn
ρn
ρ0
, Ã = At0, μ̃ = μt0, K̃c =

Kc

c0
,

where ρ0 is an averaged density; Res,n,p are the Reynolds numbers for the solvent,
bacteria in the effective EPS polymer network, and EPS polymer network; Λ1 is the
Deborah number for the polymer network; Λ, Γ1,2, D̃s, Ã, μ̃, K̃c are the dimensionless
parameters of their dimensional counterparts. For simplicity, we drop the •̃ on the
dimensionless variables, and the parameters. The system of governing equations in
these dimensionless variables are given, for example in the CH+CA+JSA model, by

(3.3)

∇ · v = 0,

ρ
dv
dt

= ∇ · (φn(aτn + τns) + φsτs) − [∇p+ Γ1∇ · (∇φn∇φn)],

∂

∂t
(φsc) + ∇ · (cvφs −Dsφs∇c) = −gc, (CA)

∂φn
∂t

+ ∇ · (φnv) = ∇ ·
[
Λ∇ δf

δφn

]
+ gn, (CH)

dτn
dt

− W · τn + τn · W − a[D · τn + τn · D] +
τn
Λ1

=
2

Λ1Rep
D,

τns =
2
Ren

D, τs =
2
Res

D, gc = Aφnc, gn = εμφn
c

Kc + c
.

The dimensionless mixing free energy density is now given by

(3.4) f =
Γ1

2
‖∇φn‖2 + Γ2

[
φn
N

lnφn + (1 − φn) ln(1 − φn) + χφn(1 − φn)
]
.

The other dimensionless equations can be obtained analogously. To save space, we
will not enumerate them here.

4. Steady states in one dimension and their linear stability. In this sec-
tion we examine the solution of the governing system of equations that depends on
one spatial variable y ∈ I = [0, 1], where the characteristic length-scale h is chosen as
the width of the stripe which the fluid mixture occupies. The boundary conditions
for the governing system of equations are

(4.1) v|∂I = v0,

[
φnn · ∇ δf

δφn

]
∂I

= 0, [n · ∇φn]∂I = 0, [φsn · ∇c]∂I = 0,

where n is the unit external normal at the boundary of the domain I and ∂I de-
notes the boundary of the domain. These boundary conditions consist of the no-slip
boundary condition on the solid boundary for the average velocity, the no-penetration
boundary condition for the excessive polymer network velocity, and a no-flux bound-
ary condition for the polymer network volume fraction and for the nutrient concen-
tration, respectively.
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4.1. Viscous limit. We first discuss the solution given by the viscous model
(CH+VA). Let ηm = 1−φn

Res
+ φn

Ren
, where 1/ηm is the effective Reynolds number and

(4.2) f̂(φn) =
φn
N

lnφn + (1 − φn) ln(1 − φn) + χφn(1 − φn).

f̂ is the bulk Flory–Huggins mixing free energy density. Considering the boundary
condition at the wall, we set v0

y = 0.
The constant steady state solution for all models is given by

(4.3)
v = 0, p = p0, φn = φ0, c = 0, or
v = 0, p = p0, φn = 0, c = c0,

where p0 is an arbitrary constant, c0 is an arbitrary positive constant, and 0 ≤ φ0 < 1
is a constant. In addition to the constant solutions, there can exist a nonconstant
steady state at c = 0 for φn governed by

(4.4) Γ1φ
′′
n − Γ2

∂f̂

∂φn
= Γ1C0.

A closed form of the solution is not available for this equation. However, (4.4) can be
integrated to yield

(4.5) φ′n = ±
√

2C0φn +
2Γ2

Γ1
f̂(φn) + 2C1,

where C0 and C1 are integrating constants. A qualitative phase space analysis on
an analogous system is given in [20]. Here we focus on the nonconstant steady state
satisfying the Neumann boundary condition.

Using the boundary condition φ′n(1) = φ′n(0) = 0, we can determine C0 and C1:

(4.6)
2C0φn(1) +

2Γ2

Γ1
f̂(φn(1)) + 2C1 = 0,

2C0φn(0) +
2Γ2

Γ1
f̂(φn(0)) + 2C1 = 0.

If φn(0) �= φn(1),
(4.7)

C0 =
Γ2

Γ1

f̂(φn(0)) − f̂(φn(1))
φn(1) − φn(0)

, C1 = −Γ2

Γ1

φn(1)f̂(φn(0)) − φn(0)f̂(φn(1))
φn(1) − φn(0)

.

If we denote

(4.8) g(φ) = −Γ1

Γ2
[C0φn + C1],

g(φ) is the secant-line interpolating the points (φn(0), f̂(φn(0))) and (φn(1), f̂(φn(1))).
In order to have a smooth real solution, f̂ − g > 0; i.e., f̂ is concave down between
φn(0) and φn(1). The concavity region of f̂ is depicted in Figure 1 in phase space
(φ, χ) at N = 1000. In the concave down region, a smooth solution can exist depend-
ing on the magnitude of 2Γ2

Γ1
.
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Fig. 1. The regions of concavity in phase space (φ, χ) at N = 1000.

From (4.5), we can see that the steady state solution is either monotonically
increasing or decreasing if it exists. Integrating (4.5), we arrive at

(4.9) ±
∫ φn(y)

φn(0)

dφ√
f̂(φ) − g(φ)

= y

√
2Γ2

Γ1
,

where the solution of the boundary value problem is constrained by

(4.10) ±
∫ φn(1)

φn(0)

dφ√
f̂(φ) − g(φ)

=
√

2Γ2

Γ1
.

Notice that 2Γ2
Γ1

= 2h2γ2
γ1

. Unless this dimensionless quantity is small, there could not
be a solution to the integral equation. When the right-hand side is small, the chance
to have a smooth solution increases considerably.

If φn(0) = φn(1), we can determine C0 only in terms of C1:

(4.11) C1 = −C0φn(1) − Γ2

Γ1
f̂(φn(1)).

The governing equation is given by

(4.12) φ′n = ±

√
2Γ2

Γ1

[
f̂(φn) −

(
−C0Γ1

Γ2
(φn − φn(0)) + f̂(φn(0))

)]
.

The constant solution φn = φn(0) is a solution. When f̂ is concave down, there could
be a nonconstant steady state given below, provided that 2h2γ2

γ1
is small:
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(4.13)∫ φn(y)

φn(0)

dφ√[
f̂(φn) −

(
−C0Γ1

Γ2
(φn − φn(0)) + f̂(φn(0))

)] = y

√
2Γ2

Γ1
, 0 ≤ y ≤ 1

2
,

∫ φn(y)

φn(1/2)

dφ√[
f̂(φn) −

(
−C0Γ1

Γ2
(φn − φn(0)) + f̂(φn(0))

)] = −y
√

2Γ2

Γ1
,

1
2
< y ≤ 1,

or
(4.14)∫ φn(y)

φn(0)

dφ√[
f̂(φn) −

(
−C0Γ1

Γ2
(φn − φn(0)) + f̂(φn(0))

)] = −y
√

2Γ2

Γ1
, 0 ≤ y ≤ 1

2
,

∫ φn(y)

φn(1/2)

dφ√[
f̂(φn) −

(
−C0Γ1

Γ2
(φn − φn(0)) + f̂(φn(0))

)] = y

√
2Γ2

Γ1
,

1
2
< y ≤ 1.

This solution is spatially periodic with period 1.
Next, we examine the linearized stability of the constant states. Let ρ0 = ρ(φ0)

be the averaged density at the steady state. The eigenfunction for the velocity
components is sin(βy) and for c and φn is cos(βy), respectively, where β = mπ,
m = 1, . . . ,∞. The growth rates of the linearized system are given by

(4.15)

α1,2 = − 1
ρ0

(
1 − φ0

Res
+

φ0

Ren

)
β2,

α3 = Λ

(
−Γ2

∂2f̂

∂φ2
(φ0)β2 − Γ1β

4

)
,

α4 = −Dsβ
2 −Aφ0,

where α1,2 are the growth rates obtained from the linearized momentum equations, α3

is the growth rate corresponding to the linearized transport equation for φn, and α4

is the growth rate for the nutrient concentration. If ∂
2f̂
∂φ2 (φ0) ≥ 0, i.e., the bulk mixing

energy density curve is concave up, all the growth rates are nonpositive; in fact, they
are decay rates. Otherwise, in the portion where the mixing energy density is concave
down, α3 is positive for small values of β and negative for large values of β, i.e., the
steady state suffers the long wave instability. We note that ∂2f̂

∂φ2
n

= 1
Nφn

+ 1
1−φn

− 2χ,

and thus ∂2f̂
∂φ2

n
= 0 has two solutions φ±n . If φ±n are real, ∂2f̂

∂φ2
n
< 0 and f̂ is concave

down for φ−n < φn < φ+
n . The instability occurs in the concave down region. Figure

2 depicts f̂ and ∂2f̂
∂φ2

n
at N = 103 and two different values of χ. In (c) and (d), the

intersections of the dashed line with the curve give values of φ±n . It can be seen for
larger values of χ that the range of φn where ∂2f̂

∂φ2n < 0 becomes wider.
For the second family of constant steady states (4.3.2) the eigenfunctions for

the velocity, the nutrient substrate concentration, and the polymer network volume
fraction are identical to the previous case given by either sin(βy) or cos(βy). The
growth rates of the linearized system are given by
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Fig. 2. The normalized bulk mixing energy density f̂(φn) and its second derivatives ∂2f̂
∂φ2

n
at

χ = 0.55, 0.65. At χ = 0.55, the concave down region does not include φn = 0.19, whereas it does at
χ = 0.65.

(4.16)

α1,2 = − 1
ρ0Res

β2, α3 = Λ

(
−Γ2

∂2f̂

∂φ2
(0)β2 − Γ1β

4

)
+

εμc0
K + c0

, α4 = −Dsβ
2.

We note that ∂2f̂
∂φ2

n
(0) is not defined in the original definition of the Flory–Huggins

mixing free energy density. However, if we modify the φn lnφn term in the mixing
energy density f by (φn + δφ) ln(φn + δφ), where 0 < δφ
 1, then we have

∂2f̂

∂φ2
n

=
1

N(φn + δφ)
+

1
1 − φn

− 2χ,
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and ∂2f̂
∂φ2

n
(0) = 1

Nδφ + 1 − 2χ. Here, Δφ is a small positive number. If δφ ≤ 1
N

and 0 ≤ χ ≤ 1, then ∂2f̂
∂φ2

n
(0) ≥ 0 and the only positive growth rate comes from

the polymer network production term at small β. For practical purposes, we use
δφ = 10−6 throughout this paper.

We remark that the linearized stability analysis applies to the equations in an
infinite domain and higher space dimensions as well. In this case, β = k · l, where
k is the wave number, l is a fixed direction in the multidimensional space, and the
eigenfunctions are the Fourier (normal) modes. The analysis also applies to the three-
dimensional cubic domain with homogeneous or periodic boundary conditions.

Figure 3 depicts the growth rates for the two families of constant steady states
with dimensionless parameters Λ = 10−9, Γ1 = 41.8337, Γ2 = 418337, N = 103, ε = 1
and two selected values of χ at φn = 0.19. For the first family of constant steady
states, when χ = 0.55, Figure 2(c) shows ∂2f̂

∂φ2
n
(0.19) > 0, and thus the growth rate

α3 < 0 for all β > 0; when χ = 0.65, Figure 2(d) shows ∂2f̂
∂φ2

n
(0.19) < 0, and thus

α3 > 0 for β between 0 and approximately 24. For the second family of constant
steady states, a long wave instability persists to the infinitely long wave limit at any
χ. Numerical results confirming the long wave instability in nonlinear regimes are
presented in section 6.

For the MCH model, the growth rate α3 is simply modified by a factor of φ0 for
the first family of constant steady states

(4.17) α3 = φ0Λ

(
−Γ2

∂2f̂

∂φ2
(φ0)β2 − Γ1β

4

)
,

whereas it is given by

(4.18) α3 =
εμc0

Kc + c0

for the second family of constant steady states, which equals the infinitely long wave
limit of the growth rate α3 in (4.16).

We next examine the steady states and their stability in the viscoelastic models.

4.2. Viscoelastic model. The viscoelastic model adds a set of constitutive
equations for the elastic stress to the governing system of equations and couples the
elastic stress to the momentum transport equation. For brevity, we use τ in place of
τn from here on for the polymer elastic stress tensor.

Notice that the steady state of the elastic stress tensor is zero; the constitutive
equation for the polymer network stress is independent of the volume fraction φn and
concentration c; given the zero boundary conditions on v, it is not necessary to impose
any boundary conditions on the polymer elastic stress components. We obtain that
four modes in the linearized constitutive equation are independent, and their growth
rates are given by

(4.19) α5,7,8,10 = − 1
Λ1
,

where the indices track the four decoupled modes of the elastic stress tensor. The
other two modes α6,9 are coupled to the momentum equation. For the first family of
steady states φ = φ0, c = 0, the coupled growth rates are calculated as
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(c) Steady state 2, φn = 0,c = c0, and χ = 0.55.
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Fig. 3. Growth rate of the linearized CH model. The values of the dimensionless parameters
are Λ = 10−9, Γ1 = 41.8337, Γ2 = 418337, N = 103, δφ = 10−3, ε = 1, c0 = 0.1, μ = 0.14,
Kc = 0.5. For the first family of steady states, the long wave growth is due to the polymer-solvent
mixing kinetics shown in (b). Panel (a) depicts a negative growth rate. In contrast, for the second
family of steady states, the long wave growth rate depends only on the polymer production shown in
(c) and (d).

(4.20)

α1,2,6,9 =
1

2ρ0

[
−
(
ρ0

Λ1
+
(

1 − φ0

Res
+

φ0

Ren

)
β2

)

±

√(
ρ0

Λ1
+

1 − φ0

Res
β2

)2

− 4ρ0

((
1 − φ0

Λ1Res
+

φ0

Λ1Ren

)
+

2aφ0

Λ1Rep
β2

)⎤
⎦ .

The rates all have negative real parts. The corresponding eigenfunction for the velocity
components is sinβy, and that for the stress components is cosβy. The growth rates
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α3,4 and eigenfunctions for φn and c are identical to those in the viscous limit.
For the second family of steady states φ = 0, c = c0. The linearized momentum

and constitutive equations decouple. So, the growth rates in the viscous limit α1,2

remain in addition to the decay rates from the constitutive equations,

(4.21) α5,6,7,8,9,10 = − 1
Λ1
.

In the gel model (Λ1 → ∞), the growth rates for the first family of steady states are
given by

(4.22)
α1,2 = −

(
1 − φ0

Res
+

φ0

Ren

)
β2,

α5,6,7,8,9,10 = 0.

The results for the JSN model are qualitatively the same and are omitted here. The
analysis shows that the viscoelasticity at the linear regime does not have any negative
effects on the stability. We next study the nonlinear dynamics of the biofilm flows
in one space dimension. But first we present the numerical method that we use to
compute the nonlinear transient solutions.

5. Numerical scheme for the one-dimensional biofilm models. In this
section we investigate the growth of the biofilm in one dimension: y ∈ I = [0, 1]
governed by the momentum, Cahn–Hilliard or modified Cahn–Hilliard equations, the
nutrient transport equation, and the stress constitutive equation JSA or JSN with
the continuous supply of nutrient substrates through the top boundary. We adopt
the boundary conditions given in (4.1) except that the nutrient boundary conditions
are replaced by

(5.1) [Dφs∇yc] · n|y=0 = 0, c|y=1 = c�,

where n is the unit outward normal of domain I. The boundary condition of c at
y = 1 is the Dirichlet one, c|y=1 c

�, indicating that the substrate is fed at the top
boundary to maintain a constant level of c = c�. The boundary condition for the
velocity is chosen to be v0|y=0 = (0, 0, 0)T , v0|y=1 = (10−3, 0, 0)T . We note that the
vanishing boundary condition for vy along with the continuity condition warrants a
vanishing velocity component in the y direction. Thus the transport of the polymer
network is entirely due to the excessive flux.

The numerical scheme used to study the dynamics of biofilm growth is a finite
difference scheme. We use uniform spatial and time step sizes, denoted by Δy and
Δt, respectively. For given solutions at time step n − 1 and n the polymer volume
fraction at time step n+1, φn+1

n governed by the Cahn–Hilliard equation is calculated
by

(5.2)

φn+1
n − φnn

Δt
+ θΛ∇2

y[Γ1∇2
yφ

n+1
n + 2Γ2χφ

n+1
n ]

= gn(φ̄n+θ
n , c̄n+θ) − (1 − θ)Λ∇2

y[Γ1∇2
yφ

n
n + 2Γ2χφ

n
n]

− Λ∇2
yΓ2

(
− 1
N

ln φ̄n+θ
n + ln(1 − φ̄n+θ

n )
)
.

After this, the volume fraction of the solvent at time step n+1 is obtained by φn+1
s =

1−φn+1
n , and the nutrient substrate concentration at time step n+1, cn+1 is calculated
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by

(5.3)
φn+1
s cn+1 − φns c

n

Δt
− θ∇y · (Dsφ

n+1
s ∇yc

n+1 − vn+1φn+1
s cn+1)

= −gc(φ̄n+θ
n , c̄n+θ) + (1 − θ)∇y · (Dsφ

n
s∇yc

n − vnφns c
n).

The θ-method is used in time discretization of both equations, where 0 ≤ θ ≤ 1,
and the spatial discretization is done using central differences to ensure the second
order accuracy in space and volume preservation for φn when there is no polymer
production. Here, φ̄n+θ

n = (1 + θ)φnn − θφn+1
n , c̄n+θ = (1 + θ)cn − θcn+1 are the

extrapolated values of φn and c at time step n+ θ, and the nonlinear functions gn, gc
and the terms involving log-functions are evaluated at these extrapolated values. In
our simulation throughout the paper, we use θ = 1/2, and thus the overall scheme is
second order in time and space. The MCH equation is discretized similarly by

(5.4)

φn+1
n − φnn

Δt
+ θΛ∇ · [φ̄n+θ

n ∇y(Γ1∇2
yφ

n+1
n + 2Γ2χφ

n+1
n )]

= gn(φ̄n+θ
n , c̄n+θ) − (1 − θ)Λ∇ · [φnn∇y(Γ1∇2

yφ
n
n + 2Γ2χφ

n
n)]

− ΛΓ2∇ ·
[
φnn∇y

(
− 1
N

ln φ̄n+θ
n + ln(1 − φ̄n+θ

n )
)]

.

Assuming that interval I = [0, 1] is divided into M uniform subintervals of size
Δy = 1/M by M + 1 nodes y0, y1, . . . , yM , we denote the value of the numerical
solution of (5.2) and (5.3) at (nΔt, jΔy) by φnn,j , c

n
j , j = 0, . . . ,M . Since v · n|∂I =

v0 · n = 0, the discrete form of the boundary conditions (5.1) is given by

(5.5)
φnn,1 = φnn,−1, φnn,2 = φnn,−2, φnn,M+1 = φnn,M−1, φnn,M+2 = φnn,M−2,

cn1 = cn−1, cnM = c�.

For the purpose of completeness, we also compute the nonzero velocity compo-
nents vx, vz and the stress components τxx, τxy, . . . , τzz, even though they are driven
by φn and c. The time discretization of the equation for vx is given by

(5.6)

ρn+1 v
n+1
x − vnx

Δt
− θ

∂

∂y

((
φn+1
s

Res
+
φn+1
n

Rep

)
∂vn+1

x

∂y

)

= (1 − θ)
∂

∂y

((
φns
Res

+
φnn
Rep

)
∂vnx
∂y

)
+
∂(aφnnτnxy)

∂y
.

The spatial discretization is again central difference. The discrete equation for vz is
done similarly. Dirichlet boundary conditions are imposed for vx and vz; i.e., vnx,0,
vnx,M , vnz,0, vnz,M are given.

We note that all six components of the stress tensor satisfy a generic equation of
the form

(5.7)
∂τ

∂t
+ vy

∂τ

∂y
= F (τ,∇v).

Here F (τ,v) has different forms for different components of the stress tensor, and it
does not contain terms involving partial derivatives of τ . We also note that v can be
either the polymer network velocity (JSN) (the sum of the average velocity and the
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excessive velocity) or the average velocity (JSA), depending on the model we choose.
In the following, we adopt the constitutive model using the polymer network velocity.
Since vy = 0 at y = 0, 1, there are no boundary conditions for the elastic stress tensor
τ ; thus, τ actually satisfies an ODE: ∂τ∂t = F (τ,∇v) at y = 0, 1. Then at the discrete
level, we solve τ0, τM by the following Runge–Kutta method:

(5.8) τn+1 = τn +
Δt
6

(K1 + 2K2 +K3 +K4),

where

K1 = F (τn,∇vn), K2 = F

(
τn +

Δt
2
K1,∇

(
vn + vn+1

2

))
,

K3 = F

(
τn +

Δt
2
K2,∇

(
vn + vn+1

2

))
, K4 = F (τn + ΔtK3,∇vn+1).

Away from the boundaries, we solve τnj , 1 ≤ j ≤ M − 1, by the following upwind
scheme:
(5.9)

τn+1
j − τnj

Δt
= − 1

2Δy

{
[1 − sign(vny,j+1/2)]v

n
y,j+1/2(τ

n
j+1 − τnj )

+ [1 + sign(vny,j−1/2)]v
n
y,j−1/2(τ

n
j − τnj−1)

}
+ F (τnj ,∇vn).

6. Numerical results and dynamics of one-dimensional biofilms. We
study the expansion and growth of one-dimensional biofilms that are homogeneous in
the (x, z) plane and confined to the range 0 ≤ y ≤ 1 using the numerical scheme de-
veloped in the previous section. Table 1 lists the values of the dimensional parameters
used in our simulations [7]. In the phase field model, the mobility of the polymer net-
work is assumed a material parameter, whose value can only be calibrated through
material characterization in vitro or in vivo. In this numerical study, however, we

Table 1

Parameter values used in the simulation.

Symbol Parameter Value Unit
T Temperature 303 Kelvin
γ1 Distortional energy 1 × 107 m kg s−2

γ2 Mixing free energy 1 × 1017 m−1 kg s−2

χ Flory–Huggins parameter 0.55 or 0.65 dimensionless
N Generalized polymerization parameter 1 × 103 dimensionless
μ Max. production rate 1.4 × 10−4 kgm−3s−1

Kc Half saturation constant 5 × 10−4 kgm−3

A Max. consumption rate 1 kgm−3s−1

Ds Substrate diffusion coefficient 2.3 × 10−9 m2s−1

ηn Viscosity due to bacteria 4.3 × 102 kgm−1s−1

ηp EPS polymer network viscosity 4.3 kgm−1s−1

ηs Dynamic viscosity of solvent 1.002 × 10−3 kgm−1s−1

ρn Network density 1 × 103 kgm−3

ρs Solvent density 1 × 103 kgm−3

c0 Characteristic substrate concentration 1 × 10−3 kgm−3

h Characteristic length-scale 1 × 10−3 m
t0 Characteristic time-scale 1 × 103 s
a Slip parameter 0.92 dimensionless
M Number of spacial subintervals 64 dimensionless
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Fig. 4. Evolution of the polymer volume fraction in one-dimensional biofilms by the CH and
MCH models without the polymer production. Δt = Δy in (a), Δt = 0.1Δy in (b). The solution
is plotted at t = 400. Clearly larger mobility transports the polymer network away from the high
concentration regime, reducing the volume fraction of polymers there through conservation.

treat it as an operating parameter. Our first attempt is to characterize the effect of
mobility on the dynamics of biofilms for both the CH and MCH models without the
polymer production, i.e., ε = 0, in which the volume fraction dynamics decouple from
that of the nutrient substrate concentration. We then examine the variation of the
mobility in the CH and MCH models when the polymer network production is present
to select the appropriate model for our study of biofilm expansion and growth.

6.1. Biofilm dynamics with negligible EPS production. We begin with
an initial profile of the polymer volume fraction distribution as a step function with
a nonzero value at the bottom side of the domain and zero at the other side, e.g.,
φn(0, y) = 0.19 for 0 ≤ y ≤ 0.2, φn(0, y) = 0 for 0.2 < y ≤ 1. This mimics the
existence of a flat layer of biofilms in a gap of thickness 1 initially. Figure 4 depicts
the evolution of the polymer volume fraction in the one-dimensional biofilm according
to the CH model (5.2) for different values of mobility λ, in which the horizontal axis
is y and the vertical axis is φn. In each plot, the step curve is the initial profile
of φn at t = 0, and the solid smooth curve is φn at t = 400. Here, we choose
the characteristic time-scale t0 = 1000 seconds, so the dimensionless time t = 400
corresponds to about 4.6 days. λ as the mobility parameter controls the magnitude of
the excessive flux for the polymer network due to polymer solvent mixing. We observe
that when λ is small (λ = 10−11 ∼ 10−10), the effect of the excessive flux is small
and the φn profile is only smoothed around the initial sharp interface (discontinuity)
with a slightly accumulative expansion and growth, since the excessive polymer flux
is not fast enough to transport the biomass out of the active mixing region. However,
as λ increases to (10−9 ∼ 10−8), the biomass of the polymer network is transported
rapidly to the nearby polymer-scarce region leading to sizable expansion of biofilms
in the domain. We note that the no-flux boundary condition for φn at y = 0 and
y = 1 leads to the total amount of conservation in φn, i.e.,

∫ 1

0
φn(t, y)dy = const.

Accompanying the sizable expansion of the biofilm, the volume fraction of the polymer
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network reduces in the nonzero φn (or biofilm) region at larger mobility due to this
conservation property.

As a comparison, Figure 4 also plots the time evolution of the polymer volume
fraction in one-dimensional biofilms according to the MCH model (5.4) for a com-
parable set of mobility values of λ rescaled by λ → λ/0.19 to match the amount
of polymeric fluxes in both models initially. The solutions of the MCH model are
depicted in dot-dashed curves in the figure; they are qualitatively the same as those
predicted using the CH model. However, there exists a subtle difference in the solu-
tion profile in φn in that the transport effect of the modified Cahn–Hilliard equation
(5.4) outside the polymer-rich region is much weaker than that of the Cahn–Hilliard
dynamics (5.2). This is due to the fact that the excessive polymeric flux in the MCH
model is given by −λφn∇ δf

δφn
and vanishes when φn = 0. On the other hand, the ex-

cessive flux in the CH model is given by −λ∇ δf
δφn

and may not be zero even if φn = 0
due to the dissipative property of the CH equation and the numerical error. For ex-
ample, in the case of λ = 10−10/0.19, at t = 400, the value of φn at y = 1 is equal to
0 for the MCH model, and it is about 6× 10−5 for the CH model at λ = 10−10. This
shows that the modified Cahn–Hilliard dynamics gives a much sharper excessive flux
estimation in the solvent region than the Cahn–Hilliard dynamics does, and it also
maintains a sharper interface between the biofilm and the solvent. This subtlety will
be amplified in the following numerical studies when the polymer network production
is accounted for.

Next we study the dynamics of the biofilm expansion without polymer network
production (ε = 0) in the neighborhood of constant steady states, considering an initial
polymer volume fraction profile that is the perturbation from a constant steady state,
e.g., φn(0, y) = 0.19 + 0.019 cos(2πky), where k is the wave number. This transient
simulation aims to investigate the nonlinear evolution of the constant steady states
perturbed by either linearly stable or unstable modes. We choose two wave numbers:
one falls into the linearly stable range (k = 5) and the other into the unstable range
(k = 3) at χ = 0.65. Our simulations demonstrate that the transient solutions
corresponding to the linearly stable modes all converge to the homogenized steady
state φ0 = 0.19, while the initial polymer volume fraction with the perturbation
corresponding to the unstable mode evolves into a spatially inhomogeneous profile.
Figure 5(a) depicts the polymer volume fraction profile corresponding to an unstable
mode (k = 3) at t = 400. Since the difference in the stability between the CH
and MCH models is seen only in the magnitude of the linearized growth rate, the
results obtained from both models are qualitatively the same. The variation of volume
fraction in the MCH model is smaller than that in the CH model though. Coarsening
is observed in the transient simulation.

To further illustrate the nonlinear dynamics of the biofilm in the range of unstable
wave numbers for χ = 0.65, we investigate the evolution of the biofilm with initial
polymer volume fraction of a perturbation of two different wave numbers: φ0(y) =
0.19 + 0.019[cos(2π · 3 · y) + cos(2π · 5 · y)], where the perturbation of the constant
steady state φ0 = 0.19 contains a growth mode k = 3 and a decay mode k = 5. Figure
5(b) depicts the numerical result at t = 400 for both the CH and MCH models, where
the shorter wave mode (k = 5) decays and the longer one (k = 3) survives and
grows, confirming the linear stability analysis. The nonlinear profile calculated from
the MCH model is comparable to that from the CH model at the rescaled mobility
parameter shown in Figure 5(b). Figure 5(c) portrays the evolution of the polymer
volume fraction with initial condition given by a superposition of four different modes:
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Fig. 5. Evolution of the polymer volume fraction φn in one-dimensional biofilms by the CH
and MCH models without polymer production at χ = 0.65. The parameter λ = 10−9. (a) The initial
profile is given by φ0(y) = 0.19 + 0.019 cos(2πky), where k = 3. The polymer volume fraction tends
to evolve (or coarsen) into islands with length-scale proportional to 1/k. (b) The initial profile is
given by φ0(y) = 0.19 + 0.019[cos(2π · 3 · y) + cos(2π · 5 · y)]. (c) The initial profile is given by
φ0(y) = 0.19 + 0.019[ξ1 cos(2π · 2 · y) + ξ2 cos(2π · 3 · y) + ξ3 cos(2π · 5 · y) + ξ4 cos(2π · 12 · y)], where
ξi, i = 1, . . . , 4, are four randomly chosen constants.

φ0(y) = 0.19 + 0.019[ξ1 cos(2π · 2 · y) + ξ2 cos(2π · 3 · y) + ξ3 cos(2π · 5 · y) + ξ4 cos(2π ·
12 · y)], where ξi, 1 ≤ i ≤ 4, are random numbers chosen between 0 and 1. Here the
perturbation contains two growth modes k = 2, 3 and two decay ones k = 5, 12. We
observe that for both the CH and MCH models, the shorter waves (k = 5, 12) decay
and the longer ones (k = 2, 3) grow. The profile of φn at t = 300 is a combination
of the two “nonlinear modes” corresponding to k = 2 and k = 3, and the mode with
k = 3 seems to be dominant, especially near the boundary. Note that β = 2πk,
k = 2 and 3, correspond to β = 12.57 and 18.85, respectively. Figure 3(b) in section
4 indicates that the growth rate for k = 3 is bigger than that for k = 2, and thus our
numerical results simply illustrate that the linear instability amplifies in the nonlinear
regime.

6.2. Biofilm dynamics with EPS production in weak shear. Next, we
turn to the growth case (ε = 1) and study the expansion and growth of the biofilm
with an initial profile of a step function in weak shear. The dimensionless shear speed
at y = 1 is fixed at vx = 0.001. The initial condition of the nutrient concentration
is set at c = c� = 0.03 for 0 ≤ y ≤ 1. Figure 6 depicts the results for the CH
and MCH models. The step profile is φn at t = 0, and the smooth ones are φn at
t = 400 obtained from both models. For the CH model, we observe that for small λ
(λ = 10−11 ∼ 10−10), since the excessive flux is small, the polymer network mostly
grows at the position where it is initially positive, and only a very small amount is
transported to the right. It is also seen that the polymer network grows more rapidly
around the interface between the biomass (mixture of polymer and solvent) and the
pure solvent. This is because the nutrient to the left of the interface tends to be
consumed in a short period of the film growth so as to cause the polymer network
growth to cease after that, but the polymer around the interface can always access
the nutrient due to the nutrient diffusion at the interface. Thus, the growth near the
interface can be sustained. As λ increases (in 10−9 ∼ 10−8), the polymer network
expands into the solvent region, leading to a lower polymer volume fraction in the
biofilm.

As a comparison, we repeat the same calculations using the MCH model at the
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Fig. 6. Growth of the polymer volume fraction in one-dimensional biofilms and the nutrient
concentration profile. The parameter values are ε = 1, μ = 0.14, Kc = 0.5. The biofilm-solvent
interface predicted by the MCH model always falls to the left of that predicted by the CH model. In
addition, the MCH model gives a more realistic estimation of the volume fraction away from the
biofilm in the solvent region and allows a slightly richer supply of nutrient into the interfacial region.

same mobility parameters and the rescaled ones, respectively. Figure 6 shows the
growth of the polymer volume fraction in one-dimensional biofilms according to the
MCH model for the same set of values of λ as well as the rescaled one λ → λ/0.19,
respectively. They are qualitatively the same as the results obtained from the CH
model, but the transport effect in the MCH model yields weaker polymeric fluxes.
For example, the expansion of the biomass predicted by the MCH model with the
rescaled mobility is slower than that done by the CH model. In the two MCH models
discussed here, the one with the original (nonscaled) mobility parameters clearly de-
livers weaker polymeric flux, so that the profile of the polymer volume fraction in the
majority biofilm-rich region is always higher than those predicted by others. Figure 6
depicts the nutrient concentration calculated from the two models with the same set
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of mobility parameters as well. The slightly higher nutrient concentration in the case
of the MCH solution without rescaling the mobility parameter correlates well with
the volume fraction profile at t = 400, justifying the fact that the growth is fueled by
the supply of the nutrient.

In the one-dimensional situation, the average velocity, the pressure, and the elas-
tic stress tensor components are driven dynamical variables in that their governing
equations decouple from the transport equation for φn and c. We next examine the
driven quantities in the one-dimensional models. First, we note that vy = 0 is dictated
by the continuity equation. Hence, the polymer network velocity is actually given by
(vx, vey). Figure 7 plots the average velocity component vx and the excessive velocity
component vey. The initial profile of vx is zero in the biofilm region and nonlinear
meeting the prescribed terminal shear speed at y = 1. The magnitude of vx is small
in the biofilm region, and all models give comparable predictions. In the solvent re-
gion, the CH model gives the largest vx, while the MCH model of either rescaled or
nonscaled mobility parameters is comparable at small mobility and distinct at a larger
mobility value. The magnitude of vx is much smaller in the biofilm region, indicating
a lack of spatial motion in the biofilm despite the weak shear. The excessive velocity
vey is zero in the solvent region and nonzero in biofilms at t = 400. The behavior of
vey in the range of small mobility parameters is qualitatively the same. However, the
velocity predicted using the MCH model differs from that of the CH model as the
mobility increases. In the latter case, the velocities in y predicted by the MCH are
all positive, indicating a slight transient growth in the volume fraction at t = 400.
The negative velocity in the CH model prediction indicates a transient decay of the
polymer volume fraction. In all cases, the difference as well as the magnitudes are
rather small (on the order of O(10−4)).

Figure 7 also depicts the normal stress component φnτyy, where the JSN model
with a = 0.92 is used. The normal stress components predicted by the three mod-
els are similar qualitatively at small mobility parameter λ = 10−10, where the stress
component exhibits a peak in the middle of the biofilm region and a negative value at
the biofilm-solvent interface. The same qualitative behavior can be described for the
pressure. At higher mobility values, the stress component and the pressure calculated
from the CH model yield the largest stress fluctuation in a neighborhood of the inter-
face. The stress obtained from the MCH model with rescaled and nonscaled mobility
parameters shows larger numerical values in the biofilm region and smaller fluctua-
tions across the interface. The CH model predicts a stress and pressure undershoot
followed by an overshoot in the biofilm region near the interface. Since the trans-
port equation for the polymer volume fraction impacts the polymer network velocity,
which in turn drives the polymer elastic stress as well as the pressure, the drastically
different behavior is another manifestation of the velocity difference in vey near the
interface.

We have contrasted the prediction of the CH model with that of the MCH model.
One question remains: which one is better suited for modeling biofilms numerically?
In the CH model, the polymeric flux is completely controlled by the variation of the
free energy density, while it depends on both the polymer volume fraction and the free
energy density variation in the MCH model. Figure 8 depicts the computed profile
of the polymer volume fraction in one-dimensional biofilms with a higher nutrient
concentration c� = 0.2 at y = 1 and two different mobility parameters. The higher
concentration tends to speed up the polymer network expansion and growth across
the entire domain. For the CH model, when t is small, we observe that the polymer
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Fig. 7. The profile of the average velocity vx, ve
y and the elastic stress component φnτyy in the

one-dimensional biofilm and solvent mixture.
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Fig. 8. Growth of the polymer volume fraction in one-dimensional biofilms with a higher
nutrient concentration c� = 0.2. For the CH model, the numerically generated artificial growth
at the top boundary disqualifies the model when polymer production is present. The MCH model
renders a physically correct prediction in the nutrient-rich solvent, making it our choice of models
for studying fluid mixtures.

network grows due to the production term and expands to the solvent region due to
the excessive polymeric flux. As t increases, φn becomes nonzero at y = 1 due to
the numerical dissipation and the truncation errors. When φn becomes nonzero at
y = 1, an exponential growth ensues due to growth rate gn in the governing equation
for φn and soon reaches 1, causing our computations to break down. The value of
φn at y = 1 reaches 1 faster for λ = 10−9 (shortly after t = 260) than for λ = 10−10

(shortly after t = 320). This numerical evidence demonstrates the limitation of the
CH model in modeling the polymer production numerically. The MCH model, on the
other hand, does not suffer the unphysically numerical growth of φn at y = 1, since
the polymeric flux near y = 1 vanishes due to φn = 0 in the pure solvent region.
Numerically, the zero polymeric flux condition in the solvent region is much easier to
maintain in the MCH model before the growth reaches the boundary than in the CH
model. We also notice that φn grows faster near the original interface in the MCH
model than in the CH model. This is because once φn starts to grow at y = 1 in the
CH model, the nutrient is consumed there quickly, which in turn reduces the amount
of the nutrient being diffused to the original interface and thus reduces the polymer
production rate. Physically, the MCH model is based on a better assumption on the
polymeric flux. The above numerical result hence supports that the MCH model is
more appropriate for modeling the transport of the polymer network for its accurate
modeling of the transport of the polymeric flux than the CH model.

Finally, we investigate the expansion and growth of an inhomogeneous biofilm
initially located at one side of the domain, shown in Figure 9, using the MCH model.
When the initial profile contains unstable long wave modes, the dominating growth
occurs in the biofilm region with significant coarsening and little expansion into the
solvent region initially. In this calculation, we solve the governing system of equations
at χ = 0.65 using the MCH model for an extended period of time. Figure 9 depicts
the expansion and growth of biofilms from perturbed initial data calculated by the
MCH (with the rescaled mobility) model at two different values of nutrient-supply



666 TIANYU ZHANG, N. G. COGAN, AND QI WANG

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y

φ
n

t = 0
t = 400
t = 800
t = 1200
t = 1600

(a) φn profile, c� = 0.03.

0 0.2 0.4 0.6 0.8 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

y
c

t = 0
t = 400
t = 800
t = 1200
t = 1600

(b) Nutrient c, c� = 0.03.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

φ
n

t = 0
t = 400
t = 600
t = 800
t = 840

(c) φn profile, c� = 0.1.

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y

c

t = 0
t = 400
t = 600
t = 800
t = 840

(d) Nutrient c, c� = 0.1.

Fig. 9. The polymer volume fraction φn and nutrient concentration c computed by the MCH
model with a perturbed initial data with growth for two different c�, simulated for a sufficiently long
time. The parameter values are χ = 0.65, c� = 0.03, 0.1, λ = 10−9, φ0(y) = 0.19 + 0.019[cos(2π ·
3 · y) + cos(2π · 5 · y)] for y ≤ 0.5, φ0(y) = 0 for y > 0.5. After an initial pulling back, the biofilm
expands into the solvent region as long as there is a continuous supply of nutrient.

boundary value c� and for sufficiently long time. Figures 9(a) and (b) show the
profile of φn and c for c� = 0.03 at five different times. Since χ = 0.65, we know
that there are some long wave unstable modes from the linear stability analysis to
fuel the expansion and growth of the biofilm. For relatively short time (t ≤ 400),
we observe that the long wave to the left of the interface grows, and the polymer
volume fraction profile undergoes a sharp transition near the interface, pulling the
polymer network to the biofilm-rich region relative to the initial profile. An intuitive
explanation for this is that due to the weaker dissipation in the model, the rapid
growth of the polymer network and coarsening in the biofilm draw the polymers near
the interface into the polymer-rich region, a consequence of the long wave instability.
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The pulling back phenomenon is clearly tied to the coarsening, because the nutrient
concentration at t = 400 is nearly zero in the biofilm region shown in the figure. As
time goes by, we observe that the profile of the polymer volume fraction in the biofilm
tends to level off, or coarsening ceases, so that the growth of the polymer network
becomes more uniform away from the biofilm-solvent interface and the interface starts
to expand into the solvent. From the bulk free energy density f̂(φn), we can see that
the bulk contribution to the polymer network flux decreases as the volume fraction φn
continuously grows. At a lower polymer volume fraction, the expansion of the biofilm
is facilitated by the bulk free energy along with the conformational free energy tied to
the curvature of the interface profile of φn. As the polymer volume fraction exceeds a
critical value though (zero of ∂2f̂

∂φ2
n

= 0), the driving force behind the expansion is due
purely to the curvature effect.

We also examine the nutrient distribution during the above-mentioned process.
We notice that the nutrient tends to be depleted within the biofilm as the polymer
network tends to reach a uniform distribution; however, the nutrient supply is suf-
ficient at the biofilm-solvent interface which fuels the expansion and growth of the
polymer network continuously outwards. This explains the dynamics of the polymer
network expansion in biofilms for long times. Figures 9(c) and (d) depict the results
for a higher nutrient concentration at c� = 0.1. They are qualitatively the same as
the case of c� = 0.03, except that the dynamics take place at a much faster pace here.

7. Conclusions. In this paper, we present a phase field theory modeling biofilm
and solvent mixtures as incompressible complex fluids. In this one-fluid two-component
theory, the extracellular polymeric substance (EPS) along with the bacteria is treated
as one effective viscous or viscoelastic component, and the nutrient and the solvent are
treated as the other effective viscous component. The growth of the effective polymer
network component is modeled by a saturated growth, while the nutrient consump-
tion is approximated by a linear decay. Three constitutive models for the mixture
are proposed: extended Newtonian, rubber elastic gel, and viscoelastic model. That
the mixture in the bulk is incompressible leads to a divergence-free averaged velocity
field. The interpenetrating between the two effective components is measured by the
excessive velocities accounted for by the Flory–Huggins polymer mixing dynamics.
Surface tension between the pure solvent section of the solvent fluid and the biofilm
is naturally built in through a nonlocal entropic mixing free energy density. The
Cahn–Hilliard dynamics coupled with the Flory–Huggins mixing is investigated with
respect to various mobility parameters. Modified Cahn–Hilliard dynamical transport
is shown to be more appropriate for the biofilm expansion and growth, which can
effectively eliminate the unwanted and unphysical growth in the solvent region due to
the numerical error and dissipation.

There are a limited number of results that can be used to validate the model
presently. One of the results used in a few reports [8, 13, 25] is that the flat biofilm-
fluid interfaces are unstable for a finite interval of perturbation modes, with a single
maximally unstable mode. Both the linear analysis and the nonlinear simulations of
the present model confirm these predictions.

The advantage of modeling biofilms using a multicomponent material includes
robust treatment of the physics and interacting dynamics among the components.
Meanwhile, deriving a model consisting of a single fluid eliminates several potential
difficulties associated with the coupled biofilm-bulk fluid flow like velocity, boundary
conditions, etc. In particular, the interface conditions are dramatically simplified,
since the interface is not separated from the rest of the system. In addition, influent
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and effluent boundary conditions are natural in the single fluid case. The present
treatment also provides a framework in which various constitutive relations for each
constituent can be investigated in conjunction with the motion of the bulk fluid. Both
of these are important in order to address dispersal, detachment, and sloughing events
which have substantial impact in industrial and medical settings of the biofilm.
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RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL
PERIODIC ELASTIC MEDIA∗
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Abstract. A frequency bandgap is a range of wave frequencies that are prohibited from passing
through a medium. The dispersion relation, which links the frequency to the wave number, enables
us to illustrate the bandgaps. In [E. H. Lee, “A survey of variational methods for elastic wave
propagation analysis in composites with periodic structures,” in Dynamics of Composite Materials,
E. H. Lee, ed., ASME, New York, 1972, pp. 122–138] and [E. H. Lee and W. H. Yang, SIAM
J. Appl. Math., 25 (1973), pp. 492–499] the dispersion relation was studied theoretically for the
one-dimensional periodic structure made of two materials arranged symmetrically with respect to
the center of the cell. Their dispersion relation formulas can be similarly extended to a multilayered
symmetric cell configuration, but not to a general (nonsymmetric) cell configuration. The general
model was considered in [M. Shen and W. Cao, J. Phys. D, 33 (2000), pp. 1150–1154], where each
unit cell of the periodic layered structure contains several sublayers of arbitrary lengths and materials.
Using the transfer matrix method, the dispersion relation was successfully derived, involving very
lengthy explicit formulas. In this paper, we generalize the work of Lee and Yang and develop
recursive dispersion relation formulas for a general cell configuration. The recursive formulas are
easy to implement and, through several numerical experiments, successfully corroborate the results
of Shen and Cao.

Key words. dispersion relation, recursive formulas, wave propagation, Floquet theory, periodic
layered media
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1. Introduction. The existence of bandgaps in one-dimensional periodic elas-
tic media appears to have been first established by Lord Rayleigh [17], and a good
review of the early work on wave propagation in periodic elastic media can be found
in Brillouin’s classic text [2]; a more recent comprehensive review that outlines the
development of the “band theory” for electrons, photons, and phonons can be found
in Kushwaha [10]. A variety of technological applications has been suggested for
phononic bandgap materials which include transducers, acoustic filters, or barriers
for noise reduction, and even as a means for mitigating the effects of seismic surface
waves. The study of phonons and phononic bandgaps associated with elastic wave
propagation in periodic elastic media have also been used to study quantum field
effects such as tunneling phenomena [24].
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Exact dispersion relations for harmonic waves in an infinite one-dimensional
medium consisting of plane parallel alternating layers of two homogeneous isotropic
elastic materials were derived in [20]. Their exact dispersion curves compare well with
the “effective stiffness” theory they developed for the lowest vibrational modes over
a wide range of wave numbers. Using a transfer matrix formalism and bypassing the
use of Floquet theory, “pseudo-”stop bands and pass bands were computed in [3] for
finite, periodically layered media. They showed that for a finite system containing
at least ten cells, the characteristics of the second stop band compare well with that
predicted in an infinite medium [11], [12] for a 2-2 composite consisting of ceramic
and polymer constituents. This problem was further examined in [7], where it was
shown that, in some instances, only one or two unit cells could be sufficient to depict
the “frequency bandedness” seen in the infinite medium. Dispersion effects in finite
periodic structures, which include viscous damping and the use of genetic algorithms
for tailoring their frequency response characteristics, are also considered in [8].

Interestingly, the transfer matrix formalism has been successfully used for some
time by geophysicists (e.g., [21], [5], [16], [1]), and for finite, layered Goupillaud-type
(equal travel time) media [4], also known as the so-called communication matrix ap-
proach [19], [22], [9]. These works are not usually cited in prior work by the “bandgap”
community, but are included here to emphasize their importance in providing insight
and a framework for the analysis of dispersion effects in periodic elastic media.

Returning our attention once again to infinite media, [11] and [12] study the dis-
persion relation in an infinite strip of a periodically repeated cell with length or period
a. According to their model, the cell is composed of two homogeneous elastic mate-
rials: the filler (f) and the matrix material (m). These materials are symmetrically
arranged with respect to the center of the unit cell as shown in Figure 1.

m                          f                     m

x
-a/2                              -b/2     0      b/2                              a/2

Fig. 1. Symmetric unit cell made of two materials, used in [11], [12].

The material density ρ and elastic modulus η are piecewise constant functions,
taking constant values with subscripts f and m in the filler and matrix material
regions, respectively. The density ρ and the elastic modulus η vary periodically along
the strip with position x and period a,

{
ρ(x+ a) = ρ(x),
η(x+ a) = η(x).

Figure 2 displays the density function within a single (unit) cell, assuming that
ρf ≤ ρm. Since the cell is periodically repeated in the infinite strip, the density graph
shown in Figure 2 is also periodically repeated.

The general model was considered in [18], where each unit cell of the periodic lay-
ered structure contains several sublayers of arbitrary lengths and materials. They were
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−b/2

f

−a/2 a/20

ρ

mρ

ρ

x

b/2

Fig. 2. Density in a symmetric unit cell made of two materials.

able to successfully derive the dispersion relation using the transfer matrix method,
while involving very long explicit formulas.

In this paper, we generalize the work of [11], [12] and develop recursive dispersion
relation formulas for a general cell configuration. The recursive formulas are easy to
implement and, through several numerical experiments using Maple [15], successfully
corroborate the results of [18].

Unlike the (two-material) symmetric cell configuration studied in [11], [12], the
implicit dispersion relation for a general cell configuration appears to be more com-
plex. The process of deriving an implicit recursive dispersion relation involves the
construction of basic solutions in the unit cell, which provides more insight on how
the properties of such solutions relate to the cell configuration. This is demonstrated
through two approaches, which we identify as the central expansion approach and the
quasi-symmetric limiting approach.

As shown in [11], [12], we begin with the wave equation with periodic coefficients
η and ρ, described by

(1)
∂[η ∂U∂x ]
∂x

= ρ
∂2U

∂t2
.

Using separation of variables, we assume that the displacement U(x, t) can be
expressed as

(2) U(x, t) = u(x)φ(t),

and (1) reduces to the second order ordinary differential equation with periodic coef-
ficients,

(3)
d

dx

[
η
du

dx

]
+ ρω2u = 0.

According to the Floquet theory, for a fixed ω, the solution u(x) in (3) is of the form

(4) u(x) = υ(x)eiqx,

where υ(x) is a periodic function with the same period a as the coefficients η and ρ.
Due to the quasi-periodic recursive relation that follows from (4), we have

u(x+ a) = u(x)eiqa,
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Fig. 3. Even eigenfunction in a symmetric cell of two materials and three layers.
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Fig. 4. Odd eigenfunction in a symmetric cell of two materials and three layers.

and the problem of finding the solution u(x) along the strip is reduced to the single
unit cell −a/2 ≤ x ≤ a/2, where the following quasi-periodic boundary conditions
apply:

(5)

{
u(a/2) = u(−a/2)eiqa,

u′(a/2) = u′(−a/2)eiqa.

The solution of (3) in the unit cell, subject to the boundary conditions (5), is
then expressed as a linear combination of two eigenfunctions/linearly independent
solutions of (3). For convenience, the two eigenfunctions are chosen to be even ue(x)
and odd uo(x) functions along the symmetric cell studied in [11], [12]; see Figures 3
and 4. The solution of (3),

(6) u(x) = ue(x) + Cuo(x),
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satisfies the quasi-periodic boundary conditions (5) if

(7) C = i
ue(a/2)
uo(a/2)

tan
qa

2
and C = −iu

′
e(a/2)
u′o(a/2)

cot
qa

2
.

According to [11], [12], the compatibility of the two relations above results in the
implicit form of the dispersion relation,

(8)
ue(a/2)
uo(a/2)

tan
qa

2
= −u

′
e(a/2)
u′o(a/2)

cot
qa

2
.

Further simplifications imply the following equivalent forms:

tan2
(qa

2

)
= −u

′
e(a/2)uo(a/2)
u′o(a/2)ue(a/2)

or

(9) cos(qa) =
u′o(a/2)ue(a/2) + u′e(a/2)uo(a/2)
u′o(a/2)ue(a/2) − u′e(a/2)uo(a/2)

.

The dispersion relation is then obtained after the construction of the even and odd
eigenfunctions ue(x) and uo(x) in the unit cell, and their substitution into (8) or (9).
As discussed in [11], [12], due to (4), it is only necessary to consider the wave number q
limited to the domain 0 ≤ q ≤ π/a. The dispersion relation graph displays a banded
frequency spectrum, comprising bands which transmit Floquet waves and no pass
bands which do not.

2. Generalized form of the dispersion relation. In this section, we derive
the dispersion relation for a general (unit) cell configuration, made of an arbitrary
number of layers and materials. The steps involved are summarized below, and are
generalizations of the work of [11], [12] discussed earlier. Through the rest of the
paper, the interval of the unit cell with length a is [−b, d]. Here 0 < b, d < a, and
b+d = a. In the special case of a symmetric cell configuration seen before, b = d = a

2 .
(i) The application of Floquet’s theorem for (3), with ρ and η corresponding to

the general (unit) cell configuration, yields two quasi-periodic conditions,{
u(x+ a) = u(x)eiqa,

u′(x+ a) = u′(x)eiqa.

Evaluating the conditions above at x = −b, we obtain the generalization of the bound-
ary conditions (5),

(10)

{
u(d) = u(−b)eiqa,
u′(d) = u′(−b)eiqa.

(ii) The solution u = u(x) of (3) and (10) may be written in a general form
similar to (6) as

(11) u = C1u1 + C2u2.

Here u1 = u1(x) and u2 = u2(x) are two eigenfunctions/linearly independent solutions
of (3), to be constructed later, while the constants C1 and C2 are unknown. For a
symmetric cell configuration, such as the one studied in [11], [12], u1 and u2 become
even and odd functions.
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(iii) As a generalization of (7), after substituting (11) into the quasi-boundary
conditions (10), we obtain a linear homogeneous system of equations for the unknowns
C1 and C2,

(12)

{
(u1(d) − u1(−b)eiqa)C1 + (u2(d) − u2(−b)eiqa)C2 = 0,

(u′1(d) − u′1(−b)eiqa)C1 + (u′2(d) − u′2(−b)eiqa)C2 = 0.

(iv) Seeking a nontrivial/nonzero solution, we set the determinant of the sys-
tem (12) to zero, a condition which replaces the compatibility conditions used earlier
in (7)–(8) by [11], [12]. This yields the ω = ω(q) relation of the form

(13)
(u1(d) − u1(−b)eiqa)(u′2(d) − u′2(−b)eiqa)
= (u′1(d) − u′1(−b)eiqa)(u2(d) − u2(−b)eiqa).

Equation (13) represents the dispersion relation for a general cell configuration in its
implicit complex form.

(v) After a few manipulations of (13), using the property of the Wronskian
W (x) discussed below, we obtain the dispersion relation in its implicit real form.
The Wronskian W (x) of u1(x) and u2(x), two linearly independent solutions of the
differential equation (3), is given by

W (x) = u1(x)u′2(x) − u′1(x)u2(x).

It directly follows from (3) that

d

dx
[η(x)W (x)] = 0,

and therefore,

W (x) =
C

η(x)
,

where C is a constant. Assuming that η(−b) = η(d), one deduces thatW (−b) = W (d).
Returning our attention to (13), after multiplying and reorganizing the terms, we
obtain

(14) W (d) − J(−b, d)eiqa +W (−b)ei2qa = 0,

where J(−b, d) = u1(−b)u′2(d) + u1(d)u′2(−b) − u′1(−b)u2(d) − u′1(d)u2(−b).
Under the assumption that η(−b) = η(d), one deduces that W (−b) = W (d) and

the relation (14) becomes

W (−b)[eiqa + e−iqa] = J(−b, d).

From here the dispersion relation is expressed in its implicit real form as

2 cos(qa) =
J(−b, d)
W (−b) ,

or equivalently

(15) 2 cos(qa) =
u1(−b)u′2(d) + u1(d)u′2(−b) − u′1(−b)u2(d) − u′1(d)u2(−b)

u1(−b)u′2(−b) − u′1(−b)u2(−b)
.
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Further simplifications follow if u1(x) and u2(x) are chosen to satisfy u1(−b) =
u′2(−b) = 1 and u′1(−b) = u2(−b) = 0. Then W (−b) = 1 and the implicit dispersion
relation,

2 cos(qa) =
J(−b, d)
W (−b) ,

takes the form

2 cos(qa) = u1(d) + u′2(d).

Similar arguments can be found in [14].
A simplified form of (15) used to express the dispersion relation for the (two-

material) symmetric cell configuration was derived in [11], [12] and given by (9).
Indeed, when b = d = a

2 , we obtain

(16) 2 cos(qa) =
u1(−a

2 )u′2(
a
2 ) + u1(a2 )u′2(−a

2 ) − u′1(−a
2 )u2(a2 ) − u′1(

a
2 )u2(−a

2 )
u1(−a

2 )u′2(−a
2 ) − u′1(−a

2 )u2(−a
2 )

.

Due to the symmetry of the cell configuration, u1 and u2 become even and odd
functions, respectively. This means that

{
u1(a2 ) = u1(−a

2 ),
u′1(

a
2 ) = −u′1(−a

2 )
and

{
u2(a2 ) = −u2(−a

2 ),
u′2(

a
2 ) = u′2(−a

2 ).

After substituting these relations into (16) and replacing u1 = ue and u2 = uo,
we obtain the dispersion relation (9), as seen before in [11], [12].

As a conclusion, relation (15) subject to the boundary requirement η(−b) = η(d)
represents the generalized form of the dispersion relation (9) derived in [11], [12]. This
is also confirmed by our numerical experiments with the choice of the unit cell boxed
in Figure 5, with border layers occupied by the same material, ensuring the same
value for η(x) and therefore the same value for W (x) along the border layers.

• • • M              1         2      3   • • • M 1             2      3       • • • M      • • •

Fig. 5. Unit cell selection in a periodic medium with a general cell configuration.

3. Recursive formula of the dispersion relation using the central ex-
pansion approach. In order to develop the generalized dispersion relation (15), we
need to find two eigenfunctions u1(x) and u2(x) of (3) in a unit cell of our choice.
The unit cell of choice, used in the central expansion approach, is shown in the last
diagram of Figure 6. This is obtained after shifting and renumbering the general cell
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• • •

Fig. 6. The stages of development of the central expansion approach for a given general cell
configuration of M-layers. Here N+ = N− = N , where N = �M

2
� + 1 or N = �M

2
�.

of M -layers. The purpose of the shifting is to have the border layers made of the
same material to ensure that η(−b) = η(d), which implies that W (−b) = W (d) and
therefore (15) holds. The purpose of the renumbering is to create a central layer in
the cell similar to the three-layered symmetric cell configuration previously studied
in [11], [12]. In the renumbered scheme, N = �M2 � + 1, unless the cell already has
an odd number of layers M and the border layers are made of the same material, in
which case N = �M2 �. The (−) and (+) superscripts on the renumbered cell diagram
of Figure 6 are used for the layers numbered 2, 3, . . . , N to indicate, respectively, their
left and right positions with respect to the central layer. The central layer is marked 1̃
to distinguish it from the layers on the other diagrams marked 1.

As a result, we may follow the method of [11], [12]. We begin with the solution
in the central layer of the cell and expand it to the right and left layers using the
continuity conditions of stress and displacement at the layer interfaces. Indeed, in
a given layer of the cell, with constant material properties ρ and η and wave speed
c =

√
η/ρ, the solution of (3) is of the form

(17) u(x) = A cos
(ω
c
x
)

+B sin
(ω
c
x
)
.

In the notation that follows ρ±j , η±j , and wave speed c±j =
√
η±j /ρ

±
j indicate the corre-

sponding values for the jth layer, j = 2, . . . , N , located to the right ((+) superscript)
or left ((−) superscript) of the central layer with j = 1.
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As indicated in [11], [12], it is convenient to choose the two eigenfunctions u1(x)
and u2(x) to be even and odd functions in the central layer,

u1(x) = cos
(
ω

c1
x

)
, −b1 < x < d1,(18)

u2(x) = sin
(
ω

c1
x

)
, −b1 < x < d1.(19)

The expansion of these solutions to the right and left layers would be of the form (17),
and the eigenfunction u1(x) along the unit cell [−b, d] can be given as

u1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+
N cos

(
ω
c+N

(x− dN−1)
)

+B+
N sin

(
ω
c+N

(x− dN−1)
)

for dN−1 ≤ x ≤ dN ,

...

A+
3 cos

(
ω
c+3

(x− d2)
)

+B+
3 sin

(
ω
c+3

(x− d2)
)

for d2 ≤ x ≤ d3,

A+
2 cos

(
ω
c+2

(x− d1)
)

+B+
2 sin

(
ω
c+2

(x− d1)
)

for d1 ≤ x ≤ d2,

cos
(
ω
c1
x
)

for −b1 ≤ x ≤ d1,

A−
2 cos

(
ω
c−2

(x + b1)
)

+B−
2 sin

(
ω
c−2

(x+ b1)
)

for −b2 ≤ x ≤ −b1,

A−
3 cos

(
ω
c−3

(x + b2)
)

+B−
3 sin

(
ω
c−3

(x+ b2)
)

for −b3 ≤ x ≤ −b2,

...

A−
N cos

(
ω
c−N

(x+ bN−1)
)

+B−
N sin

(
ω
c−N

(x+ bN−1)
)

for −bN ≤ x ≤ −bN−1.

(20)

Using vector notation we denote

v±j =

[
A±
j

B±
j

]

for j = 1, . . . , N .
The coefficients in (20), derived by the continuity conditions at the layer inter-

faces, are given by the recursive relations

(21) v±j+1 = M±
j v

±
j ,

where the matrix M±
j and the constant parameters are, respectively, given by

(22) M±
j =

[
cosλ±j ± sinλ±j
∓p±j sinλ±j p±j cosλ±j

]

and

(23)

⎧⎪⎪⎨
⎪⎪⎩
λ+
j = ω

c+j
(dj − dj−1), λ−j = ω

c−j
(bj − bj−1), p±j =

η±j c
±
j+1

η±j+1c
±
j+1

,

v±1 =
[
A±

1

B±
1

]
=
[

1
0

]
, d0 = 0, b0 = 0



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 679

for j = 1, . . . , N − 1. Here A+
n and B+

n are the coefficients of the eigenfunction u1(x)
along the nth right layer, while A−

n , B−
n are the coefficients along the nth left layer.

The layer interfaces are located at −b = −bN < −bN−1 < · · · < −bn < · · · < −b1 <
d1 < · · · < dn < · · · < dN−1 < dN = d. Here b1 = d1, b + d = a and bn > 0, dn > 0
for n = 1, 2, . . . , N . Notice that the eigenfunction u1(x) is even in the central layer,
but it does not necessarily remain even after it expands to the other layers of the cell;
see Figure 7. The cell in Figure 7 is composed of five layers. Notice that at the layer
interfaces, u1(x) develops corners, as expected from the stress continuity condition.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–0.6 –0.4 –0.2 0.2

u1(x)

x

-b3 = -5/8 -b2 = -1/4 -b1 = -1/8 d1 = 1/8 d2 = 3/16 d3 = 3/8

Fig. 7. Eigenfunction u1(x) in a nonsymmetric cell of three materials and five layers. Addi-
tional parameters involved in (20) are ω = c1 = c±2 = c±3 = 1, p±1 = η1

η2
= 4, and p±2 = η2

η3
= 2.

Similarly, we determine the eigenfunction u2(x) in the unit cell [−b, d] as

u2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗+
N cos

(
ω
c+N

(x− dN−1)
)

+B∗+
N sin

(
ω
c+N

(x− dN−1)
)

for dN−1 ≤ x ≤ dN ,

...

A∗+
3 cos

(
ω
c+3

(x − d2)
)

+B∗+
3 sin

(
ω
c+3

(x− d2)
)

for d2 ≤ x ≤ d3,

A∗+
2 cos

(
ω
c+2

(x − d1)
)

+B∗+
2 sin

(
ω
c+2

(x− d1)
)

for d1 ≤ x ≤ d2,

sin
(
ω
c1
x
)

for −b1 ≤ x ≤ d1,

A∗−
2 cos

(
ω
c−2

(x+ b1)
)

+B∗−
2 sin

(
ω
c−2

(x+ b1)
)

for −b2 ≤ x ≤ −b1,

A∗−
3 cos

(
ω
c−3

(x+ b2)
)

+B∗−
3 sin

(
ω
c−3

(x+ b2)
)

for −b3 ≤ x ≤ −b2,

...

A−
N cos

(
ω
c−N

(x+ bM−1)
)

+B−
N sin

(
ω
c−N

(x+ bN−1)
)

for −bN ≤ x ≤ −bN−1.

(24)

Using vector notation we denote v∗±j =
[ A∗±

j

B∗±
j

]
for j = 1, . . . , N . The coefficients
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of (24) are defined by the same recursive relations described in (21),

(25) v∗±j+1 = M±
j v

∗±
j ,

with

(26) v∗±1 =
[
A∗±

1

B∗±
1

]
=
[

0
1

]
.

The matrix M±
j and the constant parameters d0, b0, λ±j , and p±j for j = 1, . . . , N − 1

are given as before in (22)–(23).
Here A∗+

n and B∗+
n are the coefficients of the eigenfunction u2(x) along the nth

right layer, while A∗−
n , B∗−

n are the coefficients along the nth left layer. Notice that
u2(x) is odd in the central layer, but it does not necessarily remain odd after it
expands to the other layers of the cell; see Figure 8. The cell in Figure 7 is composed
of five layers. Notice that at the layer interfaces, u2(x) develops corners, as expected
from the continuity of the stress condition.

–4

–3

–2

–1

0

1

2

3

4

–0.6 –0.4 –0.2 0.2

u2(x)

x

d1 = 1/8 d2 = 3/16 d3 = 3/8

-b3 = -5/8 -b2 = -1/4 -b1 = -1/8

Fig. 8. Eigenfunction u2(x) in a nonsymmetric cell of three materials and five layers. Addi-
tional parameters involved in (24) are ω = c1 = c±2 = c±3 = 1, p±1 = η1

η2
= 4, and p±2 = η2

η3
= 2.

After evaluating u1(x) and u2(x) at the boundaries of the cell located at x = −b
and x = d, and then substituting these expressions into the general implicit formula
of the dispersion relation (15), we obtain the following expressions for the numerator
and the denominator, respectively:

u1(−b)u′2(d) + u1(d)u′2(−b) − u2(d)u′1(−b) − u2(−b)u′1(d)

=
ω

cN
(A−

NB
∗+
N +A+

NB
∗−
N −A∗+

N B−
N −A∗−

N B+
N ) cos(λ+

N + λ−N )

+
ω

cN
(A+

NA
∗−
N −B∗+

N B−
N −A∗+

N A∗−
N +B∗−

N B+
N) sin(λ+

N + λ−N )

(27)

and

(28) u1(−b)u′2(−b) + u2(−b)u′1(−b) =
ω

cN
(A−

NB
∗−
N −A∗−

N B−
N ).

Recall that our leftmost layer is made of the same material as our rightmost layer,
and hence c−N = c+N = cN .

Substituting (27) and (28) into the general implicit dispersion relation (15), we
derive the recursive formula for the dispersion relation,
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(29)
2 cos(qa) = (A+

NB
∗−
N +A−

NB
∗+
N −A∗+

N B−
N−A∗−

N B+
N ) cos(λ+

N+λ−
N )

A−
NB

∗−
N −A∗−

N B−
N

+ (A+
NA

∗−
N −A−

NA
∗+
N +B+

NB
∗−
N −B−

NB
∗+
N ) sin(λ+

N+λ−
N )

A−
NB

∗−
N −A∗−

N B−
N

,

where the coefficients are obtained through the recursive relations involving (21)–(23),
(25)–(26), while λ−N = ω

c−N
(bN − bN−1) and λ+

N = ω
c+N

(dN − dN−1). In the numerical
experiments included in section 5, the recursive relation generating the coefficients
A±
N , B

±
N , A

∗±
N , B∗±

N of (29) is programmed in Maple [15]. The dispersion relation
graph is then obtained using the implicitplot Maple command with the wave number
q limited to the domain 0 ≤ q ≤ π/a.

4. Recursive formula of the dispersion relation using the quasi-sym-
metric limiting approach. This alternative approach involves the quasi-symmetric
cell configuration shown in Figure 9, which preserves the symmetric arrangement of
the materials around the filler/central layer, and allows for layers of the same material
to have differing lengths.

x
-b = -bM -bM-1 –b3 –b2 –b1 0         d1 d2 d3 dM-1 dM = d

M        • • • 3       2           1         2   3       • • • M

Fig. 9. Quasi-symmetric configuration of a unit cell made of M materials.

-b = -d1 0        d1 d2 d3 dM-1 dM = d

x

1             2      3       • • • M

l1 l2 l3                                        lM

-b = -bM -b1 0        d1 d2 d3 dM-1 dM = d

x

• • • 1             2     3        • • • M

0

0

Fig. 10. Obtaining the general cell configuration as a limiting case of the quasi-symmetric cell
configuration.

The quasi-symmetric limiting approach differs from the central expansion ap-
proach in the way the dispersion relation is derived for a general cell configuration
with a non-quasi-symmetric configuration. The quasi-symmetric limiting approach
views the general cell configuration as a limiting case of the quasi-symmetric config-
uration when the thickness of the left layer(s) approaches zero; see Figure 10. In the
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limiting procedure, it is essential to start with a quasi-symmetric and nonsymmetric
cell configuration. The same limiting procedure applied to a symmetric cell configu-
ration would fail to produce any results, because in a symmetric cell configuration,
as the thicknesses of the left layers approach zero, so do the thicknesses of the cor-
responding right layers. Thus, the quasi-symmetric nonsymmetric cell configuration
is essential, as it allows the layer thicknesses to the left and right of the central layer
to be arbitrary, and hence independent. This approach also highlights the fact that
the dispersion formula obtained in [11], [12] works for a general symmetric cell config-
uration but fails once the cell configuration becomes quasi-symmetric. In summary,
the quasi-symmetric configuration is a critical configuration to work with, because
from there one can recover the dispersion relation for the general cell configuration,
something that cannot be achieved from a symmetric configuration. The approach
described above is summarized in Figure 11 and discussed in more detail below.

2    1 2

M         • • • 3            2       1  2      3        • • • M 

3-Layered Symmetric Cell (Lee and Yang, 1973)

General Symmetric Cell

General Quasi-Symmetric Cell

General Cell

0
1             2      3        • • • M 

M       • • • 3      2              1         2   3        • • • M

Fig. 11. The stages of development of the quasi-symmetric limiting approach for a general cell
configuration of M-layers.

The recursive dispersion formula for the quasi-symmetric cell configuration can be
derived similarly to that described in the previous section, under the simplifications
that η−j = η+

j = ηj , c−j+1 = c+j+1 = cj+1, p−j = p+
j = pj , and N = M for j =

1, 2, . . . ,M − 1. With these simplifications, the recursive dispersion formula (29)
becomes

(30)
2 cos(qa) = (A+

MB∗−
M +A−

MB∗+
M −A∗+

M B−
M−A∗−

M B+
M ) cos(λ+

M +λ−
M )

A−
MB∗−

M −A∗−
M B−

M

+ (A+
MA∗−

M −A−
MA∗+

M +B+
MB∗−

M −B−
MB∗+

M ) sin(λ+
M +λ−

M )

A−
MB∗−

M −A∗−
M B−

M

.



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 683

The coefficients are obtained through the recursive relations involving (21)–(23)
and (25)–(26). Notice that λ−M = ω

cM
(bM − bM−1), λ+

M = ω
cM

(dM − dM−1), while
λ−j = ω

cj
(bj − bj−1), λ+

j = ω
cj

(dj − dj−1), pj = ηjcj+1
ηj+1cj+1

for j = 1, . . . ,M − 1.
As for the general cell configuration, while the coefficients of (30) with (+) su-

perscript corresponding to the right-hand side layers remain intact, the coefficients of
the left-hand side layers with (−) superscript will simplify due to the fact that the
left-hand side layers vanish; see Figure 10. From (21)–(23), it follows that the coef-
ficients with (−) superscript related to the eigenfunction u1(x) along the left layers
are given by

(31)

⎧⎪⎨
⎪⎩
A−
j+1 = A−

j cos(λ−j ) −B−
j sin(λ−j ),

B−
j+1 = pj(B−

j cos(λ−j ) +A−
j sin(λ−j )),

A−
1 = 1, B−

1 = 0, j = M − 1, . . . , 1.

In the limiting case, as (bj − bj−1) approaches zero, so does λj = ω
cj

(bj − bj−1) for
j = M, . . . , 2. As a result, the recursive relation (31) becomes

(32)

{
A−
M = A−

M−1 = · · · = A−
j = · · · = A−

2 ,

B−
M = pM−1B

−
M−1 = · · · = pM−1pM−2 · pjB−

j = · · · = pM−1pM−2 · · · p2B
−
2 .

Furthermore, considering that pj = ηjcj+1
ηj+1cj

, λ+
1 = λ−1 = λ1 (central layer), A−

1 = 1,
and B−

1 = 0, the relations (32) become

(33)

⎧⎨
⎩
A−
M = A−

M−1 = · · · = A−
j = · · · = A−

2 = cos(λ1),

B−
M =

ηM−1cM
ηMcM−1

B−
M−1 = · · · =

ηjcM
ηMcj

B−
j = · · · =

η2cM
ηMc2

B−
2 =

η1cM
ηMc1

sin(λ1).

As a result, the coefficients A−
M , B−

M , and similarly A∗−
M and B∗−

M , simplify to

A−
M = cos(λ1) and B−

M =
η1cM
ηMc1

sin(λ1),(34)

A∗−
M = − sin(λ1) and B∗−

M =
η1cM
ηMc1

cos(λ1).(35)

The parameters to be used in numerical experiments (see Figure 10 and Figure 14)
are

d0 = 0, d1 = l1/2, dj = l1/2 +
j∑

h=2

lh, b0 = 0, bj = l1/2, j = 1, 2, . . . ,M,

that is,

λ+
1 = λ−1 = λ1 =

ωl1
2c1

, λ+
j = λj =

ωlj
cj
, λ−j = 0, j = 1, 2, . . . ,M.

Finally, by substituting (34) and (35) in the recursive dispersion relation (30) for
the quasi-symmetric configuration, we obtain the recursive dispersion relation (36)
for the general configuration of the unit cell made of M layers/materials.

2 cos(qa) = c1ηM

cMη1
[(A+

M
η1cM

ηMc1
cosλ1 + cosλ1B

∗+
M −A∗+

M
η1cM

ηMc1
sinλ1 + sinλ1B

+
M ) cos(λM )

+ (−A+
M sinλ1 − cosλ1A

∗+
M +B+

M
η1cM

ηMc1
cosλ1 −B∗+

M
η1cM

ηMc1
sinλ1) sin(λM )].

(36)
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Here the coefficients with a (+) superscript are generated using the recursive relations
(21)–(23) and (25)–(26). In summary, we established in (36) a recursive dispersion
relation for the general configuration of the unit cell made of M layers/materials.
This formula was obtained by considering the quasi-symmetric cell configuration as an
essential intermediate step. For cell configurations that are already quasi-symmetric
or symmetric, the recursive dispersion relation expressed by (30) is more suitable, as
it involves fewer recursive steps.

5. Numerical results: Comparison of the central expansion approach
with the method by Shen and Cao given in [18].

5.1. Three-material cell (M = 3). We consider a cell composed of three
distinct materials: concrete, nickel alloy, and steel. The lengths of the layers are
0.2 m, 0.25 m, and 0.3 m, respectively. The general cell diagram in Figure 6 illustrates
the unit cell used in [18] for M = 3. In the central expansion approach, a shifting
and renumbering of the layers in the original cell takes place. The resulting cell is
illustrated by the renumbered cell diagram given in Figure 6 with N = �M2 � + 1 =
� 3

2�+1 = 3, hence the need for a fake interface. As a result, the cell to be used with the
central expansion approach has five layers and the materials for each layer are steel,
nickel, concrete, concrete, and steel. Notice the introduction of a fake interface on the
original layer of concrete. The material parameters (elastic modulus and density) are
given in the appendix.

The two graphs of the dispersion relation obtained using the central expansion
approach given in (29), and Shen and Cao’s formulas in [18], overlap in Figure 12,
demonstrating the consistency between the two methods. The recursive relation gen-
erating the coefficients A±

N , B
±
N , A

∗±
N , B∗±

N of (29) is programmed in Maple [15]. The
dispersion relation graph is then obtained using the implicitplot Maple command.
Determining more accurately the values of the circular frequency ω for a given value
of q, including the band ends with qa = 0 or qa = π, is a difficult root-finding prob-
lem. As discussed in [11], [12], due to (4), it is only necessary to consider the wave
number q limited to the domain 0 ≤ q ≤ π/a. As seen in Figure 12, the dispersion
relation graph displays a banded frequency spectrum using the reduced zone scheme
for the wave number q, with the circular frequency ω in the ordinate. The banded
frequency spectrum is composed of pass or propagating bands and stop bands. Over
the interval 0 ≤ q ≤ π/a, bands of permissible frequencies appear, separated by
forbidden bands (creating bandgaps), at which frequencies no Floquet waves can be
propagated. This band structure of pass and nonpass bands shows the dispersive
properties of the medium. Similar comments can be made for the other dispersion
relation graphs.

5.2. Four-material cell (M = 4). Similarly, we consider a cell composed of
four distinct materials: steel, aluminum, concrete, and nickel alloy. The lengths of the
layers are 0.15 m, 0.1 m, 0.4 m, and 0.2 m, respectively. As before, the general cell
diagram in Figure 6 illustrates the unit cell used in [18], when M = 4. The cell used
for the central expansion approach is illustrated by the renumbered cell diagram given
in Figure 6 with N = �M2 � + 1 = � 4

2� + 1 = 3. Notice that unlike the three-material
case, in this case we do not need to add a fake interface because the number of layers
after the shift is already odd. The materials for each of the five layers are nickel
alloy, steel, aluminum, concrete, and nickel alloy. We plot the dispersion relation
using both methods, as shown in Figure 13. Notice again how well the two graphs
overlap.
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Shen and Cao (2000)
Central Expansion Approach
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Fig. 12. Dispersion graphs for a three-material cell: Central expansion approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

Shen and Cao (2000)
Central Expansion Approach
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Fig. 13. Dispersion graphs for a four-material cell: Central expansion approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

6. Numerical results: Quasi-symmetric limiting approach.

6.1. Comparison of the quasi-symmetric limiting approach with the
method by Shen and Cao in [18]. Here we consider a unit cell composed of five
layers arranged in a general configuration, shown in Figure 14. We choose aluminum
as material 1, nickel alloy as material 2, concrete as materials 3 and 5, and steel as
material 4, with the following layer thicknesses: l1 = 0.1 m, l2 = 0.05 m, l3 = 0.4 m,
l4 = 0.2 m, and l5 = 0.25 m. The material parameters (elastic modulus and density)
can be found in the appendix. The two graphs displaying the dispersion relation using
the quasi-symmetric limiting approach given in (36), and Shen and Cao’s formulas
in [18], overlap in Figure 15.
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x
-b = -d1 0         d1 d2 d3 d4 d5 = d

1             2      3            4           5

l1 l2 l3                   l4                l5

Fig. 14. General configuration of a five-layer cell.

Shen and Cao (2000)
Quasi-Symmetric Approach
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Fig. 15. Dispersion graphs for a five-layer cell: Quasi-symmetric limiting approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

6.2. Comparison of both of our approaches with experimental results:
A simplified one-dimensional model. The dispersion relation and sound attenu-
ation through three-dimensional structures composed of periodically arranged cubic
cells were experimentally measured in [13]. The cubic single cell consisted of a 1 cm
diameter spherical core made of lead, coated with a 2.5 mm layer of silicone rubber.
The coated spheres were periodically arranged in a 8×8×8 cubic crystal with lattice
constant of 1.55 cm, and with epoxy as the surrounding matrix material. The cross
section of the cell is displayed on the upper part of Figure 16. The one-dimensional,
three-material symmetric cell model, shown in the lower part of Figure 16, may be
viewed, as suggested by Wang et al. [23], as a simplified one-dimensional counterpart
of the three-dimensional structure studied in [13]. In our one-dimensional model,
lead is considered as material 1, silicone rubber as material 2, and epoxy as mate-
rial 3 with the following layer lengths: 1 cm (central), with 0.25 cm and 0.025 cm
on each side. The material parameters (elastic modulus and density) are included in
the appendix. Our intent here is to illustrate the fact that our dispersion relations
correctly predict bandgaps due to a so-called localized resonance phenomenon that
has been observed in three-dimensional ternary systems [13]; the localized resonance
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x

3         2             1            2          3

3         2             1            2         3

Fig. 16. One-dimensional unit cell motivated from the three-dimensional cubic structure (cross
section) studied in [13].

can reduce the magnitude of the bandgap by two orders of magnitude relative to that
caused by Bragg scattering, and this observation has spurred renewed interest by the
acoustic bandgap community for design of acoustic attenuators. In [6], Bragg’s law
f = n ∗ v/2a, for example, predicts a scattering frequency of about 62.5 KHz using
steel scatterers embedded in an epoxy matrix with a lattice constant of 20 mm. Here,
v is the longitudinal wave speed of the matrix, and a is the distance between the
centers of the scatterers (n = 1, 2, 3, . . .).

Liu et al. [13] measured acoustic transmission T as a function of frequency (250 Hz
to 1600 Hz) by placing a receiving transducer at the center of their sonic crystals with
an external sound source. The lowest values of T correspond to wave frequencies
that are attenuated by the structure, whereas the highest values of T correspond to
wave frequencies that easily propagate throughout the structure. Their experiments
reveal that peak transmission frequencies are located at f = 600 Hz and f = 1600 Hz.
Between these two frequencies, the transmission coefficient is low. The few measure-
ments made for low frequency (f � 300 Hz) suggest that waves with low frequencies
easily propagate through the structure.

Due to the symmetric cell configuration of the one-dimensional simplified model
given in Figure 16, the central expansion approach and the quasi-symmetric limiting
approach share the same dispersion relation formula (29). The graph in Figure 17
displays the dispersion relation predicted by (29) and obtained using the implicitplot
Maple command. Here we use frequency f on the ordinate instead of the circular
frequency ω. Determining more accurately the values of the frequency f for a given
value of q, including the band ends with qa = 0 or qa = π, is a difficult root-finding
problem. As seen in Figure 17, between the frequency range of 0–2000 Hz, the graph
exhibits a pass band for low frequencies under 140 Hz, and what appear to be four
additional narrow pass bands centered approximately at f = 873, f = 950, f = 1353,
and f = 1907 Hz. Closer inspection of an expanded view of the second pass band
shows that it is centered at f = 873.5 Hz (Figure 18). Expanded views of the third
and fourth bands (not shown here) located at approximately 950 Hz and 1353 Hz
are essentially flat to within numerical roundoff, hence the group velocity at these
frequencies is zero, i.e., vg = df

dq = 0.
In conclusion, our one-dimensional model appears to qualitatively predict the

acoustic response of the three-dimensional ternary structure, with the two narrow pass
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Fig. 17. Graph of the dispersion relation for one-dimensional symmetrical cell model motivated
from the three-dimensional model of [13], using the reduced zone scheme for the wave number q.

Fig. 18. Expanded view of the second pass band illustrated in Figure 17.

bands corresponding to the peaks and the two large bandgaps corresponding to the
ranges of frequencies that are highly attenuated. Our numerical simulations predict
bandgaps with a lattice constant two orders of magnitude smaller than the relevant
wavelength, suggesting a so-called localized resonance phenomenon already observed
in three-dimensional ternary systems [13]. However, the locations of the bandgaps do
not match those that are experimentally observed. This is to be expected, considering
the fact that our band structure equations are derived for infinite one-dimensional
periodic elastic media whereas the experiments in [13] were conducted on a finite
three-dimensional structure, with bandgaps only partially developed.

Appendix. The following are the elastic modulus η and density ρ of the materials
selected for the numerical experiments:

1. Concrete: η = 33 · 109 Pa and ρ = 2400 kg/m3.
2. Steel: η = 210 · 109 Pa and ρ = 7800 kg/m3.
3. Aluminum: η = 69 · 109 Pa and ρ = 2710 kg/m3.
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4. Nickel Alloy: η = 214 · 109 Pa and ρ = 8130 kg/m3.
5. Lead: η = 40.8 · 109 Pa and ρ = 11600 kg/m3.
6. Silicone rubber: η = 117500 Pa and ρ = 1300 kg/m3.
7. Epoxy: η = 4.4 · 109 Pa and ρ = 1180 kg/m3.
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THE SUPPRESSION OF FOUR-WAVE MIXING BY
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Abstract. Pairwise interactions of optical pulses lead to the creation of four-wave mixing
(FWM) products in the presence of periodic damping and amplification. In this manuscript, we
examine how these FWM products grow in the presence of small to moderate random dispersion.
Namely, we show that (i) the growth of the FWM products in the presence of white noise is inversely
proportional to the noise strength D̄, confirmed by both analytical and numerical results; (ii) the
FWM products as a function of D̄ obey a gamma-type probability distribution function; and (iii)
the presence of either white or Ornstein–Uhlenbeck (OU) noise has a similar influence on the growth
of these FWM products. This work shows that small random dispersion can effectively mitigate the
deleterious effects of FWM in wavelength-division–multiplexed optical communications systems for
either sech-type or Gaussian-type input pulses.
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1. Introduction. In optical fiber transmission systems, there has been a great
push to increase the throughput in both single and multiple channel fiber lines. One
technique employed is wavelength-division multiplexing (WDM). This technique al-
lows for the propagation of multiple pulses on different channels along a single fiber
line. Problems arise when pulses from one channel interact with pulses from a differ-
ent channel. Indeed, these pulse interactions create by-products that interfere with
other pulses within the fiber line. In this manuscript, we examine these by-products
from pairwise collisions of optical pulses in different channels under the influence of
random system noise.

One of the most common scenarios of pulse interactions is that of pairwise inter-
actions. In this case, two pulses from different frequency channels come together and
interact (i.e., collide) with one another by virtue of their different speeds. In linear
systems, this type of interaction is described by a superposition of waves. In nonlinear
systems (i.e., WDM optical fiber systems), however, these pairwise interactions result
in the creation of by-products (known as four-wave mixing (FWM) products) that can
interfere with the propagation of other pulses in the fiber system. These products re-
sult from a resonance that is excited due to the nonlinearity of the index of refraction,
the so-called Kerr nonlinearity. In this paper, we study what happens when random
noise is added to the system and how this affects the growth of these by-products.
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The model equation that describes pulse propagation in optical fibers is the non-
linear Schrödinger (NLS) equation with periodic damping and amplification. In this
work, we use the NLS equation to derive a linear partial differential equation which
models the evolution of the FWM growth. This model is then used to determine an
analytical expression for the energy (L2-norm) of the FWM growth in the presence
of random dispersion. This result is compared with calculation of the energy of the
FWM products via simulations of the NLS equation. These simulations are done in
the presence of white noise as well as for Ornstein–Uhlenbeck (OU) noise. We then
numerically show the probability distribution function associated with the energy of
the FWM growth.

2. Motivation and paper outline. Pairwise nonlinear interactions between
pulses in different frequency channels give rise to several effects. Two major effects are
(i) collision-induced timing jitter, which results in permanent frequency shifts between
colliding pulses (see [20, 3, 13]), and (ii) FWM product generation and growth that
results in a permanent waveform that may interact with other optical pulses (see
[5, 19, 11, 6]).

Fiber impurities, mostly due to fiber construction and implementation, can be
viewed as small random perturbations to the fiber. In the past, these perturbations
have often been considered a negative effect on the optical system in that they lead
to pulse distortions or even pulse destruction: solitons [2] and dispersion-managed
solitons [1, 17, 21] broaden under the influence of random perturbations until they
disintegrate. Fortunately, these effects take place over very large distances, and that
is why it is possible to use these solitons as bit carriers in terrestrial communication
networks. In this paper, we adopt an entirely different point of view by showing that,
with respect to other phenomena, namely FWM growth and deterministic resonances,
random variations of the dispersion profile can have a beneficial impact concerning
pulse interactions. The central issue we address is how random dispersion affects
FWM growth. In previous work [12], we showed that FWM products are reduced in
the presence of random dispersion. The numerical results presented in [12] showed
that weak random dispersion reduces FWM product growth. This reduction can be
compared with other methods such as dispersion management (see [9, 16, 15, 7]). We
also showed that the resonance condition associated with FWM growth is affected by
the presence of random dispersion. In this manuscript, we continue our investigation
of FWM product production in the presence of random dispersion. We show that
the energy associated with the FWM products (i.e., the L2-norm associated with
the FWM products) gives rise to an integral which one can analyze asymptotically.
This asymptotic treatment allows us to give a quantitative comparison between the
analytical treatment of the FWM growth and Monte Carlo simulations of the full NLS
equation with random dispersion.

The outline for this manuscript is as follows. In the first two sections, we outline
the derivation of a linear PDE which describes the FWM growth associated with
pairwise collisions of optical fibers. This linear PDE is further reduced to a linear
ODE which is used throughout the analysis. Next, we use the linear ODE model to
derive an expression for the L2-norm associated with FWM growth in the presence
of random dispersion. This analysis shows that the energy of the FWM products
depends inversely on the noise strength, D̄. This result is verified via simulations
of the full NLS equation for these FWM products in the third section. We consider
both white and OU noise. In the fourth section, we give a numerical description
of the probability distribution function associated with the energies for these FWM
products. Finally, we summarize these results and state some conclusions.
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3. FWM growth model.

3.1. Derivation of the FWM growth model: The NLS equation. We be-
gin this analysis with the NLS equation, which includes varying dispersion, damping,
and amplification:

iEz +
β(Z)

2
ETT + γ|E|2E = −iαE.(3.1)

E(Z, T ) is the envelope of the electric field, where Z and T are the propagation and
time variables measured in km and ps, respectively; β(Z) is the variable dispersion
profile; and the loss and damping/amplification coefficients are given by γ and α.

Let us introduce the dimensionless variables ζ = Z/z∗, τ = T/t∗, |βav|, and
Q(ζ, τ) = E(Z, T )/

√
P∗, where z∗, t∗, |βav|, and P∗ denote the characteristic length

scale, characteristic time scale, the average dispersion value, and the peak power,
respectively. We define length scales associated with the dispersion (zβav) and the
nonlinearity (zNL) given by zβav = t∗/|βav| and zNL = 1/γP∗. We also define the
dimensionless amplifier spacing, za = La/z∗, where La is the physical amplifier spacing
taken to be 40km. Under this change of variables, (3.1) becomes

iQζ +
z∗d(ζ)
2zβav

Qττ +
z∗
zNL

|Q|2Q = −iΓQ,(3.2)

where Γ = z∗α and d(Z) = β(Z)zβav/t∗
2. A more convenient form of (3.2) is found

with a further change of variables and matching certain parameters.
Setting Q(ζ, τ) =

√
g(ζ) u(ζ, τ) and taking z∗ = zβav = zNL, one determines the

following form of the NLS equation:

iuz +
d(z)
2
utt + g(z)|u|2u = 0.(3.3)

Here, we have relabeled our variables (ζ, τ) −→ (z, t), g(z) is an exponential function
with period za (nonlinear coefficient), and d(z) is the dispersion profile of the form
d(z) = dav + F (z), where, dav is the average dispersion and F (z) is either some
prescribed function or a white noise process. Throughout this paper, we work with
(3.3) and take F (z) to be a white noise process. If one sets g(z) = 1 and F (z) = 0,
(3.3) supports soliton solutions of the form

u(z, t) = Asech[A(t− Ωdavz + T )] exp[i(A2 − Ω2)z/2] exp(iΩt).(3.4)

Here, A is the pulse amplitude, Ω = πct∗Δλ/λ2 is the frequency offset, c is the speed
of light, t∗ is the characteristic time scale, λ is the wavelength of the soliton, Δλ is
the channel spacing, and T is the timing offset for the soliton pulse. We also take
typical parameter values as follows: La = 40km, z∗ = 400km, λ = 1550nm, α =
0.025km−1, and P∗ = 2mW, which implies that za = La/z∗ = 0.1 and Γ = 10.0.
Also, the characteristic time t∗ = τpulse/1.763, where the number 1.763 denotes the
full-width half maximum of the ideal soliton and τpulse= 28ps. We note that Ω = 3.9
corresponds to a channel spacing of Δλ = 0.62nm.

3.2. Derivation of the FWM growth model: Model equation. We briefly
outline the derivation of the model PDE that describes the growth of the FWM
products. The presentation given in this section is a brief summary of work done
in [11].
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We assume that our pulses can be written as a sum of the two interacting pulses
and the FWM products [4, 11]:

u(z, t) � u1(z, t) + u2(z, t) + ufwm(z, t).(3.5)

Upon substitution of (3.5) into (3.3), one derives the following linear PDE:

iqz +
d(z)
2
qtt = −g(z)u2

2u1
∗.(3.6)

Here, we have that q(z, t) ≡ u221(z, t) is the FWM product growth associated with
frequency 3Ω, uj(z, t) are the input pulses, d(z) is the dispersion profile, which is some
prescribed function, and g(z) is the periodic damping and amplification.

We note that on the right-hand side (RHS) of (3.6) the forcing term has a rapidly
varying piece which we now factor out in the form

q(z, t) = Q(z, t) exp
(

3iΩt− i
Ω2

2

∫ z

0

d(z′)dz′
)
.(3.7)

Plugging this into our linear PDE for q(z, t), one derives the following equation for
Q(z, t):

iQz +
d(z)
2

(Qtt + 6iΩQt − 2(2Ω)2Q) = −g(z)u20
2u10

∗,(3.8)

where

u20
2u10

∗ ≡ u2
2u1

∗ exp
(
−3iΩt+ i

Ω2

2

∫ z

0

d(z′)dz′
)

(3.9)

and g(z) is as described in (3.3). We note that for the case of initially well-separated
pulses, ΔΩ = 2Ω � 1, where 2Ω is the difference in the frequency offset for the two
pulses. For this case, one notes that in (3.8) we have (2Ω)2|Q| � |Qt|, |Qtt|. Here, we
have assumed that our input pulses are well separated (i.e., (2Ω) � 1). Typical values
for this case occur when Ω ≥ 2 (see [20]), which is the case of interest throughout this
manuscript. This allows us to further reduced our model FWM equation to the form

iQz − d(z)(2Ω)2Q = −g(z)u2
20u

∗
10.(3.10)

In this model, the input pulses on the right-hand side of (3.10) can be either classical
solitons or Gaussian-type pulses. Equation (3.10) is the FWM growth model used in
the analysis throughout this manuscript. In the next section, we incorporate noise
into the dispersion coefficient, d(z) in (3.10), and analyze the FWM growth in this
case via its L2-norm.

4. FWM growth and random dispersion.

4.1. Random dispersion in an optical fiber. In this paper, we take the
dispersion, d(z), to have the following form:

d(z) = dav + ξ(z),(4.1)

where ξ(z) is a white noise process with

〈ξ(z)〉 = 0 and 〈ξ(z)ξ(z′)〉 = D̄ δ(z − z′).(4.2)
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The noise strength, D̄, is taken to be small (i.e., 0 < D̄ 
 1) for our problem of
interest. We consider small to moderate noise strength so as to not destroy the input
pulses. Since the input soliton pulses decay slowly on the length scale, zdegr = 1/D̄
(see [8]), we work with distances on the order of z 
 zdegr. Also, we take the RHS
of (3.8) as independent of the randomness given by (4.1)–(4.2). We assume that,
to leading order, the input pulses are roughly fixed relative to the input noise. We
now present an analysis for the growth of FWM products as a function of the noise
strength D̄ and the frequency offset Ω.

4.2. FWM growth: Analytical results. In this section, we derive an equation
which captures the behavior of the FWM products in the presence of a white noise
process. These results will be shown to be in quantitative agreement with what is
seen numerically.

We restate the reduced model equation for FWM growth:

iQz − d(z)(2Ω)2Q = −g(z)u20
2u10

∗.(4.3)

Here, uj0(z, t) denotes the form of the input pulse for j = 1,2. Our input pulses can
have one of the following forms:

• Sech-type input pulse:

uj0(z, t) = Ajsech[Aj(t− Ωjdavz − Tj)] exp[i(Aj
2 − Ωj2)z/2]eiΩjt,(4.4)

where Ω2 = −Ω1 ≡ Ω and T1 = −T2 ≡ T0. We take A1 = A2 ≡ A unless
otherwise specified in this manuscript.

• Gaussian-type input pulse:

uj0(z, t) =
αj√
2πβj

exp[−(t− Ωjdavz − Tj)2/2βj] exp[i(αj
2 − Ωj2)z/2]eiΩjt,

(4.5)

where Ω2 = −Ω1 ≡ Ω and T1=−T2 ≡ T0. Similar to the case for sech-type
pulses, we take α1=α2 ≡ α and β1=β2 ≡ β unless otherwise specified.

We note that, strictly speaking, the input pulses given by (4.4)–(4.5) should
incorporate randomness via the dispersion within the argument of the input pulses.
For the distances discussed in this manuscript (z 
 zdegr), the pulses are roughly
fixed relative to the random dispersion.

Also, for either type of input pulses, the pairwise collision will occur at the point

zcollision ≡ zcoll =
T1 − T2

dav(Ω2 − Ω1)
=

T0

davΩ
�= 0.(4.6)

The collision point is a function of the timing and frequency offsets, and all results
are derived with this in mind. We also note that this analysis applies to complete
collisions (i.e., initially well-separated input pulses). If the input pulses are not well
separated, then the collision is an incomplete collision, which leads to much larger
inelastic effects (see [18, 13]).

Going back to (4.3) and solving for Q(z, t) yields

Q(z, t) = ie−i(2Ω)2
∫ z
0 d(z′)dz′

∫ z

0

dz′ g(z′)u20
2u10

∗(z′, t)ei(2Ω)2
∫ z′
0 d(s)ds,(4.7)
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where
∫ z
0
d(z′)dz′ = davz + W (z) with W (z) ≡

∫ z
0
ξ(s)ds. We recall that g(z) is a

periodic function in z and therefore is expressible as a Fourier series:

g(z) =
∞∑

m=−∞
gm e−i2πmz/za , gm =

Γza
Γza − imπ

,(4.8)

where za is the dimensionless amplifier spacing. Plugging (4.8) into (4.7), one finds

Q(z, t) = ie−i(2Ω)2
∫ z
0 d(z′)dz′

∞∑
m=−∞

gm Im(z, t),(4.9)

where the integral within the sum is given as

Im(z, t) ≡
∫ z

0

dz′ eiψmz
′
ei(2Ω)2W (z′)[u2

20u
∗
10](z

′, t) =
∫ z

0

dz′ eiχm(z′)[u2
20u

∗
10](z

′, t).
(4.10)

Here, ψm ≡ λ̄2/2 + (2Ω)2 dav − 2πm/za is a resonance condition which determines
where the largest FWM products are produced as a function of Ω for m = 1, 2, 3, . . .
(see [11, 4]), λ̄ is a parameter (usually the amplitude) which depends on the form
of the input pulses, and W (z′) =

∫ z′
0
ξ(s′)ds′. Here, W (z) is a normally distributed

random variable with

〈W (z)〉 = 0 and 〈W 2(z)〉 = D̄z.(4.11)

Upon examination of the argument of the exp[iχm(z′)] term in the integrand of
Im(z, t), it is clear that the resonance condition is modified in the presence of the
random variable W (z):

χm(z′) ≡ ψmz
′ + (2Ω)2W (z′) =

(
λ2

2
+ (2Ω)2dav − 2πm

za

)
z′ + (2Ω)2W (z′).(4.12)

Equation (4.12) implies that the resonance condition is affected by the random variable
W (z′). If one views χm(z′) as a random function, then one can determine that
〈χm(z′)〉 = ψmz

′ since 〈W (z′)〉 = 0. In this work, we present a general analysis of
how the size of the FWM products is affected by randomness. We see this through
examination of the quantity 〈|Q(z, t)|2〉.

Now, going back to (4.9)–(4.10), one finds

|Q(z, t)|2 =
∞∑

m,n=−∞
gm g∗n Im(z, t)In∗(z, t).(4.13)

At this point, we can determine the L2-norm of Q(z, t) (i.e.,
∫∞
−∞ |Q(z, t)|2dt). This

is done by interchanging the integral and summand as follows:
∫ ∞

−∞
|Q(z, t)|2dt =

∞∑
m,n=−∞

gm g∗n

∫ ∞

−∞
Im(z, t)In∗(z, t)dt.(4.14)

As concerns the growth of the FWM products, we are interested in the quantity
〈
∫∞
−∞ |Q(z, t)|2dt〉. For our problem, the randomness comes in only through the z-

dependence, so t can be treated as a parameter relative to the averaging over z. We
have that 〈∫ ∞

−∞
|Q(z, t)|2dt

〉
=
∫ ∞

−∞
〈|Q(z, t)|2〉dt,(4.15)
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which tells us that the quantity of interest is 〈|Q(z, t)|2〉. Using (4.14), we have

〈|Q(z, t)|2〉 =
∞∑

m,n=−∞
gm g∗n 〈Im(z, t)In∗(z, t)〉.(4.16)

Again, Im(z, t) has the form

Im(z, t) ≡
∫ z

0

dz′ f(z′, t) eiψmz
′
ei(2Ω)2W (z′),(4.17)

where

f(z, t) ≡ [u2
20u

∗
10](z, t) e

−i(A2−Ω2)z/2 and ψm ≡ (2Ω)2dav +
λ2

2
− 2πm

za
.(4.18)

By examination of the product of the integrals In(z, t) Im∗(z, t) and using (4.17),
we find

Im(z, t) In∗(z, t) =
∫ z

0

∫ z

0

f(s, t)f(s′, t) eiψmse−iψns
′
ei(2Ω)2[W (s)−W (s′)] ds ds′.

(4.19)

Here, the region of integration corresponds to integrating over the square box: 0 ≤
s, s′ ≤ z. Defining the variable W̃ ≡W (s)−W (s′), it is well known that W̃ is also a
normally distributed random variable with mean and variance given by (see [10])

〈W̃ 〉 = 0 and 〈W̃ 2〉 = D̄ |s− s′|.(4.20)

Using elementary calculus and the fact that 〈ekW̃ 〉 = e
k2〈W̃2〉

2 for W̃ normally dis-
tributed with zero mean and k as some constant value, one finds

〈Im(z, t) In∗(z, t)〉 =
∫ z

0

∫ z

0

ds′ds f(s, t)f(s′, t) eiψms e−iψns
′
e−(2Ω)4D̄|s−s′|

=
4∑
j=1

∫ ∫
Rj

ds′ds f(s, t)f(s′, t) eiψms e−iψns
′
e−(2Ω)4D̄|s−s′|.(4.21)

Here, Rj denotes the following regions of integration: (i) R1: 0 ≤ s, s′ ≤ zcoll, (ii) R2:
0 ≤ s ≤ zcoll and zcoll ≤ s′ ≤ z, (iii) R3: zcoll ≤ s, s′ ≤ z, and (iv) R4: zcoll ≤ s ≤ z
and 0 ≤ s′ ≤ zcoll. Again, zcoll is the collision point of the two pulses (either sech-type
or Gaussian-type) stated in (4.6).

We can evaluate each of the integrals in (4.21) with the use of the following
transformation:

u = s′ − s, v = s+ s′ =⇒ s′ =
u+ v

2
, s =

v − u

2
.(4.22)

Applying (4.22) to the regions Rj for j = 1, 2, 3, 4, we convert (4.21) into
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〈Im(z, t) In∗(z, t)〉

=
∫ zcoll

0

duG1(u) cos
[
(ψm + ψn)u

2

]
e−xu +

1
2

∫ z−zcoll

0

duF1(u)e−i(ψm+ψn)u/2e−xu

+
1
2

∫ zcoll

0

duF1(u)ei(ψm+ψn)u/2e−xu +
∫ z−zcoll

0

duG2(u) cos
[
(ψm + ψn)u

2

]
e−xu

+
1
2

∫ z

zcoll

duF2(u)e−i(ψm+ψn)u/2e−xu +
1
2

∫ z

z−zcoll

duF2(u)ei(ψm+ψn)u/2e−xu

+
1
2

∫ zcoll

z−zcoll

duK1(u)e−i(ψm+ψn)u/2e−xu +
1
2

∫ z−zcoll

zcoll

duK2(u)ei(ψm+ψn)u/2e−xu,

(4.23)

where the parameter x ≡ (2Ω)4 D̄, z ≥ zcoll, and the quantities G1(u), G2(u), F1(u),
F2(u), K1(u), and K2(u) are defined below:

G1(u) ≡
∫ 2zcoll−u

u

dv H(u, v), G2(u) ≡
∫ 2z−u

2zcoll+u

dv H(u, v),

F1(u) ≡
∫ 2zcoll+u

2zcoll−u
dv H(u, v), F2(u) ≡

∫ 2z−u

u

dv H(u, v),

K1(u) ≡
∫ 2z−u

2zcoll−u
dv H(u, v), K2(u) ≡

∫ 2zcoll+u

u

dv H(u, v).(4.24)

The quantity H(u, v) incorporates information about the two pulses:

H(u, v) ≡ f

(
v + u

2
, t

)
f

(
v − u

2
, t

)
ei(ψm−ψn)v/2.(4.25)

Typical values for our problem of interest are Ω � 3.9 and 0.005 ≤ D̄ ≤ 0.03 (cor-
responding to 0.5% to 3% of variation with respect to the average dispersion set to
dav = 1.0), which corresponds to a large x value (i.e., x� 1). One can apply Laplace’s
method to examine each of the integrals in (4.23) for large x. If one takes z −→ ∞,
the resulting asymptotic integral is given by

limz−→∞ 〈Im(z, t) In∗(z, t)〉

� 1
(2Ω)4D̄

[∫ ∞

0

dv H(u = 0, v) +
1
2

∫ 3zcoll

zcoll

dv H(u = zcoll, v)
]
.(4.26)

Again, we note that this analysis applies to either sech-type or Gaussian-type pulses.
One can bound each of the integrals in (4.26) and then show that the quantity
〈Im(z, t)In∗(z, t)〉 decays like 1/(2Ω)4D̄, where Ω is the frequency offset and D̄ repre-
sents the noise strength arising from the random dispersion given in (4.1) and (4.2).
In the next section, we compare (4.26) with numerical integration of (3.3), which is
the full NLS equation with periodic damping and amplification, to show quantitative
agreement between the two approaches.

4.3. FWM growth: Numerical results for white noise process. In the pre-
vious section, we showed analytically that the dominant contribution to the L2-norm
for FWM growth in the presence of a random dispersive term decayed like 1/(2Ω)4D̄,
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Fig. 1. Contour plot of the spectrum of a signal for a pairwise interaction of sech-type pulses in
the absence of noise in the dispersion coefficient: The dispersion here is simply a constant function
(i.e., d(z) = 1.0) to show the presence of FWM growth side-bands. The color corresponds to the
logarithm of the amplitude.
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Fig. 2. Contour plot of the spectrum of a signal for a pairwise interaction of sech-type pulses
in the presence of white noise. The noise strength is given by D̄ = 0.03. The color corresponds to
the logarithm of the amplitude, indicating that the side-bands are smoothed out and overall much
weaker than in the system without noise.

where Ω and D̄ represent the frequency offset and noise strength, respectively. Again,
the FWM growth results from a pairwise collision of either sech- or Gaussian-type
pulses (see (4.4)–(4.5)) and is best observed in the frequency domain.

We chose to examine the pairwise interaction of sech-type pulses. The reason
for this choice was simply one of convenience for the numerics. All of the results
presented here can be applied to Gaussian-type pulses without loss of the basic features
concerning FWM products. In Figure 1, we show the frequency spectrum for the
propagating signal, which consists of two interacting pulses that are well separated in
the frequency domain, in the absence of dispersive noise. Due to the interaction, they
develop FWM that occurs as side-bands in the frequency domain. The simulation
clearly shows how these bands are first created and then persist. This simulation was
obtained by solving (3.3) using a standard second-order split-step method.

Running the same simulation as shown in Figure 1 but allowing for small ran-
domness in the dispersion coefficient d(z) (see (4.1)–(4.2)), considerable suppression
of the FWM products arises. In Figure 2, the noise strength is chosen to be D̄ = 0.03
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Fig. 3. This is a plot of R = ||uF WM ||2/||usol||2 versus D̄, where R is the ratio of the FWM
energy (||uF WM ||2) to one of the input sech-type pulse’s energy (||usol||2) and D̄ is the noise strength
parameter. The solid line is obtained by integration of the full NLS equation for 1000 Monte Carlo
simulations at each D̄ value, taking z = 2.5 dimensionless units. The dashed line represents the
result obtained using (4.15), (4.16), and (4.26).

and shows that the amplitude of the side-bands is much lower. This indicates that
the four-wave products are reduced in a noisy system. In our simulations, we use a
standard split-step algorithm in order to integrate the full NLS equation (3.3). At
each step in the evolution variable z, we randomly draw a number that approximates
the white noise in the dispersion term. In order to model the white noise effectively,
this random number is drawn from a normal distribution with the variance σ2 = D̄/dz
at each evolution step dz.

In section 4.2 we derived an expression for the L2-norm for the FWM products
given in (4.15), (4.16), and (4.26). In Figure 3, we plot the L2-norm of the FWM
products (relative to the L2-norm of one of the sech-type pulses) versus the noise
strength D̄, given the soliton parameters Ω = 3.9 and T0 = 4.0. The plot is generated
by solving the full NLS equation for propagation of the pulses to some finite distance
along the fiber after the collision (z = 2.5 dimensionless units, where the collision
occurs at zcoll = 1.027). A certain distance after the collision of the pulses (at z = 2.5
dimensionless units), we measure the value R = ||uFWM ||2/||usol||2 for a fixed noise
strength D̄. Figure 3 tells us the value of R for a range of D̄ values, averaging the
Monte Carlo simulations for 1000 realizations per run in z per D̄ value. We compare
the numerical results obtained by integration of the full NLS equation with the sum
that arises from solving the linear PDE model for the FWM growth (see (4.16)). This
figure shows that the FWM growth decays like 1/(2Ω)4D̄, which is shown in both
numerical simulations as well as from the analytical results.

The sum in (4.16) was evaluated using twenty terms, with the asymptotic formula
given by (4.26). From (4.23)–(4.26), it is clear that the dominant terms arise when
the indices m and n are equal. Since we are dealing with sech-type (or Gaussian-type)
pulses, the contributions to (4.16) can be shown numerically to be small as m and n
become large. Practically speaking, twenty terms give sufficient accuracy (up to at
least five digits of numerical accuracy).

In this section, we have shown both numerically and analytically that the FWM
products decay inversely with the noise strength parameter D̄. This confirms the
initial evidence of this phenomenon seen in [12]. Another question to be asked is What
is the probability distribution function of the R value (ratio of L2-norms) associated
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Fig. 4. This is a plot of the probability distribution function versus R = ||uF WM ||2/||usol||2
given D̄ = 0.03 and Ω = 3.9.
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Fig. 5. This is a plot of the probability distribution function versus R = ||uF WM ||2/||usol||2
given D̄ = 0.30 and Ω = 3.9.

with these FWM products? We show some numerical results and propose a model
for the probability distribution function.

4.4. FWM growth and its probability distribution function. In the pre-
vious section, we found that qualitatively the FWM products decrease like 1/(2Ω)4D̄
(see (4.26)). Indeed, we can numerically determine the probability distribution func-
tion of the FWM products for a set value of the noise strength D̄. Once this is done,
we can determine a best fit curve for the probability distribution function associated
with the ratio of L2-norms for the FWM products.

We begin by solving the NLS equation (3.3), where g(z) is a periodic function,
d(z) is given by (4.1)–(4.2), and sech-type input pulses are used as given in (4.4). We
numerically integrate the NLS equation for 1000 Monte Carlo simulations, setting the
appropriate constants Ω, T0, and D̄. Once the histogram is numerically calculated,
we fit this curve to a gamma-type probability distribution function.

In Figures 4 and 5, we plot histograms of the probability distribution functions
as functions of R for different D̄ values. These figures are obtained upon numerical
integration of the full NLS equation (3.3) for Ω � 3.9, D̄ = 0.03, and D̄ = 0.30 for
1000 Monte Carlo simulations. The results in these figures confirm what was predicted
in Figure 3; as we increase the value of the noise strength D̄, there is a significant
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Fig. 6. This is a plot of R = ||uF WM ||/||usol|| versus the noise strength parameter D̄ in the
presence of OU noise in the dispersive term. The solid line is obtained by integration of the full NLS
equation for 1000 Monte Carlo simulations for a fixed D̄ value for z = 2.5 dimensionless units. The
dashed line is the evaluation of the sum for the white noise case using (4.15), (4.16), and (4.26).

reduction in the FWM products. These probability distribution functions also give
us an indication of how the values of R are distributed for a given Ω and D̄. From
Figures 4 and 5, it appears that the results in these figures are best approximated by
a Gamma-type distribution. By fitting the data using a least-squares approach, one
can show that the probability distribution function is approximated by

f(x) = αxe−βx,(4.27)

where α ≈ 9.2356× 105 and β ≈ 986.315 when D̄ = 0.03, and α ≈ 2.42866× 107 and
β ≈ −5366.57 for 0.30, respectively. Here, x represents the binning of the R values,
and β, n, and m depend on the noise strength D̄.

4.5. FWM: Numerical results for a correlated noise process. In section
4.3, we showed that the FWM growth is inversely proportional to the noise strength
D̄ in the presence of a white noise process in the dispersion coefficient. Indeed, the
results displayed in Figure 3 summarized both the numerical and analytical results
derived for the case of white noise in the dispersive term. A question that we raise is
Is the FWM growth affected in a similar manner for different types of noise processes?
We briefly give some numerical results for the case of OU noise. In this case, ξ(z) in
(4.1) is created by solving the corresponding stochastic equation:

dξ(z) = −kξ(z)dz +
√
D̄OUdW,(4.28)

where D̄OU is the appropriately scaled diffusion constant for the OU process and k−1

is the correlation length (see [10]).
Figure 6 is a plot of the L2-norm of the FWM products, relative to the L2-norm

of one of the input pulses, versus the noise strength, D̄. This plot was generated in a
similar manner to that of Figure 3. We solve the full NLS equation for propagation
of the pulses to some finite distance along the fiber after the collision (z = 2.5 di-
mensionless units). After this, we measure the value of R = ||uFWM ||2/||usol||2 (the
ratio of the L2-norm of the FWM product and one of the input pulses) at z = 2.5
for a fixed noise strength D̄. Again, we determine the values of R for a range of D̄
values, averaging the Monte Carlo simulations for 1000 simulations per run in z per
D̄ value. We plot the analytical result determined for the white noise process to show
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that, qualitatively, the FWM products decay inversely to the noise strength D̄. For
the case of short-correlated noise in the form of an OU process, the effect of the noise
on the FWM differs slightly from the white noise case (again, see Figure 3), but we
again see an efficient suppression of the FWM product.

5. Summary of results and conclusions. In this manuscript, we have exam-
ined how randomness in the dispersion term affects the growth of FWM products. We
have shown that in the presence of a white-noise process, the decay of the L2-norm
for the FWM products is proportional to 1/(2Ω)4D̄, where Ω is the frequency offset of
the input pulse and D̄ is the noise strength parameter. We have confirmed this result
in two ways: (i) by the development of an analytical model that describes the FWM
growth and (ii) using Monte Carlo simulations on the full NLS equation. We have
also given a qualitative description for the probability distribution function associated
with the FWM products for a fixed noise strength. Furthermore, we have shown that,
qualitatively, these results are the same when the white-noise process is replaced by
an Ornstein-Uhlenbeck process.
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SPECTRUM OF A LINEARIZED AMPLITUDE EQUATION FOR
ALTERNANS IN A CARDIAC FIBER∗
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Abstract. Under rapid periodic pacing, cardiac cells typically undergo a period-doubling bi-
furcation in which action potentials of short and long duration alternate with one another. If these
action potentials propagate in a fiber, the short-long alternation may suffer reversals of phase at var-
ious points along the fiber, a phenomenon called (spatially) discordant alternans. Either stationary
or moving patterns are possible. Using a weak approximation, Echebarria and Karma proposed an
equation to describe the spatiotemporal dynamics of small-amplitude alternans in a class of simple
cardiac models, and they showed that an instability in this equation predicts the spontaneous forma-
tion of discordant alternans. To study the bifurcation, they computed the spectrum of the relevant
linearized operator numerically, supplemented with partial analytical results. In the present paper
we calculate this spectrum with purely analytical methods in two cases where a small parameter may
be exploited: (i) small dispersion or (ii) a long fiber. From this analysis we estimate the parameter
ranges in which the phase reversals of discordant alternans are stationary or moving.

Key words. spectrum, amplitude equation, cardiac alternans
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1. Introduction. Alternans, a period-doubling bifurcation of action potential
durations in rapidly paced cardiac cells, has been implicated as a precursor of ven-
tricular fibrillation [6, 5, 10, 2]. When such action potentials propagate in tissue,
their short-long alternation may suffer reversals of phase; such discordant alternans
pose even higher arrythmogenic risks. Since ventricular fibrillation accounts for 1/6
of all deaths in the USA [1, 7], great importance attaches to understanding these
phenomena.

Echebarria and Karma [3] proposed a weakly nonlinear description of the one-
dimensional evolution of discordant alternans in cardiac models1 for which each action
potential duration (APD) is a function of only the previous diastolic interval (DI).
To set the context, suppose a cardiac fiber of length L is stimulated periodically
at its x = 0 end, say with period B (mnemonic for basic cycle length, which has
the acronym BCL). It is assumed that each stimulus successfully generates an action
potential that propagates down the fiber. Let Ak(x) be the duration of the kth action
potential at the position x along the fiber. For slow stimulation, say B > Bcrit, the
propagating action potentials become identical after a transient: i.e., limk→∞ Ak(x)
exists and is independent of x. In studying pacing with B < Bcrit, Echebarria and
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appendix, written primarily for mathematicians, reviews the context in which (1.2) arises.
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Karma make the ansatz

(1.1) Ak(x) = Acrit − δA+ (−1)ka(x, t),

where Acrit is the APD when pacing with period B = Bcrit, δA is the average short-
ening of APD resulting from decreasing B below Bcrit, and a(x, t) is the amplitude
of alternans, assumed slowly varying. Because of this slow-variation assumption, one
may study the evolution of a with respect to a continuous time t that interpolates
between the times t = kB, k = 0, 1, 2, . . ., when stimuli are applied. Nondimension-
alizing the time by Bcrit, they derive the evolution equation for a(x, t):

(1.2) ∂ta = σa+ ξ2∂xxa− w∂xa−
1
Λ

∫ x

0

a(x′, t)dx′ − ga3,

where σ is the bifurcation parameter, which is dimensionless and proportional to
Bcrit−B; Λ, w, and ξ are all positive parameters in units of length, which are derived
from the equations of the cardiac model; and the nonlinear term −ga3 limits growth
after the onset of linear instability. Boundary conditions

(1.3) ∂xa(0, t) = 0, ∂xa(L, t) = 0

are imposed on (1.2).
Of course, a ≡ 0 is a solution of (1.2)–(1.3), but it loses stability as σ increases.

Bifurcation analysis of this equation requires knowing the eigenvalues Ωn of the linear
operator that maps a function a(x) to

(1.4) ξ2∂xxa− w∂xa−
1
Λ

∫ x

0

a(x′, t)dx′,

subject to Neumann boundary conditions. All of these eigenvalues lie in the (stable)
left-half plane. The eigenvalue(s) with the largest real part, say Ωmax, determines the
character of the solution of (1.2) at the onset of bifurcation—a stationary pattern if
Ωmax is real, a moving pattern if it is complex.

In this paper we extend the results of [3] by calculating the spectrum of (1.4)
with purely analytical means in two limiting cases: small dispersion and a long fiber.
In particular, it follows from our analysis that in a long fiber Ωmax is real if, modulo
terms that are O(L−2),

(1.5) Λ−1 ≤ C
w3

ξ4
,

where

(1.6) C =
1
64

(
71 + 17

√
17
)
≈ 2.205,

and Ωmax is complex otherwise.

2. The eigenvalue problem. Let us begin by nondimensionalizing (1.4). The
parameters ξ, w, and Λ, like L, all have the units of length. Thus we define a set of
new parameters

(2.1) w̄ = w/ξ, Λ̄ = Λ/ξ, L̄ = L/ξ,
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and (1.4) can be written as

(2.2)
d2a

dx̄2
− w̄

da

dx̄
− Λ̄−1

∫ x̄

0

a(x̄′)dx̄′,

where x̄ = x/ξ. For further scaling, we define

(2.3) ¯̄x = w̄ · x̄, ¯̄L = w̄ · L̄, ¯̄Λ = Λ̄ · w̄3

and an operator

(2.4) L =
d2a

d¯̄x2
− da

d¯̄x
− ¯̄Λ

−1
∫ ¯̄x

0

a(¯̄x′)d¯̄x′.

One observes that (1.4) equals w̄2 · L a.
The analysis in sections 2–4 below uses dimensionless variables, but we nonetheless

shall omit all the bars in (2.4). Suppose that a(x) is an eigenfunction of (2.4) with
eigenvalue Ω: i.e.,

(2.5) L a = Ω a, with a′(0) = 0, a′(L) = 0.

To eliminate the integral term in (2.4), we differentiate this equation (but not the
boundary conditions (B.C.)) with respect to x to obtain

⎧⎪⎪⎨
⎪⎪⎩

a′′′ − a′′ − Λ−1a = Ω a′,
a′(0) = 0,
a′(L) = 0,
a′′(0) = Ω a(0).

(2.6)

The additional B.C. comes from evaluating the eigenvalue equation, before differen-
tiation, at x = 0. A function of the form a(x) = eκx satisfies the ODE in (2.6)
if

(2.7) κ3 − κ2 − Ωκ− Λ−1 = 0.

If κ1, κ2, κ3 are the roots of (2.7), then this equation may be reformulated as

1 = κ1 + κ2 + κ3,(2.8)
Ω = −(κ1κ2 + κ2κ3 + κ3κ1),(2.9)
Λ−1 = κ1κ2κ3.(2.10)

Assuming that the roots κ1, κ2, κ3 are distinct, we seek a solution of (2.6) of the form
a(x) =

∑3
1 Cie

κix. The three B.C.s in (2.6) give a homogeneous linear system for the
unknown coefficients Ci. For this system to possess a nontrivial solution, we need

det

⎛
⎝ κ1 κ2 κ3

κ1e
κ1L κ2e

κ2L κ3e
κ3L

Ω − κ2
1 Ω − κ2

2 Ω − κ2
3

⎞
⎠ = 0.(2.11)

Thus Ω ∈ C is an eigenvalue of L if there exist a triple κ1, κ2, κ3, no two of them
equal, such that the four equations (2.8)−(2.11) are satisfied.
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If Λ−1 > 0 so that each root κi is nonzero, (2.11) may be reformulated as follows.
By (2.7), Ω − κ2

i = −κi − Λ−1κ−1
i . Substituting this expression into the third row of

(2.11) and manipulating the determinant, we obtain

(2.12) det

⎛
⎝ 1 1 1

eκ1L eκ2L eκ3L

κ−2
1 κ−2

2 κ−2
3

⎞
⎠ = 0.

Let us rule out possible multiple roots. First regarding a triple root, which by
(2.8) must be κ1 = κ2 = κ3 = 1

3 : In this case the general solution to (2.6) is of the
form a(x) = (C0 + C1x + C2x

2) ex/3, and the only possible eigenvalue is Ω = − 1
3 by

(2.9). Substituting a(x) and Ω into (2.6), we find that there is no nontrivial solution
and hence no eigenvalue. Now we assume κ1 = κ2 �= κ3 in (2.8)−(2.10), and therefore
the general solution to (2.6) is a(x) = C1e

κ1x+C2xe
κ1x+C3e

κ3x. Inserting a(x) into
the boundary conditions in (2.6) and considering (2.8)−(2.10) with κ2 = κ1, we find
that the existence of a nontrivial solution requires κ1 to satisfy both of the following
equations,

κ1L(4κ2
1 − 3κ1 − 1) + 2(1 − 2κ1)2 ·

[
e(1−3κ1)L − 1

]
= 0,(2.13)

−2κ3
1 + κ2

1 = Λ−1 > 0,(2.14)

and the possible eigenvalue is then given by

(2.15) Ω = 3κ2
1 − 2κ1.

Note that (2.13) only has isolated complex roots since its left-hand side is a holomor-
phic function. Thus (2.13)−(2.15) can provide only isolated eigenvalues in the Λ−1-Ω
plane, and a perturbation of the parameter Λ−1 will lead to the case when all κj ’s are
different. So the case κ1 = κ2 �= κ3 can be obtained as limit of the case of distinct
roots. In the analysis below we will see that the roots remain separated for Λ−1 small
or L large.

3. Small dispersion:2 Λ−1 � 1. If Λ−1 = 0, then L has eigenvalues

(3.1) Ω(0)
0 = 0,

with the solution of (2.8)−(2.10) given by κj = 0, 0, 1, and

(3.2) Ω(0)
n = −1

4
−
(πn
L

)2

, n = 1, 2, . . . ,

with κj = 0, 1
2 ±

inπ
L . We seek the first term in an expansion of Ωn in powers of Λ−1.

3.1. Perturbation of Ωn, n ≥ 1. We prove that for Λ−1 small,

(3.3) Ωn(Λ) = Ω(0)
n + Ω(1)

n Λ−1 + O(Λ−2),

where Ω(0)
n is given by (3.2) and

(3.4) Ω(1)
n = − 2

1 + 4π2n2L−2
.

2We remind the reader that in this section and the next, Λ and L, without bars, refer to the
dimensionless parameters defined by (2.3).
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By the implicit function theorem, we may expand the solution of (2.8)–(2.10) and
(2.12) as

(3.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ1,2 =
1
2
± inπ

L
+ b1,2Λ−1 + O(Λ−2),

κ3 = 0 + b3Λ−1 + O(Λ−2),

Ωn = Ω(0)
n + Ω(1)

n Λ−1 + O(Λ−2).

Substituting into (2.8)−(2.10), we find from the O(Λ−1) terms

(3.6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1 + b2 + b3 = 0,

Ω(1)
n = −b1 + b2

2
+
inπ

L
(b1 − b2) − b3,

b3 =
(

1
4

+
n2π2

L2

)−1

.

Substituting into (2.12), we find that the leading order term O(Λ2) vanishes iden-
tically; from the next order term O(Λ) we deduce that b1 = b2. The relation (3.4)
follows from this equation and (3.6).

3.2. Perturbation of Ω0. We prove that for Λ−1 small,

(3.7) Ω0(Λ) = Ω(1)
0 Λ−1 + O(Λ−2),

where

(3.8) Ω(1)
0 = −

(
1 − L

exp(L) − 1

)
.

The expression analogous to (3.5) is complicated by the fact that, for Λ−1 = 0,
κ1 = κ2 = 0 is a double root of (2.8)–(2.10). Thus we seek a Puisseux expansion

(3.9)

⎧⎨
⎩

κ1,2 = a1,2Λ−1/2 + b1,2Λ−1 + O(Λ−3/2),
κ3 = 1 + b3Λ−1 + O(Λ−2),
Ω0 = Ω(1)

0 Λ−1 + O(Λ−2).

First we substitute into (2.8)–(2.10); from the vanishing of the first two terms in the
expansions we deduce

(3.10)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1 + a2 = 0,
b1 + b2 + b3 = 0,
Ω(1)

0 = −a1a2 − (b1 + b2),
a1a2 = 1,
a1b2 + a2b1 = 0.

Note that the equation a1 + a2 = 0 arises from the leading term of both (2.8) and
(2.9). These equations imply that

(3.11)

⎧⎪⎪⎨
⎪⎪⎩

a1,2 = ±i,
b2 = b1,
b3 = −2b1,
Ω(1)

0 = −1 − 2b1.
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Fig. 1. The evolution of the real parts of the first seven eigenvalues Ω0,Ω1, . . . ,Ω6 versus Λ−1,
assuming L = 15. The dashed line is the breaking line described in (4.26), the estimate for where
the eigenvalues Ω1,Ω2, . . . become complex. Λ−1

c is the crossover point such that if Λ−1 > Λ−1
c , the

eigenvalue which has largest real part, Ωmax, is complex.

Then we substitute (3.11) into the determinant (2.11). The leading term in the
resulting expansion, which is O(Λ−1), vanishes. Requiring the O(Λ−3/2) term to
vanish yields the claim (3.8), even though we do not yet know the bj ’s.

Incidentally, if desired, the bj ’s may be determined by substituting (3.4) into (3.6),
yielding

(3.12) b1 = b2 = − L

2(exp(L) − 1)
= −b3

2
.

4. A long fiber:3 L � 1. To analyze larger values of Λ−1, where the expansion
of section 3 loses accuracy, we need to require that L � 1. When Λ−1 is small, all
eigenvalues are real and ordered by their index: i.e.,

(4.1) Ω0 > Ω1 > Ω2 > · · · .

As Λ−1 increases, some of the eigenvalues become complex. As this occurs we still
retain the ordering

(4.2) Re Ω1 ≥ Re Ω2 > Re Ω3 ≥ Re Ω4 > Re Ω5 > · · · .

However, Ω0 remains real,4 and although its position in the sequence (4.2) varies with
Λ−1, we retain the index zero. This behavior is illustrated in Figure 1, where we have
set L = 15.

4.1. Computation of Ω0. We shall prove that, provided L is sufficiently large,
the operator L has a real eigenvalue

(4.3) Ω0 = −Λ−1 + O(e−L).

Note that this result is consistent with (3.8). Recall from section 3.2 that, in solving
(2.8)–(2.10) for small nonzero Λ−1, we found that κ1,2 became a complex-conjugate

3We remind the reader that in this section, Λ and L, without bars, refer to the dimensionless
parameters defined by (2.3).

4This statement breaks down if Λ−1 becomes exceedingly large, contradicting our implicit as-
sumption that Λ−1 � L.
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pair while κ3 remained real. Thus for general Λ−1 we assume

(4.4) κ1,2 = μ± iν.

Then (2.8) implies

(4.5) κ3 = 1 − 2μ.

We use (2.9)–(2.11) to solve for μ, ν, and Ω as follows. Dividing the middle row of
(2.11) by eκ3L, we rewrite this equation as

det

⎛
⎝ κ1 κ2 κ3

κ1e
(κ1−κ3)L κ2e

(κ2−κ3)L κ3

Ω0 − κ2
1 Ω0 − κ2

2 Ω0 − κ2
3

⎞
⎠ = 0.(4.6)

Now provided

(4.7) μ <
1
3
,

we have for the 2,1- and 2,2-entries of this determinant

(4.8) |e(κj−κ3)L| = e−(1−3μ)L 
 1,

since L� 1. Thus neglecting these entries and recalling (4.4)–(4.5), we conclude

(4.9) Ω0 = −(μ2 + ν2) + O(e−(1−3μ)L).

On the other hand, we substitute (4.4)–(4.5) into (2.9) to find

(4.10) Ω0 = −(μ2 + ν2) − 2μ(1 − 2μ).

Comparing (4.9) and (4.10), we deduce

(4.11) μ(1 − 2μ) = O(e−(1−3μ)L).

By (4.7), we have 1 − 2μ > 1/3 > 0, so dividing (4.11) by 1 − 2μ, we obtain

(4.12) μ = O(e−(1−3μ)L).

Thus assumption (4.7) is consistent and, moreover,

(4.13) μ = O(e−(1−3μ)L) = O(e−L).

Returning to (4.9), we conclude that

(4.14) Ω0 = −ν2 + O(e−L).

But substituting (4.4)–(4.5) into (2.10) and working with (4.13), we see

(4.15) Λ−1 = ν2 + O(e−L).

The claim (4.3) follows on eliminating ν from (4.14)–(4.15).
As one might expect with an exponentially small error, (4.3) agrees extremely

well with the numerical results. Indeed the graph of (4.3) cannot be distinguished
visually from the graph of Ω0 in Figure 1.

Incidentally, the eigenfunction associated with Ω0 exhibits unusual behavior for a
one-dimensional eigenvalue problem—the number of its zeros or nodes changes as Λ−1

varies. Specifically, modulo terms that are exponentially small (outside of a boundary
layer near x = L), the nondimensionalized eigenfunction is just cos(x/

√
Λ).
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4.2. Later eigenvalues, real case. In this subsection, we characterize a range
of Λ−1, as this parameter increases from 0, in which the eigenvalue Ωn is real. Con-
tinuing the structure of the roots κj inherited from small Λ−1, we assume

(4.16) κ1,2 = μ± iν

and invoke (2.8) to conclude

(4.17) κ3 = 1 − 2μ.

We shall solve (2.12) for ν and substitute the result into (2.9)–(2.10) to obtain a
parametric representation of the curve Ω = Ωn(Λ−1) in the Λ−1,Ω-plane, with μ as
the parameter. (It is not practical to solve explicitly for Ωn as a function of Λ−1.)

Let us divide the second row of the determinant (2.12) by exp (μL), obtaining

(4.18) det

⎛
⎝ 1 1 1

e i νL e−i νL e(1−3μ)L

κ−2
1 κ−2

2 κ−2
3

⎞
⎠ = 0.

If

(4.19) μ >
1
3
,

then for large L we may neglect the 2, 3-entry of this determinant, so that the equation
reduces to

(4.20) e2iνL =
κ2

2(κ
2
1 − κ2

3)
κ2

1(κ2
2 − κ2

3)
+ O(e−(3μ−1)L).

Equation (4.20) suggests that νL = O(1) or

(4.21) ν = O(L−1).

Assuming this and recalling (4.19), we see that the right-hand side of (4.20) equals
1 + O(L−1). Solving (4.20), we find

(4.22) ν = nπ · L−1 + O(L−2), n = 1, 2, . . . ,

confirming our assumption (4.21). On the other hand, substituting (4.16)–(4.17) into
(2.8)–(2.9), we find

(4.23)
{

Λ−1 = (1 − 2μ)(μ2 + ν2),
Ωn = 3μ2 − 2μ− ν2.

Substituting (4.22) into (4.23), we obtain the parametric representation

(4.24)

{
Λ−1 = (1 − 2μ) · (μ2 + n2π2L−2) + O(L−3),

Ωn = 3μ2 − 2μ− n2π2L−2 + O(L−3).

Note from (4.24) that Λ−1 = 0 occurs when μ = 1/2. (This may also be seen by
solving (2.8)–(2.11) directly when Λ−1 = 0, which avoids the O(L−3) error in (4.24).)
Recalling (4.19), we conclude that

(4.25) 1/3 < μ ≤ 1/2
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Fig. 2. A comparison between the computations (solid lines) and the theoretical approximations
given by (4.24) (dashed lines) of the eigenvalues Ω1, . . . ,Ω4 while they are real. The approximation
terminate at the breaking line, given by (4.26). The dimensionless cable length L is 15.

is the relevant parameter range in (4.24). At the lower end of the range, the points
(Λ−1,Ω) in (4.24) all lie along the line

(4.26) Ω = −3Λ−1 − 2/9,

which we call the breaking line. This may be seen, avoiding the O(L−3)-errors, by
setting μ = 1/3 in (4.23) and eliminating ν2.

The approximations (4.24), for n = 1, 2, 3, 4 and for μ satisfying (4.25), are
graphed in Figure 2, along with the computed eigenvalues. As the figure empha-
sizes, the asymptotics underlying (4.24) break down as μ → 1/3. More precisely, for
μ near 1/3, exceedingly large values of L are needed to make (4.24) accurate, and
increasingly so as n becomes large.

Incidentally, note that for Λ−1 = 0,

(4.27)
dΩn
dΛ−1

=
dΩn/dμ
dΛ−1/dμ

∣∣∣
μ= 1

2

= − 2
1 + 4n2π2L−2

,

which is consistent with (3.4), even without the O(L−3)-errors in (4.24).

4.3. Later eigenvalues, complex case. Motivated by the numerical results,
when the above asymptotics break down we look for complex eigenvalues. Let us
define

μ =
1
2

Re (κ1 + κ2),(4.28)

ν =
1
2

Im (κ1 + κ2).(4.29)

Then

(4.30) κ1,2 = μ+ iν ± δ,

where δ, possibly complex, is to be determined, and (2.8) implies that

(4.31) κ3 = 1 − 2(μ+ iν).
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Fig. 3. A comparison between the computations (solid lines) and the theoretical approximations
given by (4.36), (4.40) (dashed lines) of the real parts of the eigenvalues Ω1, . . . ,Ω4 while they are
complex. The dimensionless cable length L is 15.

Even in the complex case, we continue to assume (4.19). Thus, asymptotically for
large L, the determinant equation (2.12) may be simplified to

(4.32) e2 δL =
κ2

2(κ
2
1 − κ2

3)
κ2

1(κ
2
2 − κ2

3)
+ O(e−(3μ−1)L).

As above, we solve (4.32) to obtain

(4.33) δ = inπ · L−1 + O(L−2), n = 1, 2, . . . .

We determine the real parameter ν from the condition that Λ−1 must be real: i.e., by
equation (2.10)

(4.34) Im (κ1κ2κ3) = 0,

and from this we deduce that

(4.35) ν = ±
{
μ(3μ− 1) + n2π2L−2 + O(L−3)

}1/2

.

Substituting into (2.9)–(2.10), we obtain a parametric representation of Ω versus Λ−1.
Specifically, adjusting indices to account for the fact that (4.35) has two solutions, we
find

Λ−1 = μ(4μ− 1)2 + 4μ · n2π2L−2 + O(L−3),(4.36)
Ω2n = (μ+ iν)(3μ+ 3iν − 2) − n2π2L−2 + O(L−3),(4.37)
Ω2n−1 = Ω2n,(4.38)

where ν is given by (4.35) and

(4.39) 1/3 < μ <∞.

By substituting μ = 1/3 into (4.36), (4.37) we see that these approximations terminate
at the breaking line (4.26). Several of them are graphed in Figure 3, along with the
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computed eigenvalues. Incidentally, note that the real parts of the eigenvalues may
be written more simply, without ν:

(4.40) Re Ω2n−1 = Re Ω2n = −μ(6μ− 1) − 4n2π2L−2 + O(L−3).

To explore the transition between the real and complex cases, we substitute the
limiting value μ = 1/3 into (4.24) and (4.36), (4.37). For the even-index eigenvalues,
both the real and complex cases give same result,

Λ−1 =
1
27

+
1
3

(
2nπ
L

)2

+ O(L−3),(4.41)

Ω2n = −1
3
−
(

2nπ
L

)2

+ O(L−3),(4.42)

which of course lies on the breaking line (4.26). For odd-index eigenvalues, there is an
O(L−2) jump between the results of substituting μ = 1/3 into (4.24) and into (4.36),
(4.37). Hints of this behavior may be seen in Figure 2—the asymptotic approximation
of Ω2n in the real case continues to be defined closer to the actual transition to
complex eigenvalues than that of Ω2n−1. Incidentally, (4.41) may be used to estimate
the largest value of Λ−1 at which Ω2n−1 and Ω2n are still real.

Let us relate these formulae to a result of Echebarria and Karma [4]. Invoking
considerations of group velocity and bifurcation theory, those authors argue that, at
the onset of instability, the complex wave number (κ = μ+ iν in our notation) ought
to satisfy

(4.43) 2κ3 − κ2 +
1
Λ

= 0.

(This relation is equivalent to their equation (56) written in our notation.) Now to
leading order (4.35), (4.36) assert that

(4.44) ν2 = μ(3μ− 1), 16μ3 − 8μ2 + μ = Λ−1.

It may be checked that these two real equations are equivalent to the single complex
equation (4.43). Thus we have given an independent derivation of (4.43) that does
not rely on computing group velocities for waves that grow exponentially in space and
that accounts explicitly for boundary conditions on a (long) finite-length cable.

5. Discussion and conclusion. Let us summarize the asymptotic results from
section 4 regarding the eigenvalues of the linear operator of (1.4), which is w̄2L =
(w2/ξ2) · L . For this task, and for the remainder of the paper, we shall undo the
scaling (2.1) and (2.3) and return to the dimensional parameters. We found the
following:

• Ω0 is always real, given by

(5.1) Ω0 = − ξ2

wΛ
+ O(e−wL/ξ

2
).

• For n ≥ 1, Ωn is real if Λ−1 is below a threshold. Equation (4.41) estimates
that the threshold for Ω2n−1 and Ω2n to become complex is

(5.2)
w3

27ξ4
+
w

3

(
2nπ
L

)2

+ O(L−3).
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• In the real case, the relation between Λ−1 and Ωn is given parametrically by

(5.3)

{
Λ−1 = ξ−2(w − 2μξ) · (μ2 + n2π2ξ2L−2) + O(L−3),
Ωn = 3μ2 − 2μw/ξ − n2π2ξ2L−2 + O(L−3),

where w/3ξ < μ ≤ w/2ξ.
• In the complex case, the relation between Λ−1 and the real parts of Ω2n−1,

Ω2n is given parametrically by
(5.4)⎧⎪⎪⎨
⎪⎪⎩

Λ−1 = μξ−1(4μ− w/ξ)2 + 4μξ · n2π2L−2 + O(L−3),
Re Ω2n−1 = Re Ω2n = −μ(6μ− w/ξ) − 4n2π2ξ2L−2 + O(L−3),

Im Ω2n−1 =−Im Ω2n=2(3μ− w/ξ)
[
μ(3μ− w/ξ) + n2π2ξ2L−2

]1/2
+ O(L−3),

where w/3ξ < μ <∞.
Consider bifurcation of (1.2) from the zero solution as σ increases. An eigenvalue

of the linearization crosses into the (unstable) right-half plane when σ = Re Ωmax,
where Ωmax is the eigenvalue of (1.4) with the (algebraically) largest real part. If Λ−1

is small, Ω0 is the largest eigenvalue, its associated eigenfunction is real, and a time-
independent stationary-wave solution of (1.2) appears at the bifurcation. However,
Ω0 decreases more rapidly with Λ−1 than later eigenvalues, which, moreover, become
complex. Thus, when Λ−1 is sufficiently large, say Λ−1 > Λ−1

c , Ωmax will be complex,
and time-oscillatory traveling-wave solutions will appear at the bifurcation (see [4]
for more details). To estimate the crossover value Λ−1

c , we consider the equation
Ω0 = Re Ω1. Recalling (5.1), we may rewrite this equation to leading order as

(5.5) − ξ2

wΛ
= Re Ω1.

Substituting the first and second equations of (5.4) into the left and right sides of
(5.5), respectively, we obtain the quadratic equation

8μ2 − 7(w/ξ) · μ+ (w/ξ)2 = 0

for the value of μ associated with the crossover. We select the root μ = (7+
√

17)w/16ξ
that satisfies μ > w/3 and substitute into (4.36) to obtain the leading order estimate

(5.6) Λ−1
c ≈ 71 + 17

√
17

64
· w

3

ξ4
.

By carrying O(L−2) terms in the above calculation, one may extend this estimate to
next order,

(5.7) Λ−1
c =

w3

ξ4

{
71 + 17

√
17

64
+

(7 +
√

17)π2

2
·
(wL
ξ2

)−2
}

+ O(L−3).

Figure 4 shows a comparison between the computational result for Λ−1
c and the-

oretical approximations (5.6) and (5.7) for various (large) cable lengths L. Observe
that the computational value is between the values of (5.6) and (5.7). For L smaller
than shown in the figure, the graph of Λ−1

c changes character. A hint of such behav-
ior may be gleaned from the fact that the approximation (5.7) blows up as L−2 as L
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Fig. 4. A comparison among the computational result (curve A) for Λ−1
c , the theoretical leading

order approximation (5.6) (line B), and the second order approximation (5.7) (curve C). The x-axis
is the cable length L scaled by w/ξ2, and y-axis is the critical value Λ−1

c scaled by w−3ξ4. With
these scalings, the curves are independent of ξ and w.

Table 1

Results of two simulations: two-current model and Noble’s model. w, ξ, L have units of length
in cm; Λ and Λc have units of inverse length in cm−1.

Name of model w ξ L Λ−1 Λ−1
c Observed alternans

Two-current 0.034 0.310 25 0.206 0.011 Traveling
Noble 0.045 0.180 20 0.020 0.198 Stationary

tends to zero. We plan to investigate these phenomena more thoroughly in a future
publication.

Table 1 summarizes the results of two simulations that illustrate the different
behavior that occurs for Λ−1 > Λ−1

c and Λ−1 < Λ−1
c . The two-current model [8], a

simplified cardiac model similar in spirit to the FitzHugh–Nagumo model, is discussed
in the appendix of this paper. The Noble model [9] was an early attempt to adapt
a Hodgkin–Huxley-type model to cardiac cells. Because realism was attempted, this
model is substantially more complicated than the two-current model. The key be-
havior relevant here is that the conduction-velocity curve is exceptionally flat at the
critical diastolic interval, which makes Λ−1 = 2c′/c2 small [3]. Simulations with the
Noble model are presented in [4].

Appendix: Alternans. In this appendix we illustrate the phenomena of alter-
nans in the context of a simple cardiac model [8], which is similar in spirit to the
FitzHugh–Nagumo equation. A single heart cell in this model is described by two
dimensionless functions of time, a scaled voltage v and a gate h that satisfy a set of
ODEs

(A.1)
dv

dt
= Jion(v, h) + Jstim(t),

where the ionic current is

(A.2) Jion(v, h) =
h

τin
v2(1 − v) − v

τout

and Jstim(t) is an external current applied repeatedly in brief pulses (cf. (A.4) below),
and

(A.3)
dh

dt
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− h

τclose
if v > vcrit,

1 − h

τopen
if v < vcrit.
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Table 2

Representative values for the parameters in the two-current model.

τin τout τopen τclose vcrit K L

0.2ms 7ms 50ms 130ms 0.05 0.4 cm2 · s−1 25cm

0.1 0.5
0

1

APD
DIn

vo
lta

ge

n

BCL
APDn+1

time ( sec )

stimulus stimulus

Fig. 5. An illustration of the solution to ODE system (A.1)–(A.3) with parameters given in
Table 2, assuming a periodic stimulus with period BCL = 400 ms.

Representative values for the parameters in these equations are given in Table 2; note
that K is the diffusion coefficient that appears in the PDE (A.11).

In the absence of a stimulus current, i.e., Jstim = 0, (A.1)–(A.3) have a stable
equilibrium at (v, h) = (0, 1). Suppose that this equilibrium is perturbed by a sequence
of stimuli, applied with period B, say

(A.4) Jstim(t) =

⎧⎨
⎩

vstim/δ if 0 < t < δ (mod B),

0 otherwise,

where δ 
 τin and vstim is not excessively small. Provided that this pacing is not
too rapid, the stimuli produce action potentials as illustrated in Figure 5; i.e., each
stimulus, although very brief, triggers an extended rise in the voltage, after which the
voltage decays. Let the APD (An) and DI (Dn) be defined as in the figure; note that
An +Dn = B, where B is the period or basic cycle length.

In [8] it is shown that, under the assumption

(A.5) τin 
 τout 
 τopen, τclose,

these variables approximately satisfy

(A.6) An+1 = F (Dn),

where

(A.7) F (Dn) = τclose ln
{

1 − (1 − hmin) e−Dn/τopen

hmin

}
,

with hmin = 4τin/τout. Since Dn = B−An, the sequence An is determined by iteration
of a one-dimensional map,

(A.8) An+1 = F (B −An).
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Provided that B is not too small, a sequence generated by (A.8) converges to a
stable fixed point A∗(B). However, for B smaller than some critical value, Bcrit, the
fixed point loses its stability and we have a period-doubling bifurcation of An to a
response called alternans. Let Acrit be the fixed point solution to (A.8) for B = Bcrit,
and define Dcrit = Bcrit −Acrit. Recognizing that |F ′(Dcrit)| = 1 is the condition for
bifurcation, we find

(A.9) Dcrit = τopen ln
{

(1 − hmin)
(

1 +
τclose
τopen

)}
,

and thus

(A.10) Acrit = F (Dcrit) = τclose ln
{

τclose
(τopen + τclose)hmin

}
.

In a homogenized cardiac fiber, say 0 < x < L, (A.1) is augmented by a diffusion
term to obtain a PDE

(A.11) ∂tv = K∂xxv + Jion(v, h) + Jstim(x, t);

equation (A.3) does not acquire any additional terms, but the t-derivative must be
reinterpreted as a partial derivative. The stimulus current is applied locally near one
end of the fiber and vanishes elsewhere. No-flux boundary conditions are imposed at
both ends of the fiber:

(A.12) ∂xv(0, t) = ∂xv(L, t) = 0.

The action potentials stimulated near x = 0 propagate along the fiber. The traveling
speed c, or the conduction velocity (CV) of a periodic wave train, depends on the DI
D,

(A.13) c = c(D) ≈
√
K · hinit

2τin

(
1 − 3hmin

4hinit

)
,

where

(A.14) hinit(D) = 1 − (1 − hmin)e−D/τopen .

If the BCL of the stimuli is sufficiently small (i.e., if the pacing frequency is high
enough), alternans will appear along the cable.

Let Ak(x) denote the duration of the kth action potential at position x. Assume
that Ak(x) has the form (1.1) in section 1. Echebarria and Karma [4] derived the
approximate equation (1.2) to describe the evolution of the amplitude of alternans.
The parameters Λ, w, ξ that appear in (1.2) are estimated by

(A.15)

⎧⎨
⎩

Λ−1 = c′/c2,
w = 2K/c,
ξ =

√
K · Acrit,

where c and c′ = dc
dD in (A.15) are both evaluated at the critical value D = Dcrit. Note

that Dcrit and Acrit are given by (A.9), (A.10). Evaluating c(Dcrit) by substituting
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Fig. 6. Simulation of the PDE (A.11) with parameters given in the Table 2, assuming a periodic
stimulus with period BCL = 343 ms. The x-axis is the position on the cable, the y-axis is An(x)
for the values of n listed above. As predicted by using (5.7), the pattern is propagating.

the parameters of Table 2 into (A.13), we compute w and ξ as given in Table 1. On
the other hand, by differentiating (A.13), we obtain

(A.16) c′ =
dc

dD
=

1 − hmin

τopen

√
K

2τin
·
(

1
2
h
−1/2
init +

3
8
hminh

−3/2
init

)
e−D/τopen ,

and after substituting we find Λ−1 as given in Table 1. The simulation shown in
Figure 6 were performed on a cable of length 25 cm, which corresponds to a scaled
dimensionless length of

(A.17) ¯̄L = wL/ξ2 = 8.84.

For this length, the (dimensionless) critical value Λ−1
c (computed numerically—curve

A in Figure 4) equals 2.67, which in dimensional units gives the value listed in Table
1. Since Λ−1 > Λ−1

c , the modulation equation predicts that alternans will appear
in traveling patterns. The behavior is observed in the simulation of Figure 6, which
shows An(x) for several beats about halfway through the transient to steady state.
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Abstract. It is perhaps surprising for a shock wave to exist in the solution of a rarefaction
Riemann problem for the compressible Euler equations in two space dimensions. We present nu-
merical evidence and generalized characteristic analysis to establish the existence of a shock wave
in such a 2D Riemann problem, defined by the interaction of four rarefaction waves. We consider
both the customary configuration of waves at the right angle and also an oblique configuration for
the rarefaction waves. Two distinct mechanisms for the formation of a shock wave are discovered as
the angle between the waves is varied.
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1. Introduction. Shock reflection in gas dynamics has long been an open prob-
lem. Two-dimensional (2D) Riemann problems have been proposed for the com-
pressible Euler equations as a general approach to the shock reflection problem [20].
Numerical simulations for this type of data have been performed by Chang, Chen,
and Yang [1, 2], Schulz-Rinne, Collins, and Glaz [17], Lax and Liu [11, 16], Kurganov
and Tadmor [10], and Li, Zhang, and Yang [13], among others. General patterns of
shock reflections have been revealed, some cases of which are accessible to analytical
treatment.

The initial data of a general Riemann problem is constant along radial directions
from an origin and is piecewise constant as a function of angle. We consider the
special case with initial data of piecewise constant solutions joined by four forward
rarefaction waves; see section 2. For this case, the solution was conjectured to be
continuous; see [1, 2, 17, 11, 13]. From the point of view of physically motivated
wave interactions, arbitrary angles between waves may be considered, and special
solutions (stationary wave interactions) in general will occur at angles other than
90◦; see [8]. From the point of view of defining a Riemann solution for a finite
difference mesh, we might consider a variety of meshes with different angles between
the cell edges. In accordance with both points of view, we consider the oblique
four-wave Riemann problem. We perform refined numerical experiments, using the
FronTier code developed at the AMS department of SUNY Stony Brook, and obtain
resolved numerical solutions. This code uses a five point vectorized split MUSCL
scheme [5] as a shock capturing algorithm. It is second order accurate for smooth
solutions and first order accurate near shock waves. We solve the full compressible
Euler equations in the original x, y, t coordinates, not in self-similar coordinates, so
the numerics are actually very well documented in previous literature [5] and [6].
Our main result is the existence of a shock wave, established numerically by several
different criteria, for a 2D Riemann problem with four rarefaction waves in both the
90◦ case and the oblique case. The possibility of shock formation indicates the deep
sophistication of this seemingly easy problem. We formulate plausible structures for
the solution via the method of generalized characteristic analysis (i.e., the analysis
of characteristics, shocks, and sonic curves or the law of causality). In section 2, we
formulate the problem under study and discuss an algorithm for the construction of
characteristics in the numerical solutions. The existence of shock waves is established
by multiple criteria used in our numerical studies to indicate the presence of shock
waves. Specifically, we consider

1. plots of density and pressure on a curve through the shocks;
2. nontangential termination of characteristics at the shock front;
3. convergence of characteristics of the same family at the local shock front;
4. pattern recognition software for automated shock wave detection;
5. stability of the above criteria under mesh refinement.
In section 3, we summarize numerical results for several cases. In section 4, we

study the 90◦ case, and in section 5, we consider the oblique case and numerically
prove the convergence of very weak shock. In section 6, we present related evidence
for shock formation in the case of two backward and two forward rarefaction waves.
In section 7, we discuss the physical mechanism that leads to the shock formation
in the present problem and summarize results testing the stability of the numerical
solutions.
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2. The problem formulation and its characteristic curves. We consider
the Euler equations

(2.1)
ρt + ∇ · (ρU) = 0,
(ρU)t + ∇ · (ρU ⊗ U) + ∇p = 0,
(ρE)t + ∇ · ((ρE + p)U) = 0

for the variables (ρ, U,E), where ρ is the density, U = (u, v) is the velocity, p is the
pressure, E = 1

2 |U |2 + e is the specific total energy, and e is the specific internal
energy. We consider a polytropic gas with pressure p defined by the equation

e =
p

(γ − 1)ρ
.

For more details, see the books by Li, Zhang, and Yang [13] or Zheng [21].
We solve the full compressible flow equations (2.1) in the original x, y, t coordi-

nates. Our numerical studies are based on (2.1), using the MUSCL algorithm [5] as
implemented in the FronTier code. This code uses a five point vectorized split MUSCL
scheme [5] as a shock capturing algorithm. It is the second order accurate for smooth
solutions and the first order accurate near shock waves. Both the MUSCL algorithm
and FronTier code have been extensively verified for shock capturing simulations, for
example in [5] and [6]. Shock jump conditions for (2.1) can be found in standard
textbooks, for example in [3]. The numerical verification of these jump conditions is
addressed in section 5.

Because (2.1) and the initial data are both self-similar, the solution is also, and
we introduce the self-similar coordinate system (ξ, η) = (x−x0

t , y−y0t ) centered at the
point (x0, y0). In these coordinates, the system (2.1) takes the form

(2.2)

−ξρξ − ηρη + (ρu)ξ + (ρv)η = 0,
−ξ(ρu)ξ − η(ρu)η + (ρu2 + p)ξ + (ρuv)η = 0,
−ξ(ρv)ξ − η(ρv)η + (ρv2 + p)η + (ρuv)ξ = 0,
−ξ(ρE)ξ − η(ρE)η + (ρu(E + p

ρ ))ξ + (ρv(E + p
ρ ))η = 0.

Let η = η(ξ) be a smooth discontinuity with limit states (ρ1, u1, v1, p1) and (ρ0, u0, v0, p0)
on both sides. The Rankine–Hugoniot relation for (2.2) is derived in [13, pp. 218–
219]. By definition, Riemann initial data is constant along radial directions from an
origin (x0, y0) and piecewise constant as a function of angle. The initial data for (2.1)
become boundary data at infinity for (2.2). We use the self-similar formulation (2.2)
for the analysis of numerical solutions of (2.1). We specialize to a four-rarefaction
wave Riemann problem.

As a special case we consider first the case of four rectangularly oriented waves,
representing boundary conditions at infinity for the self-similar Euler equations (2.2)
satisfying conditions of four forward rarefaction waves, denoted configuration A in
[13, p. 237]. We next consider the case of four constant states joined by forward
rarefaction waves that form angles different from 90◦, as in Figure 1. Such a problem
is called an oblique four-wave Riemann problem, in contrast to the rectangular four-
wave Riemann problem discussed in [20]. Our initial data is located as indicated in
Figure 1 in the initial plane:

(2.3) (ρ, u, v, p) = (ρi, ui, vi, pi), i = 1, 2, 3, 4.

Let Rij denote the forward rarefaction wave, which is a 1D rarefaction wave, con-
necting contiguously constant states (ρi, ui, vi, pi) and (ρj , uj , vj , pj). R12 is parallel
to the positive y-axis, and R41 is parallel to the positive x-axis as before, but the
angle between R23 and the negative x-axis is allowed to be a variable θ in (0, π/4). To
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Fig. 1. The initial data for an oblique four-wave Riemann problem.

simplify the analysis, we impose symmetry about the line x = y. We choose the angle
between R34 and the negative y-axis to be the same θ, so that the angle between R23

and R34 is equal to π
2 − 2θ. Let w represent the velocity component that is perpen-

dicular to the line of discontinuity, and w′ represent the velocity component parallel
to it. At an interface (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}, a forward planar rarefaction
wave Rij is described by the formula in [11],

(2.4) wi − wj =
2γ

1
2

γ − 1

((
pi
ρi

) 1
2

−
(
pj
ρj

) 1
2
)
, w′

i = w′
j ,

pi
pj

=
(
ρi
ρj

)γ
.

For each Rij , the compatibility conditions derived from (2.4), using the normal and
tangential components of ui, vj , i, j = 1, 2, 3, 4, along Rij , are

(2.5) (ρ(γ−1)/2
3 −ρ(γ−1)/2

4 ) cos θ−(ρ(γ−1)/2
2 −ρ(γ−1)/2

3 ) sin θ+(ρ(γ−1)/2
1 −ρ(γ−1)/2

2 ) = 0;

(2.6) (ρ(γ−1)/2
2 −ρ(γ−1)/2

3 ) cos θ−(ρ(γ−1)/2
3 −ρ(γ−1)/2

4 ) sin θ−(ρ(γ−1)/2
1 −ρ(γ−1)/2

4 ) = 0.

We limit ourselves to the initially symmetric case ρ2 = ρ4 and u1 = v1. Then the
two compatibility conditions merge to yield

(2.7) ρ
(γ−1)/2
2 (cos θ + sin θ + 1) = ρ

(γ−1)/2
1 + ρ

(γ−1)/2
3 (sin θ + cos θ).

For any fixed ρ1, p1, u1, v1, ρ3, and θ, we find ρ2 from the compatibility condition (2.7)
and other initial values from (2.4) and symmetry. We consider a fixed polytropic index
γ = 1.4. The computational domain is a square [0, 1] × [0, 1]. We perform numerical
experiments with varying Riemann initial data. We draw both families of (pseudo)
characteristic curves corresponding to λ± in [13],

(2.8)
dη

dξ
= λ±(ξ, η) ≡ (u− ξ)(v − η) ± c[(u− ξ)2 + (v − η)2 − c2]1/2

(u− ξ)2 − c2
,

where c is the sonic speed, ξ = x−x0
T0

, η = y−y0
T0

, T0 is fixed, and x0 = y0 = 0.5 is
the center of the computational domain. By the definition in [13], the pseudo-Mach
number is

(2.9) M =
[(u − ξ)2 + (v − η)2]1/2

c
.
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The M = 1 contour, as understood here, indicates both sonic points and shock
points, where M jumps from a value less than 1 to a value greater than 1. The sonic
curve is thus a subset of the M = 1 contour line. We notice λ+ = λ− on the sonic
curve.

We discuss the algorithm for characteristics. The characteristic curves starting
at the top boundary of the rectangular domain belong to the family λ+, while the
characteristic curves from the right boundary of the rectangular domain belong to
λ−. To draw the λ± characteristics, we assume that the numerical solution of the
Euler equations is defined on a rectangular grid. We extend this solution to the entire
computational domain for a discrete time t = T0, using linear interpolation. Thus λ±
become globally defined functions. Starting at the the right boundary, we solve for
λ− to obtain the pseudocharacteristic curves, using the Runge–Kutta scheme. The
solution for λ− is continued up to the sonic curve. For the reflected characteristics
λ±(ξ, η) at the sonic curve, we repeat the above processes. Since these characteristics
are reflections of the previously constructed family, we use bilinear interpolation to
obtain initial states at the point on the M = 1 contour where an incoming character-
istic has terminated. We solved all singularities in the characteristic equations (2.8)
numerically. Since the main point of this paper is to establish the existence of a shock
wave, we list here criteria that we use for this purpose.

The most sensitive of our measures for existence of a shock wave is the fact that
a shock will appear when the two families of λ± characteristics are not parallel at
the M = 1 contour line. The existence of a point on the M = 1 contour line with
λ+ not parallel to λ− contradicts (2.8) if the point is a sonic point, i.e., a point at
which the solution is continuous. We thus plot λ− − λ+ versus the angle around the
M = 1 contour, where the shock is identified as the locus of points on the contour with
λ− − λ+ > 0. The end points of the shock are identified relative to figures showing
characteristics.

A second test for existence of a shock is to show convergence of nearby charac-
teristics of a common family, so that they meet on the M = 1 contour.

As a third test, we plot ρ versus distance along a streamline. By definition in
[13], pseudostream curves satisfy dη

dξ = λ0 = v−η
u−ξ . The solution to (2.1) is called a

compression wave if (1, u, v) · (ρt, ρx, ρy) > 0; otherwise it is called an expansion wave.
We notice the fact

(2.10) (u− ξ, v − η) · (∂ξ, ∂η) = t(1, u, v) · (∂t, ∂x, ∂y) = t
d

dt
,

where d
dt is evaluated along the trajectories of gas particles in (t, x, y)-space. All

pseudostream curves point to the center of the subsonic domain. Moreover, we have

dρ(ξ, η)
dt

=
∂ρ

∂ξ
· ∂ξ
∂t

+
∂ρ

∂η
· ∂η
∂t

=
∂ρ

∂ξ
·
(
∂ρ

∂x

dx

dt
− x

t2

)
+
∂ρ

∂η
·
(
∂ρ

∂y

dy

dt
− y

t2

)

=
∂ρ

∂ξ
·
(
u

t
− ξ

t

)
+
∂ρ

∂η
·
(v
t
− η

t

)

=
1
t

(u− ξ, v − η) · (ρξ, ρη)

=
1
t

dρ(ξ, η)
ds

,
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Table 1

Table of simulation cases studied in this paper.

Three cases 90◦ Weakly oblique rarefaction Oblique rarefaction
Initial conditions ρ1 = 1.0, p1 = 0.444, u1 = v1 = 0.0, ρ3 = 0.15
θ values θ = 0◦ 6◦ ≤ θ ≤ 8◦ θ > 8◦

Shock case Weak shock Weak shock Shock
Mesh size Δx = Δy 1

3200
, 1
1600

1
5600

, 1
3200

, 1
1600

, 1
800

1
800

where in the last term, dρ(ξ,η)ds is the directional derivative of the density ρ along the
pseudostream curve. According to (2.10), a positive value for this derivative indicates
a compression or a shock, and a jump indicates a shock.

We also plot pressure along a ray passing through the M = 1 contour. A sharp
jump in pressure is a sign of a possible shock.

Finally, we use the wave detection filter, or automated shock detection capability
in the FronTier code, to locate shock waves in [19]. This software examines numerical
discontinuities in the solutions and determines whether they correspond to a particular
type of traveling wave. Such discontinuities are organized into curves, which then
correspond to the location of a shock wave. The shock jump conditions are included
in the Rankine–Hugoniot relation. These jump conditions are verified to confirm that
the shock waves detected by the wave filter indeed satisfy the required conditions.
Numerical solutions show stability of the above shock criteria under mesh refinement.

Our major point is the consistency of these tests, each reaching the same conclu-
sion: shocks exist in the interior nonconstant domain in the 2D rarefaction Riemann
problems studied here. We find two distinct mechanisms for shock formation. For the
90◦ case, the interaction of two rarefaction waves of the same family and parallel at
infinity leads to a pressure drop larger than that due to either taken singly. Thus the
interaction seems to “overrarefy,” leading to low pressure states incompatible with
pressures given at infinity due to the same rarefactions considered individually. A
shock wave results from the joining of these high and lower pressure regions. It is
the interaction of rarefaction R41, R23, R34, and R12, including the interaction of
characteristics from constant states adjacent to them, which produce this result. A
second mechanism arises in the case of a (sufficiently) large oblique angle between
the rarefaction waves. In this case, the rarefactions R41 and R12 are reflected from
the sonic curve. The sonic curve has extended ears to facilitate this reflection. The
reflected wave becomes a compression and breaks into a shock at the M = 1 contour,
at points that would otherwise be sonic but actually lie on a shock front.

3. Numerical results. We summarize our further refined numerical results in
this section. We fix the computational time T0 = 0.375 and let the initial values be
p1, ρ1, u1 = v1 = 0, ρ3 and determine all initial values with different θ. We list the
cases to be considered in Table 1. We denote by Ci(ui, vi, ci), i = 1, 2, 3, 4, the sonic
circles of constant states i, i = 1, 2, 3, 4, where ui, vi, i = 1, 2, 3, 4, are initial velocities
and ci =

(
γpi

ρi

) 1
2 , i = 1, 2, 3, 4, are initial sound speeds.

A. Weak shock case for θ = 0 (90◦ case). The 90◦ case is shown in Figure 2
with results consistent with on both coarse and refined grids. The λ−-characteristic
lying at the upper boundary of R41 coming from infinity penetrates the rarefaction
wave R12(CQ) and continues through the constant state 2 (QR) and the rarefaction
wave R23(RF ), reaching the constant state 3, and meets the sonic circle C3(u3, v3, c3)
tangentially at A. See the strict proof in [13, p. 238]. The bottom boundary of
R23 (FT ) hits the M = 1 contour at T . The top boundary of R23(RV ) hits the
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Fig. 2. Case A: Some pseudocharacteristic curves (light) and Mach number contours (bold)
marked with M = 1.0 and M = 0.8 at θ = 0.

M = 1 contour at X , and a weak shock appears on the larger arc AE (toward the
first quadrant), where A,E are symmetric points relative to reflection about the axis
ξ = η. The smaller arc AE (toward the third quadrant) is an arc of the sonic circle
C3. Numerical evidence supports weak shocks on both sides of the sonic circle. The
shocks and the numerical evidence for them are stronger on the side nearer the origin.
We will discuss these points in detail later.

B. Weak shock case: numerical solutions with θ ∈ [6◦, 8◦]. We obtain weak shock
cases for θ ∈ [6◦, 8◦]. See Figures 3 and 17 for the cases θ = 6.5◦ and θ = 8◦. In Figure
3, both the upper boundaries FS of R41 and GS of R23 are parallel, tangential to the
sonic curve at S. SA is tangential to the sonic circle C3 at A, which is a reflection of
the λ+-characteristic curve GS. SK, which is the reflection of the λ−-characteristic
curve FS, terminates on a shock. The weak shock appears on the arc AT

⋃
BR

⋃
UE,

where A,E are symmetric points regarding the axis ξ = η, and the smaller arc AE is
the arc of sonic circle C3.

C. Strong shock case: numerical solutions with θ > 8◦. We increase the value
of θ, and we observe a shock wave which is sharply defined and with little numerical
oscillation. The shock wave lies in the interior, nonconstant domain between R23 and
R34 and constant states adjacent to them whose structure is similar to case B. See
Figure 4. Furthermore, we find that the strength of the shock wave becomes stronger
as we increase θ or decrease ρ3 while keeping the other parameters constant. The
numerical oscillations between R23 and R34 attenuate or even vanish as the strength
of the shock wave intensifies. In summary, numerical solutions show the existence of
shock waves in the interaction of four rarefaction waves and constant states.

4. Shock formation in the 90◦ case. A constructive analysis of some of the
major ideas of this paper is found in [7], where we study the Riemann problem for
the Hamilton–Jacobi equations as a simpler problem, developing a number of ideas
needed here. These equations can be regarded as a generalization of Burgers’ equation
to high dimensions. The analysis there follows a constructive point of view and thus



SHOCK FORMATION IN A RAREFACTION RIEMANN PROBLEM 727

Fig. 3. Case B: Some pseudocharacteristic curves (light) with θ = 6.5◦ and Mach number
contours (bold) marked with M = 1.0 and M = 0.8.

Fig. 4. Case C: Some pseudocharacteristic curves (bold) with θ = 22.5◦ and Mach number
contours (light) with the sonic curve labeled M = 1.0.

emphasizes ideas such as generalized characteristics, the propagation of the Riemann
solution inward from data located at infinity, and a sonic curve as discussed in the
present paper. We discuss in this section the shock formation in the 90◦ case. We
analyze the mechanism for shock formation caused by the interaction of rarefaction
wavesR12, R23, R34, and R41, including the interaction of R41 and characteristics from
constant state 3, 4, 5 adjacent to them. We use numerical methods and generalized
characteristic analysis.
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Fig. 5. The characteristics λ+ = dη
dξ

along SP and λ− = dη
dξ

along WP meet at P . Note that

λ+ �= λ− at the common point P .

Fig. 6. Enlarged view from Figure 2 in the 90◦ case shows the nonparallel termination of
characteristics on the M = 1.0 contour (outer curved arc) and shock existence at the point P . The
lower curved arc is the M = 0.8 contour.

4.1. A numerical study of the 90◦ case. In Figure 2, the characteristic WP
along the bottom boundary of R41 meets the characteristics SP from constant state
3 at P . The intersection point P is located on the M = 1 contour. If P were a sonic
point, then we would have λ+(P ) = λ−(P ). However, we show numerically in Figures
5 and 6 that P cannot be a sonic point because the characteristics are not parallel
at P . The numerical results in Figure 5 show that at the common point P of the
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Fig. 7. Pressure vs. distance along OP for the 90◦ case. The downward jump at the point P
is a shock front. The crosses mark cell center locations near the shock front.

two characteristic curves, λ+(P ) < 0.4, λ−(P ) > 0.5, and λ+(P ) �= λ−(P ), indicating
that P is not sonic. Thus the termination of the λ+ characteristic and the beginning
of the λ− characteristic must lie on a shock curve. We have two characteristics N ′P0

and L′P0 meet at P0 on ξ = η, but they are not parallel. Similarly, G′P2 and I ′P2

meet at P2 nontangentially, H ′P1 and K ′P1 meet at P1 nontangentially. P0, P1, P2

are located on a shock front. An enlarged view of the nontangential and nonparallel
termination of the characteristic curves at the shock front is shown in Figure 6. We
plot pressure versus the distance R = (x2 + y2)

1
2 along the straight line OP in Figure

7, where O is the center of subsonic domain in [0, 1] × [0, 1]. The downward jump in
the pressure is a shock front, and P is shown in Figure 2. The curve indicates that
values at individual mesh points mean the shock. The crosses marked along this plot
indicate pressure values at individual mesh points along the curve, in a neighborhood
of the shock. They serve to show that the shock front jump is about one mesh block
wide, as is typical for a numerically captured shock. In Figure 8, we represent shock
strength by the difference in characteristics λ−(X)− λ+(X) versus the angle plotted
along the M = 1 contour to show shock existence. The angle between the ray from
O and the positive x-axis is denoted by φ.

4.2. Generalized characteristic analysis in the 90◦ case. Let us recall [20].
We use the method of generalized characteristic analysis to indicate the plausible
structure of the solution in the 90◦ case. The values imposed at infinity are given by
(2.1) for the self-similar system (2.2). We first construct the solution in the far field
(neighborhood of the infinity), which is comprised of four forward planar rarefaction
waves R12, R23, R34, and R41, in addition to the constant states (ρi, ui, vi, pi), i =
1, 2, 3, 4. We extend the four forward rarefaction waves inward from the far field
till they interact, as denoted by regions in Figure 2. We find the boundary of the
interaction domain, which consists of CQRFSAEBWC in Figure 2, where the arc
AE is an arc of sonic circle C3 andK is the intersection point of the bottom boundaries
of R23 and R41.
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Fig. 8. λ− − λ+ vs. the angle φ along the M = 1 contour in the 90◦ case. This plot shows the
shock existence; the endpoints E and A of the shock wave are as shown in Figure 2.

Then we solve the first Goursat problem with characteristic segments CQ and
CW , employing the result in [12, 15], and obtain a continuous (pseudosupersonic)
solution inside the domain enclosed by the characteristic segments CQ, QD, DW ,
and WC. Second, we solve the Goursat problem with characteristic segments QR
and QD. The solutions are still continuous in the domain QRLD. We continue by
solving the third Gousat problem with supportDL and DN . In [14], they are straight
support. Then we get the continuous solutions in the domain DLVN . The wave R41

penetrates R12 and then R23 to emerge as a simple wave RFKL by [14], which is
adjacent to the constant state 2 and constant state 5 and located in the supersonic
domain without shock wave.

We prove rigorously that two subcases possibly happen: either P3 is greater than
P5 or P5 is greater than P3 in [15], where P3 and P5 are pressures in constant state
3 and 5. This inverted pressure profile P3 > P5 is surprising, because one would
expect that pressure would be expansive in the interaction of four forward rarefaction
waves. However, the inverted pressure profile is the direct result of the interaction
of two waves R41 and R12. Why is the pressure drop in the interaction region larger
than the combined drop across each of the individual waves? Intuitively or based on
physics, it is not easy to see whether the pressure would go up along a characteristic
curve to end on a sonic point, or go down to zero to end on a vacuum. In [15], it
has been proven rigorously that the pressure in the interaction region approaches zero
along any characteristics, which form a hyperbolic domain determined completely by
the data on the characteristic boundaries. Once the participating rarefaction waves
are relatively large, the binary interaction will produce a vacuum. The pressure
satisfies P1 > P2 = P4 > P3 and continues to drop in the simple wave interaction
zone RFKL, which is proved in [13], to result in an even lower pressure value at
K, where K is shown in Figures 2 and 6. From the numerical results, we note that
the sonic boundary AP is a free boundary, as the hyperbolic domain of determinacy
of the Goursat problem AFT does not include AP ; see Figure 6. Thus the elliptic
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Fig. 9. Density contours (light), two Mach contours (light) with M = 1.0 and M = 0.8 and
pseudostream curve I (bold), which cuts through a shock wave in a neighborhood of the M = 1
contour. Arrows indicate the direction of particle motion along the stream line.

Fig. 10. Plot of ρ(s) vs. s; the position of a shock wave is visible as a small increasing bump
with the distance along the pseudostream curve I in Figure 9.

region influences the solution there. Numerical results show that a global minimum
for the pressure in the whole space [0, 1] × [0, 1] occurs in the domain KPT . The
high pressure in the subsonic domain, adjacent to the low pressure in the neighboring
domain KPT and FAT , forces the shock wave to occur.

Figures 9 and 10 show the variation of density ρ along the pseudostream curve I,
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Fig. 11. Plots of λ+ = dη
dξ

along QP and λ− = dη
dξ

along PQ′ show the shock existence at P ,

since λ+(P ) �= λ−(P ). The plots for two computations, showing one level of mesh refinement, are
indistinguishable.

and the shock wave caused by compression waves with high pressure in the subsonic
domain pushing the expansion wave in the supersonic domain. In Figure 10, s denotes
the distance along the pseudostream curve.

5. Shock formation in the oblique rarefaction case.

5.1. Numerical results. In the oblique wave interaction case at θ = 6.5◦, two
reflected characteristic curves QP,Q′P in Figure 11 meet at P |X=0.42 on the 45◦ diag-
onal line. The intersection point P is located on the M = 1 contour. If P were a sonic
point, then we would have λ+(P ) = λ−(P ). However, we show numerically in Figure
11 that P cannot be a sonic point because the characteristics are not parallel at P . At
the common point P of the two plots, λ+(P ) < −1, and λ−(P ) > −1, λ+(P ) �= λ−(P ),
indicating that P is not sonic. Thus the termination of the λ+ characteristics and the
beginning of the λ− characteristics must be on shock. The plots for two computations,
showing the level of mesh refinement, are indistinguishable. In Figure 12, we show
shock strength by the difference λ−(X) − λ+(X) in the direction of characteristics
versus the angle around the M = 1 contour. See Figure 3 for locations of the points
A, T,B,R,U,E. The plot demonstrates shock existence. The angle between the ray
from O (the center of subsonic domain) and the positive x-axis is denoted by φ. We
show further details of the nontangential termination of the characteristic curves at
the shock front in Figure 13. The characteristic curves terminate nontangentially and
are not parallel to each other. We find numerically that the reflected simple wave is
a compressive wave and forms a weak shock. See Figure 14, where the characteris-
tic distance denotes the “shock distance.” The separation distance, i.e., the normal
separation between two neighboring characteristics, is plotted versus the length along
the reflected characteristics. The plot also shows the occurrence of the shock.

We plot pressure p against the distance from the origin R = (x2 + y2)
1
2 along the

45◦ diagonal line in Figures 15 and 16. Under refinement of the mesh, the oscillations
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Fig. 12. The difference λ−(X) − λ+(X) vs. angle along the M = 1 contour at θ = 6.5◦. This
plot shows existence of shocks both on the inward and the reverse sides of the M = 1 contour, in
the second and fourth quadrants.

Fig. 13. Enlarged view of Figure 3 with details near the point P on the shock front at 6.5◦. Bold
curves are λ± characteristics; light curves are Mach number contours. Note that the characteristics
terminate nontangentially on the shock.

get weaker and the shock becomes sharper. The circles and crosses are located at
mesh block centers, for cells within the shock profile. The trend of convergence of
shocks in each plot in Figure 15 is clear and sufficient: the shock wave here is very
weak, but its strength is not decreasing as the mesh is refined; the shock will be stable
even with extremely fine meshes.
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Fig. 14. Plot of separation between neighboring characteristics vs. distance along characteristics
with θ = 6.5◦ in case B. This plot shows shock formation.
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Fig. 15. Left: pressure vs. distance along a 45◦ diagonal line at 6◦. Right: pressure vs. distance
along a 45◦ diagonal line at θ = 6.5◦. The x and o indicate cell center solution values moving through
the shock for the region of rapid solution transition.

Fig. 16. Pressure vs. distance along a 45◦ diagonal line. Left: θ = 7◦. Right: θ = 22.5◦.
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Fig. 17. Comparison of wave filter shock location A,B and pseudo-Mach number contour plots
at θ = 8◦ with an 800 × 800 mesh.

We use the wave filter embedded in the FronTier code. The wave filter is an au-
tomated pattern recognition algorithm which locates shock waves, rarefaction waves,
and contact discontinuities in numerical solutions of the Euler equations for com-
pressible fluids on the basis of detecting a local jump in the solution which satisfies
the Rankine–Hugoniot relations. The shock wave as determined by this wave filter
program is shown in Figure 17 by the curve AB. Note that the labeled Mach number
contours M = 0.98 and M = 1.02 in Figure 17 and M = 0.96 and M = 1.02 in Figure
18 coincide on the curve AB, indicating that they are shock fronts. These curves
match the pseudo-Mach number contours well.

5.2. Generalized characteristic analysis. We use the method of generalized
characteristic analysis to indicate the plausible structure of the solution to our problem
for θ > 8◦ based on numerical results in section 5.1. We retain the notation from [20].
We discuss causal relationships and decompose the boundary value problem into three
subproblems based on the features of the characteristics. The analysis consists of the
following steps. The first is a classical rarefaction Goursat problem which has been
solved analytically in [12, 15]. The second is a degenerate Goursat problem, whose
solution is proved to be a simple wave in [14]. The last is a pseudotransonic boundary
value problem with free boundaries consisting of interior sonic curves and shocks. The
mathematical proof for the structure of this last subproblem is open. The problem
involves collisions of rarefaction waves with sonic curves which produce compressive
waves upon reflection, which may then form shocks. We outline the boundary of the
domain of interaction for the initial four rarefaction waves in both cases above.

Step 5.2.1. The constant states and simple waves in the far field. As in [20], we
transform problem (2.1) and (2.3) into a boundary value problem for the self-similar
system (2.2) with values imposed at infinity,

(5.1) lim
ξ2+η2→∞

(ρ, u, v, p)(ξ, η) = (ρi, ui, vi, pi), i = 1, 2, 3, 4,
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Fig. 18. Comparison of wave filter shock location A,B and pseudo-Mach number contour plots
at θ = 22.5◦.

in which the limiting direction is consistent with the data sector in (2.3). We first
construct the solution in the far field (neighborhood of the infinity), which is comprised
of four forward planar rarefaction waves R12, R23, R34, and R41, besides the constant
states (ρi, ui, vi, pi), i = 1, 2, 3, 4. We extend the four forward rarefaction waves inward
from the far field till they interact, denoted by regions as in Figure 19. We find the
boundary of the interaction domain, as in [20], which consists of the characteristic
segments PQ, QR, ST , TU , U ′T ′, T ′S′, R′Q′, Q′P and arcs of sonic circles RS, UU ′,
S′R′. See Figure 19.

Step 5.2.2. Simple wave solutions after interaction of planar rarefaction waves.
The two rarefaction waves R12 and R41 start to interact at P . We use the result
in [12, 15] to solve the Goursat problem with the boundary values supported on
the characteristic curves PQ and PQ′, and obtain a continuous (pseudosupersonic)
solution inside the domain enclosed by the characteristic segments PQ, QP ′, P ′Q′,
and Q′P .

Then we proceed to solve the Goursat problem with the boundary data supported
on QR and QP ′. Since the state (ρ2, u2, v2, p2) is constant, we use the result in [14,
Theorem 7]: Adjacent to a constant state is a simple wave in which (ρ, u, v, p) are
constant along a family of wave characteristics which are thus straight. This fact
indicates that the solution is a simple wave, denoted by R25, in the angular domain
between QR and QP ′. We note that the simple wave R25 just covers the region of the
curvilinear quadrilateral QRWP ′ from the theory of characteristics, where RW is the
λ+-characteristic curve from the point R and can be regarded as the reflection of the
λ−-characteristic curve at that point. Also note that the point R on the sonic curve C2

is degenerate. It has the following interesting properties: It is of Tricomi type from the
side of R25, but of Keldysh type from the side of the constant state (ρ2, u2, v2, p2).
A point on a sonic curve is said to have a Tricomi type if the characteristics are
nontangential to the sonic curve. It is called Keldysh type if the characteristics are
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Fig. 19. Generalized characteristic analysis for the case of four forward rarefactions in a 2D
Riemann problem.

tangential to the sonic curve.
We continue to solve the Goursat problem with the support of two straight

characteristic curves P ′W and P ′W ′. Obviously, the solution is a constant state
(ρ5, u5, v5, p5) with boundary P ′WXW ′. The point X must be outside the sonic
circle of the state (ρ5, u5, v5, p5).

Step 5.2.3. Plausible solution structure in intersecting supersonic regions with the
transonic boundary. After the above three Goursat problems, we reach the boundary
RWXW ′R′.

Now we consider the problem of the pseudotransonic flow with the boundary
RSTUU ′T ′S′R′W ′XWR. It is reasonable to assume a priori that the family of the
λ−-characteristic curves of the simple wave R25 extends to the sonic curve RV and
reflect off it as a family of λ+-characteristic curves. Here the extension of R25 is not
a simple wave because the solution must vary along both λ− and λ+ characteristics.
The solution is jointly determined by the subsonic domain and the supersonic domain.
These reflected λ+-characteristic curves reach a curved boundary WV , which forms
another degenerate Goursat problem with the support of a straight λ+-characteristic
line WXand a curved λ−-characteristic line WV . This degenerate Goursat problem
has a simple wave solution whose data are on the left boundary QP ′ since adjacent
to the WX side is the constant state (ρ5, u5, v5, p5). The numerical results indicate
that this reflected simple wave is a compressive wave and forms a shock with starting
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Fig. 20. Plot of separation distance between neighboring characteristics starting on the sonic
curve vs. distance along characteristics with θ = 22.5◦.

point V . See Figure 20, where characteristic distance denotes the shock distance,
i.e., the length of the reflected characteristics, and separation distance is the normal
separation between two neighboring characteristics. This plot shows the occurrence
of the shock. The shock borders the constant domain (ρ5, u5, v5, p5). By symmetry,
this structure is repeated across the symmetric axis with starting point V ′ of another
shock in the primed variables W ′V ′X .

We analyze the numerical results in Figures 21 and 22, which show the variation
of density ρ along pseudostream curves I and II, presenting regions corresponding
to expansion and compression waves. The arrows on the stream curves indicate the
direction of particle motions. In Figure 22, the distance s denotes the distance along
pseudostream curves, standing at the data beginning and ending on the pseudostream
curves I and II.

The structure of the solution for the reflected characteristic curves R23 in Figure
19 is clarified, where the family of λ+-characteristic curves coming from R23 collide
with a Tricomi-type pseudosonic curve SZ and are reflected to form a weak shock
wave ZU , which resembles the 90◦ case.

6. Shock formation for two backward and two forward rarefaction waves.
For the case of two backward and two forward rarefaction waves, there are two sym-
metric transonic shocks in the solution, as shown in [1, 2, 17, 11, 13]; see Figure 23.
The mechanism of shock formation is the same as was discussed for the case of four
forward rarefaction waves in Figure 19, because the part of Figure 23 upper-right to
ξ+ η = u2 + v2 has the same structure as that of the corresponding part of Figure 19.

7. Conclusion. We discuss numerical simulations showing two distinct mecha-
nisms for shock formation and supporting theoretical conjectures based on generalized
characteristic analysis regarding mathematical mechanism in the 90◦ case and the
oblique rarefaction case. We also discover that the same mathematical mechanism as
in the oblique rarefaction case occurs for the shock formation for two forward and two
backward rarefaction waves.
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Fig. 21. Density contours (light); two Mach contours (light) with M = 1, M = 0.92; and two
pseudostream curves I, II (bold), which cut through the weak shock waves and shock waves in the
neighborhood of the M = 1 contour shown at θ = 22.5◦.

Fig. 22. The increasing positions of (weak shock wave and shock wave) in the ρ(s) vs. s plots
are visible as bumps along two pseudostream curves I (above) and II (below) in Figure 21.



740 GLIMM, JI, LI, LI, ZHANG, ZHANG, AND ZHENG

Fig. 23. The case of two forward and two backward rarefactions oriented at 90◦ with p1 =
0.444, ρ1 = 1.0, u1 = v1 = 0.00, ρ2 = 0.5197, T = 0.25; characteristics (bold) and contour curves of
pseudo-Mach number (light) are plotted.

For the 90◦ case, the interaction of two rarefaction waves of the same family and
parallel at infinity leads to a pressure drop larger than that due to enter taken singly.
Thus the interaction seems to “overrarefy,” leading to low pressure states incompatible
with pressures given at infinity due to the same rarefactions considered individually.
A shock wave results from the joining of these high and lower pressure regions. It is
the interaction of rarefaction R41, R23, R34, and R12, including the interaction of R41

and characteristics from constant state 3 below R23, which produces this result.
The shock formation for the oblique case has a possible physical mechanism sim-

ilar to one found in stationary flow, which is illustrated schematically in Figure 24,
associated with the numerical result in Figure 4. Basically, a rarefaction reflection
reflects at a sonic boundary; the reflected wave is a compression, which may in time
break and become a shock. For the steady transonic small disturbance equation,
shock reflection on a sonic curve is illustrated in Cole and Cook [4]; see the shock
formation over an airfoil in Figure 5.4.13, p. 314 there. The structure of shock for-
mation from the reflection of rarefaction waves on a sonic curve was suggested by
Guderly [9]; for the 2D steady irrotational isentropic flow, they put forward a con-
cept of shock formation from reflection of characteristics on a sonic curve. When a
supersonic bubble appears on the top of an airfoil in an ambient subsonic domain, a
family of characteristics are generated in the bubble from the surface of the airfoil,
and they hit the rear portion of the sonic curve and are reflected downstream to form
a compressive wave, which then forms a shock wave within the bubble. The subsonic
region plays the role of a permeable obstacle which declines streamlines towards the
airfoil and causes compressive waves. This is similar to the way a concave wall does
in the classical problem of supersonic flow over a smooth rigid wall. We point out
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Fig. 24. Shock formation from the reflection of rarefaction wave on a sonic curve.

that the bump on the wall of the flow channel causes the shock formation naturally in
Cole and Cook [4], where it has an important application in the study of a flow over
an airplane wing. Furthermore, this formation of shocks seems to be the fundamental
mechanism for the Guderly reflection pattern in Tesdall and Hunter [18].

For waves interacting with a sufficiently large oblique angle in the third quadrant,
the sonic curve has an exaggerated nonconvex shape (rabbit ears). The curve extends
into the rarefaction waves and interacts with them. The rarefactions are reflected
as compression waves along these rabbit ears, in the sense that along this part of
the sonic curve there are impinging λ+ and λ− characteristics. The characteristics
coming from infinity are part of the rarefaction wave, while the reflected ones, as
stated, are compressions. On the side facing the first quadrant, these compressions
have sufficient travel distance to break and form a shock wave, centered at the 45◦

line, where it crosses the M = 1 contour. On the side facing the third quadrant,
due to the angle between the waves at infinity, there is a very weak shock on this
side of the M = 1 contour, which can be analogously interpreted in Figure 11 of [3,
p. 390], where stationary flow is in nozzles and jets. Very likely these characteristics
would have an envelope if they were not intercepted by a shock front. To prevent the
envelope singularity, an “intercepting” shock is therefore necessary. The reason for
the reflected wave to be a compression is illustrated by similarity to a related problem
in aerodynamics, as discussed in the literature and explained in [4] and [9].

The Riemann problem is typically unstable in that it is a locus of bifurcation
for the Riemann data. Even in one dimension, the isolated jump discontinuity holds
only at time zero and (for gas dynamics) the solution at all positive times has three
traveling waves.

However, it is stable in the sense of preservation of structure upon variation
of initial (Riemann) conditions. In this sense, our analysis deals with representative
variation of the initial conditions but does not explore the complete 7D space of nearby
initial conditions numerically. This numerical stability analysis was conducted for the
full Euler equations (2.1) rather than for the self-similar equations (2.2). No non–
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self-similar solutions were observed in the variations of initial data. We have studied
systematically a variation of the angle between two of the four initial rarefaction
waves. As this angle is modified sufficiently, we find a jump to a new solution branch,
with a distinct mechanism (in a detailed sense) for the shock formation. Although it is
conceptually possible to allow an arbitrary number of waves, at arbitrary angles in the
2D Riemann problem formulation, the case of four waves is the case most commonly
considered.

Acknowledgment. Discussions with John Hunter and Wancheng Sheng were
very helpful.
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FILTERS. THE NUMBER OF CHANNELS THAT CAN CLOG IN A
NETWORK∗
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Abstract. We model filters as two-dimensional networks of channels. As a suspension (fluid with
particles) flows through the filter, particles clog channels. We assume that there is no flow through
clogged channels. In this paper, we compute a sharp upper bound on the number of channels that
can clog before fluid can no longer flow through the filter.
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1. Introduction. A porous medium is a material that contains relatively small
spaces filled with fluid embedded in a solid matrix. These fluid-filled spaces are called
pores. A porous material is said to be permeable if fluid can flow through its pores
from one end to an opposite end of the material. Filters are examples of porous
materials.

Fluid suspensions (or suspensions, for short) are fluids with small solid particles
in them. According to their size and properties, these particles are called fines or
colloids. As a suspension flows through a permeable porous material, some fines are
trapped within the material. In fact, the function of the filters we consider in this
paper is to clean suspensions by capturing most particles bigger than a certain size.

The removal of particles from fluid suspensions is of importance in a wide range
of industrial and technological applications such as waste water treatment [18] and
other filtration processes [4, 31]. Our studies are motivated by the filters used in
the process known as deep bed filtration. As a suspension flows through a filter
composed of granular or fibrous materials, fines or colloidal particles penetrate the
filter and deposit at various depths [32]. As a result, the fluid suspension is cleaner
when it exits the filter (i.e., it exits the filter with many fewer solid particles than it
originally had when it entered the filter).

Theoretical models to study transport in porous media can be classified as either
macro-scale [5, 15, 22, 23, 24, 26, 32] or pore-scale [9, 19, 28] models. Within the latter
group, the class of network models, in which the pore space is modeled as a network
of channels, is very popular. Network models provide flexibility in modeling different
geometries of pore space while keeping the computational cost low. Our work belongs
to this class of models.

Network models to study transport in porous media were introduced by Fatt in
1956 [10, 11, 12]. Donaldson, Baker, and Carrol in 1977 [8] were the first to use
networks to study particle transport within porous media. The clogging of particles
has been studied in networks with different geometries including bundles of parallel
tubes [8], square networks [14, 16, 21], triangular networks [3, 25], cubic networks
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[2, 17, 29], bubble models [6, 20], and the so-called three-dimensional physically rep-
resentative networks [1, 30].

Consider a filter that is a network of channels. As a suspension flows through
the filter, particles clog channels. Assume that the suspension cannot flow through
clogged channels. In this work, channels that are not clogged are called open. Note
that there can be flow only through channels that are part of a percolating path of
open channels, i.e., a path of channels that are not clogged connecting one side of
the filter with the opposite side. As channels clog, some percolating paths of open
channels are broken. Thus, suspension stops flowing not only through the clogged
channels, but also through other channels, i.e., those that are no longer part of a
percolating path of open channels. Thus, the filter will stop being permeable after
not all, but only a number, of its channels clog. In this paper we find an upper bound
of this number. Our upper bound is a function of the geometry of the network. In
particular, we are able to identify the filter geometries for which the largest fraction of
channels may be clogged before the filter ceases to be permeable. Our results suggest
that filters with these geometries may have longer lives than others.

Our work is novel. Most of the work that can be found in the literature con-
sists of simulations of the suspension dynamics within the medium. Our work is an
analysis that is independent of the dynamics; it depends only on the topology of the
network. On the other hand, our work has connections to, but also key differences
from, the theory of bond percolation [13, 27]. In percolation theory, channels or edges
are removed randomly and independently of each other. Here, channels clog, but
neither randomly nor independently of each other; the order in which they clog is
important. Nevertheless, we are able to use graph theory techniques that are also
used in percolation theory.

We remark that in this paper we assume the porous media to be two-dimensional.
Extensions to three-dimensional media, which could lead to results more relevant to
real applications, are currently being pursued and will be presented elsewhere. We also
acknowledge that our work ignores the dynamics and does not resolve the mechanisms
of clogging, which would involve a variable flow-field, drag forces, and particle-solid
interaction forces that are all part of a well-developed filtration theory.

This paper is organized as follows. In section 2, we describe the filters as networks.
In section 3, we review the basics of graph theory that are needed in the rest of this
paper. In section 4, we obtain our upper bound. In section 5, we show that our
upper bound is sharp. In section 6, we consider large filters and obtain an alternative
description of our bound in terms of the average degree of the network. In section 7,
we consider a special class of filters for which our bound is realized. In section 7, we
also consider some examples and obtain some conclusions.

2. The model. We model filters as two-dimensional networks of channels as we
illustrate in Figure 1. The pores are the interiors of the channels. Our filters have a
bottom boundary at y = yb and a top boundary at y = yt.

In our model, channels are either open or clogged. Suspension can flow only
through open channels. There is no flow through clogged channels. Within an open
channel, suspension flows from the end with higher pressure to the opposite end. If
both ends are at the same pressure, there is no flow within the channel.

We assume that suspension can flow into the filter only through the bottom
boundary and can flow out of the filter only through the top boundary. Both fluid and
particles are incompressible, and thus a volume of suspension enters the filter through
the bottom boundary at the same rate it exits the filter through the top boundary.
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y = yt

y = yb

y

x

Fig. 1. As illustrated in the left figure, we use the standard notation of x-axis and y-axis for
the horizontal and vertical axes, respectively. The right figure shows a network of channels. The
arrows indicate the direction of the flow.

We assume that the bottom boundary is held at constant pressure p = pb and
the top boundary at p = pt, where pb > pt. Note that the filter is permeable if and
only if there is a path of open channels connecting the bottom boundary with the top
boundary. Due to the difference in pressure between the top and bottom boundaries,
there is flow through the filter if and only if the filter is permeable.

We assume that initially all the channels are open. As suspension flows through
the filter, particles are trapped, causing channels to clog; i.e., channels change from
open to clogged. Eventually, the filter is no longer permeable. Note that an open
channel can clog only if there is flow through it. For any given filter, we will find an
upper bound on the number of channels that may clog under the assumption that
different channels do not clog simultaneously.

Assumptions 2.1. For future reference, we list here the key assumptions of our
model:

1. Channels are either open or clogged.
2. There is no flow through clogged channels.
3. Suspension can only flow into the filter through the bottom boundary and out

of the filter through the top boundary.
4. Fluid and particles are incompressible.
5. Initially all the channels are open.
6. An open channel may clog if there is flow through it.
7. An open channel does not clog if there is no flow through it.
8. Different channels do not clog simultaneously.

3. Review of concepts in graph theory. In this section we review concepts
of graph theory that we need in the rest of the paper. More details on graph theory
can be found in [7].

A graph G consists of a nonempty set of elements, called vertices or nodes, and a
list of unordered pairs of these elements, called edges. It is convenient and a common
practice to draw graphs in the plane. Each node is a different point in the plane, and
each edge a line joining its two nodes without intersecting any other node. If e is an
edge joining the two nodes a and b, we say that a and b are the end points of e and
that e connects a and b. For convenience we take e (the drawing of e really) to be a
closed set; i.e., e includes its end points. If a = b, i.e., the end points of an edge e
are the same, we say that e is a loop. In a graph, two different edges do not have the
same pair of end points. We have a multigraph when this restriction is removed; i.e.,
in a multigraph, two different edges can have the same end points.

We say that two nodes a and b are connected if there exists a sequence of nodes
n0, n1, . . . , nk such that a = n0, b = nk and for each 1 ≤ i ≤ k there exists an edge ei
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that connects ni−1 and ni. In this case, the alternating sequence of nodes and edges
n0, e1, n1, e2, n2, . . . , ek, nk forms a walk between a and b or simply a walk. We say
that a = n0 and b = nk are the end points of the walk. If ni �= nj for all i �= j, we say
that the walk is a path. If n0 = nk and ni �= nj for i < j except when (i, j) = (0, k),
we say that the walk is a cycle. We will identify each walk with the curve in the plane
formed by its edges.

Let G be a multigraph. S is a submultigraph of G if S is a multigraph and S is
included in G, i.e., every node of S is also a node of G and every edge of S is also an
edge of G.

A multigraph is connected if there is a walk between any pair of its nodes, and
disconnected otherwise. Every multigraph is the disjoint union of connected sub-
multigraphs. Each of these submultigraphs is called a connected component of the
multigraph.

A multigraph is planar if it can be drawn in the plane in such a way that any
two different edges may intersect at only one or two of their end points. Any such
drawing is a plane drawing of the multigraph. In this paper we will need to consider
only planar multigraphs. We identify each planar multigraph with one of its plane
drawings. In the rest of this paper, any multigraph that we mention or consider is a
planar multigraph.

A multigraph divides the plane into regions called faces. More precisely, the faces
are the connected components of what is left from the plane once we remove the
multigraph from the plane. In other words, the faces are the connected components
of the set of points in the plane that do not belong to any edge of the multigraph.
Note that the faces are open sets. Any finite multigraph has an unbounded face
surrounding it, called the infinity face.

Note that the boundary of any bounded face contains a cycle. Thus, a connected
multigraph with no cycles has only one face, the infinity face.

Let G be a multigraph. We denote by nG its number of nodes, by eG its number
of edges, by fG its number of faces, and by �G its number of connected components.
The well-known Euler formula states that

(3.1) nG + fG = eG + �G + 1.

The degree of a node n, which we denote by dn, is the number of edges that
have n as an end point, where the loops are counted twice. The average degree of a
multigraph G, which we denote by dG, is defined as the average of the degrees of the
nodes of G, dG = n−1

G

∑
dn, where the sum is over all nodes n and nG is the number

of nodes of G. Note that

(3.2) dG = 2
eG
nG

,

where eG is the number of edges of G. An example of a multigraph that is actually a
graph is shown in Figure 2.

4. Upper bound on the number of clogged channels.

4.1. Microstructure of the filters. To each filter we associate a multigraph
in a natural way. The edges are the channels and the nodes the end points of the
edges.

Recall that the bottom and top boundaries of the filter are located at y = yb and
y = yt, respectively. Thus, the multigraph is included in yb ≤ y ≤ yt. Note that there
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y = yt

y = yb

Fig. 2. Multigraph G. The black small circles are the nodes of the multigraph G and the solid
lines its edges.

are nodes in the bottom and top boundaries. For convenience, we also include edges
in y = yb connecting the nodes in the bottom boundary. In other words, there is a
path of edges in y = yb connecting the leftmost node in the bottom boundary with
the rightmost node in that boundary. Analogously, we include edges in y = yt so that
there is a path of edges in y = yt connecting the leftmost node in the top boundary
with the rightmost node in that boundary.

We consider filters with a finite number of channels, and thus our multigraphs
are finite multigraphs; i.e., they contain a finite number of nodes and edges. As an
example, in Figure 2 we show the multigraph G associated with the filter of Figure 1.

Definition 4.1. We say that a node is an exterior node if it is located at y = yb
or y = yt. Otherwise, we say that the node is an interior node.

We also say that an edge is an exterior edge if it is included in {y = yb}∪{y = yt}.
Otherwise, we say that the edge is an interior edge.

Note that, by construction, each exterior node is the end point of at least one
interior edge.

4.2. Clogged edges. The suspension enters the network through exterior nodes
at y = yb and exits the network through exterior nodes at y = yt.

We say that an edge is clogged if the corresponding channel is clogged. Note
that the exterior edges were included for convenience; they do not correspond to any
channel. Thus, we assume that there is no flow within them and that they never clog;
i.e., they are always open.

As we said in section 2, we assume that initially all the edges are open and that,
as suspension flows through the filter, edges clog, but different edges do not clog
simultaneously.

We study our filter at a fixed time. In other words, when we say that an edge is
clogged, we mean that the edge is clogged at that fixed time. Analogously, when we
say that an edge is open, we mean open at that fixed time.

4.3. Mass conservation. In this subsection we introduce a definition and an
observation that we will need later in the paper. This observation is a consequence
of the law of mass conservation. Here, as in the rest of this section, G is a fixed
multigraph that corresponds to one of our filters, such as the one in Figure 2.
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Fig. 3. Ω is the bounded open set whose boundary, ∂Ω, is in dashed lines. An arrow next to
an edge that intersects ∂Ω indicates the direction of the flow within that edge. No arrow next to an
edge that intersects ∂Ω indicates that there is not flow through that edge. Ein

Ω is the set of edges that
have arrows next to them pointing into Ω. Eout

Ω is the set of edges that have arrows next to them
pointing out of Ω.

Definition 4.2. Let Ω be an open bounded set of R
2 such that Ω̄, the closure

of Ω, does not intersect any exterior edge of G, and ∂Ω, the boundary of Ω, does not
contain any node of G. We define

EΩ = {edges in G with exactly one end point in Ω},(4.1)

Ein
Ω = {e ∈ EΩ : suspension flows through e into Ω},(4.2)

and

(4.3) Eout
Ω = {e ∈ EΩ : suspension flows through e out of Ω}.

In Figure 3 we illustrate these definitions.
Since there may be some edges without flow through them, the union of Ein

Ω and
Eout

Ω need not be EΩ. In particular, clogged edges in EΩ are neither in Ein
Ω nor in

Eout
Ω . Note that there may also be open edges EΩ without flow through them. Thus,

there may be open edges in EΩ that are in neither Ein
Ω nor Eout

Ω . Note also that Ein
Ω

and Eout
Ω are disjoint sets.

Observation 4.1. Let Ω be an open bounded set of R
2 such that Ω̄ does not

intersect any of the exterior edges of G and ∂Ω does not contain any node of G. Then
we have the following:

1. The rate at which suspension flows into Ω through the edges in Ein
Ω is equal

to the rate at which suspension flows out of Ω through the edges in Eout
Ω .

2. Let e ∈ EΩ. If all the other edges in EΩ are clogged, then there is no flow
through e.

3. If EΩ is not empty, then at least one of the edges in EΩ is not clogged.
Proof. Suspension can flow into the filter only through its bottom boundary (i.e.,

the exterior nodes at y = yb) and out of the filter only through its top boundary.
Thus, since Ω does not contain any of the exterior nodes, there are neither mass
sources nor mass sinks within Ω. This, together with the fact that the suspension is
incompressible, implies point 1.
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Fig. 4. Example of a multigraph G. The edges of G are the thin and thick solid lines. The
dashed lines are not part of G. Fi ( 1 ≤ i ≤ 10) are the connected components of {yb < y < yt}−G.
The edges in thick solid lines are not contained in any percolating path. The edges in thin solid lines
are contained in percolating paths. There can be flow only through the thin edges.

Let e be an edge in EΩ. If there is flow through e into Ω, point 1 implies that there
should be flow out of Ω through some edge in EΩ other than e. This is a contradiction
since all the edges in EΩ other than e are clogged. Thus, there is no flow through e
into Ω. A similar argument shows that there is no flow through e out of Ω either,
which proves point 2.

We prove point 3 by contradiction. Assume that all the edges in EΩ are clogged.
Let e be the edge in EΩ that clogged last. Once the other edges were clogged, there
was no more flow through e, and thus e could not have clogged, because our model
assumes that an open edge does not clog if there is no flow through the edge.

4.4. C�, a multigraph associated with the clogged edges. In this subsec-
tion we construct a multigraph C� that is associated with the set of clogged edges.

We first note that the bounded connected components of the set {yb < y < yt}−G
are the bounded faces of G. In addition, {yb < y < yt} − G has two unbounded
connected components, one to the left of G and the other to its right. An example
is shown in Figure 4, where the edges of G are the thin and thick solid lines. The
dashed lines are not part of G. Fi (1 ≤ i ≤ 10) are the connected components of
{yb < y < yt} −G. While Fi for 1 ≤ i ≤ 8 are the bounded faces of G, F9 and F10

are not faces of G.
Before proceeding with the construction of C� we first need some preliminary

definitions and observations.
Definition 4.3. We say that a path P = n0, e1, n1, . . . , er, nr in G is a percolat-

ing path if n0 is a bottom exterior node, nr is a top exterior node, and n1, . . . , nr−1

are interior nodes.
Observation 4.2. Let e be an edge in G. If there is no percolating path that

contains e, then e never clogs.
The claim of Observation 4.2 is illustrated in Figure 4. Let e be an edge of G. If

there is no percolating path that contains e, then the pressures at the end points of e
are equal, which implies that there is no flow through e, and thus e can never clog.

Note that all percolating paths split the strip {yb ≤ y ≤ yt} into two connected
components, one to the right of the path and the other to its left.
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Fig. 5. The clogged edges are thick solid lines. The open edges are in thin solid lines. The
thick dashed lines are the edges in C�. The white circles are the nodes of C�.

Definition 4.4. Let P be a percolating path. We say that a set S is to the right of
P if S is included in the closure of the right connected component of {yb ≤ y ≤ yt}−P .
Analogously, S is to the left of P if S is included in the closure of the left connected
component of {yb ≤ y ≤ yt} − P .

For example, the set F10 in Figure 4 is to the right of any percolating path of the
graph of that figure.

Observation 4.3. Let P be a percolating path and F a connected component of
{yb < y < yt} −G. Then F is either to the right of P or to the left of P .

While obvious, the last observation leads to the next one that will be key in our
construction of C�.

Observation 4.4. Let e be an edge in G. If there is a percolating path that con-
tains e, then e is in the boundary of two connected components of {yb < y < yt}−G.

We are now ready to start our construction of a drawing of C�.
Select a point inside each connected component of the set {yb < y < yt}−G. We

call this set of points N �.
For each edge of G that is clogged, we draw exactly one edge of C� as follows.

Let e be a clogged edge of G. Observations 4.2 and 4.4 imply that e is included in
the boundary of two connected components of {yb < y < yt} − G. Let a� and b� be
the points of N � that are included in these components. We draw exactly one edge
e� of C� connecting a� and b� in such a way that e� intersects e in exactly one point,
e� does not intersect any other edge of G, and e� ∈ {yb < y < yt}. We say that e�

is the edge of C� associated with e. This construction is carried out in such a way
that edges of C� may intersect only at their end points. The nodes of C� are the end
points of the edges in C�. Note that the set of nodes of C� is a subset of N �.

In Figure 5 we show an example of a set of clogged edges and the associated C�.
The clogged edges are the thick solid lines, and the edges of C� are the dashed lines.
The white circles are the nodes of C�.

4.5. Bounding the number of clogged edges. The next sequence of obser-
vations will allow us to bound the number of clogged edges.

Observation 4.5. The number of clogged edges is equal to the number of edges
in C�.
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This last observation is an immediate consequence of the definition of C�.
Observation 4.6. C� does not have any bounded faces.
Proof. The proof proceeds by contradiction. Assume that Ω is a bounded face of

C�. From the definition of C�, the edges of G that intersect C� are clogged. Thus,
all the edges of G that intersect ∂Ω are clogged. Note also that Ω̄, the closure of Ω,
does not intersect any of the exterior edges of G; ∂Ω, the boundary of Ω, does not
contain any node of G; and the number of edges of G that intersect ∂Ω is positive.

The above paragraph is in contradiction of point 3 of Observation 4.1. Thus, C�

does not have any bounded faces.
As a consequence, the only face of C� is its unbounded face. Thus, we have the

following.
Observation 4.7. C� has only one face.
Due to the definition of C�, we also have the following observation.
Observation 4.8. Let nC� be the number of nodes of C�. Then, nC� ≤ fG + 1,

where fG is the number of faces of G.
We are now ready to bound the number of clogged edges. Let nC� , eC� , fC� , and

�C� be the number of nodes, edges, faces, and connected components of C�. Euler’s
formula implies

(4.4) eC� = nC� + fC� − �C� − 1.

From Observation 4.7 we have fC� = 1. Thus, (4.4) reduces to

(4.5) eC� = nC� − �C� .

As a consequence, using Observation 4.8, we have

(4.6) eC� ≤ fG + 1 − �C� ,

where fG is the number of faces of G. Finally, since �C� ≥ 1 and eC� is the number of
clogged edges, we obtain our bound, which we summarize in the following theorem.

Theorem 4.5. Let G be a multigraph that corresponds to one of our filters.
Then,

(4.7) #{clogged edges} ≤ #{faces of G}.

5. Optimality of the bound. As always, G is the multigraph of one of our
filters.

Definition 5.1. We say that e1, e2, . . . , es is a feasible clogging sequence or (for
short) feasible sequence if, for each 1 ≤ i ≤ s, there is flow through the edge ei when
e1, e2, . . . , ei−1 are clogged and all the other edges are open. We say that s is the
length of the sequence.

Recall that an edge can clog only when suspension flows through it. Thus, if q
edges clogged, and the ith edge that clogged was ei, then e1, e2, . . . , eq is a feasible
sequence of edges. Note that the bound of section 4 is actually a bound on the length
of feasible sequences of edges.

While there are many feasible sequences that make the filter nonpermeable, only
one actually realizes. The flow conditions, conductivity of the channels, as well as
other factors determine the feasible sequence that realizes, which generally has fewer
edges than other feasible clogging sequences. It is not our goal to find the sequence
that realizes. In this section we show that, if every interior edge of G is contained in a
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e1

e1 e1

e2

e2

e2

e3

e3

e3
e4

e4

e5
e6

e7

e8

e9
e10

e11

e12

e13

Fig. 6. The sequences e1, . . . , er in the left and middle figures (r = 4 in the left figure and
r = 13 in the middle figure) are two feasible sequences of edges that make the filter nonpermeable.
Note that the number of faces of the graph is 13. Thus, the sequence of the middle figure is of
maximum length. Our work does not predict whether the sequence in the left figure, the one in the
middle, or another sequence is realized; thus, we can predict only that the sequence that realizes has
length less than or equal to 13. The sequence in the right figure is not feasible. Once e1 and e2 clog,
there is no more flow through e3, and thus it cannot clog.

percolating path, our bound is sharp in the sense that there exists a feasible sequence
of edges whose length is equal to our bound, the number of faces of G (the right-hand
side of (4.7)). However, it should be noted that the length of the feasible sequence that
actually realizes and makes the filter nonpermeable may be smaller. In other words,
while the length of the longest feasible sequence of edges is an upper bound on the
number of channels that actually clog, these numbers may not be equal. Illustrative
examples are given in Figure 6. We will come back to this issue in section 7.

Let e be an interior edge of G. As illustrated in Figure 4 and previously discussed,
if there is no percolating path that contains e, then the pressure at the end points of
e are equal, which implies that there is no flow through e and thus that e can never
clog. Removing first all such edges from G, then all the exterior edges, then the nodes
that are left isolated, and finally adding new exterior edges as necessary leads to a
new multigraph G̃ for which the bound will be attained. Note that the flow in G is
exactly equal to the flow in G̃. There is no flow within edges of G that do not belong
to G̃.

5.1. Leftmost percolating paths.
Observation 5.1. Let P = n0, e1, n1, . . . , er, nr be a percolating path. Let e be

an edge to the left of P . If e is included in a percolating path, then there exists a
percolating path R such that P and e are to the right of R.

Proof. Assume that e is not in P , since otherwise the observation is trivially true
by selecting R = P . Let Q be a percolating path that contains e. Let Q̄ be the largest
path that satisfies (1) Q̄ is included in Q, (2) Q̄ contains e, (3) Q̄ is to the left of P ,
and (4) Q̄ may intersect P only at the end points of Q̄.

If Q̄ = Q, as in Figure 7(a), select R = Q. Note that e and P are to the right of
R. Otherwise, Q̄ intersects P . In this case, Q̄∩P splits P into two or three connected
sections. Replacing one of these connected sections with Q̄ leads to the percolating
path R we are looking for. If Q̄ contains a bottom exterior node, as in Figure 7(b), we
replace the section of P that has a bottom exterior node. If Q̄ contains a top exterior
node, as in Figure 7(c), we replace the section of P that has a top exterior node. If
Q̄ does not contain any exterior node, as in Figure 7(d), we replace the section of P



NUMBER OF CLOGGED CHANNELS IN NETWORKS 753

(a) (b) (c) (d)
y = yb

y = yt

Fig. 7. The four different possibilities of Observation 5.1. We do not show all the multigraph
G, only e, Q̄, and P . The edge e is the segment between the solid small circles. P is the thin solid
vertical line, Q̄ the thick solid line, and R the union of Q̄ and the dashed lines.

without exterior nodes.
This last observation and the fact that each exterior node is the end point of an

interior edge lead to the following.
Observation 5.2. If every interior edge in G is included in a percolating path,

then there is a unique percolating path P in G such that G is to the right of P . We
call P the leftmost percolating path of G.

5.2. A feasible sequence of maximum length. The first edge. Assume
that every interior edge in G is included in a percolating path. Our goal is to construct
a feasible sequence of edges e1, e2, . . . , eN of maximum length. Let P be the leftmost
percolating path of G. In this subsection we identify P̄ , a subpath of P , from which e1
will be selected. The selection of P̄ is done with care so that the rest of the sequence,
e2, . . . , eN , can be constructed inductively, as we will do in the next subsection.

Observation 5.3. Assume that every interior edge in G is included in a perco-
lating path of G. Let P be the leftmost percolating path of G. Assume that there are
no bounded faces F of G such that ∂F ∩ P contains an edge. Then P = G.

Proof. The proof is by contradiction. Assume P �= G. Then there exists an edge
in G not in P . In fact, since every exterior node is the end point of an interior edge,
we have that there exists an interior edge e in G such that e is not in P . Let Q be a
percolating path in G containing e. Note that there is a nonempty open bounded Ω
enclosed by P , Q, y = yb, and y = yt. Note also that at least one edge of P is in the
boundary of Ω. The closure of Ω is the union of the closure of the bounded faces of G
included in Ω. Thus, there exists F , a bounded face of G, such that ∂F ∩ P contains
an edge. This is a contradiction, which proves the observation.

Observation 5.4. Assume that every interior edge in G is included in a perco-
lating path of G. Let F be a bounded face of G. Then, ∂F ∩ {y = yb} is connected,
and ∂F ∩ {y = yt} is also connected.

Proof. Assume that ∂F ∩ {y = yb} is not connected. Then, as illustrated in
Figure 8, there is a path Q̄ that is included in ∂F such that Q̄ ∩ {y = yb} are the
end points of Q̄, the edges in Q̄ are interior edges, and none of them is included in
a percolating path of G, which contradicts our assumption. Thus, ∂F ∩ {y = yb} is
connected. Analogously, ∂F ∩ {y = yt} is also connected.

Observation 5.5. Assume that every interior edge in G is included in a perco-
lating path of G. Let P be the leftmost percolating path of G. Assume that G has a
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Fig. 8. Multigraph G. ∂F ∩{y = yb} is the edge in dashed line and the white nodes, which is a
disconnected set. The thick solid line is Q̄. The edges in Q̄ are not included in any percolating path
of G.
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F

y = yb

y = yt

Fig. 9. Multigraph G. The edges of the path S are in thick lines. Example of a sequence
F0, F1, F2 = F constructed as in Observation 5.5.

bounded face. Then, there exists F , a bounded face of G, such that
1. ∂F ∩ P contains an edge, and
2. ∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) is connected.

Proof. Let S be the path that results from the following steps. We start at the
rightmost exterior node of the bottom boundary and walk left along that boundary
toward the path P . We continue walking through P to the top boundary. We then
walk right along the top boundary and end the path at the rightmost exterior node
of the top boundary (see Figure 9).

Since G has a bounded face, P �= G, and thus, from Observation 5.3, there exists
F0, a bounded face of G, such that ∂F0 ∩ P contains an edge. Let SF0 = ∂F0 ∩ S
and S̃F0 be the smallest path included in S that contains SF0 . Recall that paths are
connected. Thus, if S̃F0 = SF0 , then F = F0 is a face we are looking for.

We next show that P ∩ S̃F0 ⊆ SF0 implies that S̃F0 = SF0 . Assume that
P ∩ S̃F0 ⊆ SF0 . If both ∂F0 ∩ {y = yb} and ∂F0 ∩ {y = yt} are empty sets, then
S̃F0 = P ∩ S̃F0 ⊆ SF0 . Assume now that ∂F0 ∩ {y = yb} is nonempty. Thus, S̃F0

contains the exterior node of P in the bottom boundary, and since P ∩ S̃F0 ⊆ SF0 ,
that exterior node is also in SF0 . Thus, {y = yb}∩SF0 = ∂F0∩{y = yb} also contains
that exterior node and, given that ∂F0∩{y = yb} is connected due to Observation 5.4,
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y = yb

y = yt

(a) (b) (c) (d)

F

F

F

F

Fig. 10. Four different possibilities of F from Observation 5.6 and Theorem 5.2. The solid
line is the percolating path S of Observation 5.6. The left vertical line is P . P ∩ S is in solid line,
and the section of P that does not intersect S is in dashed line. The dashed horizontal lines are the
sections of the top and bottom boundary that are to the left of S.

we have that {y = yb}∩ S̃F0 ⊆ SF0 . This argument applied to the top boundary leads
to S̃F0 = (P ∪ {y = yt} ∪ {y = yb}) ∩ S̃F0 ⊆ SF0 if (P ∩ S̃F0) ⊆ SF0 .

We are left to show that the observation is true when S̃F0 �= SF0 (see Figure 9),
and so we now assume S̃F0 �= SF0 . Given the above paragraph, we have that S̃F0 −SF0

intersects P in at least one edge, say e. As illustrated in Figure 10, we can select F1,
a bounded face of G, such that ∂F1 contains e. Let SF1 = ∂F1 ∩ S and S̃F1 be the
smallest path included in S that contains SF1 . If S̃F1 = SF1 , then F = F1 is a face we
are looking for. Otherwise, we note that S̃F1 is included in a connected component
of S̃F0 − SF0 , and thus S̃F1 � S̃F0 . As a consequence, since G is a finite multigraph,
repeating this procedure as many times as necessary, we will find the face F that we
are looking for (see Figure 9).

Assume that every interior edge in G is included in a percolating path. Let F be
a bounded face of G that satisfies the conditions of Observation 5.5. Let P̃ = P ∩∂F ,
where P is the leftmost percolating path of G. In the next subsection we will show
how to construct a feasible sequence of edges e1, e2, . . . , eN of maximum length where
e1 will be selected from P̃ .

5.3. Feasible sequence of edges of maximal length.
Observation 5.6. Assume that every interior edge in G is included in a per-

colating path. Let P be the leftmost percolating path of G. Assume that G has a
bounded face. Let F be a face of G such that (1) ∂F ∩ P contains an edge, and
(2) ∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) is connected.

Then, for every interior edge e in G not in ∂F ∩ P there exists a percolat-
ing path Q of G such that Q contains e and Q does not have any edge in ∂F ∩
(P ∪ {y = yt} ∪ {y = yb}).

Proof. Let S1 be the section of P that does not intersect ∂F , i.e., S1 = P − ∂F .
Let S2 be the section of ∂F that intersects neither P nor the boundaries, i.e., S2 =
∂F − (P ∪ {y = yt} ∪ {y = yb}). Let S be the percolating path that results
from walking along S1 ∪ S2 (see Figure 10). Note that every edge in G not in
∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) is to the right of S.
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y = yb

y = yt

(a) (b) (c) (d)

F F F F

Fig. 11. Four different possibilities of the percolating path Q, in thick solid lines, from Obser-
vation 5.6. The edge e is between the solid small circles. The left vertical line is P .

Let e be an interior edge in G not in ∂F ∩ P . Let R be a percolating path of
G that contains e. Let Q̄ be the largest subpath of R that contains e such that Q̄
may only intersect S at the end points of Q̄. As illustrated in Figure 11, we can
construct a percolating path Q that contains Q̄, may contain sections of S, but does
not contain any edge outside Q̄ ∪ S. Thus, Q contains e and does not have any edge
in ∂F ∩ (P ∪ {y = yt} ∪ {y = yb}).

Observation 5.7. Assume that every interior edge in G is included in a perco-
lating path of G. Let P be the leftmost percolating path of G. Assume that G has a
bounded face. Let F be a bounded face of G such that (1) ∂F ∩ P contains an edge,
and (2) ∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) is connected. Let G′ be the multigraph that
results from first removing from G the edges in ∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) and
then removing the nodes that are left isolated. Then the following hold:

1. Every interior edge in G′ is included in a percolating path in G′.
2. fG′ = fG − 1; i.e., the number of faces of G′ is equal to the number of faces

of G minus one.
3. G′ is the multigraph of one of our filters.

Proof. Point 1 is an immediate consequence of Observation 5.6.
Point 2 results from the simple facts that (1) all the bounded faces of G′ are

bounded faces of G, (2) the only bounded face of G that is not a face of G′ is F , and
(3) both G and G′ (as well as any multigraph) have only one unbounded face. (Note
that G′ results from removing the dashed lines in Figure 10.)

Point 3 is also clear.
Theorem 5.2. If every interior edge in G is included in a percolating path of G,

then there exists a feasible sequence of edges of length fG. Thus, our bound is optimal
for this class of filters.

Proof. We will prove the theorem by induction on fG. First note that fG = 1
if and only if G is a percolating path. In this case, any edge of G forms a feasible
sequence of edges of length fG = 1.

Assume now that fG > 1. Let P be the leftmost percolating path of G. Note
that P cannot be equal to G, since otherwise fG would be equal to one.

Let F be a bounded face of G such that (1) ∂F ∩ P contains an edge, and
(2) ∂F ∩(P ∪{y = yt}∪{y = yb}) is connected. Such a face exists by the observations
of this section. Let e1 be any edge in ∂F ∩ P .
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Let G′ be the multigraph that results from first removing from G the edges in
∂F ∩ (P ∪ {y = yt} ∪ {y = yb}) and then removing the nodes that are left isolated.
From Observation 5.7, every interior edge in G′ is included in a percolating path in
G′, fG′ = fG − 1, and G′ is the multigraph of one of our filters.

By inductive hypothesis there exists in G′ a feasible sequence of edges of length
fG′ = fG − 1. For convenience, call one such sequence e2, . . . , efG . From the obser-
vations of this section, it follows that e1, e2, . . . , efG is a feasible sequence of edges in
G, which proves the theorem.

6. The bound in terms of the average degree of G for large filters. As
always, G is a multigraph of one of our filters. We assume in this section that every
interior edge of G is contained in a percolating path. We recall that fG, eG, and nG
are the numbers of faces, edges, and nodes of G, respectively. We also recall that dG,
the average degree of G, is given by dG = 2eG/nG (see (3.2)).

Assume that the number of edges is large, i.e., eG 	 1. In this case, the Euler
formula fG + nG = eG + �G + 1 reduces to fG + nG ≈ eG since �G = 1. Thus, from
(3.2), we have fG + 2eG/dG ≈ eG. This leads to the following observation.

Observation 6.1. If eG 	 1 and dG �= 2, then our bound (4.7) reads

(6.1) #{clogged edges} � dG − 2
dG

eG.

In particular, if every interior edge of G is contained in a percolating path, the num-
ber of edges in a feasible sequence of edges with maximum length is asymptotically
((dG − 2)/dG)eG.

In many situations of interest, G is a graph; i.e., no two edges have the same end
points. For example, if all the edges in a multigraph are straight segments, then the
multigraph is really a graph. It is a well-known fact from graph theory that, if G is
a planar graph, the average degree of G is bounded by 6, i.e., dG ≤ 6. This leads to
the following observation.

Observation 6.2. If G is a graph and eG 	 1, then

(6.2) #{clogged edges} � 2
3
#{all edges}.

A natural goal is to design filters that use as much of the pore space as possible
to trap particles before the filter ceases to be permeable. Thus, of particular interest
is to know the proportion of channels that are clogged when the filter ceases to be
permeable. The last observation provides a bound on this quantity whenever G is a
graph.

As particular examples, consider the graphs of Figure 12. At this point do not
make a distinction between solid and dashed edges. In the large filter limit, i.e., the
distance between the top and bottom boundaries is much larger than the length of the
edges, the graph with square bounded faces satisfies dG ≈ 4, and thus, for this graph,
(6.1) implies #{clogged edges} � eG/2. For the graph with triangle bounded faces,
we have dG ≈ 6 and thus #{clogged edges} � 2eG/3. For the graph with hexagonal
bounded faces, we have dG ≈ 3 and thus #{clogged edges} � eG/3.

7. A subclass of filters and examples. In this section, we consider filters in
which every interior edge is included in a percolating path. We have shown that,
for this kind of filters, our bound is sharp; i.e., there is a feasible sequence of edges
whose number of edges or length is equal to our bound, i.e., the number of faces of
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Fig. 12. Multigraphs with geometries of class A. The percolating paths Pi are in solid lines.
The crossing paths Hi,j are in dashed lines.

the multigraph (see the right-hand side of (4.7)). However, in general, there are many
feasible sequences of edges that make the filter nonpermeable, and the length of most
of them is less than our bound. Thus, the feasible sequence of edges that is realized,
i.e., the sequence of edges that actually clog and make the filter nonpermeable, which
depends on the flow conditions as well as the width of the channels, is, in general,
much shorter than the feasible sequences of edges with maximum length.

In this section, we will restrict our attention to a subclass of filters for which we
will show how to select the width of the channels so that, as the suspension flows,
the feasible sequence of edges that is realized and makes the filter nonpermeable will
indeed have maximum length.

7.1. Subclass of filters. The geometries.
Definition 7.1. We say that a multigraph G that corresponds to one of our

filters has geometry of class A if there is a nonnegative integer r and a sequence of
disjoint percolating paths P0, P1, . . . , Pr in G such that, for each i, 0 ≤ i < r, the
following hold:

1. Pi is to the left of Pi+1.
2. There are positive integers si such that Pi and Pi+1 are joined by si+1 paths

that may have only end points in common; i.e., for each j, 0 ≤ j ≤ si, there
is a path Hi,j such that (1) Hi,j ∩ Pi is an end point of Hi,j, (2) Hi,j ∩ Pi+1

is the other end point of Hi,j, and (3) Hi,j1 and Hi,j2 may intersect at their
end points only if j1 �= j2.

3. G is the union of the percolating paths Pi ( 0 ≤ i ≤ r) and the “crossing”
paths Hi,j ( 0 ≤ i < r, 0 ≤ j ≤ si).

For convenience, we assume that the paths Hi,j are labeled in such a way that
Hi,j+1 is above Hi,j (0 ≤ i < r, 0 ≤ j < si). More precisely, Hi,j+1 is in the closure
of the bounded region whose boundary is included in {y = yt} ∪ Pi ∪ Pi+1 ∪ Hi,j .
Note that Hi,0 is included in the bottom boundary and Hi,si is included in the top
boundary.

Examples of multigraphs that have the geometry of class A are shown in Figure 12.
The percolating paths Pi are in solid lines. The crossing paths Hi,j are in dashed lines.

7.2. Subclass of filters. The width of the channels. The physical mech-
anisms that lead to the clogging of channels may be complex and depend on the
particular problem under consideration. Here we will assume the following simple
rules. Each channel is either thin or thick. Thick channels never clog, and thin
channels eventually clog if there is flow through them.
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Fig. 13. Multigraphs of Figure 12. The thick edges are in solid lines. Thin edges in dashed lines.

We now select the thin and thick edges. Let G be a multigraph that has geometry
of class A. Let P0, P1, . . . , Pr be the percolating paths as in Definition 7.1. Every
percolating path is split into subpaths by the crossing paths. For i even, let P̄i be
the subpath of Pi that contains an exterior node at the top boundary. For i odd, let
P̄i be the subpath of Pi that contains an exterior node at the bottom boundary. One
edge in each of the subpaths P̄i for any i is selected to be thin. One edge in each of
the crossing paths Hi,j is also selected to be thin. Every other edge is chosen thick.
In Figure 13 we show the multigraphs of Figure 12, but now the thick edges are in
solid lines and the thin edges in dashed lines.

Definition 7.2. We say that a multigraph G that corresponds to one of our
filters is of class A if G has geometry of class A and the width of the edges of G are
selected as described above.

7.3. The bound realizes for filters of class A. We now show that, for the
filters considered in this section, i.e., with multigraph of class A, the bound realizes;
i.e., the number of edges that actually clog is equal to our bound, the number of faces
of the multigraph of the filter. We show this in two steps. We first show that in each
of the paths P̄i the thin edge clogs, and in each of the paths Hi,j not included in the
top or bottom boundaries, i.e., Hi,j for 1 ≤ j < si, the thin edge also clogs. Then, we
show that the number of these paths is equal to the number of faces of the multigraph
of the filter.

Observation 7.1. In each of the paths P̄i ( 0 ≤ i ≤ r) the thin edge clogs, and
in each of the paths Hi,j not included in the top or bottom boundaries ( 0 ≤ i < r,
1 ≤ j < si) the thin edge clogs.

Proof. We first note that there is no percolating paths with all thick edges. Thus,
the filter eventually ceases to be permeable.

Let ei be the thin edge in P̄i. All the other edges in Pi are thick, and thus they
never clog. As a consequence, while ei is open, the filter is permeable. Thus, ei
eventually clogs.

LetHi,j be one of the crossing paths not included in the top or bottom boundaries,
i.e., 1 ≤ j < si. We connect one end point of Hi,j to a bottom exterior node and
the other to a top exterior node with paths of thick edges as follows. Let Q be the
subpath of Pi that has an exterior node as an end point, shares the other end point
with Hi,j , and all the edges in Q are thick. Let R be the subpath of Pi+1 that has an
exterior node as an end point, shares the other end point with Hi,j , and all the edges
in R are thick. From the discussion of sections 7.1 and 7.2, it is clear that Q and R
are well defined. It is also clear that the union of Q, R, and Hi,j forms a percolating
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Fig. 14. Building a filter of class A. In the top figure we start with a thin filter with thin
channels. In the middle figure we fold the thin filter. The bottom figure shows the resulting filter
after folding and compressing. The thick edges are in solid thick lines. The thin edges are in dashed
lines.

path whose only thin edge is the one in Hi,j . Due to the same argument of the last
paragraph, this implies that the thin edge in Hi,j eventually clogs.

Observation 7.2. The number of the paths P̄i ( 0 ≤ i ≤ r) and Hi,j not included
in the top or bottom boundaries ( 0 ≤ i < r, 1 ≤ j < si) is equal to fG, the number of
faces of G.

Proof. We first note that the number of the paths P̄i (0 ≤ i ≤ r) and Hi,j

not included in the top or bottom boundaries (0 ≤ i < r, 1 ≤ j < si) is equal
to 1 + r +

∑r−1
i=0 (si − 1) = 1 +

∑r−1
i=0 si. Thus our goal reduces to showing that

fG = 1 +
∑r−1

i=0 si.
Let 0 ≤ i < r and 1 ≤ j ≤ si. If we remove from the plane the paths Pi,

Hi,j−1, Pi+1, and Hi,j , we are left with one bounded and one unbounded connected
component. Let Fi,j be the bounded component. It is clear that the bounded faces
of G are Fi,j for 0 ≤ i < r and 1 ≤ j ≤ si. Therefore, fG = 1 +

∑r−1
i=0 si, which

completes the proof.

7.4. Building filters of class A from thin filters. We now discuss a possible
means, at least theoretically, to construct filters of class A.

We start with a thin filter with thin channels. By a thin filter we mean that the
corresponding graph is the union of disjoint percolating paths connecting the top and
bottom boundaries. An example is shown in the top figure of Figure 14.

Next, we fold the thin filter as shown in the middle figure of Figure 14. As we
compress the folded filter from the sides, the spaces between folds become the thick
channels, and we are left with the new filter shown in the bottom figure of Figure 14.
The applied pressure in the folding step should be high, but not so high so the new
pore space, the thick channels, are in fact thicker than the channels in the original
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thin filter before folding. The resulting filter is a filter of class A.
Note that the above discussion suggests a way to construct filters of long life

even if the original thin filter does not strictly satisfy the condition of having the
corresponding graph be the union of disjoint percolating paths.

7.5. Further comments on filters of class A. As channels clog, the perme-
ability of the filter decreases. This is unavoidable. Nevertheless, we expect that this
decrease in permeability will be relatively slow (as compared with other filters) for
filters of class A, because the suspension can flow with relative ease along the thick
channels and, as shown in the proof of Observation 7.1, this family of filters has lots
of percolating paths where all but one edge are thick.
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SHORT WAVE STABILITY FOR INVISCID SHEAR FLOW∗
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Abstract. We consider the linear stability of inviscid shear flows. While it is well known that
discontinuous velocity profiles lead to short wave instabilities and ill-posedness, known examples
of instability for smooth profiles have a short wave cutoff; i.e., there is a critical wave number
beyond which no unstable eigenvalues exist. This paper proves a result to this effect under suitable
assumptions on the base flow profile.
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1. Introduction. The linear stability of inviscid shear flows has been studied
extensively over the past century. I refer to [1, 2, 3] for reviews. Discontinuous velocity
profiles lead to the Kelvin–Helmholtz instability which has unbounded growth rates
in the limit of high wave numbers. In contrast, the instabilities in shear flows with
smooth velocity profiles appear to be long wave instabilities. That is, there is cutoff
at some maximal wave number αm such that there are no unstable eigenvalues for
α > αm.

Although all known examples appear to satisfy this, I have not been able to find
a proof in the literature. Almost half a century ago, Howard [4] proved such a result
for a special case. He assumes that all inflection points of the base flow profile U
occur at the same value Ui and that U ′′/(U − Ui) is bounded and of one sign.

The objective of this paper is to prove the nonexistence of unstable eigenvalues
for large α in more general velocity fields. In the proof, it turns out that the crucial
difficulty for the analysis occurs at critical points of U rather than inflection points.
A critical point of U is a point where U ′ = 0.1

We shall need the following assumptions:
1. All critical points are isolated. Moreover, in a neighborhood of each critical

point yc, U ′′(y)(U(y) − U(yc)) is nonnegative.
2. If yc is a critical point, and U(y) = U(yc), then y is also a critical point.

The first assumption is satisfied for all analytic velocity profiles. I suspect that
the second assumption is not necessary, but I do not know how to avoid it in the
proof. Even if the second assumption does not hold, it will be shown that growth
rates of unstable modes must approach zero at an exponential rate as α→ ∞.

2. Proof of short wave stability. Our goal is the following result.
Theorem 2.1. Let U(y) be an analytic function defined for y ∈ [0, 1]. Moreover,

assume U has the following property: If U ′(y0) = 0 for some y0 ∈ [0, 1], then U ′(y) = 0

∗Received by the editors April 10, 2008; accepted for publication (in revised form) September 9,
2008; published electronically December 17, 2008. This research was supported by the National
Science Foundation under grant DMS-0707727.
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edu).
1This usage of the word “critical”, which is common in calculus of variations, should not be

confused with a totally unrelated usage of the same word, which also occurs in hydrodynamic stability
studies.
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for every y with U(y) = U(y0). Then there exists α0 such that, for α > α0, all
eigenvalues c of the Rayleigh equation (equation (21.17) in [2]),

(2.1) (U(y) − c)(ψ′′(y) − α2ψ(y)) − U ′′(y)ψ(y) = 0,

with boundary condition ψ(0) = ψ(1) = 0 are real.
The assumptions allow, for instance, monotone velocity profiles, profiles with a

single maximum or minimum, and periodic profiles with one maximum and minimum.
For the proof, let us assume c is an eigenvalue which is not real. We can write

the equation in the form

(2.2) ψ′′ − α2ψ =
U ′′

U − c
ψ.

We multiply by the conjugate of ψ and integrate, which yields

(2.3)
∫ 1

0

|ψ′|2 + α2|ψ|2 dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 |ψ|2 dy.

With c = cr + ici, this yields the two separate equations
∫ 1

0

|ψ′|2 + α2|ψ|2 dy = −
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy,

0 =
∫ 1

0

U ′′(y)
(U(y) − cr)2 + c2i

|ψ|2 dy.(2.4)

The overall strategy of the proof is to show that, for large α, contributions to the
right-hand side of the first equation in (2.4) are either negative or not large enough
to balance the left-hand side. Clearly, we have

(2.5)
∣∣∣∣U

′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

∣∣∣∣� α2

unless U(y)− cr is small of order α−2. To focus the discussion further, we divide the
points in [0, 1] into the following two categories:

1. y is a regular point if U ′(y) �= 0.
2. y is a critical point if U ′(y) = 0.

Since we assumed U to be analytic, all but finitely many points are regular. We shall
call y a δ-regular point if the distance from the nearest critical point is at least δ.

The next lemma will be used repeatedly in what follows.
Lemma 2.2. Let x0 ∈ [0, 1], and for given u ∈ L2[0, 1], let

(2.6) Lu(x) =
1

x− x0

∫ x

x0

u(ξ) dξ.

Then the operator L is a bounded mapping from L2[0, 1] into itself.
This result follows immediately from Theorem 11.8 in [5], but for the sake of

keeping this paper self-contained, I shall give the proof.
Let v(x) = Lu(x). We have u = ((x− x0)v)′, and hence 2uv− v2 = ((x− x0)v2)′

(in particular, this implies that (x−x0)v2 is continuous, since 2uv− v2 is integrable).
Consequently,

(2.7)
∫ 1

0

2uv dx = (1 − x0)v(1)2 + x0v(0)2 +
∫ 1

0

v2 dx,
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which implies ‖v‖ ≤ 2‖u‖. Here and in what follows, ‖ · ‖ refers to the norm in
L2(0, 1).

We shall begin with an estimate for regular points.
Lemma 2.3. Let z be a 2δ-regular point, and let cr = U(z̃) where |z − z̃| < δ/2.

Then there is a constant C, depending on δ but not on z and c, such that

(2.8)

∣∣∣∣∣
∫ z+δ

z−δ

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy
∣∣∣∣∣ ≤ C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2).

If z is close to the boundary, the interval [z − δ, z + δ] may not be contained in
[0, 1]. In this case, however, we can simply extend ψ by zero outside of [0, 1]. Due to
the boundary condition ψ(0) = ψ(1) = 0, this continuation is still in H1.

Clearly, there is a lower bound for U ′ on the set of all δ-regular points. Let q(δ)
be this lower bound. Then we have |U(y) − cr| ≥ q(δ)δ/2 if |y − z̃| > δ/2. In this
range of y, we can therefore estimate the integrand by

(2.9)
2 max |U ′′|
δq(δ)

|ψ|2.

Hence we only need to concern ourselves with

(2.10)
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy.

In this integral, we set

(2.11) ψ(y) = ψ(z̃) + (y − z̃)χ(y)

and

(2.12) |ψ(y)|2 = |ψ(z̃)|2 + (y − z̃)(ψ(y)χ̄(y) + χ(y)ψ̄(z̃)).

According to Lemma 2.2 above, we have ‖χ‖ ≤ 2‖ψ′‖, and from the trace theorem (see
(3.18) in [5]) we have |ψ(z̃)|2 ≤ C(‖ψ‖2 + ‖ψ‖‖ψ′‖) for some constant C. Moreover,

(2.13)
U ′′(y)(U(y) − cr)(y − z̃)

(U(y) − cr)2 + c2i

is bounded. Consequently, we find∣∣∣∣∣
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)(y − z̃)
(U(y) − cr)2 + c2i

(ψ(y)χ̄(y) + χ(y)ψ̄(z̃)) dy

∣∣∣∣∣
≤ C(δ)(‖ψ‖‖χ‖ + |ψ(z̃)|‖χ‖ ≤ C(δ)(‖ψ‖2 + ‖ψ′‖3/2‖ψ‖1/2).(2.14)

It remains to estimate

(2.15) |ψ(z̃)|2
∣∣∣∣∣
∫ z̃+δ/2

z̃−δ/2

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

dy

∣∣∣∣∣.
In this last integral, we substitute U(y) as a new variable to obtain the new integral

(2.16)
∫ U(z̃+δ/2)

U(z̃−δ/2)

U ′′(y(U))(U − cr)
U ′(y(U))[(U − cr)2 + c2i ]

dU.
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The interval of integration contains the symmetric interval |U − cr| < δq(δ)/2, and
outside this interval, the integrand is bounded by a constant C(δ). Next, we write

(2.17)
U ′′(y(U))
U ′(y(U))

=
U ′′(z̃)
U ′(z̃)

+ (U − cr)S(U),

where S(U) is a continuous function. By symmetry, we then find

(2.18)
∫ cr+δq(δ)/2

cr−δq(δ)/2

U ′′(y(U))(U − cr)
U ′(y(U))[(U − cr)2 + c2i ]

dU =
∫ cr+δq(δ)/2

cr−δq(δ)/2

(U − cr)2S(U)
(U − cr)2 + c2i

dU.

The integrand in the latter integral is bounded by a constant. This completes the
proof of Lemma 2.3.

We next consider the neighborhood of a critical point.
Lemma 2.4. There exist ε > 0 and K > 0 such that, if y0 is in an ε-neighborhood

of a critical point yc, and cr = U(y0), then

(2.19)
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy ≥ −K‖ψ‖2.

We exploit the second equation of (2.4) to obtain that

(2.20)
∫ 1

0

U ′′(y)(U(y) − cr)
(U(y) − cr)2 + c2i

|ψ|2 dy =
∫ 1

0

U ′′(y)(U(y) − U(yc))
(U(y) − cr)2 + c2i

|ψ|2 dy.

All values of y where U(y) = U(yc) are critical points, and there is a finite number of
these. Each of them has a neighborhood on which U ′′(y)(U(y)−U(yc)) is nonnegative.
If we choose ε small enough, then |U(y)− cr| has a positive lower bound outside these
neighborhoods. The lemma follows.

To prove the theorem, we need to bound the right-hand side in the first equation
of (2.4). Lemma 2.3 gives a bound of the form

(2.21) C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2)

in the neighborhood of regular points. Lemma 2.4 gives an upper bound of the form
K‖ψ‖2 in the neighborhood of critical points. By combining the two, we find that
the right-hand side in the first equation of (2.4) cannot balance the left-hand side if
α is large and ψ is nontrivial, which is the desired result.

We note that the assumption of analyticity was used only to ensure that the
number of critical points is finite and that (U(y) − U(yc))U ′′(y) is nonnegative in a
neighborhood of each critical point.

Without the assumption that U assumes its critical values only at critical points,
we can still prove that the growth rate of unstable modes must tend to zero at an
exponential rate as α→ ∞.

Theorem 2.5. Let U be any analytic function on [0, 1]. Then there exists a
function s(α), with s(α) → 0 for α → ∞, such that, if c is a nonreal eigenvalue of
the Rayleigh equation, and α is sufficiently large, then there exists a critical point yc
with |c − U(yc)| ≤ s(α). Moreover, there exist constants C and k such that |αci| ≤
C|c− U(yc)| exp(−k|α|).

The first statement, that cr must be close to a critical value of U when α is large,
follows from the proof of the previous theorem. Now let ρ be a nonnegative function
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which vanishes in an ε-neighborhood of the critical points but is equal to 1 at distance
more than 2ε from the critical points. We multiply the Rayleigh equation by ρψ̄ and
integrate. The result is

(2.22)
∫ 1

0

ρ(|ψ′|2 + α2|ψ|2) dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 ρ|ψ|2 dy −

∫ 1

0

ρ′ψ′ψ̄ dy.

With the help of Lemma 2.3, this yields the estimate

(2.23)
∫ 1

0

ρ(|ψ′|2 + α2|ψ|2) dy ≤ C(‖ψ‖2 + ‖ψ‖1/2‖ψ′‖3/2).

Now let yc be a critical point, and let χ be a smooth function which is equal to 1
in an ε-neighborhood of yc and has support in a 2ε-neighborhood of yc. We can choose
ε such that U ′′(U − U(yc)) is nonnegative on the support of χ. We shall also assume
that cr = U(y1), where y1 is within ε/2 of yc. We multiply the Rayleigh equation by
χψ̄ and integrate. The result is

(2.24)
∫ 1

0

χ(|ψ′|2 + α2|ψ|2) dy = −
∫ 1

0

U ′′(y)(U(y) − c̄)
|U(y) − c|2 χ|ψ|2 dy −

∫ 1

0

χ′ψ′ψ̄ dy.

Taking the imaginary part of this identity, we conclude that

(2.25) |ci|
∣∣∣∣∣
∫ 1

0

U ′′

|U − c|2χ|ψ|
2 dy

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

0

χ′ψ′ψ̄ dy

∣∣∣∣∣.
For large α, the solutions of the Rayleigh equation have exponential asymptotics as
long as we stay away from points where U−c is small (see Theorem 26.3 in [6]). Since
the support of χ′ is separated from the points where |U − c| is small, we can conclude
that there is a bound of the form

(2.26)

∣∣∣∣∣
∫ 1

0

χ′ψ′ψ̄ dy

∣∣∣∣∣ ≤ C exp(−k(ε)|α|)‖ψ‖2.

Next, we consider the real part of (2.24), which we write in the form
∫ 1

0

χ

(
|ψ′|2 + α2|ψ|2 +

U ′′(U − U(yc))
|U − c|2 |ψ|2

)
dy

=
∫ 1

0

U ′′(cr − U(yc))
|U − c|2 χ|ψ|2 − χ′ Re (ψ′ψ̄) dy.(2.27)

We can now use (2.25) and (2.26) to bound the right-hand side by

(2.28) C

(
1 +

|cr − U(yc)|
|ci|

)
exp(−k(ε)|α|)‖ψ‖‖ψ′‖.

By combining this result with (2.23), we conclude that we have a bound of the form

(2.29) ‖ψ′‖2 + α2‖ψ‖2 ≤ |cr − U(yc)| exp(−k(ε)|α|)
|ci|

‖ψ‖‖ψ′‖.

This is not possible if |αci| 
 |cr − U(yc)| exp(−k(ε)|α|).
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STEADY AND INTERMITTENT SLIPPING
IN A MODEL OF LANDSLIDE MOTION

REGULATED BY PORE-PRESSURE FEEDBACK∗

DAVID G. SCHAEFFER† AND RICHARD M. IVERSON‡

Abstract. This paper studies a parsimonious model of landslide motion, which consists of the
one-dimensional diffusion equation (for pore pressure) coupled through a boundary condition to a
first-order ODE (Newton’s second law). Velocity weakening of sliding friction gives rise to nonlin-
earity in the model. Analysis shows that solutions of the model equations exhibit a subcritical Hopf
bifurcation in which stable, steady sliding can transition to cyclical, stick-slip motion. Numerical
computations confirm the analytical predictions of the parameter values at which bifurcation oc-
curs. The existence of stick-slip behavior in part of the parameter space is particularly noteworthy
because, unlike stick-slip behavior in classical models, here it arises in the absence of a reversible
(elastic) driving force. Instead, the driving force is static (gravitational), mediated by the effects of
pore-pressure diffusion on frictional resistance.

Key words. Hopf bifurcation, landslide, pore pressure, stick-slip
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1. Introduction. Landslides exhibit a great diversity of movement styles and
rates, including steady creeping slip, intermittent rapid slip, and catastrophic ava-
lanching. Recently Iverson [4, 5] introduced a new theoretical model that in numerical
simulations exhibits all these behaviors as a consequence of pore-pressure feedback.
Most intriguing is the transition between steady and intermittent slip. In this paper
we analyze this transition as a bifurcation problem.

As sketched in Figure 2.1, consider a block of porous soil on a rigid planar slope
that is inclined at an angle θ. If there is no liquid in the pores of the soil, then
friction can support its weight at rest provided μ0, the coefficient of static friction,
is greater than tan θ. If, however, water pressure acting on the base of the block is
sufficiently large, the block will begin to slide. Suppose that it slides rigidly except for
a zone of intense shearing at its base. If the soil in the basal shear zone is compacted,
the governing equations admit a solution with steady sliding, due to the following
sequence of physical effects:

As the basal zone shears, it dilates; this expansion creates new pore
space, thereby reducing the fluid pressure in the expanding pores;
in consequence, the normal traction on the soil matrix is increased;
and increased friction between the soil and the base can balance the
driving and resisting forces, leading to steady creep as water pressure
is restored by steady diffusion from the overlying slide block.

If friction is rate-independent, this steady creeping motion is stable. However, even
a small amount of rate softening in the friction law is sufficient to destabilize steady
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motion through a Hopf bifurcation. This bifurcation is the primary focus of the present
paper.

Hopf bifurcation explains the origin of oscillatory behavior in the system. Inter-
mittent behavior—brief periods of rapid slipping alternating with comparatively long
periods with no slipping—arises from the singular behavior of friction at zero veloc-
ity. Specifically, the resisting frictional force jumps to a static value dictated by the
ambient pore pressure. The block then remains stationary while diffusion brings pore
pressure back up to a level where friction can no longer balance gravity.

The outline of this paper is as follows. In section 2 we introduce the equations
of Iverson’s model, nondimensionalize them, and linearize them around the steady-
state solution. Mathematically, provided the block velocity is positive, this model may
be described as a parabolic PDE for the pore pressure coupled through a boundary
condition to an ODE for the block velocity. In section 3 the linearized equations are
solved by separation of variables, leading to a trancendental equation for eigenval-
ues. In section 4 we extract the condition for bifurcation by analyzing the eigenvalue
equation. In section 5 we summarize the results of supporting computations, which
agree well with the theoretical predictions. In section 6 we present a concluding dis-
cussion regarding our findings. Finally, in an appendix we provide a mathematical
proof omitted from the main text.

Mathematically, this model is interesting in that time-periodic behavior appears
in a problem governed by the (scalar) diffusion equation (of course, coupled to an
ODE through a boundary condition). Physically, the model is important because it
provides a parsimonious mathematical description of diverse landslide behavior that
has not been rigorously analyzed until now.

2. Governing equations.

2.1. Dimensional formulation. As indicated in Figure 2.1, consider a block of
soil of porosity φ, heightHs, and density ρs, which is defined as the mass of solid grains
per unit total volume (i.e., the porosity is factored into ρs). The block is saturated
with pore water of density ρw to a height Hw that does not change with time.1

Suppose this system is supported by a planar slope inclined at an angle θ. Using
coordinates aligned with the slope, we describe this system by the pore pressure p(y, t),
the traction τx(t), τy(t) exerted by the supporting plane on the solid matrix (effective
stress at the base), and, assuming the block slides as a rigid unit over a shearing
basal zone, the velocity vx(t), vy(t) of the block. The motion is assumed to be one-
dimensional in that all variables are independent of the tangential coordinate x, but
it is two-dimensional in that the block is allowed to move in the normal direction as
well as the tangential—indeed, dilatancy of the shearing basal zone requires this.

Let us decompose the total pore pressure into a hydrostatic component plus the
excess pore pressure associated with dilation,

ptot(y, t) = phydro(y) + pex(y, t),

1The assumption that Hw is constant is not strictly satisfied owing to small fluxes of water to and
from the basal shear zone. Changes in Hw can be estimated from simple mass-balance considerations.
On this basis we estimate that such changes are less than 1%. We exclude such changes from our
model, however, not only for the sake of simplicity, but also because rigorous assessment of changes in
water-table height requires consideration of hysteretic, nonlinear processes associated with variably
saturated groundwater flow [2].

Incidentally, the model can easily be modified to allow for flux of water into the soil beneath
the shear zone as well as flux into the soil above the shear zone. Computations with these options
did not differ qualitatively from those reported here.
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Fig. 2.1. Schematic of landslide block.

where

(2.1) phydro(y) = ρwg cos θ(Hw − y).

Following arguments summarized by Iverson [5], we suppose the excess pore pressure
evolves diffusively,

(2.2) ∂tpex = D∂yypex, 0 < y < Hw,

with boundary conditions

(2.3) (a) pex(Hw, t) = 0,
(b) ∂ypex(0, t) = (ρwg/K)vy(t),

where D is the saturated hydraulic diffusivity, K is the saturated hydraulic conductiv-
ity below the water table, and g is the acceleration of gravity. Typical values for these
parameters, and for others below, are given in Table 2.1. Equation (2.3)(b) follows
from Darcy’s law [2]: the excess-pressure gradient at the boundary of the shear zone is
proportional to the fluid flux through the boundary that is needed to fill the volume
vacated through dilatancy.

In Iverson’s model, the behavior of the basal zone is characterized simply by two
constitutive equations: (i) dilatancy,

(2.4) vy = ψvx,

where ψ is the angle of dilatancy, and (ii) friction,

(2.5)
either vx = 0 and |τx| < μ0τy,
or τx = −μ(vx)τy and vx ≥ 0,

where μ(vx) is a rate-softening coefficient of friction,

(2.6) μ(vx) = μ0[1 − a sinh−1(vx/2vref)],
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Table 2.1

Parameter values in the model.

Parameter Definition Units Plausible Values used in
values computations

a Rate-dependence coefficient — 0 — 0.05 0.02, 0.04
in friction rule

D Hydraulic diffusivity of soil m2/s 10−8 — 1 10−8 — 3×10−1

g Acceleration of gravity m/s2 9.8 9.8
Hs Thickness of soil block m 0.1 — 100 0.65
Hw Height of water table m 0 — 100 0.3701
K Hydraulic conductivity of soil m/s 10−11 — 1 2×10−9 — 2×10−1

vref Reference slip rate in friction rule m/s 10−4 — 1 7×10−4 — 4×10−1

θ Slope angle radians 0.1 — 0.8 0.5411
μ0 Static friction coefficient of soil — 0.2 — 1.2 0.8693
ρw Mass density of pore water kg/m3 900 — 1100 1000
ρs Bulk density of dry soil kg/m3 1000 — 2200 1600
φ Porosity of soil block — 0.2 — 0.6 0.4
ψ Dilatancy angle of shearing soil radians -0.2 — 0.2 0.1047

vref being a reference velocity. Regarding dilatancy, we take ψ to be constant. Under
continued shearing, ψ will in fact converge to zero as the soil tends to a critical state.
However, as shown in the landslide experiments of [6], the evolution to critical state
occurs only when displacement magnitudes greatly exceed those appearing during the
processes considered here. Equation (2.6) is a three-parameter representation of rate-
weakening friction that we use instead of a more complicated, rate-and-state friction
model, which typically employs six parameters. Because of its simplicity, we are able
to explore the full relevant parameter space. However, investigation of the model with
a rate-and-state friction law remains a task for future research.

Finally, the system is completed by Newton’s equations of motion for the block.
For this system, the mass per unit area of slope is ρsHs + φρwHw. Thus, for the
tangential component of the motion we have

(2.7) (ρsHs + φρwHw)∂tvx = (ρsHs + φρwHw)g sin θ + τx.

Regarding the normal component, we are assuming the dilatancy ψ is small, and there-
fore, in light of (2.4), we may neglect acceleration in the y-direction; thus Newton’s
equation reduces to force balance. According to Terzaghi’s effective-stress principle
(e.g., see [2]), the effective normal traction exerted by the slope on the solid matrix
is the total stress reduced by the pore pressure at the base; in symbols,

τy = (ρsHs + φρwHw)g cos θ − ptot(0, t).

On substitution of (2.1), we obtain our last equation,

(2.8) τy = [ρsHs − (1 − φ)ρwHw]g cos θ − pex(0, t).

This formulation differs from that of Iverson [5] in two main respects:
• Most importantly, here we allow for rate-softening friction.
• Our assumptions on the imposed pore pressure are more restrictive: specif-

ically, in the notation of (8) of Iverson [5], we assume that β = cos θ and
W = 0. Physically, these assumptions imply that there is no flux of ground-
water normal to the water table, except for the flux caused by shear-zone
dilation.
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Provided

(2.9) (ρsHs + φρwHw) sin θ ≤ μ0 [ρsHs − (1 − φ)ρwHw] cos θ,

the above equations have a solution with pex = 0 and v = 0: i.e., friction is sufficient
to resist the pull of gravity. We study the case where (2.9) is violated.

2.2. Nondimensionalization. We nondimensionalize (2.2)–(2.8) by defining

(2.10) t =
t(dim)

H2
w/D

, y =
y(dim)

Hw
, v =

v(dim)
x

K
, p =

p(dim)
ex

ρwgHw
, τ =

τ (dim)

ρsgHs
,

where the superscript dim indicates the dimensional version of a variable. We will
eliminate v(dim)

y from the equations, so we do not define a scaled version of this variable;
however, we nondimensionalize both components of τ . As in Iverson [5], we have used
the diffusive time scale to nondimensionalize t; however, our nondimensionalization of
v differs from that of [5]. We also define two dimensionless constants that will appear
in the nondimensionalized equations below,

(2.11) ε =
K/g

H2
w/D

and M =
ρwHw

ρsHs
.

The first, which according to Table 2.1 is very small, is the ratio of the acceleration
time scale to the diffusive time scale; the second is φ−1 times the ratio of fluid mass
to solid mass.

The evolution of the nondimensionalized pressure is governed by

(2.12)
(a) ∂tp = ∂yyp, 0 < y < 1,
(b) p(1, t) = 0,
(c) ∂yp(0, t) = ψv(t).

In nondimensional variables, the friction relation (2.5) does not change, except that
the rate-softening coefficient in (2.6) must be rescaled to give

(2.13) μ(v) = μ0

[
1 − a sinh−1

(
K

2vref

v

)]
.

Newton’s equations for the motion of the block scale to

(2.14)
(a) ε ∂tv = sin θ − (1 + φM)−1τx,
(b) τy = [1 − (1 − φ)M ] cos θ −Mpex(0, t).

In nondimensional variables, the no-motion condition (2.9) may be rewritten as

(2.15) tan θ ≤ A1μ0,

where A1 is the first of two mass ratios defined in (2.17) below. If (2.15) is violated
and hence v > 0, then (2.5) and (2.14)(b) may be combined to solve for τx. On
substitution into (2.14)(a), we obtain

(2.16) ε ∂tv = sin θ − μ(v) (A1 cos θ −A2p(0, t)) ,

where

(2.17) A1 =
1 − (1 − φ)M

1 + φM
, A2 =

M

1 + φM
.

As long as v > 0, the motion is described by (2.12), (2.16).
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Fig. 2.2. Graphical solution of (2.19).

2.3. A steady solution and linearization of the equations. Henceforth we
assume that

(2.15) is violated and ψ > 0.

Let us look for a steady-state solution pss(y), vss of the equations of motion. It follows
from (2.12) that

(2.18) pss(y) = ψvss(y − 1),

and this relation may be substituted into (2.16) to obtain an implicit equation for vss,

(2.19) vss = (A2ψ)−1

[
sin θ
μ(vss)

−A1 cos θ
]
.

If the friction coefficient is independent of velocity, then this equation is in fact a
formula for vss. Even with rate-softening friction, for parameter values such as in
Table 2.1, the right-hand side (RHS) of (2.19) is a slowly varying function of vss (see
Figure 2.2). For example, defining

(2.20) vss,approx = (A2ψ)−1

[
sin θ
μ0

−A1 cos θ
]

as the solution of (2.19) in the rate-independent case, we may see that

μ(vss,approx)
μ0

= 1 − O
(
a

ψ

K

vref

)
,

and, unless ψ is extremely small, we have

(2.21)
a

ψ

K

vref

� 1.

Thus, assuming ψ > 0 is not too small, we conclude that (2.19) has a unique solution
close to vss,approx.

Incidentally, there is a second solution of (2.19) at very large values of vss. To see
this, observe from (2.13) that μ(v) vanishes when v ≈ (vref/K)e1/a. Since μ(vss) occurs
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in the denominator, the RHS of (2.19) blows up as v tends to (vref/K)e1/a, giving rise
to a second intersection with the linear function on the left-hand side (LHS). This
second steady-state solution of (2.19), for which the velocity is very large indeed,
is always unstable, but it can be involved in the steady-state bifurcation of (2.12),
(2.16) at extreme parameter values. For clarity, we shall refer to the first solution,
given approximately by (2.20), as the physical steady state. Referring to the figure
and comparing the derivatives of both sides of (2.19), we conclude that at the physical
steady state

(2.22)
sin θ |μ′(vss)|
A2ψ μ2(vss)

< 1.

To linearize (2.12), (2.16) near the (physical) steady-state solution, we define
incremental variables p, v by

p(y, t) = pss(y) + p(y, t), v(t) = vss + v(t).

Equations (2.12) are already linear, so we find trivially that

(2.23)
(a) ∂tp = ∂yyp, 0 < y < 1,
(b) p(1, t) = 0,
(c) ∂yp(0, t) = ψv(t),

and on linearizing (2.16) and simplifying using (2.19) we obtain

(2.24) ε∂tv = B1p(0, t) +B2, v,

where

(2.25) B1 = A2 μ(vss) and B2 = sin θ |μ′(vss)|/μ(vss).

Since μ′(vss) < 0, we have used the absolute value to emphasize that B2 > 0.

3. Derivation of the eigenvalue equation. We seek a solution of the lin-
earized equations (2.23), (2.24) with exponential time dependence e−λt (note the
minus sign). Using separation of variables, we derive from (2.23)(a),(b) that

p(y, t) = P sin[
√
λ(1 − y)]e−λt, v(t) = V e−λt,

where P and V are constants. Substitution of these formulas into (2.23)(c), (2.24)
yields the 2 × 2 homogeneous linear system

(3.1)
[ √

λ cos
√
λ ψ

B1 sin
√
λ ελ+B2

] [
P
V

]
= 0.

This system has a nonzero solution if and only if the determinant of the coefficient
matrix vanishes, which leads to the trancendental equation for the decay rate λ,

(3.2)
tan

√
λ√

λ
= εC1λ+ C2,

where

(3.3) C1 = 1/B1ψ, C2 = B2/B1ψ.

Recalling (2.25), (2.22), we see that

(3.4) C2 < 1.
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Fig. 4.1. Graphical determination of the real solutions of (3.2). In the figure shown, εC1 = 0.02
and C2 = 0.3. As indicated by (4.9), the two complex solutions of (3.2) lie in the unstable half-plane,
{Reλ < 0}.

4. Analysis of the eigenvalue equation.

4.1. Introduction. As illustrated in Figure 4.1, (3.2) has an infinite sequence
of positive roots. Since these eigenvalues are all in the stable half plane, they do not
require further attention. It is not obvious, but (3.2) has two other, possibly complex,
roots, which are the focus of the present section.

As a function of a complex variable, (tan
√
λ)/

√
λ is a meromorphic function:

i.e., apart from a sequence of poles on the positive real axis, it is single-valued and
analytic in the entire plane. Although neither the numerator nor the denominator of
this expression is single-valued, the quotient avoids this difficulty. Of course, we use
the same branch of

√
λ in the numerator and the denominator so that

lim
λ→0

tan
√
λ√

λ
= 1.

To be specific, let us choose the branch

(4.1)
√
λ = |λ|1/2 ei(arg λ)/2,

where argλ satisfies

0 ≤ argλ < 2π.

The analysis of the complex roots of (3.2) is based on the simple behavior of
tan

√
λ away from the positive real axis, as articulated in the following proposition.

Proposition 4.1. Let Λ be a wedge in C excluding the positive real axis, say,

(4.2) Λ = {λ ∈ C : δ < argλ < 2π − δ} ,

where 0 < δ < π/2. Then, as |λ| → ∞ in Λ,

(4.3) tan
√
λ = i+ O(e−δ

√
|λ|/2).
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Proof. By manipulating the definition of tan z, we deduce that

(4.4) tan z = i
1 − e2iz

1 + e2iz
.

Now |e2iz | = e−2 Im z , so taking z =
√
λ we see that

tan
√
λ = i+ O(e−2 Im

√
λ).

By (4.1), Im
√
λ = |λ|1/2 sin(arg λ /2). To complete the proof, we estimate argλ with

(4.2) and use the fact that sin(δ/2) ≥ δ/4.

4.2. The rate-independent case (C2 = 0). When friction is independent of
velocity, the coefficient C2 in (3.2) vanishes. In the appendix we prove that in this
case (3.2) has no zeros in the left half plane: i.e., the steady solution is stable. Since
the proof sheds little light on the Hopf bifurcation, we do not include it here. It is
instructive, however, to locate the two complex eigenvalues.

Suppose C2 = 0. By (4.3), for large |λ| away from the positive real axis, (3.2) may
be rewritten, approximately, as

ei[π−arg λ]/2 = εC1|λ|3/2ei arg λ.

Equating magnitudes we find that |λ| = (εC1)−2/3, and then equating arguments we
find the two approximate roots of (3.2):

(4.5) λ = eiπ/3(εC1)−2/3, e5iπ/3(εC1)−2/3.

By (4.3) the error in this estimate is exponentially small in ε. Since Reλ 
 1, the
associated eigenfunctions decay rapidly in time.

4.3. The rate-dependent case: Steady-state bifurcation. If C2 assumes
positive values, the complex2 eigenvalues (4.5) can cause the linearized equations
(2.23), (2.24) to lose stability if they cross into the left half plane. As we shall see in
the next subsection, for physical parameter values, (2.23), (2.24) lose stability through
a Hopf bifurcation: i.e., the complex eigenvalues cross the imaginary axis as a pair of
complex conjugates. However, for mathematical completeness, we also ask when real
solutions of (3.2) cross the imaginary axis. Indeed, one may see by inspection that
λ = 0 is a root of (3.2) iff C2 = 1. If one forces C2 to its limiting value unity (cf. (3.4)),
then the two solutions of (2.19) merge and annihilate one another at a steady-state
bifurcation of limit-point type [3].

4.4. The rate-dependent case: Hopf bifurcation.
(a) Main calculations. Figure 4.2 shows a curve Γ in the (εC1, C2)-plane that

separates the infinite strip

{(εC1, C2) : 0 < εC1 <∞, 0 < C2 < 1}

into two regions in which (2.23), (2.24) are stable or unstable. This curve has the
parametric representation

(4.6) εC1 =
2
μ3

1 − 2e−μ sinμ− e−2μ

1 + 2e−μ cosμ+ e−2μ
,

2We shall refer to these roots of (3.2) as complex eigenvalues even though, for extreme parameter
values, they may actually become real.
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Fig. 4.2. Graph of the Hopf bifurcation curve Γ defined parametrically by (4.6), (4.7).

(4.7) C2 =
1
μ

1 + 2e−μ sinμ− e−2μ

1 + 2e−μ cosμ+ e−2μ
,

where 0 ≤ μ < ∞. In the following proposition we show that (2.23), (2.24) undergo
Hopf bifurcation when C1, C2 lies on Γ.

Proposition 4.2. If εC1, C2 lie on Γ, then the complex eigenvalues of (3.2) are
pure imaginary.

Proof. Suppose (3.2) has a root on the positive imaginary axis, say, at λ = iμ2/2,
where μ ≥ 0. Then

√
λ = (1 + i)μ/2. Equating real and imaginary parts of (3.2), we

conclude that

(4.8) εC1 =
2
μ2

Im
{

tan[(1 + i)μ/2]
(1 + i)μ/2

}
, εC2 = Re

{
tan[(1 + i)μ/2]

(1 + i)μ/2

}
.

We claim that

tan[(1 + i)μ/2] =
2e−μ + i(1 − e−2μ)

1 + 2e−μ cosμ+ e−2μ
,

which may be proved by recalling (4.4), multiplying and dividing by the complex
conjugate of the denominator, and simplifying. Equations (4.6), (4.7) result on mul-
tiplying by [(1 + i)μ/2]−1 = (1 − i)/μ and substituting into (4.8).

By examining the Taylor series expansions of the numerators in (4.6), (4.7), we
see that

lim
μ→0

εC1 = 1/3, lim
μ→0

C2 = 1,

which is behavior that may be seen in Figure 4.2. At the other extreme, μ 
 1, or
equivalently εC1 � 1, the exponentials in (4.6), (4.7) may be neglected, so that it is
possible to eliminate μ and obtain a relation between the C’s that characterizes Hopf
bifurcation:

(4.9) C2 =
(
εC1

2

)1/3

,

both sides of the equation being small. The proof of the proposition shows that
at parameter values given by (4.6), (4.7), the complex eigenvalues of (2.23), (2.24)
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are ±iμ2/2, and in the asymptotic range the complex eigenvalues are approximately
±iC−2

2 /2. In particular, the bifurcating periodic solutions have periods approximately
equal to

(4.10)
2π
|λ| ≈ 4πC2

2 .

Our simulations below confirm the accuracy of this prediction.
It is natural to undo the nondimensionalization of the equations to seek a pre-

diction for the period of oscillations of landslide motion in the field. However, the
enormous ranges of D, K, and vref in Table 2.1 diminish the value of this exercise.
Specifically, one obtains oscillation periods ranging from about 10−7 to 103 seconds.
At the small end, these periods will be unobservable by conventional measurement
techniques. At the upper end, these periods are similar to those sometimes observed
in the field and also observed in the landslide experiments of Iverson et al. [6].

(b) Numerical limitations. Provided εC1 � 1, (4.9) characterizes the loss of sta-
bility in the PDE (2.23), (2.24) through Hopf bifurcation. However, this relation is
not accurate for numerical simulations if

(4.11) εC1 ≤ O(h3),

where h is the mesh size. To motivate this assertion, first recall that the eigenvalues
of the PDE at the bifurcation point have absolute value

μ2/2 = 1/(2C2
2) = 2−1/3(εC1)−2/3 
 1.

On the other hand, the largest eigenvalue of the discretization is O(h−2), and moreover
the large eigenvalues of the discretization do not approximate eigenvalues of the PDE.
These two observations warn of a mismatch if

(εC1)−2/3 ≥ O(h−2),

which is equivalent to (4.11).
Let us illustrate this phenomenon for a second-order explicit discretization of the

PDE. (In the simulations below, we used the Crank–Nicholson method, for which the
analysis is similar in spirit but more technical in detail.) For a positive integer N , let
h = 1/N be the mesh size in discretizing space, and let

yn = 1 − nh, n = 0, 1, . . . , N + 1.

Consider the semidiscrete approximation for the pressure equation (2.23),

(a) ∂tpn = h−2 [pn+1 − 2pn + pn−1] , n = 1, 2, . . . , N,
(b) p0 = 0,
(c) (2h)−1 [pN−1 − pN+1] = ψv,

(4.12)

and for the velocity equation (2.24),

(4.13) ε∂tv = B1pN +B2v.

As with the PDE, we look for solutions of (4.12), (4.13) such that pn(t) and v(t) have
exponential time dependence e−λt. It follows from (4.12)(a),(b) that

pn(t) = Pe−λt(zn − z−n), n = 0, 1, . . . , N + 1,

v(t) = V e−λt,
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where

(4.14) λ =
z − 2 − z−1

h2
.

Substituting into (4.12)(c), (4.13), we obtain a solution provided

(4.15) det
[

(2h)−1(z − z−1) ψ
B1 B2 − εh−2(z − 2 − z−1),

]
= 0,

where we have divided the first column of this determinant by zN .
We analyze the Hopf bifurcation in this system as with the PDE: i.e., we ask

when there is a solution z of (4.15) such that λ, computed according to (4.14), lies on
the imaginary axis, say, λ = iμ. We consider only the asymptotic range μ
 1. Hence
z 
 1, and we may solve (4.14) for z approximately by neglecting z−1; i.e.,

z = 2 + iμh2.

Substituting this approximation into (4.15) and solving for Bi from (3.3), we rewrite
(4.15) as

(4.16) det
[
h−1 + iμh/2 ψ

1/(ψC1) C2/C1 − iεμ

]
= 0.

From the vanishing of the imaginary part of this equation, we conclude that

(4.17) C2 =
2
h2

εC1,

which is the relation that characterizes Hopf bifurcation at large eigenvalues in the
discretization; thus, (4.17) replaces (4.8) when discretization effects invalidate the
latter.

5. Supporting computations.

5.1. Methods. To test our bifurcation predictions and examine details of the
dynamics described by (2.2) and (2.7), we solved discretized versions of the equa-
tions numerically. Values of most parameters used in the computations were fixed to
match those of physical landslide experiments in which both quasi-steady sliding and
stick-slip behavior were observed [6], whereas values of K, D, and vref were modi-
fied systematically to make computational transects of the εC1-C2 parameter space
(Table 2.1). Specifically, values of ε were manipulated by adjusting the values of K
and D in accordance with values appropriate for diverse soils; then, while holding
εC1 essentially constant, C2 was increased incrementally through a plausible range by
adjusting vref. As C2 increased, bifurcation was detected as a transition from conver-
gent oscillations (leading to a stable steady state) to divergent oscillations (leading to
repetitive stick-slip cycles) in the v-p phase plane, a result described in more detail
below.

With few exceptions, the value of the rate-weakening friction parameter a used in
all computations was 0.02, consistent with observations in rate-controlled shear tests
with many soil-like materials [8, 12]. To attain values of C2 large enough to cause
bifurcation when εC1 > 0.1, however, it was necessary to increase a to 0.04. Such
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large values of a, C2, and εC1 are atypical and perhaps even physically implausi-
ble, but mathematically they characterize the upper fringes of the εC1-C2 parameter
space.

Our computational algorithm employed an explicit fourth-order Runge–Kutta
method to solve the ODE (2.7) and the Crank–Nicholson method to solve the PDE
(2.2) [9] in an operator-splitting scheme. First a Runge–Kutta time step Δt was
taken to advance the slide-block velocity vx(t) while holding the excess basal pore
pressure pex(0, t) constant; then using the new vx(t) to update the basal boundary
condition (2.3b) a Crank–Nicholson time step Δt was taken to advance the pore-
pressure diffusion solution pex(y, t). The updated pore-pressure solution provided the
basal pore pressure necessary to take the next Runge–Kutta step. Refinement of
this scheme by using the mean vx(t) between successive time steps to update (2.3b)
and then recompute pex(y, t) using this mean yielded solutions that differed neg-
ligibly from those of the basic scheme, provided that time steps were sufficiently
small. Therefore, we used the basic scheme for all computations reported in this
paper.

Our discretization of (2.2) and (2.7) used times steps with a size Δt suitable
for resolving slide-block acceleration, which had an intrinsic timescale K/g typically
much smaller than that of pore-pressure diffusion (i.e., ε� 1). In trial calculations we
initially set Δt = (K/g) sin θ, the time necessary for the block to accelerate from 0 to
K in the absence of friction and pore-pressure feedback. Subsequent trials showed that
when friction and feedback were present, Δt 
 (K/g) sin θ could generally be used
with negligible loss of accuracy. Therefore, we consistently employed Δt = 0.0002s
to produce all computational results reported in this paper, although we regularly
checked these results against those obtained using smaller time steps. Also, for the
sake of consistency, our spatial discretization of (2.2) employed h = 0.001 for all
results reported here, except for trials exploring finite-h effects.

In all computations we used Hw = 0.3701m, a value 1% larger than the static
limiting equilibrium value that applies when (2.9) reduces to an equality for the pa-
rameter values listed in Table 2.1. As indicated by (2.1), fixing the initial value of
Hw also fixed the background pore-pressure distribution phydro(y). An initial excess
pore-pressure distribution could be specified by (2.18), using (2.20) as an estimate for
the steady-state velocity. In practice, during production runs, we iterated (2.19) one
or more times to improve the initial estimate (2.20), in order to hasten convergence
to the steady state.

5.2. Results. Our computational results are summarized in Figure 5.1, a graph
that depicts theoretical bifurcation curves and computed bifurcation points in the
εC1-C2 parameter space. The broad range of values spanned by this parameter space
reflects the broad range of K and D values that are physically plausible for diverse
soils (e.g., [2]), and it illustrates the wide scope of the bifurcation phenomenon.

We determined all bifurcation points shown in Figure 5.1 to at least two significant
digits. At this level of precision, the computed bifurcation points lie exactly on the
theoretical Hopf-bifurcation curve Γ (solid line in Figure 5.1), provided the simulation
is not polluted by finite-h effects. When εC1 ≤ O(h3), numerical effects determine
the location of the bifurcation point, and it may be seen from the figure that the
bifurcation is accurately described by (4.17) (dashed line in Figure 5.1).

The physical character of the Hopf bifurcation is illustrated by phase portraits
depicting coevolution of vx(t) and pex(0, t). Figure 5.2 shows typical phase portraits
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Fig. 5.1. Comparison of computed bifurcation points with the Hopf bifurcation curve Γ predicted
by (4.6), (4.7) (solid line), and the finite-h limit (4.17) for the case in which h = 0.001 (dashed line).

for C2 near the bifurcation point. The bifurcation is subcritical—when C2 > C2Hopf,
the solution evolves to a periodic solution whose amplitude does not tend to zero as
C2 → C2Hopf. (Note that Figures 5.2B and 5.2C have different scales.) As expected,
the evolution toward or away from the steady state slows down as the bifurcation
point is approached [11].

For the parameter values used in making Figure 5.2, (4.10) predicts that near the
bifurcation point, the period of oscillations is 0.325 s. By comparision, the oscillations
depicted in Figure 5.2C have a computed period of 0.336 s. The fairly large discrepancy
between these two numbers is related to the fact that the bifurcation is subcritical.
Strictly speaking, (4.10) predicts the period of the small-amplitude, unstable orbits
close to the bifurcation point, while Figure 5.2C shows a moderate-amplitude, stable
orbit to which the solution jumps when C2 exceeds C2Hopf. A better comparison is
provided by the nearly periodic, decaying solution shown in Figure 5.2B, in which the
numerically estimated period is 0.324 s.

During part of the periodic orbits in Figures 5.2C and 5.2D, the velocity vanishes.
This stick-slip behavior occurs because the nonlinearity limiting growth of the oscil-
lations is a nonsmooth one, i.e., the discontinuous behavior of friction at v = 0. In no
instance did oscillations persist without stick-slip behavior.

Transitions in phase-portrait behavior for other values of εC1 were qualitatively
similar to those illustrated in Figure 5.2 except for unphysically large values of εC1:
i.e., near the end of Γ at the point (1/3, 1). In the latter case, the large-time orbit
differs from Figure 5.2 in that the block “sticks” during a large fraction of the period,
even immediately after bifurcation.
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Fig. 5.2. Examples of computed orbits in the vx, pex phase plane for a case in which εC1 =
5.256×10−6 and C2Hopf = 1.380×10−2. These computations used K = 2×10−4 m/s, D = 1×10−3

m2/s, a = 0.02, and values of vref ranging from 2.4×10−3 to 2.9×10−3 m/s to obtain varying
values of C2. All other parameters were held fixed at the values listed in Table 2.1. The point
marked “I.C.” indicates the initial condition used in each computation. Note that the value of C2

increases moving counterclockwise in the figure from frames A through D. In frame B, C2 is just
below critical, while in frame C, it is just above. Incidentally, in frame D, motion along the portion of
the trajectory where v ≡ 0, which is governed by diffusion alone, is slower than along the remainder
of the trajectory, and this effect is more pronounced if C2 is further from the bifurcation point.

6. Concluding discussion. Hopf bifurcation occurs in solutions of equations
that provide a parsimonious model of landslide motion regulated by dilatancy, pore-
pressure feedback, and rate-weakening friction. The bifurcation is manifested as an
abrupt transition (thus, the bifurcation is subcritical) from stable, steady, downslope
motion to periodic motion characterized by repetitive stick-slip cycles. The existence
of stick-slip behavior in this system is noteworthy because, unlike classical models
that exhibit stick-slip, our model includes no elastic element that exerts a variable
and reversible driving force. (The archetype model for stick-slip behavior is a rate-
weakening friction block pulled along a plane by an elastic spring.) Instead, in our
model, the driving force is the steady pull of gravity, and the frictional resisting force is
mediated by pore-pressure diffusion. Effects of pore-pressure diffusion have also been
studied in the context of stick-slip models that include an elastic driving element [10],
but to our knowledge no previous model has duplicated ours in omitting elastic forces
while retaining the capacity for stick-slip behavior.

Analysis and computations show that the Hopf bifurcation leading to stick-slip
behavior in our model is precisely governed by the parameters εC1 and C2, although
decomposition of these parameters into their physical components shows that their
variation depends mostly on variations in ε and the velocity ratio K/vref. Physically,
the timescale ratio ε specifies the relative speeds at which the landslide character-
istically moves and excess pore pressure characteristically diffuses, whereas K/vref



784 DAVID G. SCHAEFFER AND RICHARD M. IVERSON

specifies the degree to which rate-weakening friction affects landslide motion. For
relevant parameter values (Table 2.1), ε � 1 applies almost universally, indicating
that pore-pressure diffusion is a relatively slow process that serves to regulate the
inherently faster process of landslide motion. Also, for relevant parameter values,
K/vref � 1 is typical, although K/vref values of order 1 or larger are possible (see Ta-
ble 2.1). For K/vref � 1, the characteristic slip velocity vx = O(K) is small. Taking
the limit vss = 0 and then combining (3.3), (2.25), and (2.6), we calculate that

C2 =
sin θ
ψA2

aK

2μ0vref

,

which shows that, for K/vref � 1, increases in K/vref produce increases in C2 and
hence decreases in stability. This is the behavior typically observed in our compu-
tations. By contrast, if K/vref becomes comparable to or greater than 1, increases
in K/vref can produce decreases in C2 and hence increases in stability. Physically,
this behavior reflects the fact that friction, which decreases logarithmically at large
velocities, becomes increasingly insensitive to v as slip rates grow large.

Another important observation regarding the physics described by our model con-
cerns the consistent manner in which orbits in the vx-pex phase plane are skewed. As
shown in Figure 5.2, the minimum pex(0, t) always lags the maximum vx(t) by less
than one quarter of an orbit cycle, irrespective of whether orbits diverge unstably
or converge to a fixed point. Similar orbit skewness is exhibited in all of our com-
putational results. However, as εC1 → 0 the orbit skewness gradually diminishes, so
that orbits become almost symmetrical about the line vx = vss and the phase lag
approaches 1/4-cycle. This skewness of the orbits is a consequence of inertia. To il-
lustrate this, observe that εC1 → 0 if, for example, K → 0; it follows from (2.10)
that the dimensional steady-state velocity tends to zero as K → 0, and hence inertial
effects will disappear in this limit.

Finally, we emphasize that two key effects are not included in our model: (i) pa-
rameter evolution (e.g., dilatancy evolution) and (ii) a rate-and-state friction law in
which the friction coefficient evolves with time [1, 10]. Such effects could lead to other
kinds of instabilities, including a possibly more complex bifurcation than what we
have analyzed.

Appendix.
Proposition A.1. If C > 0, the function

f(λ) ≡ tan
√
λ√

λ
− Cλ

has no zeros in the closed left half plane {λ : Reλ ≤ 0}.
Proof. For any R > 0, let ΩR be the half disk

{λ : Reλ < 0, |λ| < R} ,

inside which f is analytic. According the principle of the argument [7, Chapter 4,
section 4], provided f is nonzero on ∂ΩR, the number of zeros of f in ΩR equals the
variation of arg f around the boundary. It is obvious that Re (−Cλ) ≥ 0 on ∂ΩR. We
claim that, no matter how large R may be,

Re
tan

√
λ√

λ
> 0 on ∂ΩR.
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Fig. A.1. Images of the semicircle ∂ΩR in the complex plane under two mappings (see the
appendix). The radius R = 100, and the constant C = 0.02.

Thus, the variation of the argument of f around ∂ΩR is zero, and this proves the
result.3

Let us prove the claim. For λ on the semicircle {λ : Reλ ≤ 0, |λ| = R}, we invoke
the asymptotic form (4.3) and observe that

Re
i√
λ

= |λ|−1/2 cos
(
π − argλ

2

)
> 0;

the reason for the inequality is that −π/4 ≤ (π − argλ)/2 ≤ π/4. For λ on the
imaginary axis, since f(λ) = f(λ), it suffices to restrict our attention to { Imλ ≥ 0}.
Along the nonnegative imaginary axis we may parametrize

√
λ as

√
λ = (1 + i)t, t ≥ 0.

Substituting into (4.4), we find

tan
√
λ√

λ
=

i

(1 + i)t
1 − e2i(1+i)t

1 + e2i(1+i)t
.

Multiplying both the numerator and the denominator by the complex conjugate of
the denominator and collecting terms, we calculate that

Re
tan

√
λ√

λ
= p(t)

sinh 2t+ sin 2t
t

> 0,

where the positive factor

p(t) =
∣∣∣1 + e2i(1+i)t

∣∣∣−2

comes from the modulus squared of the denominator. This proves the proposition.

3The reader may find it interesting to consult Figure A.1, which shows the image of ∂ΩR under
(tan

√
λ)/

√
λ and under f .
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A CONTINUUM THEORY OF CHIRAL SMECTIC C LIQUID
CRYSTALS∗

MARIA-CARME CALDERER† AND SOOKYUNG JOO‡

Abstract. We formulate a nonlinear continuum theory of flow of chiral smectic C liquid crystals
(C*) involving molecular director, layer order parameter, polarization vector, flow velocity, and
hydrostatic pressure fields. In addition to chiral orientational ordering, smectic C* phases also present
positional ordering, with molecular centers of mass arranged in one dimensional layers. The nonzero
tilt angle of the molecular director with respect to the layer normal together with the chirality is
responsible for the ferroelectric nature of the phase. This results in a stronger coupling with applied
electric fields than the dielectric nematic. We apply the model to study the molecular reorientation
dynamics in homeotropic geometry under the influence of an applied electric field. The switching
process between states with opposite polarization is understood by the traveling wave solution of
the system. We prove existence and uniqueness of the traveling wave and show that the predicted
switching time is smaller than that when the flow effect is neglected. We also obtain bounds on
the speed of switching and an optimality condition on the parameters of the problem. Numerical
simulations confirm the predictions of the analysis.

Key words. continuum theory, smectic liquid crystals, molecular reorientation dynamics, fer-
roelectric liquid crystals, traveling wave

AMS subject classifications. 35Q35, 35Q51, 76D07, 80A17

DOI. 10.1137/070696477

1. Introduction. We develop a model of smectic C* liquid crystals account-
ing for elastic, hydrodynamic, and electrostatic effects. The free energy includes the
Oseen–Frank energy of nematic liquid crystals, the smectic C energy of the form pro-
posed by Chen and Lubensky, and the ferroelectric electrostatic energy. We apply
the governing equations to study the switching dynamics, in homeotropic geometry,
between two states with opposite electric polarization. We apply a variational method
to characterize the speed of the switching traveling wave and show that the predicted
speed is greater than in the approach that neglects flow. We also obtain an optimal-
ity condition of the speed in terms of the parameters of the problem. We perform
numerical simulations to illustrate the dynamics of switching. A main feature of our
work is the study of the backflow effect due to the spontaneous polarization of the
liquid crystal.

Liquid crystal phases form when a material has a degree of positional or orien-
tational ordering yet stays in a liquid state. In the nematic state, molecules tend
to align themselves along a preferred direction with no positional order of centers
of mass. The unit vector field n, nematic director, represents the average direction
of molecular alignment. Moreover, if the liquid crystal is chiral, n follows a heli-
cal pattern with temperature-dependent pitch. Upon lowering the temperature, or
increasing concentration, according to whether the liquid crystal is thermotropic or
lyotropic, the nematic liquid crystal experiences a transition to the smectic A phase
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with molecules arranged along equally spaced layers. The molecules tend to align
themselves along the direction perpendicular to the layers. Upon transition to the
lower temperature smectic C phase, a symmetry break occurs, with molecules making
a nonzero tilt angle with the layer normal. Values of the tilt angle α are found to be
between 20 and 35 degrees and depend on the material and temperature.

We consider chiral smectic C liquid crystals and label them C*, according to
conventional notation. One relevant feature of liquid crystal molecules that form
smectic C* phases is the presence of a side chain giving a transverse electric dipole
and therefore yielding the polarization field P of the theory. Level surfaces of the
scalar variable φ describe smectic layers. A schematic representation of the fields
of a smectic C* phase is given in Figure 1, where the normal vector to the layers
corresponds to the axis of a cone of semiangle α, with n being allowed to rotate on
the surface. The polarization vector P is perpendicular to both the layer normal
∇φ and the director field [16]. Additional fields of the hydrodynamic theory are the
velocity field u and the hydrostatic pressure p. The latter is the constraint associated
with the assumption of fluid incompressibility.

In chiral configurations, since P rotates with n, the net polarization of the material
is zero. Therefore, ferroelectric states correspond to configurations with constant n.
The electrostatic effects due to polarization dominate the dielectric effects of standard
nematic liquid crystals. Consequently, faster switching devices are achieved with
smectic C* liquid crystals.

In this article, we study the transition between states with opposite polarization
and determine lower bounds for the speed of the connecting traveling wave. The
latter corresponds to a chiral configuration with periodically varying n and P. The
switching takes place upon reversing the direction of the applied electric field. The
stability of the polarized states was studied in [23]. The traveling wave of our problem
represents the backflow effect, that is, the flow generated by changes in the applied
electric field.

The free energy density of the model consists of nematic, smectic C, and elec-
trostatic contributions. The form of the smectic C free energy, FS , that we study
was introduced by Chen and Lubensky in 1976, based on the Landau–de Gennes
model for smectic A [6]. They investigated the nematic to smectic phase transition,
and it was later used by Renn and Lubensky to predict the twist grain boundary
phase in cholesteric smectic [19]. However, the free energy density FS is degener-
ate in that it lacks second order coercivity in the direction n. In order to avoid the
anisotropic quartic order derivatives in the Chen–Lubensky model, Luk’yanchuk pro-
posed a modified model [20]. The new model was later used in [13] to rigorously
analyze the temperature phase transition from chiral nematic to chiral smectic liquid
crystals. The analysis of the ferroelectric smectic C* phases was carried out in [24],
where the energy minimizers are further required to satisfy the electrostatic Maxwell
equations. The hydrodynamic theory that we propose combines the approaches by
Leslie and Ericksen (for details, see [8], [4], and [29]) for nematic and the work by
W. E [9] for smectic A liquid crystals. The latter follows the model by Kleman and
Parodi [14] also for smectic A phases, where the concepts of permeation force and
molecular field were introduced as forces driving smectic A flow. However, since the
layer position completely specifies the director field in smectic A, W. E shows that
only the permeation force is responsible for the dynamics of smectic A liquid crystals.
This is not the case for the smectic C modeling, where both forces are needed to
describe the hydrodynamics. We use a variational approach together with the dis-
sipation inequality to determine the elastic and viscous components, respectively, of
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such forces. Furthermore, the Lorenz force associated with the charge density −divP
enters the equation of balance of linear momentum.

Leslie, Stewart, and Nakagawa also developed a nonlinear continuum theory for
smectic C liquid crystals, using the c director, which is the projection of n onto the
layer, and the unit vector normal to the layers (see [18] and [29]). Their theory is
constrained to exclude variations in the layer spacing thickness and changes in tilt
with respect to the layer. The nonlinear continuum theory in the present paper is
also restricted to the constant tilt angle case, excluding the variation of the tilt angle
between the director and the layer normal as in [18]. However, our model allows the
variation of the layer spacing thickness.

The second part of the paper is devoted to the study of the switching dynamics of
a smectic C* sample confined between parallel bounding planes. We assume that the
electric field is applied parallel to the smectic layers. We derive the governing equation
of the director and the flow equation in the homeotropic geometry, where the smectic
layers are parallel to the bounding plates. When the flow is neglected, the director
profile can be understood by the traveling wave solution of the resulting nonlinear
reaction diffusion equation (see [7], [21], [25], and [26]). This equation also represents
the gradient flow of the energy. One main goal of our work is to study the traveling
wave solutions, taking flow and ferroelectric effects into account and estimating the
speed of the corresponding traveling wave. The variational characterization of the
speed follows the approach in [2] for reaction-diffusion equations. Furthermore, we
obtain an optimal lower bound of the speed in terms of the viscous and smectic
parameters of the model. Numerical simulations of the problem explore ranges of
parameters, from the case in which flow is neglected to cases in which parameters
approach the optimal lower bound of the speed. We find a very good agreement with
the predictions of the analysis.

Section 2 is devoted to static theory, and dissipation and hydrodynamics are
discussed in section 3. The analysis of traveling waves of the switching problem and
the corresponding numerical simulations are developed in section 4.

2. Hydrostatic theory.

2.1. Smectic C* free energy. The total free energy density consists of the
nematic fn and smectic fs parts. The Oseen–Frank energy density for a nematic is
given by

fn =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n + τ)2 +

K3

2
|n × (∇× n)|2,

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.
The parameter τ denotes the cholesteric twist.

In order to associate smectic and nematic structure with a state (n,Ψ), we write

Ψ(x) = ρ(x)eiϕ(x).

Then the molecular mass density is defined by

δ(x) = ρ0(x) +
1
2
(Ψ(x) + Ψ∗(x)) = ρ0(x) + ρ(x) cosϕ(x),

where ρ0 is a locally uniform mass density, ρ(x) is the mass density of the smectic
layers, and ϕ parametrizes the layers so that ∇ϕ is the direction of the layer normal.
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Now the smectic C energy density is given by

fs =
D

2
|D2

nΨ|2 − C⊥
2

|DnΨ|2 +
C‖
2
|n · DnΨ|2,

where Dn = ∇ − iqn, D2
n = Dn · Dn, and D,C⊥, C‖ are positive constants. The

model for smectic C energy was proposed by Chen and Lubensky [6], but we use
the modified model, introduced by Luk’yanchuk [20]. Since we investigate smectic
structure far from the nematic–smectic transition, we assume that the magnitude of
the smectic order parameter is a constant. We may assume that Ψ = eiϕ. Then fs
becomes

fs =
D

2
|∇ϕ− qn|4 +

D

2
(Δϕ − q∇ · n)2 − C⊥

2
|∇ϕ− qn|2 +

C‖
2

(n · ∇ϕ− q)2

=
D

2

(
|∇ϕ− qn|2 − C⊥

2D

)2

+
C‖
2

(n · ∇ϕ− q)2 +
D

2
(Δϕ− q∇ · n)2.

If n is a constant and ϕ is linear, then we can see that the energy is minimized if
and only if n · ∇ϕ = q and |∇ϕ− qn|2 = C⊥

2D . This corresponds to a uniform smectic
C state with tilt angle α, between the director and the layer normal, determined by
tan2 α = C⊥/(2Dq2) and layer thickness d satisfying (2π

d )2 = q2 + C⊥
2D .

We get the free energy density

fd = fn + fs.

Note that there are two constraints:

(2.1) |n| = 1 and n · ∇ϕ = cosα|∇ϕ|.

We consider the total smectic C free energy density

(2.2) f̃ = fd + fl,

where the last term is present in order to make use of Lagrange multipliers:

fl =
λ

2
(n · n − 1) + β(n · ∇ϕ− cosα|∇ϕ|).

2.2. The molecular field and the permeation force. In the nematic, the
molecular field can be obtained through the deformation of the director field while
the centers of gravity of the molecules are fixed. On the other hand, the directors
are parallel to the layer normal in smectic A. As a result, W. E instead discussed
the permeation forces, the normal forces acting on layers in [9]. In smectic C, the
directors are tilted with respect to the layer normal, and hence both the molecular
field and the permeation force need to be discussed. First we obtain the equilibrium
conditions in bulk by writing the variation of the total free energy with respect to the
director and the layer normal variations, while keeping the material undeformed. Let
D be any region inside the liquid crystal. We get

δ

∫
D

f̃ =
∫
D

(
∂f̃

∂(Δϕ)
δ(Δϕ) +

∂f̃

∂(∂iϕ)
δ(∂iϕ) +

∂f̃

∂(∂inj)
δ(∂inj) +

∂f̃

∂ni
δni

)
dx
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=
∫
D

(
∂i

[
∂i

(
∂f̃

∂(Δϕ)

)
− ∂f̃

∂(∂iϕ)

]
δϕ+

[
∂f̃

∂ni
− ∂j

(
∂f̃

∂(∂jni)

)]
δni

)
dx

+
∫
∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) +

[
∂f̃

∂(∂jϕ)
− ∂j(

∂f̃

∂(Δϕ)
)

]
δϕ+

∂f̃

∂(∂jni)
δni

)
νj ds

=:
∫
D

(−gδϕ− hiδni) dx +
∫
∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ+ πijδni

)
νj ds,

where

g = −∇ · τ

= −∇ ·
[
∇
(

∂fd
∂(Δϕ)

)
− ∂fd
∂(∇ϕ)

− β

(
n− cosα

∇ϕ
|∇ϕ|

)]
,(2.3)

hi = −∂fd
∂ni

+ ∂jπij − λni − β∂iϕ,

using the notation

(2.4) πij =
∂fd

∂(∂jni)
.

2.3. The elastic stress. We now calculate the elastic stress associated with the
infinitesimal deformation of the body, while holding the location of the layers and the
director field fixed. For this, we let

r′ = r + u(r),
n′(r′) = n′(r + u) = n(r),
ϕ′(r′) = ϕ(r + u) = ϕ(r).

Using the relations

∂r′i
∂rj

= δij +
∂ui
∂rj

and
∂ri
∂r′j

� δij −
∂(δui)
∂rj

,

we get

∂ϕ′

∂r′j
� ∂ϕ

∂rj
− ∂ϕ

∂rk

∂uk
∂rj

and
∂n′

i

∂r′j
� ∂ni
∂rj

− ∂ni
∂rk

∂uk
∂rj

.

Hence

δ(∂iϕ) � − ∂ϕ

∂rk

∂uk
∂ri

,

δ(∂inj) � −∂nj
∂rk

∂uk
∂ri

,

δ(Δϕ) � −2(∂ikϕ)(∂iuk) − (∂kϕ)Δuk.

Taking these approximations into account, we now calculate the corresponding varia-
tion of the energy of a subdomain D in Ω. For this, we use integration by parts. This
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gives

δ

∫
D

f̃ =
∫
D

(
∂f̃

∂(Δϕ)
δ(Δϕ) +

∂f̃

∂(∂iϕ)
δ(∂iϕ) +

∂f̃

∂(∂jni)
δ(∂jni)

)
dx

=
∫
D

(
∂fd
∂(Δϕ)

[
−2(∂jkϕ)(∂juk) − (∂kϕ)(∂2

juk)
])

dx

+
∫
D

([
∂fd

∂(∂jϕ)
+ β

(
nj − cosα

∂jϕ

|∇ϕ|

)] (
−(∂kϕ)(∂juk)

))
dx

+
∫
D

(
∂fd

∂(∂inj)
(
−(∂kni)(∂juk)

))
dx −

∫
∂D

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)νj ds

=:
∫
D

(
σdkj(∂juk)

)
dx −

∫
∂D

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)νj ds,

where

(2.5) σdkj =
[
− ∂fd
∂(Δϕ)

∂jkϕ+ τj(∂kϕ) − πij(∂kni)
]

is the deviatoric part of the stress tensor. To take this incompressibility constraint into
account, we modify the previous calculations to include the corresponding Lagrange
multiplier term. For this, let us consider the free energy density

f = f̃ − p∇ · u,

where p is a Lagrange multiplier. This leads to a modified elastic stress

(2.6) σekj = σdkj − pδkj .

2.4. The equilibrium equations. By combining all variations from the previ-
ous sections, we have the total variation of f̃ :

δ

∫
D

f̃ =
∫
D

(
σekj(∂juk) − hkδnk − gδϕ

)
dx

+
∫
∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ+ πkjδnk −

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

(2.7)

By integration by parts, it becomes

δ

∫
D

f̃ =
∫
D

(
−∂j(σekj)uk − hkδnk − gδϕ

)
dx

+
∫
∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) − τjδϕ+ πkjδnk

)
νj ds

+
∫
∂D

(
σekjuk −

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

Then the hydrostatic equilibrium condition is

δ

∫
D

f̃ = 0
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for all D ⊆ Ω and for admissible variations. Taking variations such that δn = 0,
δϕ = 0, and u and its gradient vanish at the boundary gives the system of partial
differential equations

(2.8) h = 0, g = 0,

and

(2.9) ∂jσkj = 0.

These, together with two constraint relations (2.1), give the equilibrium equations for
smectic C without the external fields. In three dimensions, the system (2.1) and (2.8)
consists of six scalar equations for the six unknowns n, ϕ, λ, and β. Well posedness of
this system, in its variational form, was studied in [13] and [24]. Moreover, in [13], the
authors performed an extensive phase transition and stability analysis of equilibrium
states. In [24], the role of permanent polarization was a main focus of the work.

Notice that the combined system (2.1), (2.8), and (2.9) is overdetermined. This
issue in nematic liquid crystals was addressed by Ericksen in [10]. He argues that
artificial body forces have to be included in the equations for the system to be closed.

2.5. The balance of torques. We integrate by parts (2.7) to obtain

δ

∫
D

f̃ =
∫
D

(
σekj(∂juk) − hkδnk − τk∂k(δϕ)

)
dr

+
∫
∂D

(
∂f̃

∂(Δϕ)
∂j(δϕ) + πkjδnk −

∂f̃

∂(Δϕ)
(∂kϕ)(∂juk)

)
νj ds.

(2.10)

Notice that f̃ is invariant under the rotation of the centers of gravity, the directors,
and the layers by the same angle ω. Now the energy is unchanged under the following
replacement:

u(r) = ω × r,
δn(r) = ω × n,

δϕ = 0,

where ω is the rotation vector. Then we have

∂juk = εkpjωp.

Therefore, we have, from (2.10),

δ

∫
D

fd = εkpjωp

∫
D

[
σdkj − hknj + β

(
nj − cosα

∂jϕ

|∇ϕ|

)
∂kϕ− λnknj − β∂kϕnj

]
dr

+ ωp

∫
∂D

(
εkpqπkjnqνj −

∂f

∂(Δϕ)
εkpj(∂kϕ)νj

)
ds

= εkpjωp

∫
D

[
σdkj − hknj

]
dr

+ ωp

∫
∂D

(
εkpqπkjnqνj −

∂f

∂(Δϕ)
εkpj(∂kϕ)νj

)
ds = 0.

(2.11)
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From the equilibrium condition (2.8), we obtain∫
D

εkpj(σdkj)dr +
∫
∂D

εkpq (sknq + (∂qϕ)mk) ds = 0,

where si = πijνj and mi = ∂f
∂(Δϕ)νi. Using the notation Γ for the antisymmetric part

of the elastic stress, we have

(2.12) εpjiσ
d
ij = Γp(σd),

and using the fact Γp(σe) = Γp(σd), we have

(2.13)
∫
D

Γp(σe) dr +
∫
∂D

(n× s + ∇ϕ× m) = 0.

From (2.9), we have

0 =
∫
D

εjpq (∂i(σeji)) rq

= εjpq

(
−
∫
D

(σeji + φji)∂irq +
∫
∂D

(σeji) rq νi

)

= −
∫
D

εjpi(σeji) + εjpq

∫
∂D

(σeji) rq νi.

Therefore, ∫
D

Γp(σe) dr =
∫
∂D

r × t dx,

where tj = (σeji) νi. Inserting this equation into (2.13), we finally obtain

(2.14)
∫
∂D

(r× t + n × s + ∇ϕ× m)ds = 0.

This indicates that there are three contributions to these surface torques: mechanical
torque (due to the stress tensor), director torque, and layer torque. This is the
analogue of the balance of torques in nematic liquid crystals given by equation (3.115)
of [8].

3. Hydrodynamic theory. In this section, we derive the hydrodynamic equa-
tions for smectic C liquid crystals following previous work by Ericksen and Leslie (see
[8], [4], [29], and [17]) for nematics and work by W. E [9] for smectic A. As we men-
tioned in the introduction, both the director and the layer functions are hydrodynamic
variables.

3.1. Balance laws. The equations of balance of mass, linear momentum, energy,
and angular momentum are given by

d

dt

∫
D

ρ dx = 0,(3.1)

d

dt

∫
D

ρvi dx =
∫
∂D

σijdsj ,(3.2)

d

dt

∫
D

E dx =
∫
∂D

(σv + ϕ̇τ + ṅπ) · ds−
∫
∂D

q · ds,(3.3)

d

dt

∫
D

(r × ρv) dr =
∫
∂D

(r × t + n × s + ∇ϕ× m) ds,(3.4)
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where D ⊆ Ω. We neglect body forces for simplicity, but they can easily be included
as needed. Here, σ, τ , π, t, s, and m consist of the equilibrium components obtained
in the previous sections and the dissipative components to be calculated next. The
energy density in (3.3) is given by E = 1

2 |v|2 + e, where e denotes the internal energy
per unit mass. The terms on the right-hand side of (3.3) represent the work done
by the stress, the layer permeation force, and the director force, respectively, on the
material. The vector field q denotes the heat flux.

Since the above balance laws are valid for any D ⊆ Ω, by the Reynolds transport
theorem, (3.1), (3.2), and (3.3) yield

ρt + ∇ · (ρv) = 0 or ρ̇ = −ρ∇ · v,(3.5)
ρv̇ = ∇ · σ or ρv̇i = ∂jσij ,(3.6)

ρ

(
1
2
v2 + e

)·
= ∇ · (σv + ϕ̇τ + ṅπ) −∇ · q,(3.7)

where ḟ = ∂f
∂t + v · ∇f is a material derivative. The local form of (3.4) becomes

a symmetry relation on constitutive equations, analogous to (2.28) of [10] for the
nematic liquid crystal in the static case. It is guaranteed to hold for fields satisfying the
balance of linear momentum, provided that the constitutive equations are invariant
under rigid body rotations. It will be used later in the connection with the entropy
inequality. In this paper, we assume incompressibility of the flow; that is, ∇ · v = 0
holds, and consequently, ρ is constant.

3.2. The entropy inequality. We assume that the second law of thermody-
namics in the form of the Clausius–Duhem inequality

(3.8) ρṠ + ∇ ·
( q
T

)
≥ 0

holds for all processes. Here field S denotes the entropy of the system per unit mass.
We use this inequality to determine the forms of the dissipative contribution to stresses
and forces [17]. Taking (3.6) into account, we rewrite the balance of energy (3.7) as
follows:

ρė = −∇ · q + Tr(σ∇v) + ∇ · (ϕ̇τ + ṅπ).

We let

(3.9) H = e− TS

denote the Helmholtz free energy density. Substituting (3.9) into inequality (3.8),
using the balance of energy, and omitting the pure divergence terms, we obtain

ρḢ = ρ(ė− T Ṡ − SṪ )

≤ Tr(σ∇v) −∇ · q + ∇ ·
( q
T

)
T − ρSṪ

= Tr(σ∇v) − ρSṪ − q · ∇T
T

.

Since H = H(ρ,n,∇n,∇ϕ,Δϕ, T ),

Ḣ =
∂H

∂T
Ṫ +

∂H

∂n
ṅ +

∂H

∂(∇n)
(∇n)· +

∂H

∂(∇ϕ)
(∇ϕ)· +

∂H

∂(Δϕ)
(Δϕ)· +

∂H

∂ρ
ρ̇.
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A direct computation gives

∇ϕ̇ = (∇ϕ)· + ∇v∇ϕ,
∇ṅ = (∇n)· + ∇v∇n,

Δϕ̇ = (Δϕ)· + 2Tr(∇2ϕ∇v) + Δv · ∇ϕ.

So, we get

Tr(σ∇v) − 1
T

q · ∇T − ρṪ

(
S +

∂H

∂T

)

−ρ∂H
∂n

ṅ− ρ
∂H

∂(∇n)
{∇ṅ−∇v∇n} − ρ

∂H

∂(∇ϕ)
{∇ϕ̇− (∇v)(∇ϕ)}

−ρ ∂H

∂(Δϕ)

{
Δϕ̇− 2Tr(∇2ϕ∇v) − Δv · ∇ϕ− ρ

∂H

∂ρ
ρ̇

}
≥ 0.

Since, in particular, such an inequality holds for all possible choices of Ṫ , we find that
S = −∂H

∂T . For smectic C liquid crystals, we take f̃ = ρH , as in (2.2). Moreover,
since the density is constant, the previous inequality becomes

Tr

[(
σ +

∂f̃

∂(∇n)
∇n +

∂f̃

∂(Δϕ)
∇2ϕ−∇

{
∂f̃

∂(Δϕ)
∇ϕ
})

∇v

]
− 1
T

q · ∇T

−
(
∂f̃

∂n
−∇ ∂f̃

∂(∇n)

)
ṅ−

(
−∇ · ∂f̃

∂(∇ϕ)
+ Δ

∂f̃

∂(Δϕ)

)
ϕ̇ ≥ 0.

Assuming that the stress consists of elastic and dissipative parts, σe (equation (2.6))
and σv, respectively, we write

σ = σe + σv.

This, together with substituting (2.3), (2.4), and (2.5) into the inequality, gives

Tr(σv∇v) − 1
T

q · ∇T + h · ṅ + gϕ̇ ≥ 0.

Let us introduce the notation

2σsym = σv + (σv)T ,
2D = ∇v + (∇v)T , 2w = ∇× v.

We denote D = (dij). From (2.12), we have

(3.10) Γ(σ) = (σ32 − σ23, σ13 − σ31, σ21 − σ12).

Therefore,

(3.11) Tr(σsymD) + Γ(σv) ·w + h · ṅ + gϕ̇− 1
T

q · ∇T ≥ 0.

Following de Gennes [8], in order to characterize Γ(σv), we need to consider the
balance of angular momentum. Using integration by parts, (3.4) becomes

∫
D

r × ρv̇ dr =
∫
D

(Γ(σ) + r × (∇ · σ)) dr +
∫
∂D

(n× s + ∇ϕ× m) ds.
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By substituting (3.6) into this, we get∫
D

Γ(σ) dx +
∫
∂D

(n × s + ∇ϕ× m) ds = 0.

Moreover, using (2.11), we now get

(3.12)
∫
D

Γ(σv) dr =
∫
D

(−n × h) dr,

which, substituted into the inequality, gives

(3.13) Tr(σsymD) + h ·N + gϕ̇− 1
T

q · ∇T ≥ 0,

where N = ṅ − w × n. Observe that n · N = 0 holds as a result of the constraint
|n| = 1.

We conclude this subsection by writing the skew part of the viscous stress. Since
(3.12) holds for all D ⊆ Ω, we have

(3.14) σskwij =
1
2
εkjiΓk = −1

2
εkjinjhi.

From now on, we will denote l = ∇ϕ.

3.3. Coefficients of viscosity. We consider linear dependence of the dissipative
forces on their fluxes. We require q and σsym to be invariant under the simultaneous
transformations n → −n and ∇ϕ→ −∇ϕ. We impose that h and ϕ̇ change into −h
and −ϕ̇, respectively, under the same transformation. Hence the most general form
of the equations is

σsymij = A1
ijkNk +A2

ijkmdkm,(3.15)

hi = B1
ijNj +B2

ijkdjk,(3.16)

qi = C3
ij

1
T

∂T

∂xj
+ C4

i g,(3.17)

ϕ̇ = D3
i

1
T

∂T

∂xi
+D4g,(3.18)

where A, B, C, and D are functions of ni and ∂iϕ. The most general form of h that
meets the invariance requirement is

h = β1N + β2(N · l)l + β3Dn + β4Dl + β5(n ·Dl)l
+ β6(n ·Dn)l + β7(l ·Dl)l.

(3.19)

The skew-symmetric part of the viscous stress follows from (3.14) together with (3.19).
Writing the symmetric part of the stress tensor explicitly from (3.15) and adding to
it the skew part, gives

σv = α1D + α2Dn⊗ n + α3n ⊗Dn + α4(Dl ⊗ l + l ⊗Dl) + α5Dl ⊗ n
+ α6n⊗Dl + α7(Dn ⊗ l + l ⊗Dn) + α8(l ·Dl)l⊗ n + α9(l ·Dl)n⊗ l

+ α10(n ·Dl)l ⊗ l + α11(l ·Dl)n ⊗ n + α12(n ·Dl)l ⊗ n
+ α13(n ·Dl)n ⊗ l + α14(n ·Dn)l ⊗ l + α15(n ·Dl)n ⊗ n(3.20)
+ α16(n ·Dn)l ⊗ n + α17(n ·Dn)n ⊗ l + α18(n ·Dn)n ⊗ n
+ α19(l ·Dl)l ⊗ l + α20(l ⊗ N + N ⊗ l) + α21N ⊗ n + α22n⊗ N

+ α23(l · N)l ⊗ l + α24(l · N)l ⊗ n + α25(l · N)n⊗ l + α26(l ·N)n ⊗ n.
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We also get

q =
1
T

(μ1∂iT + μ2ninj∂jT + μ3ϕiϕj∂jT + μ4niϕj∂jT + μ5njϕi∂jT )

+ (γ1ni + γ2ϕi)g,(3.21)

ϕ̇ =
1
T

(γ′1ni∂iT + γ′2ϕ∂iT ) + γ′3g.

The viscosity coefficients α, β, γ, μ, and γ′ cannot be arbitrarily chosen: they sat-
isfy inequalities that follow from (3.13). Further restrictions result from Onsager’s
reciprocal relations (see, for instance, [8], [4], and [22]):

β1 = α22 − α21, β2 = α25 − α24, β3 = α3 − α2 = α21 + α22,

β4 = α6 − α5 = 2α20, β5 = α13 − α12 = α24 + α25,

β6 = α17 − α16 = α26, β7 = α9 − α8 = α23,

γ′1 = γ1, γ′2 = γ2.

(3.22)

We end this section by summarizing the governing equations of the hydrodynamic
of smectic C. It consists of 11 equations and 11 unknowns. The latter are the pressure
p, the velocity field v, the director n, the layer ϕ, the temperature T , and Lagrange
multipliers λ and β. The equations are as follows:

• balance of linear momentum equation (3.6):

(3.23) ρv̇ = ∇ · (−pI + σd + σv) + f ,

where the elastic stress σd is given from (2.5), the viscous part σv is from
(3.20), and f is an external force;

• molecular field equation:

(3.24)
∂fd
∂ni

− ∂jπij + λni + β∂iϕ+ hi = 0,

where h is given from (3.19);
• permeation force equation:

ϕ̇ =
1
T

(γ′1ni∂iT + γ′2ϕ∂iT ) + γ′3g,

where g is defined in (2.3);
• balance of energy equation:

Et + ∇ · (Ev + q − σv − ϕ̇τ − ṅπ) = 0,

where q is given from (3.21);
• incompressibility condition:

∇ · v = 0;

• two constraints:

|n| = 1 and n · ∇ϕ = cosα|∇ϕ|.

In the isothermal case, this reduces to 10 equations and 10 unknowns.
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Fig. 1. Smectic C* liquid crystals in the homeotropic geometry; the polarization is perpendicular
to both the layer normal and the director.

4. Switching dynamics.

4.1. Electrostatic energy. In order to investigate the electric effect, we con-
sider the electric energy [8], [29],

(4.1) fe = −
∫

Ω

D · dE = −
∫

Ω

(ε⊥E + εa(n · E)n + P) · dE,

where E denotes the electric field, P denotes the ferroelectric polarization, and εa
represents the dielectric anisotropy. Since chiral smectic C liquid crystals are known
to be ferroelectric, they possess a spontaneous polarization P. Dropping the constant
term in the electric energy, (4.1) reduces to

(4.2) fe = −1
2

∫
Ω

εa(n ·E)2 dx −
∫

Ω

P ·E dx.

Since the magnitude of the polarization is small in smectic C* liquid crystals, we
assume that it is constant, P0. Furthermore, since the chiral molecules create a
spontaneous polarization within each layer and the polarization is perpendicular to
the director (see Figure 1), we write

(4.3) P = P0
∇ϕ× n
|∇ϕ× n| .

The polarization P also gives an electrostatic charge density, −∇ · P. The elec-
trostatic effects of chiral smectic C liquid crystals were studied in [24]. As a result of
the electric field, the Lorentz force f = (−∇ ·P)E has to be included in (3.23).

4.2. The model. We consider the homeotropic geometry where the liquid crys-
tal is confined between two parallel plates with the smectic layers parallel to the plates
(Figure 1). Let

n = (cosφ sinα, sinφ sinα, cosα),
v = (v, 0, 0),(4.4)

∇ϕ = (0, 0, k),

with φ = φ(z), v = v(z), p = p(x, y, z), and α and k constant. We consider the
switching dynamics between states with opposite polarization when a uniform electric
field is applied in a direction parallel to the layer, i.e., E = E0(0, 1, 0) in (4.2). We
also restrict our attention to the case when εa < 0, which applies to many smectic C
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liquid crystals. This tends to align the director and polarization fields along directions
perpendicular and parallel to the applied field, respectively. Note that, since ∇·P = 0,
f in (3.23) vanishes.

The balance of linear momentum (3.23) yields

ρvt = − ∂p

∂x
+

∂

∂z
(σd13 + σv13),

0 = −∂p
∂y

+
∂

∂z
(σd23 + σv23),(4.5)

0 = −∂p
∂z

+
∂

∂z
(σd33 + σv33).

The first two equations imply that p is linear on x and y. So, p is of the form

p(x, y, z, t) = k0(t) + k1(t)x+ k2(t)y + σd33 + σv33.

Hence, (4.5) reduces to

ρvt = −k1(t) +
∂

∂z
(σd13 + σv13).

Also, as a result of (4.4), equation (3.24) reduces to a single equation for φ. Hence
the system of governing equations is

(4.6)
ρvt =

∂

∂z

[
g(φ)vz − η3(sinφ)φt

]
− k1(t),

2β1 sin2 αφt = λ1 sinφvz + 2Kφzz − 2P0E0 sinφ− |εa|E2
0 sin2 α sin 2φ,

where

λ1 = sinα((−β1 + β3) cosα+ β4k),
K = sin2 α(K2 sin2 α+K3 cos2 α),

g(φ) =
1
2
(η1 + η2 cos2 φ),

η1 = α1 + α4k
2(α2 − α21) cos2 α+ (α5 + α7 − α20)k cosα,

η2 = sin2 α
(
α3 + α22 + k2(α13 + α25) + (α15 + 2α17 + α26)k cosα

+2α18 cos2 α
)
,

η3 = sinα(α20 k + α21 cosα),
∂p

∂x
= k1(t).

Onsager reciprocal relation (3.22) now gives

(4.7) λ1 = 2 sinα (α20k + α21 cosα) = 2η3.

Note that we may derive the following inequalities from the dissipation inequality
(3.13):

(4.8) β1 > 0, g(φ) > 0, and β1g(φ) sin2 α− η2
3 sin2 φ > 0.

The first inequality can be obtained from the shear flow alignment.
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Let V = v + K(t)/ρ, where K(t) is an antiderivative of k1(t). Using (4.7) and
new variables

z̄ =
(
P0Ec
K

) 1
2

z, t̄ =
P0Ec

β1 sin2 α
t, u =

β1√
KP0Ec

V, and Ec =
2P0

|εa| sin2 α
,

the system (4.6) becomes

εut̄ =
∂

∂z̄

(
sin2 α

η1
g(φ)uz̄ −

η3
η1

(sinφ)φt̄

)
,

φt̄ =
η3
β1

sinφuz̄ + φz̄z̄ − e sinφ− e2 sin 2φ,
(4.9)

where

ε =
ρK

β1η1
and e = E0/Ec.

We may assume that the dimensionless parameter ε
 1 since the viscous coefficients
are much bigger than the elastic coefficients.

4.3. Traveling wave solution. In this section, we study the traveling wave
solutions of system (4.9) to understand the director profile when the electric field
is applied. For this, we look for a solution of (4.9) in the form w(ζ) = u(z̄, t̄) and
θ(ζ) = φ(z̄, t̄), where ζ = z̄ − ct̄, such that θ connects two bistable states, θ = 0 and
θ = π. Then the traveling wave solution is (w(ζ), θ(ζ)) ∈ C2(R) × C2(R) and c ∈ R

satisfying

−cεw′ =
[
sin2 α

η1
g(θ)w′ + c

η3
η1

sin θ θ′
]′
,(4.10)

−c θ′ =
η3
β1

sin θw′ + θ′′ − e sin θ − e2 sin 2θ,(4.11)

with w(−∞) = w′(−∞) = 0, θ(−∞) = 0, and θ(∞) = π. This is consistent with
the system approaching an equilibrium state. Here the ′ denotes the derivative with
respect to ζ. Integrating (4.10) and using the relations w(−∞) = w′(−∞) = θ(−∞) =
0, equation (4.10) reduces to

(4.12) −cεw =
sin2 α

η1
g(θ)w′ + c

η3
η1

sin θ θ′.

Substituting this into (4.11), we have

(4.13) θ′′ + ch(θ)θ′ − e sin θ − e2 sin 2θ − cε
η3 sin θ

β1 sin2 αg(θ)
w = 0,

where

(4.14) 0 < h(θ) := 1 − η2
3

β1 sin2 α

sin2 θ

g(θ)
≤ 1.

Notice that the inequalities follow from (4.8). Introducing the rescaled variable
v = εw, we rewrite the system (4.12) and (4.13) as follows:

v′ + c εb(θ)v + c εβ1d(θ)θ′ = 0,
θ′′ + ch(θ)θ′ + E(θ) − c d(θ)v = 0,

(4.15)
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where

b(θ) =
η1

sin2 αg(θ)
,

E(θ) = −e sin θ − e2 sin 2θ,

d(θ) =
η3

β1 sin2 α

sin θ
g(θ)

.

If θ(ζ) and v(ζ) are solutions of the system, then so are θ(ζ+ζ0) and v(ζ+ζ0) for any
constant ζ0. Hence we impose a normalized condition, θ(0) = 1

2 [θ(−∞) + θ(∞)] = π
2 .

Using the condition v(−∞) = 0, we solve the first equation for v,

v(ε, c, θ, ζ) = −cεβ1e
−cεβ(ζ)

∫ ζ

−∞
d(θ(s))θ′(s)ecεβ(s) ds,

where

β(ζ) =
∫
b(θ(s)) ds.

Substituting this expression into the second equation of (4.15), we have

(4.16) θ′′ + ch(θ)θ′ + E(θ) − c d(θ)v(ε, c, θ, ζ) = 0.

For ε = 0, equation (4.16) becomes

(4.17) θ′′ + ch(θ)θ′ + E(θ) = 0.

From now on, we will restrict our attention to the case e > 1
2 so that the term E(θ) is

cubic-like. In fact, if e > 1
2 , the term E(θ) = −e sin θ(1+2e cosθ) has an intermediate

zero. In this case, (4.17) with a bistable nonlinearity has an increasing traveling wave
solution (c0, θ0) with c0 > 0 that θ0 → 0 as ζ → −∞ and θ0 → π as ζ → ∞, thanks
to the condition h(θ) > 0 for any θ [15]. Furthermore, we can easily see that [11], [1],
from the phase plane analysis, θ0 satisfies

|θ0(ζ) − π| ≤ Ke−μ1ζ , |θ′0(ζ)| ≤ Ke−μ1ζ

for ζ ≥ 0 and for some constant μ1 > 0, and

|θ0(ζ)| ≤ Keμ2ζ , |θ′0(ζ)| ≤ Keμ2ζ

for ζ ≤ 0 and for some constant μ2 > 0.
Motivated by the work in [12], we look for solutions of (4.16) of the form

θ = θ0 + s(ζ, c, ε),
c = c0 + σ.

Substituting these into (4.16) and letting r = (s, σ), we define the operator F :

F (r; ε) = θ′′0 + s′′ + (c0 + σ)h(θ0 + s)(θ′0 + s′) + E(θ0 + s)
−(c0 + σ)d(θ0 + s)v(ε, c0 + σ, θ0 + s).

Note that r satisfies the boundary conditions

(4.18) r(−∞; ε) = r(∞; ε) = 0.
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For a fixed constant μ satisfying 0 < μ < min{μ1, μ2}, we define the function spaces

Bnμ(R) =

{
u ∈ Cn(R) : ‖u‖Bn

µ(R) ≡
n∑
i=0

sup
x∈R

∣∣eμ|x|
(
d

dx

)i
u(x)

∣∣ <∞
}
,

Ḃnμ(R) = {u ∈ Bnμ(R) : u(0) = 0}.

Note that the mapping F is differentiable from X into Y , where

X = Ḃ2
μ × R,

Y = B0
μ.

The next lemma establishes that F meets the hypotheses of the implicit function
theorem.

Lemma 4.1.

(i) F is a continuous mapping, and ‖F (r; ε) − F (r; 0)‖Y → 0 as ε→ 0.
(ii) F is continuously Fréchet differentiable with respect to r, and

‖Fr(r; ε)[r̃] − Fr(r; 0)[r̃]‖Y → 0 as ε→ 0.

(iii) Fr(0; 0) has a bounded inverse.
Proof.

(i) We have

|eμ|z|(F (r; ε) − F (r; 0))|

= eμ|z|
∣∣∣∣(c0 + σ)2d(θ0 + s)εβ1g−(z)

∫ z

−∞
d(θ0 + s)(θ′0 + s′)g+(t)eμ|t|e−μ|t| dt

∣∣∣∣
≤ Cε(c0 + σ)‖θ′0 + s′‖B0

µ
eμ|z|

∣∣∣∣
∫ z

−∞
e−μ|t|dt

∣∣∣∣
≤ Cε(c0 + σ)‖θ0 + s‖B2

µ
,

where g±(z) = exp(±ε(c0 + σ)β(z)) and β′(z) = b(θ0 + s)(z). Notice that we used
the fact that β(z) is increasing.

(ii) Note that

eμ|z||Fr(r; ε)r̃ − Fr(r; 0)r̃|
= eμ|z||σ̃d(θ0 + s)vε(z) − (c0 + σ)d′(θ0 + s)vε(z)s̃+ (c0 + σ)d(θ0 + s)v′ε(z)s̃|,

where vε(z) = v(ε, c0 + σ, θ0 + s, z). Since we have

v′ε(z) = −(c0 + σ)εb(θ0 + s)vε(z) − (c0 + σ)εβ1d(θ0 + s)(θ′0 + s′),

the rest of the proof follows as in part (i).
(iii) It suffices to show that for any g ∈ Y , the linear problem

Fr(0; 0)r̃ = g

has a unique solution r̃ ∈ Ḃ2
μ such that

‖r̃‖Ḃ2
µ
≤ C‖g‖Y .
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The above linear problem can be explicitly written as

(4.19) s̃
′′

+ c0h(θ0)s̃′ + (c0h(θ0)θ′0 + E′(θ0))s̃ = G,

where

G = g − h(θ0)θ′0σ̃.

The proof of existence and uniqueness of solution of (4.19) satisfying boundary con-
dition (4.18) follows as that of Lemma 3 in [15].

The proof of the following theorem uses the implicit function theorem together
with Lemma 4.1.

Theorem 4.2. For ε > 0 sufficiently small, there exists a unique (up to transla-
tion in ζ) (cε, θε, vε) satisfying (4.15) such that

‖θε − θ0‖B2
µ

+ ‖vε‖B1
µ

+ |cε − c0| −→ 0 as ε→ 0.

4.4. Speed of the traveling wave. In this section, we study the speed of the
traveling front of (4.16). We follow the variational approach in [2] for reaction-diffusion
equations.

We first consider front propagation for the reaction-diffusion equation

(4.20) θ′′ + cθ′ = H(θ),

where H(θ) = e sin θ + e2 sin 2θ. This is the traveling wave equation for a switching
problem for smectic C liquid crystals, when flow effects are neglected (see [25], [26]).
It is known that there exists a unique heteroclinic solution (cs, θs) of (4.20) such that
θ(−∞) = 0, θ(∞) = π, and θ′(ζ) > 0 for |ζ| <∞. This equation can also be obtained
from our model by neglecting the flow. The authors of [7] found the explicit wave
front solution (θs, cs) of (4.20), given by

θs(ζ) = 2 arctan(e
√

2eζ), cs =
1√
2
.

Following the work by Benguria and Depassier in [2], we obtain the variational ex-
pression of the speed for (4.20):

(4.21) c2s = max
2
∫ π
0
Hfdθ∫ π

0
f2

f ′ dθ
,

where the maximum is taken over all positive increasing functions f in (0, π). We
denote the maximizing function by f̂ .

With the help of Theorem 4.2, we will investigate c0, the speed of the traveling
wave solution of (4.17). We let θ be a solution of (4.17). The same proof as in [2]
leads to the variational principle for the speed of the traveling wave of (4.17). Noting
that 0 < h(θ) ≤ 1,

(4.22) c20 = max
2
∫ π
0 Hfdθ∫ π

0
h2f2

f ′ dθ
,

where the maximum is taken over all positive increasing functions f in (0, π) for which
the integrals exist.
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Now we compare the speeds c0 and cs using (4.21) and (4.22). From (4.22), we
get

c20 ≥
2
∫ π
0 Hf̂dθ∫ π

0
h2f̂2

f̂ ′ dθ
.

Since 0 < h(θ) ≤ 1, we have

h2(θ) ≤ h(θ) = 1 − 2η2
3 sin2 θ

β1 sin2 α (η1 + η2 cos2 θ)
≤ 1 −A sin2 θ,

where

(4.23) A :=
2η2

3

β1 sin2 α (η1 + max{η2, 0})
≥ 0.

It follows from (4.14) that 0 ≤ A < 1. In fact, if max{η2, 0} = 0, then

A =
2η2

3

β1η1 sin2 α
= 1 − h

(π
2

)
< 1.

Also, if max{η2, 0} = η2, then

A =
2η2

3

β1 sin2 α(η1 + η2)
≤ 1 − h

(π
2

)
< 1.

From (4.21) and (4.22), we have

(4.24) c20 ≥
2
∫ π
0 Hf̂dθ∫ π

0
f̂2

f̂ ′ dθ −A
∫ π
0

sin2 θ f̂2

f̂ ′ dθ
=

2
∫ π
0 Hf̂dθ∫ π

0
f̂2

f̂ ′ dθ(1 −A ·M)
=

c2s
1 −A ·M ,

where M is a fixed number given by

M =

∫ π
0

sin2 θ f̂2

f̂ ′ dθ
∫ π
0
f̂2

f̂ ′ dθ
.

Notice that 0 < M < 1 is independent of viscosity coefficients, since f̂ is the maxi-
mizing function for cs. We rewrite (4.24) as

(4.25)
(
c0
cs

)2

≥ 1
1 −A ·M .

The inequality (4.25) shows that the switching is faster when the flow is taken into
consideration. The value A in (4.23) is the control parameter; i.e., A is the quantity
which measures flow effects. If A is close to 1, then flow effects are expected to be
strong, and if A is close to 0, then flow effects are weak. In particular, we see that the
ratio of c0 to cs increases as A approaches 1. In view of this control parameter, the
optimal switching time is obtained when A = 1. The sufficient condition for this is

η2 ≤ 0 and 2η2
3 = β1η1 sin2 α.

This condition depends only on the viscosity, the tilt angle, and the layer thickness
of the material. In [5], the control parameter was also found. Our control parameter
A is analogous to that given by Carlsson, Clark, and Zou in [5].
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Fig. 2. Director configuration when the initial condition is the linear function connecting 0
and π. The applied electric field corresponds to e = 0.75 on the left column and e = 1.3 on the right
column. The upper row depicts the director profile when flow is neglected, while in the second and
third rows the flow effects are included. For simulations in the second row, the control parameter A
is close to 0, while for the third row, A is close to 1.

4.5. Numerical simulation. In order to solve the system (4.9) numerically,
we use a second order semi-implicit scheme for time discretization. This scheme
requires us to solve two Helmholtz equations at each time step, which we do by
means of a spectral Galerkin method (see [27] and [28]). We impose the homogeneous
boundary and initial conditions on u and assume strong anchoring conditions for φ,
i.e., φ(0, t) = 0 and φ(L, t) = π, where L is the domain size. From (4.3) and (4.4) we
see that the director configurations φ = 0 and φ = π correspond to the polarization
pointing in the same and opposite directions as the applied electric field, respectively.

For ε, we simply take ε = 10−6. For the tilt angle and viscosity coefficients
appearing in the system, we use η1 = 3.8, η2 = −0.2, β1 = 40.9706, and α = π/8.
This set of parameters, employed in [3], gives a value of the control parameter A in
(4.23) of approximately 0.5. In [3], the authors study the macroscopic equations of
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Fig. 3. Director configuration when the sign of the electric field is reversed at t = 0. The
arrangement of the simulations in rows and columns follows the analogous criteria to those in
Figure 2.

smectic C* liquid crystals [18] in a homeotropic geometry to investigate the backflow
effect upon the removal of a strong electric field. Their approach is based on linear
analysis, replacing the nonlinear functions by their initial values. In our simulations,
we vary the parameter η3 in order for A to span the interval (0, 1).

We consider two types of initial conditions for φ corresponding to the simulations
shown in Figures 2 and 3, respectively. In Figure 2, the initial value φ0 is the linear
function connecting two bistable states, 0 and π. When a positive electric field is
applied, the molecules start to switch so that the polarization is parallel to the applied
field in most of the cell except near the top plate where the strong anchoring condition,
φ(L, t) = π, is imposed. Figure 2 depicts the director configuration with e = 0.75 in
the left and e = 1.3 in the right columns, respectively. The flow effect is neglected
in simulations in the first row, and it is included in the second and third rows. The
control parameter A is close to 0 in the middle, while A is close to 1 in the third row.
As we may expect from (4.25), the simulations in first and second rows depict almost
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the same switching time, while the third row describes faster switching dynamics.
In Figure 3, we numerically investigate the switching behavior when the sign of

the electric field is alternating, proceeding as follows: we first obtain the director
profile of the equilibrium state in a positive electric field and then impose it as an
initial condition of the problem with an applied negative electric field. In [21], the
authors investigated the switching time for the static model when alternating fields
are applied.

The simulations show that the predicted switching process is faster when the flow
is taken into consideration. We note that the switching is already faster even with a
very small, but nonzero, value of A.

Zou, Clark, and Carlsson in [30] also performed numerical simulations for reori-
entation dynamics with various boundary conditions, based on the model proposed
by Leslie, Stewart, and Nakagawa [18]. In bookshelf geometry, they showed that the
switching process is generally faster when backflow is present. They also numerically
confirmed that the control parameter found in [5] is a measure of the contribution of
the backflow effects. The control parameter in [30] is defined as the average of 1−h(θ)
over θ. In the previous section, we also identified an analogous control parameter,
which is dependent only on parameters of the problem, but we obtained bounds on
it that rigorously allow us to quantify the backflow effects in the switching time. In
particular, the upper bound on A yields an optimality condition on the parameters.

5. Conclusion. In this paper, we presented a nonlinear continuum theory of
smectic C* liquid crystals. Since the smectic C liquid crystals have molecules tilted
with respect to the layers, we use both the director and the layer functions as variables
in the hydrodynamic theory. For the general framework, we employed the approach
by Ericksen and Leslie for the hydrodynamic theory of the nematic liquid crystals.
Also, motivated by the work of W. E on the continuum theory of the smectic A
liquid crystals, we obtained the dynamic equations for the director n and the layer
variable ϕ.

We applied the model to study the switching dynamics between two states with
opposite polarization in the homeotropic geometry. Even though there are 22 vis-
cosity coefficients in our hydrodynamic theory, the system of equations reduces to
two equations with only four viscosity constants, η1, η2, η3, and β1. These constants
are further constrained by the entropy inequality. We understand the molecular re-
orientation via the propagation of a traveling wave. We proved the existence and
uniqueness of the traveling wave solution and further analyzed the speed of the front.
We showed that the flow generally makes the switching faster and that there is a
control parameter that determines the importance of the flow effect. This analysis
was confirmed by the numerical simulations.

Acknowledgment. We would like to thank Professor Jie Shen of Purdue Uni-
versity for his help on numerical simulations.
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Abstract. This paper develops optimal selling rules in asset trading using a regime-switching
exponential Gaussian diffusion model. The optimization problem is solved by a combined approach
of boundary value problems and probabilistic analysis. A system of linear differential equations
with variable coefficients and two-point boundary conditions, satisfied by the objective function of
the problem, is derived. The existence and uniqueness of the solution are proved. A closed-form
solution in terms of Weber functions is obtained for one-dimensional cases. For m-dimensional cases,
a stochastic recursive algorithm for numerically searching the optimal value is developed. Numerical
results are reported.

Key words. optimal selling rule, Markov chain, regime-switching, Gaussian diffusion, boundary
value problem, stochastic recursive algorithm

AMS subject classifications. 91B26, 91B28, 60J27, 62L20

DOI. 10.1137/060652671

1. Introduction. This paper develops an optimal selling rule in asset trading
using a regime-switching exponential Gaussian diffusion model for asset price. A
selling rule is specified by two threshold levels—an upper level (greater than the
purchase price) for the profit target and a lower level (less than the purchase price)
for the stop-loss limit. The asset is sold once its price hits either level. Our objective in
this study is to obtain a pair of optimal threshold levels that maximize a prespecified
objective function which reflects the investment goal and/or risk attitude of investors.

Recently, considerable attention has been drawn to regime-switching models in
financial mathematics which aim to include the influence of macroeconomic factors
on the individual asset price behavior. In this setting, asset prices are dictated by
a number of stochastic differential equations coupled by a finite-state Markov chain,
which represents various randomly changing economical factors. Model parameters
(drift and volatility coefficients) are assumed to depend on the Markov chain. Regime-
switching models have been used in derivative pricing (see Buffington and Elliott [2],
Guo [12], Guo and Zhang [13], and Yao, Zhang, and Zhou [22] among others), for in-
terest rates and bond prices (see Bansal and Zhou [1] and Dai, Singleton, and Yang [6]
among others), and in modeling commodity and electricity prices (see Clewlow and
Strickland [3], Erlwein, Benth, and Mamon [9], Kluge [16], and Lucia and Schwartz [18]
among others).

Along another line, Zhang [26] studied an optimal selling rule for stock liquida-
tion using a regime-switching geometric Brownian motion (GBM) model. In [26], a
method that combines differential equation with probabilistic analysis was developed;
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an analytical solution for the two-regime case was obtained, and optimization tech-
niques for deterministic functions were used to find the optimal thresholds. However,
when the number of regimes exceeds two, the analytical solutions are difficult to ob-
tain, and thus the deterministic optimization approaches are not applicable anymore.
To find a feasible solution, Yin, Liu, and Zhang [23] took a different approach, namely,
using stochastic approximation algorithms. By focusing on threshold-type strategies,
recursive algorithms using Monte Carlo simulation were developed in [23]. Conver-
gence and the rates of convergence of the algorithms were proved. The stochastic
algorithms were tested by using both simulations and market data (see Yin, Liu, and
Zhang [23], and Yin et al. [25] for more details).

In this work, we extend the aforementioned optimal selling rule study for the
regime-switching GBM model to a class of regime-switching exponential Gaussian
diffusion models that include the GBM and regime-switching GBM models as spe-
cial cases. The new mathematical model is presented first, and its connection with
other models is then noted. An objective function associated with the optimization
problem is defined next. Consequently, a system of linear differential equations with
two boundary conditions, satisfied by the objective function, is derived. We point
out a significant difference between the system considered in this paper and that of
Zhang [26]. That is, the coefficients of the differential equations are no longer con-
stant. Therefore, solutions from [26] cannot be used in this paper. We develop a
different approach. The existence of a solution to the variable coefficient boundary
value problem is proved by adopting a method of upper and lower solutions that use
the Green’s function of the associated homogeneous system. The uniqueness of the
solution is established by applying Dynkin’s formula. In addition, a numerical method
to construct a sequence of increasing functions (lower solution approximation) and a
sequence of decreasing functions (upper solution approximation) is developed. The
second part of the paper is concerned with stochastic optimization methods. We de-
velop a recursive algorithm which provides a feasible solution for searching the best
selling rules and is particularly applicable to models with large state spaces.

The rest of the paper is organized as follows. Section 2 presents the regime-
switching model and the precise formulation of the selling rule problem. The dif-
ferential equations and boundary values satisfied by the objective function of the
optimization problem is derived. Section 3 establishes the existence and uniqueness
of the solution to the problem. Section 4 is concerned with stochastic recursive algo-
rithms. The selling rule problem is reformulated as a stochastic optimization problem.
A recursive algorithm for searching the optimal thresholds using gradient estimation
and projection procedure is developed. Conditions for convergence of the algorithm
are provided. Numerical results are reported. Finally, the paper is concluded with
further remarks in section 5.

2. Problem formulation. Let (Ω,F ,P) be the underlying probability space,
upon which all stochastic processes are defined. Let α(t) be a continuous-time Markov
chain taking values in M := {1, . . . ,m}, a finite state space. The states represent
general market trends and other economic factors (called “state of the world” or
“regime”) and are labeled by integers 1 to m, where m is the total number of regimes
considered for the economy. For example, with m = 2, α(t) = 1 may stand for an up
market and α(t) = 2 a down market. Let B(t) be a real-valued standard Brownian
motion. Assume that α(t) is independent of B(t).

Let S(t) be the asset price at time t ≥ 0,

(2.1) S(t) = S0 exp(X(t)), t ≥ 0,
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where S0 > 0 denotes the asset price at t = 0 (i.e., S(0) = S0), and X(t) is the
solution of the stochastic differential equation

(2.2)
{

dX(t) = [b(α(t)) + μ(α(t))X(t)]dt + σ(α(t))dB(t),
X(0) = 0.

Note that the coefficients b(α(t)), μ(α(t)), and σ(α(t)) in (2.2) all depend on α(t),
indicating that they can take different values for different regimes. We assume that
b(i) ≥ 0 and σ(i) > 0 for each i ∈ M. Before introducing the optimal selling rule
problem, we make three remarks regarding the model given by (2.1) and (2.2).

Remark 2.1. Consider a special case in which there is only one state for α(t),
i.e., m = 1. Then α(t) = 1 for all t ≥ 0. In this case, these is no regime switching,
and we can write b(α(t)) = b, μ(α(t)) = μ, and σ(α(t)) = σ, where b, μ, and σ are
constants. Then (2.2) becomes an Ornstein–Uhlenbeck process,

(2.3) dX(t) = [b+ μX(t)]dt+ σdB(t).

In particular, if we assume that μ < 0 and let κ = −μ and θ = b/κ, then we have the
well-known Vasicek model [21] for interest rates, namely,

dr(t) = κ[θ − r(t)]dt + σdB(t),

where r(t) := X(t) denotes the instantaneous spot rate at time t ≥ 0, θ is the mean-
reverting level, κ is the rate at which r(t) is pulled back to the level θ, and σ is the
volatility of r(t). Also note that the solution of (2.3) is given by

(2.4) X(t) =
b

μ
(eμt − 1) + σ

∫ t

0

eμ(t−s)dB(s),

which is a Gaussian process. Consequently, the asset price S(t) = S0 exp(X(t)) be-
comes an exponential Gaussian process. However, when there is more than one state
for α(t), i.e., m ≥ 2, then X(t) will no longer be a Gaussian process. Instead, it
is a mixture of m Gaussian processes. We use the term regime-switching exponen-
tial Gaussian diffusion model for (2.1) and (2.2) in this paper that generalizes the
Ornstein–Uhlenbeck process.

Remark 2.2. Set μ(i) ≡ 0 and let b(i) = ν(i) − 1
2σ

2(i) for i ∈ M in (2.2). Then
the model given by (2.1) and (2.2) is reduced to the regime-switching GBM model
considered in [26] with drift ν(α(t)) and volatility σ(α(t)), i.e.,

dS(t)
S(t)

= ν(α(t))dt + σ(α(t))dB(t),

which includes the commonly used log-normal model as a special case (when m = 1).
Thus the model we consider in this paper further generalizes the (regime-switching)
log-normal model. The selling rule problem for the case of μ(i) ≡ 0 for i ∈ M has
already been handled in Zhang [26]. In what follows we will focus on μ(i) �= 0; see
also Remark 2.6.

Remark 2.3. Note that if m = 1, i.e., without regime switching, then the model
given by (2.1) and (2.2) becomes a particular member of the class of affine diffusion
models (see Duffie, Filipović, and Schachermayer [8] for definition of affine models).
For m > 1, the model generalizes the affine model by adding a Markovian regime
switching.
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To continue our studies, consider a threshold-type selling rule specified by a pair
of numbers z1 and z2 with −∞ < z1 ≤ 0 ≤ z2 <∞. Define a stopping time τ by

(2.5) τ = inf{t > 0 : X(t) �∈ (z1, z2)}.

Let SL = S0e
z1 and SU = S0e

z2 . Then 0 < SL ≤ S0 ≤ SU < ∞, and τ can be
equivalently defined in terms of S(t), i.e.,

(2.6) τ = inf{t > 0 : S(t) �∈ (SL, SU )}.

We call τ the selling time and SL and SU the lower and upper thresholds, respectively,
for asset S(t). That means we sell the asset at time τ either to take a profit (if SU is
reached) or to prevent further loss (if SL is reached).

The optimal selling rule problem is to find a pair of numbers (z1, z2) that maximize
the objective function:

(2.7) V (z1, z2) = E {Φ(X(τ)) exp(−ρτ)} ,

where Φ(x) is a prespecified utility function and ρ > 0 is a discount factor.
Remark 2.4. Depending on the investment purpose and/or the risk attitude of

an investor (risk-neutral or risk-averse), an appropriate utility function Φ(x) can be
used in the objective (2.7). For instance, if we choose Φ(x) = ex − 1, then we can
rewrite the objective function (2.7) as

V (z1, z2) = E

{
exp(−ρτ)S(τ) − S0

S0

}
,

which gives the expectation of the discounted percentage return. By maximizing this
objective function, one seeks the maximum percentage return, a common index used
in evaluating investment performance.

Remark 2.5. The selling rule problem we consider in this paper is an optimal
stopping problem. Note that the objective function (2.7) is determined by the first
hitting time τ of process X(t) at the double barriers z1, z2. When the log-normal
model (without regime-switching) is specified for the underlying asset price, a proba-
bilistic approach can be used to obtain the distribution function of the stopping time
τ (see Karatzas and Shreve [15] and Steele [20] for extensive discussions on the proba-
bilistic methods and results), and, consequently, an analytical objective function can
be derived. However, when the new regime-switching model is used, it is difficult
to obtain the distribution function of τ ; thus the “pure” probabilistic approach does
not work. We resort to methods of differential equations together with probabilistic
approaches to solve the problem.

To proceed, we derive a two-point boundary value problem associated with (2.7).
For a given real number z, consider the process ξ(t) that is the solution of

dξ(t) = [b(α(t)) + μ(α(t))ξ(t)]dt + σ(α(t))dB(t), ξ(0) = z.

Then ξ(t) = X(t) if z = 0. For each z ∈ [z1, z2], define a stopping time:

τ(z) = inf{t > 0 : ξ(t) �∈ (z1, z2)}.

Note we use τ(z) to indicate the z dependence of the stopping time. Let

(2.8) v(z, i) = E
{
Φ(ξ(τ(z))) exp(−ρτ(z))

∣∣∣α(0) = i, ξ(0) = z
}
.
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Then the objective function (2.7) can be written in terms of v(z, i) as

(2.9) V (z1, z2) =
m∑
i=1

piv(0, i),

where pi = P{α(0) = i}, i = 1, . . . ,m, assumed given, is the initial probability
distribution of the Markov chain α(·).

Let matrix Q = (qij)m×m be the generator of the Markov chain α(·). From
Markov chain theory (see, for example, Yin and Zhang [24]), the entries qij of Q
satisfy (i) qij ≥ 0 if j �= i; (ii)

∑m
j=1 qij = 0 for each i = 1, . . . ,m. Moreover,

(2.10) lim
Δt→0+

P (Δt) − I

Δt
= Q,

where P (Δt) = (pij(Δt))m×m = (P{α(Δt) = j|α(0) = i)})m×m is the transition
probability matrix of α(·), and I denotes the m×m identity matrix.

Consider a small interval Δt. Since ξ(t) and α(t) are jointly Markovian, it follows
that

v(z, i) =
m∑
j=1

E {v(ξ(Δt), j) exp(−ρΔt)}P{α(Δt) = j|α(0) = i}.

Expanding v(ξ(Δt), j) exp(−ρΔt) at 0, using Itô’s formula, sending Δt→ 0, and using
the limit (2.10), we obtain the following system of differential equations associated
with the value functions v(z, i), i = 1, . . . ,m:

(2.11)
σ2(i)

2
d2v(z, i)
dz2

+ [b(i) + μ(i)z]
dv(z, i)
dz

− ρv(z, i) +
m∑
j=1

qijv(z, j) = 0

for z ∈ (z1, z2). The boundary conditions are given by

(2.12) v(z1, i) = Φ(z1), v(z2, i) = Φ(z2).

If the boundary value problem (2.11) and (2.12) has a smooth solution v(z, i), i =
1, . . . ,m, then, using Dynkin’s formula (see, for example, Oksendal [19]), we can show
that it must be given by (2.8), which implies the uniqueness of the solution. Therefore,
it is necessary to establish the existence of a C2 solution to (2.11) and (2.12). This is
the task of the next section.

Remark 2.6. While a system of constant coefficient linear differential equations
was obtained in Zhang [26] based on the regime-switching log-normal model for asset
price, what we have here for the new model is a system of differential equations with
variable coefficients. Therefore, methods used in [26] for constant coefficient systems
are not applicable and we need a new approach for the analysis of (2.11) and (2.12).
One of the major contributions of this paper (in the next section) is that we employ
a new method and successfully prove the existence of a C2 solution of the variable
coefficient boundary value problem (2.11) and (2.12).

In what follows, we use fx and fxx to denote the first- and second-order derivatives
of f with respect to x, respectively, where f is either a real-valued or a vector-valued
function of x. Using this notation, we rewrite the system (2.11)–(2.12) in the following
matrix form:

(2.13)
{
AVzz(z) + [B1 +B0z]Vz(z) + CV (z) = FV (z) for z ∈ (z1, z2),
V (z1) = Φ(z1)11m, V (z2) = Φ(z2)11m,
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where V (z) = (v(z, 1), . . . , v(z,m))T , 11m = (1, . . . , 1)T , A = 1
2 diag(σ2(1), . . . , σ2(m)),

B0 = diag(μ(1), . . . , μ(m)), B1 = diag(b(1), . . . , b(m)), C = Qd − ρI = diag(q11 − ρ,
. . . , qmm − ρ), and F = Qd −Q where Qd = diag(q11, . . . , qmm).

3. Solution of the boundary value problem. In this section, we assume
that μ(i) > 0 for i ∈ M. The case of μ(i) < 0 can be handled similarly. We first
study the scalar system (the one-dimensional case) and derive an explicit solution.
Then we prove the existence of a solution for multidimensional systems, using the
one-dimensional result.

When m = 1, (2.13) reduces to a second-order scalar linear differential equation
subject to two boundary conditions:

(3.1)

⎧⎨
⎩

σ2

2
Vzz(z) + [b+ μz]Vz(z) − ρV (z) = 0 for z ∈ (z1, z2),

V (z1) = Φ(z1), V (z2) = Φ(z2),

where V (z) = v(z, 1), μ = μ(1), b = b(1), and σ = σ(1). Set x = κ1 + κ0z, where
κ0 =

√
2μ
σ and κ1 = b

σ

√
2
μ . Let Ṽ (x) = V (z). Then (3.1) is transformed into

(3.2)

{
Ṽxx(x) + xṼx(x) − λṼ (x) = 0 for x ∈ (κ1 + κ0z1, κ1 + κ0z2),
Ṽ (κ1 + κ0z1) = Φ(z1), Ṽ (κ1 + κ0z2) = Φ(z2),

where λ := ρ/μ. To solve the homogeneous equation (3.2), we use the following
transform:

Ṽ (x) = exp
(
−x

2

4

)
D(x).

Then D(x) satisfies

(3.3) Dxx(x) +
[
1
2
− x2

4
− λ̄

]
D(x) = 0,

where λ̄ := 1 + λ > 0. From the results presented in Darling and Siegert [7] and
Finch [10], we have the following proposition.

Proposition 3.1. The function Dν(x) defined below (known as the parabolic
cylinder function or the Weber function) satisfies the equation

(3.4) Dν
xx(x) +

[
1
2
− x2

4
+ ν

]
Dν(x) = 0,

where

(3.5) Dν(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
π

exp
(
x2

4

)∫ ∞

0

tν exp
(
− t

2

2

)
cos
(
xt− πν

2

)
dt, ν > −1,

1
Γ(−ν) exp

(
−x

2

4

)∫ ∞

0

t−ν−1 exp
(
− t

2

2
− xt

)
dt, ν < 0,

and Γ(·) is the Gamma function. The two branches in (3.5) agree for −1 < ν < 0.
Comparing (3.3) with (3.4), we see that one solution of (3.3) is given by

D(x) = D−λ̄(x) = D−(1+λ)(x) =
1

Γ(1 + λ)
exp

(
−x

2

4

)∫ ∞

0

tλ exp
(
− t

2

2
− xt

)
dt.
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The second independent solution is given by

D(−x) =
1

Γ(1 + λ)
exp

(
−x

2

4

)∫ ∞

0

tλ exp
(
− t

2

2
+ xt

)
dt.

It follows that the solution to (3.2) is

Ṽ (x) = C1

∫ ∞

0

tλ exp
(
− (t+ x)2

2

)
dt+ C2

∫ ∞

0

tλ exp
(
− (t− x)2

2

)
dt,

where C1 and C2 are constants to be determined using the given boundary conditions.
Consider the scalar boundary value problem defined below:

(3.6)

⎧⎨
⎩

Dxx(x) +
[
1
2
− x2

4
− (1 + γ)

]
D(x) = 0 for x ∈ (x1, x2),

D(x1) = 0, D(x2) = 0,

where γ > 0 is a fixed constant. Set

D1(x) = exp
(
−x

2

4

)∫ ∞

0

tγ exp
(
− t

2

2
− xt

)
dt

and

D2(x) = exp
(
−x

2

4

)∫ ∞

0

tγ exp
(
− t

2

2
+ xt

)
dt.

Then D1 and D2 form a Descartes system of solutions for the homogeneous equation
in (3.6), since D1 > 0, D2 > 0, and W (D1, D2) > 0 on [x1, x2], where

W (D1, D2) = det
(

D1 D2

D1,x D2,x

)

denotes the Wronskian of D1 and D2. Thus, the equation in (3.6) is disconjugate on
[x1, x2] (see Coppel [5]). This result, coupled with the observation that the boundary
conditions in (3.6) (i.e., D(x1) = 0 and D(x2) = 0) are two-point conjugate boundary
conditions, implies two immediate corollaries which we shall employ below to establish
the existence of a solution of (2.13) and to provide numerical approximations that
converge monotonically to the appropriate C2 solution.

Corollary 3.2. There exists a Green’s function G(γ;x, s) for the boundary
value problem (3.6) satisfying

G(γ;x, s) < 0 for (x, s) ∈ (x1, x2) × (x1, x2).

Moreover, Gx(γ;x1, s) < 0 for s ∈ (x1, x2) and Gx(γ;x2, s) > 0 for s ∈ (x1, x2),
where Gx denotes the partial derivative of G with respect to x.

Note that the Green’s function G plays the role that

D(x) =
∫ x2

x1

G(x, s)f(s)ds

is the unique solution of⎧⎨
⎩

Dxx(x) +
[
1
2
− x2

4
− (1 + γ)

]
D(x) = f(x) for x ∈ (x1, x2),

D(x1) = 0, D(x2) = 0,
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where f(x) is a continuous function on [x1, x2].
Corollary 3.3. The solution of the boundary value problem

⎧⎨
⎩

Dxx(x) +
[
1
2
− x2

4
− (1 + γ)

]
D(x) = 0 for x ∈ (x1, x2),

D(x1) > 0, D(x2) > 0

is positive on [x1, x2].
Proof. The disconjugacy of Dxx(x)+[12 −

x2

4 − (1+γ)]D(x) = 0 on [x1, x2] means
that any nontrivial solution has at most one root (counting multiplicities) on [x1, x2].
Since the solution is strictly positive at each boundary, the desired result follows.

Having done with the one-dimensional case, now we address the existence of a C2

solution to the m-dimensional (m > 1) boundary value system (2.13). To carry out
the analysis, the following assumption is needed.

Assumption 3.4.

μ(1)
σ2(1)

=
μ(2)
σ2(2)

= · · · =
μ(m)
σ2(m)

and

b2(1)
σ2(1)μ(1)

=
b2(2)

σ2(2)μ(2)
= · · · =

b2(m)
σ2(m)μ(m)

.

Theorem 3.5. Under Assumption 3.4, there exists a unique C2 solution to the
boundary value problem (2.13).

Proof. We employ the method of upper and lower solutions to obtain existence.

Let x = κ1 + κ0z, where κ0 =
√

2μ(i)

σ(i) and κ1 = b(i)
σ(i)

√
2
μ(i) are two constants due to

Assumption 3.4. For notational brevity, in what follows, we introduce

(3.7) κ̄1 = κ1 + κ0z1 , κ̄2 = κ1 + κ0z2.

Let Ṽ (x) = V (z). Then (2.13) is converted to the following problem:

(3.8)

{
Ṽxx(x) + xṼx(x) − C̃Ṽ (x) = F̃ Ṽ (x) for x ∈ (κ̄1, κ̄2),
Ṽ (κ̄1) = Φ(z1)11m, V (κ̄2) = Φ(z2)11m,

where

(3.9) C̃ = diag(λ1, . . . , λm), λi =
ρ− qii
μ(i)

, i = 1, . . . ,m,

and

(3.10) F̃ =

⎛
⎜⎜⎜⎝

0 −q12/μ(1) · · · −q1m/μ(1)
−q21/μ(2) 0 · · · −q2m/μ(2)

...
... · · ·

...
−qm1/μ(m) −qm2/μ(m) · · · 0

⎞
⎟⎟⎟⎠ .

Note that ρ > 0, μ(i) > 0, and qii ≤ 0. Hence λi > 0 for i = 1, . . . ,m.
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We use the (vector) transform Ṽ (x) = exp(−x2

4 )D(x), where

D(x) = (D1(x), . . . , Dm(x))T .

Then (3.8) is transformed into

(3.11)

⎧⎨
⎩

Dxx(x) + C̄D(x) = F̃D(x) for x ∈ (κ̄1, κ̄2),

D(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1)11m, D(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2)11m,

where

(3.12) C̄ = diag
([

1
2
− x2

4
− (1 + λ1)

]
, . . . ,

[
1
2
− x2

4
− (1 + λm)

])
.

Note that the left-hand side of the vector equation (3.11) is decoupled and, hence,
diagonal. For each i = 1, . . . ,m, the corresponding homogeneous scalar boundary
value problem is given by

(3.13)

⎧⎨
⎩

Di,xx(x) +
[
1
2
− x2

4
− (1 + λi)

]
Di(x) = 0 for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = 0, Di(κ̄2) = 0.

Let G(λi;x, s) be the associated Green’s function as given by Corollary 3.2. Define

G(x, s) = diag
(
G(λ1;x, s), . . . , G(λm;x, s)

)
.

Then G(x, s) is a Green’s function of the system (3.11).
Next, define a Banach space Cm by

Cm[κ̄1, κ̄2] =
{
U = (u1, . . . , um)T : [κ̄1, κ̄2] → R

m, ui ∈ C[κ̄1, κ̄2], i = 1, . . . ,m
}

with norm ‖U‖ = max1≤i≤m{‖ui‖0}, where ‖ · ‖0 denotes the usual supremum norm.
Consider the partial order on Rm:

V ≤ U ⇐⇒ vi ≤ ui, i = 1, . . . ,m, where U, V ∈ R
m.

Using this partial order, we define a partial order on Cm[κ̄1, κ̄2]:

V ≤ U ⇐⇒ V (x) ≤ U(x), x ∈ [κ̄1, κ̄2], where U, V ∈ Cm.

Let DΦ ∈ Cm denote the solution of the following homogeneous equation with non-
homogeneous boundary conditions:

(3.14)

⎧⎨
⎩

Dxx(x) + C̄D(x) = 0 for x ∈ (κ̄1, κ̄2),

D(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1)11m, D(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2)11m.

The existence of DΦ is ensured by Corollary 3.3. Define an operator K on Cm by

(3.15) (KD)(x) = DΦ(x) +
∫ κ̄2

κ̄1

G(x, s)F̃D(s) ds,



SELLING RULES FOR REGIME-SWITCHING DIFFUSIONS 819

where F̃ is given by (3.10).
Remark 3.6. Let K be defined by (3.15). Then K : Cm[κ̄1, κ̄2] −→ C2

m[κ̄1, κ̄2].
The remark follows by standard properties of the diagonal structure of the Green’s

matrix G(x, s) (see Coddington and Levinson [4, p. 192]). In fact, each scalar-valued
function G(λi;x, s) is continuous on triangles, x < s, s < x, and satisfies the differen-
tial equation

Di,xx(x) +
[
1
2
− x2

4
− (1 + λi)

]
Di(x) = 0

on triangles, x < s, s < x, and

lim
x→s+

Gx(x, s) − lim
x→s−

Gx(x, s) = 1.

If D ∈ Cm[κ̄1, κ̄2], then it is standard to show that KD ∈ C2
m[κ̄1, κ̄2].

The following remark is also immediate from Corollary 3.2 and (3.15) (see Cod-
dington and Levinson [4, p. 192] and Jackson [14, p. 99]).

Remark 3.7. D ∈ C2
m is a solution of the boundary value problem (3.11) if and

only if D ∈ Cm and KD = D.
In view of Corollary 3.2 and (3.10), we have G(x, s)F̃ ≥ 0 elementwise. Therefore,

K is a monotonic operator; that is,

V ≤ U =⇒ KV ≤ KU, U, V ∈ Cm.

We establish upper and lower solutions of the boundary value problem (3.11),
respectively. That is, (see Jackson [14]), we seek U0 ∈ C2

m and V0 ∈ C2
m satisfying

(3.16) V0 ≤ U0, V0 ≤ KV0, KU0 ≤ U0,

and

(3.17) V0(κ̄i) ≤ exp
(

(κ̄i)2

4

)
Φ(zi)11m ≤ U0(κ̄i), i = 1, 2.

Once we obtain the upper and lower solutions, the proof for existence of a solution is
complete. To see this, define a closed and convex region Ω ⊂ Cm by

D ∈ Ω ⇐⇒ V0(x) ≤ D(x) ≤ U0(x), κ̄1 ≤ x ≤ κ̄2 .

The inequalities (3.16) and (3.17), coupled with the fact that K is monotone, imply
that K : Ω → Ω. Thus, the existence of a solution D, satisfying

(3.18) V0(x) ≤ D(x) ≤ U0(x), κ̄1 ≤ x ≤ κ̄2,

follows as an application of the Schauder fixed point theorem (Jackson [14, p. 102]).
It can be shown, using the definition (3.15) and Corollary 3.2, that V0 is a lower

solution if

(3.19)

⎧⎨
⎩

V0,xx(x) + C̄V0(x) ≥ F̃ V0(x) for x ∈ (κ̄1, κ̄2),

V0(κ̄1) ≤ exp
(

(κ̄1)2

4

)
Φ(z1)11m, V0(κ̄2) ≤ exp

(
(κ̄2)2

4

)
Φ(z2)11m,
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where C̄ is the diagonal matrix defined in (3.12). Similarly, U0 is a upper solution if
the above inequalities are reversed, i.e.,

(3.20)

⎧⎨
⎩

U0,xx(x) + C̄U0(x) ≤ F̃U0(x) for x ∈ (κ̄1, κ̄2),

U0(κ̄1) ≥ exp
(

(κ̄1)2

4

)
Φ(z1)11m, U0(κ̄2) ≥ exp

(
(κ̄2)2

4

)
Φ(z2)11m.

Consider the solution DΦ of (3.14). Since DΦ satisfies the homogeneous equation
(3.14), 0 ≥ F̃DΦ, and DΦ satisfies the boundary conditions, it is readily seen that DΦ

satisfies (3.19). Thus we can choose V0 = DΦ.
On the other hand, the upper solution can be chosen as U0 = (K, . . . ,K)T ∈ Rm,

where K is a constant satisfying

(3.21) K ≥ max
{

exp
(

(κ̄1)2

4

)
Φ(z1), exp

(
(κ̄2)2

4

)
Φ(z2)

}
.

To show that the so-chosen U0 is indeed an upper solution, we need only to verify the
first inequality in (3.20). In fact, in view of (3.9) and (3.10), substituting the constant
vector (K, . . . ,K)T into the inequality yields, for i = 1, . . . ,m,

1
2
− x2

4
− (1 + λi) =

1
2
− x2

4
−
(

1 +
ρ

μ(i)
− qii
μ(i)

)
≤ −

∑
j �=i

qij
μ(i)

,

which is true in view of
∑m

j=1 qij = 0 and μ(i) > 0. This completes the proof of the
existence of a C2 solution.

Remark 3.8. Define Vk+1 = KVk, Uk+1 = KUk, k = 0, 1, 2 . . . . Then it follows
that

Vk ≤ Vk+1 ≤ Uk+1 ≤ Uk, k ≥ 0.

This string of inequalities is immediate from the monotonicity of K. Consequently,
there exist functions V̄ , Ū such that {Vk} ↑ V̄ , {Uk} ↓ Ū (pointwise and component-
wise) as k → ∞. Moreover, by Dini’s theorem, the convergence is uniform in x. So
V̄ , Ū ∈ Cm. Applying operator (3.15) to Vk (resp., Uk) and letting k → ∞, we have
KV̄ = V̄ and KŪ = Ū . Therefore, both V̄ and Ū are the solutions of (3.11). From
Remark 3.6, we know both V̄ and Ū are C2

m functions. The uniqueness of the solution
implies that V̄ = Ū .

Remark 3.9. From the proof of Theorem 3.5, we also see that the C2 solution
of the system (2.13) (and therefore the objective function (2.9)) is continuous with
respect to the boundary points z1 and z2.

Now we study the optimality of the objective function (2.9). We make the fol-
lowing assumption on z1 and z2; see Zhang [26] for further discussions.

Assumption 3.10.

a1 ≤ z1 ≤ b1, a2 ≤ z2 ≤ b2,

where a1, b1, a2, b2 are prespecified constants satisfying −∞ < a1 < b1 < 0 < a2 <
b2 <∞.

Theorem 3.11. Under Assumptions 3.4 and 3.10, the following assertions hold:
1. For each 1 ≤ i ≤ m, v(z, i) ∈ C2 and is the unique solution to (2.11) and

(2.12).
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2. For each fixed pair (z, i), v(z, i) is a continuous function of (z1, z2) on
[a1, b1] × [a2, b2].

3. There exists an optimal pair (z∗1 , z
∗
2) ∈ [a1, b1] × [a2, b2] that maximizes the

objective function (2.9).
Proof. Parts 1 and 2 are obtained by Theorem 3.5 together with Dynkin’s formula.

Part 3 follows from the compactness of [a1, b1] × [a2, b2].
We provide a numerical example to demonstrate the approximation process pro-

posed in Remark 3.8.
Example 3.12. Consider a two-dimensional system (m = 2) and construct the

two sequences of approximation solutions (upper and lower) by iteratively solving the
corresponding boundary value problems. We numerically solve these equations and
graphically display the convergence of the two sequences.

When m = 2, the system (3.11) can be written componentwise as
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1,xx(x) +
(

1
2
− x2

4
− (1 + λ1)

)
D1(x) = − q12

μ(1)
D2(x),

D2,xx(x) +
(

1
2
− x2

4
− (1 + λ2)

)
D2(x) = − q21

μ(2)
D1(x) for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Di(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2), i = 1, 2.

(3.22)

We first find the solution DΦ = (D1,Φ, D2,Φ)T of the associated homogeneous equa-
tions with nonhomogeneous boundary conditions, i.e.,

(3.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1,xx(x) +
(

1
2
− x2

4
− (1 + λ1)

)
D1(x) = 0,

D2,xx(x) +
(

1
2
− x2

4
− (1 + λ2)

)
D2(x) = 0 for x ∈ (κ̄1, κ̄2),

Di(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Di(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2), i = 1, 2.

To make the expression compact, let

Wλ(x) = exp
(
−x

2

4

)∫ ∞

0

tλ exp
(
− t

2

2
− xt

)
dt.

Then we have

(3.24) D1,Φ(x) = C1Wλ1 (x) + C2Wλ1(−x),

where the two constants C1, C2 are determined by the given pair of boundary condi-
tions,

C1 =
Wλ1(−κ̄2) exp

(
(κ̄1)

2

4

)
Φ(z1) −Wλ1 (−κ̄1) exp

(
(κ̄2)

2

4

)
Φ(z2)

Wλ1 (κ̄1)Wλ1 (−κ̄2) −Wλ1 (−κ̄1)Wλ1(κ̄2)
,

C2 =
Wλ1(κ̄1) exp

(
(κ̄2)

2

4

)
Φ(z2) −Wλ1(κ̄2) exp

(
(κ̄1)

2

4

)
Φ(z1)

Wλ1(κ̄1)Wλ1 (−κ̄2) −Wλ1(−κ̄1)Wλ1 (κ̄2)
.

Replacing λ1 in the equations for D1,Φ with λ2 yields D2,Φ. Thus we obtain an
analytical lower solution V0 = DΦ.
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Starting at V0 = (V0,1, V0,2)T , the approximate sequence Vk = (Vk,1, Vk,2)T , k ≥ 1,
can be constructed by iteratively solving the following two-point boundary value prob-
lem:

⎧⎪⎪⎨
⎪⎪⎩

Vk+1,1,xx(x) +
(

1
2
− x2

4
− (1 + λ1)

)
Vk+1,1(x) = − q12

μ(1)
Vk,2(x) for x ∈ (κ̄1, κ̄2),

Vk+1,1(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Vk+1,1(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2),

(3.25)

⎧⎪⎪⎨
⎪⎪⎩

Vk+1,2,xx(x) +
(

1
2
− x2

4
− (1 + λ2)

)
Vk+1,2(x) = − q21

μ(2)
Vk,1(x) for x ∈ (κ̄1, κ̄2),

Vk+1,2(κ̄1) = exp
(

(κ̄1)2

4

)
Φ(z1), Vk+1,2(κ̄2) = exp

(
(κ̄2)2

4

)
Φ(z2) .

(3.26)

The same process, starting at the upper solution U0 = (K,K)T , will produce the
other sequence Uk, k ≥ 0. In view of (3.21), we choose

K = max
{

exp
(

(κ̄1)2

4

)
Φ(z1), exp

(
(κ̄2)2

4

)
Φ(z2)

}
.

We used a box method (see Zwillinger [27]) to solve (3.25) and (3.26). Various
parameters for the numerical experiment were chosen as follows:

μ(1) = 0.1, μ(2) = 0.2, b(1) = 0, b(2) = 0, σ2(1) = 0.25, σ2(2) = 0.5,

Q = (qij) =
(

−2 2
3 −3

)
, ρ = 1, z1 = −1, z2 = 1, Φ(x) ≡ 1.

Figure 1 displays a number of upper and lower approximation solutions. It demon-
strates that the upper and lower approximate sequences converge to a common solu-
tion, which is the unique solution to the boundary value system.

4. Stochastic optimization method. Except for the special one-dimensional
case, it is very difficult to obtain the analytical representation of the objective func-
tion (2.7). Thus finding a systematic way of obtaining the optimal threshold values
becomes an important task. To search for the optimal thresholds, we develop stochas-
tic recursive approximation algorithms in this section. To this end, we reformulate
the task of finding optimal thresholds as a stochastic approximation or stochastic
optimization problem. For a general approach to stochastic approximation methods,
the reader is referred to Kushner and Yin [17] for an up-to-date account of stochastic
approximation.

4.1. Optimization problem and stochastic approximation algorithms.
In lieu of using the differential equation method, we convert the optimal stopping
problem to a stochastic optimization problem. The rationale is based on using a
threshold-type strategy, and the underlying problem can be stated as

(4.1) Problem P :
{

Find argmax ϕ(z) = E {Φ(X(τ)) exp(−ρτ)},
z = (z1, z2)T ∈ [a1, b1] × [a2, b2],
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Fig. 1. Approximation sequences and convergence. The dotted lines are the upper approxi-
mation sequences, and the solid lines are the lower approximation sequences. The left graph is for
D1(x), and the right graph is for D2(x).

where we use ϕ(z) for the objective function V (z1, z2) defined in (2.7), and τ is the
stopping time defined by (2.5). Our objective is to find the optimal vector-valued
threshold value for the constraint optimization problem P .

To approximate the optimal threshold value z∗ = (z∗1 , z
∗
2)T , we construct a recur-

sive algorithm

(4.2) zn+1 = zn + {step size} · {gradient estimate of ϕ(z)},

where zn = (zn,1, zn,2)T denote the threshold values at the nth iteration. The step
size is typically a decreasing sequence of real numbers satisfying certain conditions.

To implement (4.2), we need to construct gradient estimates of the objective
function ϕ(z) either by observing the real data with noisy measurements or by using a
simulation. We use ξ to denote the collective random factors (including the Brownian
motion, the Markov chain, and other observation noise or simulation of random effects
from random seeds) so that each realization of ξ uniquely determines a sample path of
the asset price dynamics (2.2) as well as the stopping time τ (2.5) for a fixed value of z.
At the nth iteration, suppose the threshold values are zn = (zn,1, zn,2)T . Let ϕ̃(zn, ξn)
denote the value of the discounted utility function either observed or simulated using
the sample path associated with ξn. We assume that E{ϕ̃(z, ξn)} = ϕ(z).

Let Δϕ̃(zn, ξn) = (Δ1ϕ̃(zn, ξn),Δ2ϕ̃(zn, ξn))T denote the sample path gradient
estimates using a finite difference approximation, where, for i = 1, 2,

(4.3) Δiϕ̃(zn, ξn) =
ϕ̃(zn + δnei, ξn) − ϕ̃(zn − δnei, ξn)

2δn
,

e1 = (1, 0)T and e2 = (0, 1)T are the standard unit vectors, and {δn} is a sequence of
positive real numbers tending to 0 and satisfying certain conditions.
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Remark 4.1. The following points are worth noting.
(1) In (4.3), we use the same sample path generated by ξn for calculations of

the function ϕ̃ at different z values. This is because when Monte Carlo simulation is
used to calculate a finite difference gradient approximation, using the same random
numbers in calculating the two function values can reduce the variance of the estimator
(see, for example, Glasserman [11]). The common random number generators can be
effectively used in conjunction with stochastic approximation methods; see Kushner
and Yin [17, pp. 15, 143].

(2) In the above construction of gradient estimates, instead of one simulation run,
we could use multiple replications. We could use (2.2) to generate n0 independent
sample paths of X(t). For each sample path, we find the value of τ , i.e., the first exit
time of X(t) from the interval (zn,1, zn,2). Then we construct the gradient estimates
using n0 different random seeds and then average them out. In lieu of one replication,
we then use the average of n0 replications as the gradient estimator. The advantage is
that the result will be smoother. However, if we deal with real data, this idea cannot
be implemented. For simplicity, we do not write the expression but refer the reader
to [23] for further details.

The stochastic recursive algorithm (4.2) takes the form

(4.4) zn+1 = zn + εnΔϕ̃(zn, ξn),

where {εn} is a sequence of real numbers known as step sizes satisfying 0 ≤ εn → 0 and
εn/δn → 0 as n → ∞, and

∑
n εn = ∞. To ensure the boundedness of the iterates,

similarly to Yin, Liu, and Zhang [23] (see also [17, p. 121]), we use the following
modified stochastic approximation algorithm for the constrained problem P :

(4.5) zn+1 = Π[zn + εnΔϕ̃(zn, ξn)],

or, in a component form,

zn+1,i = Π[ai,bi][zn,i + εnΔiϕ̃(zn, ξn)] for i = 1, 2,

where the projection Π is defined as, for each real value x,

Π[ai,bi](x) =

⎧⎪⎨
⎪⎩
ai if x < ai,

bi if x > bi,

x otherwise.

The idea is as follows: For each component i, after the update zn,i + εnΔiϕ̃(zn, ξn) is
obtained, we compare this value with the bounds ai and bi. If the updated value is
smaller than the lower value ai, reset the value to ai; if it is greater than the upper
value bi, reset it to bi; otherwise keep the value as it was. Note that in view of the
techniques in [17, Chapter 5], the projection algorithm may be rewritten as

(4.6) zn+1 = zn + εnΔϕ̃(zn, ξn) + εnRn,

where εnRn = zn+1 − zn − εnΔϕ̃(zn, ξn), known as reflection term, is the minimal
force needed to bring the iterates back to the constrained region if they ever escape
from there.

In what follows, we present sufficient conditions guaranteeing the convergence of
the algorithm. For analysis purposes only, define

(4.7)

ψn = Δϕ̃(zn, ξn) − EnΔϕ̃(zn, ξn),
ζn,i = EnΔiϕ̃(zn, ξn) − [ϕ(zn + δnei) − ϕ(zn − δnei)], i = 1, 2,

bn,i =
ϕ(zn + δnei) − ϕ(zn − δnei)

2δn
− ∂ϕ(zn)

∂zi
, i = 1, 2,
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where En denotes the conditional expectation with respect to Fn, the σ-algebra gen-
erated by {z0, ξj : j < n}, and ϕz(z) = ((∂/∂z1)ϕ(z), (∂/∂z2)ϕ(z))T denotes the
gradient of ϕ(·). Above, ζn,i and bn,i for i = 1, 2 represent the noise and bias, and
{ψn} is a martingale difference sequence. This separation together with the expanded
form of the recursion is for analysis purposes. As far as computation is concerned,
only (4.5) is needed.

Write ζn = (ζn,1, ζn,2)T and βn = (bn,1, bn,2)T and note that ζn = ζn(zn, ξn).
With the noise ζn(zn, ξn) and the bias βn defined above, algorithm (4.5) becomes

(4.8) zn+1 = zn + εnϕz(zn) + εn
ψn
2δn

+ εnβn + εn
ζn
2δn

+ εnRn.

Denote tn =
∑n−1
i=1 εi and

m(t) =

{
n : tn ≤ t < tn+1, t ≥ 0,
0, t < 0.

To study the convergence of the algorithm, define a piecewise constant interpolation
by z0(t) = zn for t ∈ [tn, tn+1) and zn(t) = z0(t+ tn) for n > 0. Similarly, define the
interpolation for Rn. Let {Δn} be a sequence of positive real numbers tending to 0
as n → ∞ such that supj≥n εj/Δn → 0. Select an increasing sequence n = m1 <

m2 < · · · such that
∑ml+1−1
k=ml

εk/Δn → 1 as n→ ∞ uniformly in l. Then we have the
following convergence result.

Proposition 4.2. Assume that ϕzz(·), the second partial derivative of ϕ(·),
is continuous, that supnE|ϕ̃(z, ξn)|2 < ∞ for each z, that the projected ordinary
differential equation

(4.9) ż(t) = ϕz(z(t)) + r(t), r(t) ∈ C(z(t))

has a unique solution for each initial condition, and that there is a unique stationary
point z∗ of (4.9) in (a1, b1)× (a2, b2) that is globally asymptotically stable in the sense
of Liapunov. In addition, for each z in the constraint set, {ζn(z, ξ)} is uniformly
integrable, and

∑ml+1−1
k=ml

εkEml
ζ(z, ξk)/δk → 0 in probability. Then zn(·) converges

to z(·), the solution of the projected ordinary differential equation (4.9). Assume that
{sn} is a sequence of real numbers satisfying sn → ∞ as n → ∞. Then zn(sn + ·)
converges to z∗ with probability 1.

In Proposition 4.2, r(t) satisfies R(t) =
∫ t
0 r(s)ds, with R(t) being the limit of the

interpolation sequence of the projection term Rn. The set C(z) is defined as follows:
If z is inside (a1, b1) × (a2, b2), then C(z) contains only the zero element. If z is on
the boundary, then C(z) is the infinite convex cone generated by the outer normal at
z of the faces on which z lies; see [17, section 4.3] for more discussions. The proof of
the proposition is based on a combined use of a probabilistic approach and analytic
results on differential equations. For explanations on the conditions needed together
with a proof, we refer the reader to [23]. In addition to the convergence, we may also
study the rates of convergence and obtain large deviation-type bounds as was done
in [25]. However, these are not the main concerns of the current paper. We are more
interested in the numerical performance of the algorithm, which is discussed next.

4.2. Numerical results. In this section we provide two numerical examples and
compare the results. We study a two-dimensional problem with variable parameters
(i.e., regime-dependent parameters) in the first example and constant parameters in
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Table 1

Optimal thresholds using the stochastic approximation algorithm.

Initial z −0.05, 0.05 −0.10, 0.20 −0.20, 0.40 −0.10, 0.60 −0.05, 0.85
z∗(n0 = 100) −0.36, 0.421 −0.36, 0.422 −0.36, 0.422 −0.36, 0.422 −0.36, 0.423
z∗(n0 = 10) −0.36, 0.409 −0.36, 0.418 −0.36, 0.429 −0.36, 0.418 −0.36, 0.419
z∗(n0 = 1) −0.36, 0.409 −0.36, 0.416 −0.36, 0.425 −0.359, 0.417 −0.359, 0.423

the second. In both cases, the Markov chain α(t) takes two states, whose generator
is given by

Q =
(

−6.04 6.04
8.90 −8.90

)
.

The probability distribution of the initial Markov chain α(0) is given by p1 = p2 = 1
2 .

We use the utility function Φ(x) = ex − 1 (see Remark 2.4).
Example 4.3. We choose the following parameter values for the regime-switching

model: μ(1) = 0.01, μ(2) = 0.02, b(1) = b(2) = 0, σ2(1) = 0.25, σ2(2) = 0.5,
and ρ = 1. We first implement the stochastic recursive algorithm developed in sec-
tion 4.1. For the search region for z = (z1, z2), we choose (z1, z2) ∈ [a1, b1]× [a2, b2] =
[−0.36,−0.01]× [0.01, 1.0]. The sequence {εn} for step sizes in (4.4) and the sequence
{δn} used in the gradient estimation (4.3) are chosen to be εn = 1/(n + k0) and
δn = 1/(n1/6 + k1), respectively, where k0 and k1 are some positive integers, e.g.,
k0 = k1 = 1. The search stops whenever εn < 0.001. In what follows, we use n0

replications, as presented in Remark 4.1. Table 1 reports the search results by using
the stochastic recursive algorithm for five different initial values of z and for three
different n0 for gradient estimation. Note that the last row in the table (n0 = 1) gives
the results obtained by using a single path gradient estimate in the recursion.

Next we numerically solve the differential equations (2.11) with boundary condi-
tions (2.12). For this example, they become

(4.10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ2(1)
2

d2v(z, 1)
dz2

+ μ(1)z
dv(z, 1)
dz

+ (q11 − ρ)v(z, 1) + q12v(z, 2) = 0,

σ2(2)
2

d2v(z, 2)
dz2

+ μ(2)z
dv(z, 2)
dz

+ (q22 − ρ)v(z, 2) + q21v(z, 1) = 0,

v(z1, i) = ez1 − 1, v(z2, i) = ez2 − 1, i = 1, 2.

We use a grid size 0.01 to divide the region [−0.36,−0.01]×[0.01, 1.0] for (z1, z2). This
results in 36 points along z1, 100 points along z2, and totally 3600 different pairs for
(z1, z2). For each pair, which specifies the boundary values, a finite difference scheme
is used to solve the system (4.10). The objective function V (z1, z2) is then calculated
by V (z1, z2) = [v(0, 1) + v(0, 2)]/2. Figure 2 plots the surface V (z1, z2) using the
3600 values. The numerical results show that the maximum value for V (z1, z2) is
achieved at (−0.36, 0.41) and (−0.36, 0.42). This suggests that the optimal threshold
(z∗1 , z

∗
2) is very close to these two points. It is consistent with the estimates obtained

in Table 1 by using the stochastic optimization algorithms. Note that numerically
solving the differential equations is time consuming, while the stochastic recursive
algorithms produce the optimal estimates in much less computation. This efficiency
becomes more eminent when a small number of sample paths is used in gradient
estimation. From Table 1 we notice that even a single sample path yields pretty good
approximations to the optimal thresholds.
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Fig. 2. Surface of the value function V (z1, z2) over the region (z1, z2) ∈ [−0.36,−0.01] ×
[0.01, 1.0]. Grid size 0.01 is used.

Table 2

Comparison of optimal selling rules in different markets.

Optimal threshold Percentage increase Percentage decrease
(z∗1 , z∗2 ) in asset price in asset price

Bear market (Case I, Ex. 3) (−0.36, 0.33) 39% 30%
Bull market (Case II, Ex. 3) (−0.36, 0.55) 73% 30%

Mixed market (Ex. 2) (−0.36, 0.42) 52% 30%

Based on the results, we may conclude that the optimal threshold for this specific
example is given by (z∗1 , z∗2) = (−0.36, 0.42) with double-digit precision. This pair
of values corresponds to a 52% increase and a 30% decrease in asset price, respec-
tively. Following the selling rule, an investor would sell the asset he or she has bought
whenever the price goes up by 52% or down by 30%.

Example 4.4. In this example we assume that the model parameters do not
change across regimes, i.e., μ(1) = μ(2) = μ, σ(1) = σ(2) = σ, while keeping other
values the same, as in the last example. We report two cases: one uses regime 1
parameters and another uses regime 2 parameters from Example 4.3.
Case 1. μ = 0.01, σ2 = 0.25. The optimal thresholds are (z∗1 , z∗2) = (−0.36, 0.33),

which correspond to a 39% increase and a 30% decrease in asset price.
Case 2. μ = 0.02, σ2 = 0.50. The optimal thresholds are (z∗1 , z

∗
2) = (−0.36, 0.55),

which correspond to a 73% increase and a 30% decrease in asset price.
For comparison, in Table 2, we summarize the results from Examples 4.4 and

4.3. We may call Case 2 in Example 4.4 a bull market since a bigger μ value is used
and Case 1 a bear market since a smaller μ value is used. Then we call Example 4.3
a mixed market because of the switching between the two μ numbers. Note that
the optimal selling rules change in a manner that agrees with common investment
practice. If a 30% drop in asset price is used by investors for the stop-loss limit, then
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the upper threshold for achieving maximum profit is higher (73%) in the bull market
than that in the (more realistic) mixed market (52%), which in turn is higher than
that in the bear market (39%).

5. Concluding remarks. In this paper we developed an optimal selling rule
using a regime-switching exponential Gaussian diffusion model. The optimal selling
can be characterized by two threshold levels. We designed a numerical algorithm for
searching these threshold levels.

Note that our results in this paper rely crucially on Assumption 3.4. It is in-
teresting and practically useful to relax these conditions. In addition, we assumed
the market mode to be completely observable. In order to apply our results in prac-
tice, one needs to estimate the system mode using nonlinear filtering techniques. The
Wonham filter, in which the hidden Markov chain α(t) is observed in noise, is a good
candidate; it provides sound conditional probability estimates given the stock price
up to time t.
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exposition of this paper.

REFERENCES

[1] R. Bansal and H. Zhou, Term structure of interest rates with regime shifts, J. Finance, 57
(2002), pp. 1997–2043.

[2] J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor.
Appl. Finance, 5 (2002), pp. 497–514.

[3] L. Clewlow and C. Strickland, Energy Derivatives: Pricing and Risk Management, Lacima
Publications, London, 2000.

[4] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw–
Hill, New York, 1955.

[5] W. A. Coppel, Disconjugacy, Lecture Notes in Math. 220, Springer-Verlag, New York, 1971.
[6] Q. Dai, K. J. Singleton, and W. Yang, Regime Shifts in a Dynamic Term Structure Model

of U.S. Treasury Bond Yields, working paper, 2005.
[7] D. A. Darling and A. J. F. Siegert, The first passage problem for a continuous Markov

process, Ann. Math. Statistics, 24 (1953), pp. 624–639.
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Abstract. A time harmonic far field model for closed electromagnetic time reversal mirrors is
proposed. Then, a limit model corresponding to small perfectly conducting scatterers is derived. This
asymptotic model is used to prove the selective focusing properties of the time reversal operator. In
particular, a mathematical justification of the decomposition of the time reversal operator (DORT)
method is given for axially symmetric scatterers.

Key words. electromagnetic scattering, time reversal, far field, small obstacles

AMS subject classifications. 35B40, 35P25, 45A05, 74J20, 78M35

DOI. 10.1137/080715779

1. Introduction. In the last decade, acoustic time reversal has definitely demon-
strated its efficiency in target characterization by wave focusing in complex media (see
the review papers [13, 15]). In particular, it has been shown that selective focusing
can be achieved using the eigenvectors (resp., eigenfunctions) of the so-called time
reversal matrix (resp., operator). Known as the DORT method (French acronym for
diagonalization of the time reversal operator ; see [14, 32, 26, 31, 16, 25, 18]), this
technique involves three steps. First, an incident wave is emitted in the medium
containing the scatterers by the time reversal mirror (TRM). The scattered field
is then measured by the mirror and time-reversed (or phase-conjugated in the time
harmonic case). Finally, the obtained signal is then re-emitted in the medium. By def-
inition, the time reversal operator T is the operator describing two successive cycles of
emission/reception/time reversal. If the propagation medium is nondissipative, then
the operator T is hermitian, since T = F∗F, where F denotes the far field operator.
The DORT method can thus be seen as a singular value decomposition of F. More-
over, in a particular range of frequencies (for which the scatterers can be considered
as point-like scatterers), T has as many significant eigenvalues as there are scatterers
in the medium, and the corresponding eigenfunctions generate incident waves that
selectively focus on the scatterers. From the mathematical point of view, a detailed
analysis of this problem has been proposed for the acoustic scattering problem by
small scatterers in the free space in [19] and in a two-dimensional straight waveguide
in [29]. Let us emphasize that time reversal has also been intensively studied in the
context of random media (see [17] and the references therein).

Recently, electromagnetic focusing using time reversal has been demonstrated ex-
perimentally [23] and used for imaging applications [24]. One of the first works dealing
with mathematical and numerical aspects of electromagnetic time reversal is the pa-
per [34]. The authors analyze therein the DORT method in the case of a homogeneous
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medium containing perfectly conducting or dielectric objects of particular shapes (cir-
cular rods and spheres). Their method is based on a low frequency approximation of
a multipole expansion of the scattered field (i.e., a Fourier–Bessel series involving
Hankel functions for circular rods and vector spherical functions for spheres). In [8],
the authors proposed an iterative process based on time reversal to determine opti-
mal electromagnetic measurements (i.e., to determine the incident waves maximizing
the scattered field). More recently, the DORT method has been used for target local-
ization, especially in the context of imaging [6, 7, 1]. The analysis followed in these
works is based on the singular value decomposition of the multistatic response ma-
trix, which corresponds to the case where the mirror is described by a discrete array
of transducers (emitters and receivers). In this paper, we propose a time harmonic
far field model of electromagnetic time reversal in the case of a continuous distribu-
tion of transducers. Only closed mirrors (i.e., completely surrounding the scatterers)
are considered in this work, and the limited aperture case is not studied. Except for
this difference, the present work can be seen as an extension of the results obtained
for acoustic time reversal in free space [19] and in straight waveguides [29]. We pay
very careful attention to the derivation of the limit scattering model for small per-
fectly conducting scatterers. The functional framework used hereafter for the far field
and the time reversal operators is the one commonly used in inverse electromagnetic
scattering theory [11, 5, 20].

We start the paper with a short description in section 2 of the mathematical
model of time reversal. In particular, we define the incident field emitted by the
TRM (electromagnetic Herglotz waves), the measured fields (the far field pattern),
and the time reversal operator. In section 3, we restrict our analysis to the case of
small scatterers (of typical size δ). We show that the small scatterers’ asymptotics
can be deduced from the classical low frequency scattering asymptotics (the Rayleigh
approximation) involving the polarization tensors of the scatterers. More precisely,
our analysis corresponds to the case where kδ and δ/d tend simultaneously to 0,
where k denotes the wavenumber and d the minimum separation distance between
the scatterers. Finally, we study in section 4 the spectral focusing properties of the
eigenfunctions of the limit far field operator obtained in section 3. We show that each
small scatterer gives rise to at most six distinct eigenvalues (recovering the results
obtained in [7, 1] for the case of a discrete TRM). Furthermore, if the polarizabil-
ity tensors of the scatterers are diagonal (e.g., for axially symmetric scatterers) and
under the additional assumption that kd → ∞, we prove that each associated eigen-
function generates an incident wave that selectively focuses on the corresponding
scatterer.

2. A far field model for electromagnetic time reversal. In order to ob-
tain an expression of the time reversal operator, we begin this paper by recalling
the far field model of electromagnetic scattering. Consider the scattering problem of
an incident electromagnetic plane wave by a perfectly conducting bounded obstacle
contained in a homogeneous medium. Without loss of generality, we assume that the
electric permittivity ε and the magnetic permeability μ are both equal to 1. Let O be
a bounded open subset of R

3 with smooth boundary Γ and outward unit normal ν,
and let Ω = R3 \O be the propagation domain. Let L2

t (S
2) be the space of tangential

vector fields of the unit sphere S2,

L2
t (S

2) =
{
f ∈

(
L2(S2)

)3 | ∀α ∈ S2, f (α) · α = 0
}
,
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and consider the incident plane wave (Eα,f
I ,Hα,f

I ) of direction α ∈ S2 and electric
polarization f ∈ L2

t (S2):

(2.1)
{

Eα,f
I (x) = f(α) eikα·x,

Hα,f
I (x) = (α × f(α)) eikα·x.

Throughout the paper, the time dependence is assumed to be of the form e−iωt and
will always be implicit. Introducing the wavenumber k = ω

√
εμ = ω, the scattered

field (Eα,f ,Hα,f ) solves the following exterior boundary value problem:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

curlEα,f = ikHα,f (Ω),
curlHα,f = −ikEα,f (Ω),
Eα,f × ν = −Eα,f

I × ν (Γ),
Hα,f · ν = −Hα,f

I · ν (Γ),
Eα,f ,Hα,f are outgoing.

Classically, the outgoing behavior of the scattered field is imposed by one of the two
Silver–Müller radiation conditions,

⎧⎪⎨
⎪⎩

lim
|x|→∞

(
Eα,f (x) × x + |x|Hα,f (x)

)
= 0,

lim
|x|→∞

(
Hα,f (x) × x − |x|Eα,f (x)

)
= 0,

uniformly in every direction x/|x| ∈ S2, where | . | is the Euclidean norm in R3.
We are now in a position to introduce the far field pattern of the electromagnetic

field (Eα,f ,Hα,f ). Its main properties are collected in the next proposition (see [11]
for the proofs).

Proposition 2.1. The scattered field (Eα,f ,Hα,f ) has the following asymptotic
behavior in the direction β ∈ S2 as |x| → ∞:

⎧⎪⎪⎨
⎪⎪⎩

Eα,f (β|x|) =
eik|x|

ik|x|A(α,β; f(α)) +O

(
1

|x|2

)
,

Hα,f (β|x|) =
eik|x|

ik|x| (β × A(α,β; f (α))) +O

(
1

|x|2

)
.

The scattering amplitude A(α,β; f(α)) is given for all α,β ∈ S2 and all f ∈ L2
t (S2)

by the formula

(2.3) A(α,β; f(α)) = − k2

4π
β ×

∫
Γ

[
ν(y) × Hα,f

T (y)
]
× β e−ikβ·y dy,

where Hα,f
T = Hα,f

I + Hα,f is the total magnetic field. Moreover, A(·, ·; ·) satisfies
the reciprocity relation

(2.4) g(β) · A(α,β; f (α)) = f (α) · A(−β,−α; g(β))

for all α,β ∈ S2 and all f , g ∈ L2
t (S2).

Assume now that the TRM emits a Herglotz wave, i.e., a superposition of plane
waves of the form (2.1). More precisely, denote by (Ef

I ,H
f
I ) the incident Herglotz
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wave of polarization f ∈ L2
t (S

2), defined by

(2.5)

⎧⎪⎨
⎪⎩

Ef
I (x) =

∫
S2

Eα,f
I (x) dα =

∫
S2

f(α)eikα·x dα,

Hf
I (x) =

∫
S2

Hα,f
I (x) dα =

∫
S2

(α × f )(α)eikα·x dα.

By linearity, Proposition 2.1 yields the following result.
Corollary 2.2. When illuminated by the Herglotz wave (Ef

I ,H
f
I ), the scattering

obstacle generates the diffracted field (Ef ,Hf ), which admits in the direction β ∈ S2

the far field asymptotics⎧⎪⎪⎨
⎪⎪⎩

Ef (β|x|) =
eik|x|

ik|x|Ff (β) +O

(
1

|x|2

)
,

Hf (β|x|) =
eik|x|

ik|x|β × Ff(β) +O

(
1

|x|2

)
,

where Ff(β) is given by

(2.6) Ff(β) =
∫
S2

A(α,β; f(α)) dα.

Using the expression (2.3) of the scattering amplitude, one can show that the
far field operator F : f �−→ Ff defined by (2.6) is continuous from L2

t (S2) onto
itself. Moreover, using the reciprocity relation (2.4), one can show the following result
(see [9] for the proof).

Proposition 2.3. The far field operator F : L2
t (S2) −→ L2

t (S2) defined by (2.6)
is a compact and normal operator. As in the acoustic case, its adjoint is the operator
F∗ : L2

t (S
2) → L2

t (S
2) defined by

(2.7) ∀f ∈ L2
t (S

2), F∗f = RFRf ,

where R is the symmetry operator defined by Rf(α) = f(−α) for all α ∈ S2 and
f ∈ L2

t (S
2).

We are now able to define the time reversal operator T. During the time reversal
process, the TRM first emits an incident electromagnetic Herglotz wave (Ef

I ,H
f
I ) of

polarization f . Then the scattering obstacle generates a scattered field (Ef ,Hf ). The
TRM measures and conjugates the corresponding electric far field Ff . The resulting
field is then used as a polarization g of a new incident Herglotz wave. Therefore, we
have

(2.8) g = RFf ,

where the presence of the symmetry operator is due to the fact that the far field
measured in a direction β is re-emitted in the opposite direction −β. The time reversal
operator T is then obtained by iterating this cycle twice:

(2.9) Tf = RFg = RFRFf .

Thanks to Proposition 2.3, we have shown the following result.
Proposition 2.4. The time reversal operator T is the compact, self-adjoint, and

positive operator given by

T : L2
t (S

2) −→ L2
t (S

2),
f �−→ Tf = FF∗f = F∗Ff .
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The nonzero eigenvalues of T are exactly the positive numbers

|λ1|2 ≥ |λ2|2 ≥ · · · > 0,

where the sequence (λp)p≥1 denotes the nonzero complex eigenvalues of the normal
compact far field operator F. Moreover, the corresponding eigenfunctions (fp)p≥1 of
F are exactly the eigenfunctions of T.

3. Scattering by perfectly conducting small scatterers. In this section,
we show that the asymptotics of the electromagnetic scattering problem by small
scatterers is closely connected to the classical low frequency scattering (the Rayleigh
approximation [21, 12]). In particular, this asymptotics involves the electromagnetic
polarizability tensors of the scatterers [30, 2, 3]. The fact that the two limit models
are similar is straightforward when the scattering obstacle has only one connected
component. As shown in subsection 3.1, this follows from a scaling argument. The
proof is less obvious when the obstacle is multiply connected (one can no longer use
a unique change of variables to work in a reference domain of fixed size). We study
this question using an integral equation approach in subsection 3.2.

3.1. The case of one scatterer. Let us assume that the perfectly conducting
scatterer is of small size δ and that it is obtained from a reference obstacle after a
dilation. More precisely, let us set

Oδ = {x = s + δξ ; ξ ∈ O} .

Its boundary is denoted by Γδ and its exterior by Ωδ := R3 \ Oδ. Given an incident
plane wave (Eα,f

I ,Hα,f
I ), let (Eδ,Hδ) be the solution of the scattering problem by

the perfectly conducting obstacle (for the sake of clarity, we drop here the reference
to the angle of incidence and to the polarization in the scattered field):

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curlEδ = ikHδ (Ωδ),
curlHδ = −ikEδ (Ωδ),
div Eδ = 0 (Ωδ),
div Hδ = 0 (Ωδ),
Eδ × ν = −Eα,f

I × ν (Γδ),
Hδ · ν = −Hα,f

I · ν (Γδ),
Eδ, Hδ outgoing.

Introducing the scaled fields
{

eδ(ξ) = Eδ(s + δξ),
hδ(ξ) = Hδ(s + δξ),

ξ ∈ Ω := R
3 \ O,

we obtain that

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curleδ = i (kδ)hδ (Ω),
curlhδ = −i (kδ)eδ (Ω),
div eδ = 0 (Ω),
div hδ = 0 (Ω),
eδ × ν = −eα,fI × ν (Γ),
hδ · ν = −hα,fI · ν (Γ),
eδ, hδ outgoing,
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where Γ = ∂Ω and{
eα,fI (ξ) = Eα,f

I (s + δξ) = Eα,f
I (s) +O(kδ),

hα,fI (ξ) = Hα,f
I (s + δξ) = Hα,f

I (s) +O(kδ).

When δ → 0, problem (3.2) appears as a low frequency electromagnetic scattering
problem (kδ → 0) associated with an incident wave that behaves like the constant
field (Eα,f

I (s),Hα,f
I (s)) asymptotically. The electromagnetic scattering problem for

small frequencies has been studied for a long time (see [35, 36, 22, 28]), and the
asymptotic behavior of its solution is by now well known (see the reference book [12]
for a detailed presentation and [4] for convergence results of higher order terms). In
particular, the first order approximation (e0,h0) of (eδ,hδ) (the so-called Rayleigh
approximation) is given by the next result, which follows from [12, Chap. 5]).

Theorem 3.1. Let Φ = (Φ1,Φ2,Φ3) and Ψ = (Ψ1,Ψ2,Ψ3) be the vector poten-
tials defined by

(3.3)

⎧⎪⎪⎨
⎪⎪⎩

ΔΦ = 0 (Ω),
Φ = x + c (Γ),

Φ = O

(
1

|x|2

)
, |x| → ∞,

and

(3.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔΨ = 0 (Ω),
∂Ψ
∂ν

= ν (Γ),

Ψ = O

(
1

|x|2

)
, |x| → ∞,

where the constant vector c ∈ R3 is chosen such that
∫
Γ
∂Φ
∂ν = 0.

Then, as δ −→ 0, we have{
eδ −→ e0 := −∇Φf(α),
hδ −→ h0 := −∇Ψ (α × f(α))

locally in Hcurl(Ω).
Using the above result, one can easily obtain the asymptotics of the far field

associated to Eδ.
Corollary 3.2. Let (Eδ,Hδ) be the solution of the scattering problem (3.1).

Let P and M be, respectively, the electric polarizability and magnetic polarizability
tensors defined by (I denotes the identity)

P = |O| I −
∫

Γ

x

(
∂Φ
∂ν

)T
dγx, M = |O| I −

∫
Γ

νΨT dγx,

where the vector potentials Φ and Ψ are respectively defined by (3.3) and (3.4). Then,
the far field Aδ(α,β; f (α)) of Eδ, defined by

Eδ(β|x|) = Aδ(α,β; f (α))
eik|x|

ik|x| + O

(
1

|x|2

)
,

admits as δ → 0 the following asymptotics:

(3.5) Aδ(α,β; f(α)) =
(ikδ)3

4π
β×

[
β×(Pf(α))−M(α×f(α))

]
eik (α−β)·s+O(δ4).
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Proof. Following [12], we have
(3.6)

Aδ(α,β; f (α)) =
k2

4π
β ×

{
β ×

∫
Γδ

[
νx ×

(
Hδ(x) + Hα,f

I (x)
)]

e−ik β·x dγx

}
.

The change of variables ξ = (x − s)/δ in the above integral shows that

(3.7)

Aδ(α,β; f(α)) =
(

(kδ)2

4π
β ×

{
β ×

∫
Γ

[
νξ ×

(
hδ(ξ) + hα,f

I (ξ)
)]

dγξ

})
e−ikβ·s

+O(δ3).

Comparing (3.6) with the term between the parentheses in the above expression,
we see that this term is nothing but the electric far field associated to the solution
(eδ,hδ) of the low frequency scattering problem (3.2). Consequently, this term can
be expressed using the polarizability tensors (see equation (5.158) in [12])

(kδ)2

4π
β ×

{
β ×

∫
Γ

[
νξ ×

(
hδ(ξ) + hα,f

I (ξ)
)]

dγξ

}

=
(ikδ)3

4π
β ×

[
β × (Pf(α)) − M(α × f(α))

]
eikα·s +O

(
δ4
)
,

where we have used the fact that the incident electromagnetic field (eI ,hI) converges
to the constants (Eα,f

I (s),Hα,f
I (s)) = (f (α),α× f (α)) eikα·s as δ tends to 0. Plug-

ging the last relation into (3.7) yields (3.5).

3.2. Multiply connected scatterer. We consider now the case where the scat-
terer has M connected components:

Oδ =
M⋃
p=1

Oδ
p,

where each component Oδ
p is obtained from a reference domain Op by a dilation and

a translation,

Oδ
p = {x = sp + δξ ; ξ ∈ Op} .

Finally, we denote once again by Ωδ = R3 \ Oδ the exterior domain and by Γδ =⋃M
p=1 Γδp its boundary.

In order to study the asymptotics δ → 0, we seek an integral representation of
the solution (Eδ,Hδ) of (3.1) in the form

(3.8)

⎧⎪⎨
⎪⎩

Eδ(y) = δ curl curl
∫

Γδ

Gk(x,y)Jδ(x) dγx,

Hδ(y) = −δ (ik) curl
∫

Γδ

Gk(x,y)Jδ(x) dγx,
y ∈ Ωδ,

where Jδ is the (unknown) electric surface current and

Gk(x,y) =
eik|x−y|

4π|x − y|

denotes the Green function of −Δ − k2 in R3.
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Using the identity curl curl = ∇div−Δ and the fact that for x 
= y we have
ΔGk(x,y) = −k2Gk(x,y), one can show that the electric field can also be written
in the form [10, p. 64]

(3.9) Eδ(y) = δ

(
k2

∫
Γδ

Gk(x,y)Jδ(x) dγx + ∇
∫

Γδ

Gk(x,y) divΓδ Jδ(x) dγx

)
,

where divΓδ denotes the surface divergence operator on Γδ.
The unknown current Jδ = (Jδ1, . . . ,J

δ
M ) is uniquely determined by writing the

perfectly conducting boundary condition on each scatterer:

(3.10) (Eδ × ν)|Γδ
p

= −(Eα,f
I × ν)|Γδ

p
∀ p = 1, . . . ,M.

It is well known (see, for instance, [27, Theorem 5.5.1]) that the trace of a potential
of the form (3.9) is given by

(Eδ × ν)|Γδ
p

=
M∑
q=1

δ
(
k2Sk,δpq + T k,δpq

)
Jδq,

where the integral operators Sk,δpq : THs(Γq) → THs+1(Γp) and T k,δpq : THs(Γq) →
THs−1(Γp) (THs(Γq) denotes the Sobolev space of tangent vector fields [27]) are
defined for y ∈ Γp by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Sk,δpq Jδq

)
(y) =

∫
Γδ

q

Gk(x,y)
(
Jδq(x) × νy

)
dγx,

(
T k,δpq Jδq

)
(y) =

(
∇y

∫
Γδ

q

Gk(x,y) divΓδ
q
Jδq(x) dγx

)

|Γδ
p

× νy.

For q 
= p, the kernels of the above integral operators are infinitely differentiable. The
operator Sδpp is the classical single layer potential and has a singular but integrable
kernel. The operator T δpp can also be written using a formula involving only integrable
kernels (see [27, p. 242]):

(
T k,δpp Jδp

)
(y) =

∫
Γδ

p

[
(∇yGk(x,y) × (νy − νx)) divΓδ

p
Jδp(x)

−Gk(x,y) curlΓδ
p
divΓδ

p
Jδp(x)

]
dγx.

In the above relation, divΓδ
p

and curlΓδ
p

denote, respectively, the surface divergence
operator and tangential rotational operator on Γδp. Then, the integral equation (3.10)
reads

(3.11)
M∑
q=1

δ
(
k2Sk,δpq + T k,δpq

)
Jδq = −(Einc × ν)|Γδ

p
∀ p = 1, . . . ,M.

In order to work in a functional framework independent of δ, we introduce the new
variables ⎧⎨

⎩
ξ =

x − sq
δ

∈ Oq,

η =
y − sp
δ

∈ Op
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and the scaled fields {
jδq(ξ) = Jδq(x),

Gk,δpq (ξ,η) = Gk(x,y).

With the above notation, we have
(
Sk,δpq Jδq

)
(y) := δ2

(
Sk,δpq jδq

)
(η) = δ2

∫
Γq

Gk,δpq (ξ,η)
(
jδq(ξ) × νη

)
dγξ

and

(
T k,δpq Jδp

)
(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
∇η

∫
Γq

Gk,δpq (ξ,η) divΓq j
δ
q(ξ) dγξ

)

|Γp

× νη for q 
= p,

∫
Γq

[ (
∇ηGk,δpp (ξ,η) × (νη − νξ)

)
divΓq jδp(ξ)

−Gk,δpp (ξ,η) curlΓpdivΓp jδp(ξ)
]
dγξ for q = p

:=
(
T k,δ
pq jδq

)
(η).

Consequently, (3.11) can be written

(3.12) Bk,δpp jδp +
∑
q �=p

Bk,δpq jδq = −(eα,fI × ν)|Γp
∀ p = 1, . . . ,M,

with

(3.13) Bk,δpq = (kδ)2 δ Sk,δpq + δ T k,δ
pq

and

eα,fI (η) = Eα,f
I (y).

Let us consider first the diagonal terms in (3.12) by investigating the behavior of the
kernels involved in the expression of Bk,δpp as δ → 0. Since

⎧⎪⎨
⎪⎩

Gk,δpp (ξ,η) =
1
δ
Gkδ(ξ,η),

∇ηGk,δpp (ξ,η) =
1
δ
∇ηGkδ(ξ,η),

we see that

Bk,δpp = (kδ)2 S̃kδpp + T̃ kδ
pp := B̃kδpp,

where
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
S̃kδpp jp

)
(y) =

∫
Γq

Gkδ(ξ,η)
(
jp(ξ) × νη

)
dγξ,

(
T̃ kδ
pp jq

)
(y) =

∫
Γq

[
(∇ηGkδ(ξ,η) × (νη − νξ)) divΓp jp(ξ)

−Gkδ(ξ,η) curlΓpdivΓp jp(ξ)
]
dγξ.
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The crucial point here is that B̃kδpp is exactly the operator involved in the integral
equation formulation of the simple scattering problem associated with the reference
scatterer Op at low frequency kδ → 0. Moreover, since the zero frequency limit exists,
B̃kδpp = Bk,δpp admits a limit B0

pp.
Let us consider now the off diagonal terms Bk,δpq , q 
= p. Denote by

(3.14) d = min
1≤p<q≤N

|sp − sq|

the minimal distance between the centers of the obstacles. Using the relation

|sp − sq + δ(ξ − η)| = |sp − sq|
(

1 +O

(
δ

d

))
,

one can easily check that

⎧⎪⎪⎨
⎪⎪⎩

Gk,δpq (ξ,η) = Gk(sq, sp)
[
1 +O(kδ) +O

(
δ

d

)]
,

∇η Gk,δpq (ξ,η) = Gk(sq, sp)
[
O(kδ) +O

(
δ

d

)] ∀q 
= p.

Inserting the above asymptotics into (3.13) shows that

Bk,δpq = O

(
δ

d

)[
O(kδ) +O

(
δ

d

)]
for q 
= p.

Summing up, the behavior of the solution (Eδ,Hδ) of (3.1) for small scatterers
(namely, for kδ → 0 and δ/d → 0) is given by the low frequency limit of the simple
scattering problem. Therefore, the multiple scattering effects can be neglected when
kδ → 0 and δ/d→ 0, and the electric far field can be obtained simply by superposition
of the far fields given in Corollary 3.2. We have thus proved the following result.

Theorem 3.3. Assume that the scatterer has M connected components

Oδ =
M⋃
p=1

Oδ
p,

where each component Oδ
p is obtained from a reference scatterer Op (centered at the

origin) of smooth boundary Γp by a dilation of ratio δ centered at a given point
sp ∈ R3:

Oδ
p = {x = sp + δξ ; ξ ∈ Op} .

For all p = 1, . . . ,M , let Φp and Ψp be the vector potentials defined by

(3.15)

⎧⎪⎪⎨
⎪⎪⎩

ΔΦp = 0 (R3 \ Op),
Φp = x + cp (Γp),

Φp = O

(
1

|x|2

)
, |x| → ∞,
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and

(3.16)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔΨp = 0 (R3 \ Op),
∂Ψp

∂ν
= ν (Γp),

Ψp = O

(
1

|x|2

)
, |x| → ∞,

where the constant vector cp ∈ R3 is chosen such that
∫
Γp

∂Φp

∂ν = 0.
Let Pp and Mp be, respectively, the electric polarizability and magnetic polariz-

ability tensors of the reference scatterer Op (I denotes the identity):

(3.17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pp = |Op| I −
∫

Γp

x

(
∂Φp

∂ν

)T
dγx,

Mp = |Op| I −
∫

Γp

νΨT
p dγx.

Finally, let (Eδ,Hδ) be the solution of the scattering problem (3.1) and Aδ(α,β; f(α))
the far field of Eδ:

Eδ(β|x|) = Aδ(α,β; f (α))
eik|x|

ik|x| + O

(
1

|x|2

)
.

Then, as δ → 0, we have

(3.18)
4π

(ikδ)3
Aδ(α,β; f (α)) −→ A0(α,β; f(α)),

where

(3.19) A0(α,β; f(α)) =
M∑
p=1

β ×
[
β × (Ppf(α)) − Mp(α × f (α))

]
eik (α−β)·sp .

The convergence (3.18) holds uniformly for all α, β ∈ S2 and for all wavenumbers k
and minimal distances d (defined by (3.14)) satisfying kδ → 0 and δ/d→ 0.

4. Selective focusing using time reversal. From now on, we assume that
kδ → 0 and δ/d → 0. According to Theorem 3.3, the eigenfunctions of the far field
operator Fδ can be approximated by those of the operator F0 : L2

t (S
2) → L2

t (S
2)

defined by

(4.1) (F0f)(β) =
∫
S2

A0(α,β; f (α)) dα ∀ f ∈ L2
t (S

2).

Substituting the expression (3.19) of A0(α,β; f (α)) into (4.1), we obtain that

(4.2) (F0f)(β) =
M∑
p=1

β ×
[
β ×

(
PpE

f
I (sp)

)
− MpH

f
I (sp)

]
e−ikβ·sp ,

where (Ef
I ,H

f
I ) denote the electromagnetic Herglotz wave associated to f defined by

(2.5). Finally, let us notice that

(4.3) (F0f )(β) = −
M∑
p=1

[
Δ(β)PpE

f
I (sp) + β × (MpH

f
I (sp))

]
e−ikβ·sp ,
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where for every

α =

⎡
⎣sin θ cosφ

sin θ sinφ
cos θ

⎤
⎦ ∈ S2

we have set

(4.4) Δ(α) = I− ααT .

Remark 4.1. Note that formula (4.2) shows that the electric far field radiated by
the scatterers as their size tends to 0 corresponds to the superposition of M (uncoupled)
electric and magnetic dipoles located at the points sp and associated with the electric
and magnetic moments pp = PpEf

I (sp) and mp = MpHf
I (sp).

Remark 4.2. Formula (4.3) shows that F0 has at most 6M nonzero eigenvalues,
since its range satisfies RanF0 ⊂

⊕
1≤p≤M

{(
Δ(β)RanPp

)
⊕
(
β × RanMp

)}
.

The aim of this section is twofold: first, to compute approximate eigenfunctions of
F0, and then to prove that these eigenfunctions selectively focus on the scatterers. As
we will see, this can be achieved provided the following two assumptions are satisfied:

1. The polarizability tensors Pp and Mp are diagonal (in the same basis). This
is particularly true for axially symmetric scatterers (see [12, p. 167]).

2. The scatterers are distant enough (well-separated scatterers). More precisely,
we assume that kd → ∞, where d = min1≤p<q≤N |sp − sq| is the minimal
distance between the obstacles.

From now on, we will assume that these two conditions are satisfied.
Theorem 4.3. For p ∈ {1, . . . ,M}, let (ep,1, ep,2, ep,3) be an orthonormal basis

of R3 such that the polarizability tensors Pp,Mp of the reference scatterer Op are
diagonal:

(4.5) Pp =

⎡
⎣λp,1 0 0

0 λp,2 0
0 0 λp,3

⎤
⎦ , Mp =

⎡
⎣λ

′
p,1 0 0
0 λ′p,2 0
0 0 λ′p,3

⎤
⎦ .

Given  ∈ {1, 2, 3}, define the following elements of L2
t (S2) (recall that Δ(α) is defined

by (4.4)):

(4.6)

⎧⎨
⎩

fp,�(α) = α × (α × ep,�) e−ikα·sp = −Δ(α)ep,� e−ikα·sp ,

gp,�(α) = (α × ep,�) e−ikα·sp ,

α ∈ S2.

Then, the family of functions {fp,�, gp,�; 1 ≤  ≤ 3, 1 ≤ p ≤ M} is linearly in-
dependent in L2

t (S2). Moreover, the functions fp,� and gp,� constitute approximate
eigenfunctions of the limit far field operator F0 defined by (3.19)–(4.1) as kd→ ∞:

(4.7)

⎧⎪⎪⎨
⎪⎪⎩

F0fp,� = −8π
3
λp,� fp,� +O

(
(kd)−N

)
,

F0gp,� = −8π
3
λ′p,� gp,� +O

(
(kd)−N

) ∀N ∈ N.

Proof. To see that the functions fp,� and gp,�, for  = 1, 2, 3 and p = 1, . . . ,M are
linearly independent, it suffices to note that these functions are exactly the far field
patterns of electric and magnetic dipoles located at the points sp and associated with
electric or magnetic dipole moment ep,�. Consequently, by uniqueness of the far field
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pattern (which follows from Rellich’s lemma; see [11]), the condition

M∑
p=1

3∑
�=1

(zp,� fp,� + z′p,� gp,�) = 0, zp,�, z
′
p,� ∈ C,

implies that zp,� = z′p,� = 0 for all p = 1, . . . ,M and  = 1, 2, 3.
Fix now q ∈ {1, . . . ,M} and  ∈ {1, 2, 3}, and let us compute F0fq,�. We have

⎧⎪⎪⎨
⎪⎪⎩

E
fq,�

I (sp) = −
(∫

S2
Δ(α) eikα·(sp−sq) dα

)
eq,� := Dpq eq,�,

H
fq,�

I (sp) =
∫
S2

α × [α × (α × eq,�)] eikα·(sp−sq) dα := D′
pq eq,�.

A straightforward computation shows that

Dqq = −
∫
S2

Δ(α) dα = −8π
3

I,

while by symmetry

D′
qq =

∫
S2

α ×
[
α × (α × eq,�)

]
dα = 0.

On the other hand, let us note that the elements of the 3 × 3 matrices Dpq and D′
pq

for p 
= q are oscillatory integrals of the form
∫
S2 ψ(α) eikα·(sp−sq) dα, where ψ is a

smooth function. It follows then from the stationary phase theorem (see, for instance,
[33, Chap. VIII]) that

Dpq = D′
pq = O

(
(kd)−N

)
∀ p 
= q, ∀N ∈ N.

Consequently, formula (4.3) simplifies to

(F0fq,�)(β) = −8π
3

Δ(β)Pqeq,� e−ikβ·sq +O
(
(kd)−N

)
,

= −8π
3
λq,� Δ(β)eq,� e−ikβ·sq +O

(
(kd)−N

)
,

which proves the first relation of (4.7). The second relation of (4.7) follows using the
same arguments, since

{
E

gq,�

I (sp) = −H
fq,�

I (sp) = −D′
pq eq,�,

H
gq,�

I (sp) = E
fq,�

I (sp) = Dpq eq,�,

and the proof is thus complete.
Remark 4.4. In the special case of scattering by small triaxial ellipsoids (see [12,

Chap. 8]) with semiaxes ap,1 > ap,2 > ap,3, the electric and magnetic polarizability
tensors admit in the basis constituted by the axis of each ellipsoid the diagonal form
(4.5), with

⎧⎪⎪⎨
⎪⎪⎩

λp,� =
4π

3Ip,�
,

λ′p,� =
4π
3

ap,1ap,2ap,3
1 − ap,1ap,2ap,3Ip,�

,

 = 1, 2, 3,
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with

Ip,� =
2π
3

∫ ∞

0

dx

(x+ a2
p,�)

√
x2 + a2

p,1

√
x2 + a2

p,2

√
x2 + a2

p,3

.

In the special case of spheres of radii ap, we have Pp = 2Mp = 4πa3
p I.

The next result provides the expected selective focusing properties of the eigen-
functions of the far field operator F0 (and thus of time reversal operator T0 =
(F0)∗F0).

Theorem 4.5. For p ∈ {1, . . . ,M}, the approximate eigenfunctions (fp,�, gp,�)1≤�≤3

defined by (4.6) generate electromagnetic Herglotz waves that focus selectively on the
scatterer p.

Proof. Plugging the expression (4.6) of fp,� and gp,� into (2.5), we obtain that

⎧⎪⎨
⎪⎩

E
fp,�

I (x) = H
gp,�

I (x) =
∫
S2

(α × (α × ep,�)) eikα·(x−sp) dα,

H
fp,�

I (x) = −E
gp,�

I (x) = −
∫
S2

(α × ep,�) eikα·(x−sp) dα.

The conclusion follows once again from the stationary phase theorem, since for x 
= sp
the above integrals behave like O

(
(k|x − sp|)−N

)
for all N ∈ N and are independent

of k for x = sp.
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THE FRAMEWORK OF k-HARMONICALLY ANALYTIC
FUNCTIONS FOR THREE-DIMENSIONAL STOKES FLOW

PROBLEMS, PART I∗

MICHAEL ZABARANKIN†

Abstract. The framework of generalized analytic functions arising from the related potentials
(so-called k-harmonically analytic functions) has been developed in application to three-dimensional
(3D) axially symmetric Stokes flow problems. Cauchy’s integral formula for the class of k-harmonically
analytic functions has been obtained, and series representations for k-harmonically analytic functions
for the regions exterior to sphere and prolate and oblate spheroids have been derived. As the central
result in the developed framework, a solution form representing the velocity field and pressure for
3D axially symmetric Stokes flows has been constructed in terms of two 0-harmonically analytic
functions. It has also been shown that it uniquely determines an external velocity field vanishing at
infinity. With the obtained solution form, the problem of 3D Stokes flows due to the axially symmet-
ric translation of a solid body of revolution has been reduced to a boundary-value problem for two
0-harmonically analytic functions, and the resisting force exerted on the body has been expressed in
terms of a 0-harmonically analytic function entering the solution form. For regions in which Laplace’s
equation admits separation of variables, the boundary-value problem can be solved analytically via
representations of 0-harmonically analytic functions in corresponding curvilinear coordinates. This
approach has been demonstrated for the axially symmetric translation of solid sphere and solid pro-
late and oblate spheroids. As the second approach, the boundary-value problem has been reduced
to an integral equation based on Cauchy’s integral formula for k-harmonically analytic functions. As
an illustration, the integral equation has been solved for the axially symmetric translation of solid
bispheroids and the solid torus of elliptical cross-section for various values of a geometrical parameter.

Key words. Stokes flows, generalized analytic functions, exact solution, generalized Cauchy’s
integral formula, integral equation
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1. Introduction. This article is the first part of the developed two-part frame-
work of k-harmonically analytic functions in application to three-dimensional (3D)
Stokes flow problems. In this work, we obtain Cauchy’s integral formula for k-
harmonically analytic functions, construct series representations for k-harmonically
analytic functions for the regions exterior to sphere and prolate and oblate spheroids,
and develop the framework of 0-harmonically analytic functions for axially symmet-
ric Stokes flow problems. Our second article, the sequel to this paper, develops the
framework of k-harmonically analytic functions for asymmetric Stokes flow problems.

1.1. Generalized analytic functions. Generalizations of the theory of func-
tions of complex variables are represented mainly by the theories of generalized an-
alytic functions (Vekua [24]), pseudoanalytic functions (Bers [5, 6]), and p-analytic
functions (Položii [20]), which replace the classical Cauchy–Riemann system by certain
systems of linear first-order partial differential equations (relating real and imaginary
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parts). Generalized analytic and pseudoanalytic1 functions satisfy the same Bers–
Vekua system [24, 5, 6], whereas a class of p-analytic functions P (r, z) = Û(r, z) +
i V̂ (r, z) is introduced via Položii’s system, ∂Û

∂r = 1
p

∂V̂
∂z and ∂Û

∂z = − 1
p

∂V̂
∂r , where

p = p(r, z) ≥ 0. The aforementioned theories furnish integral representations for
generalized analytic functions via ordinary analytic functions and generalize a major-
ity of fundamental classical results, including Cauchy’s integral formula, Cauchy-type
integrals, power series, etc.

Special cases of Bers–Vekua and Položii systems arise in various 3D problems
of hydrodynamics, aerodynamics, elastic medium, electromagnetism, etc., and are
associated with subclasses of generalized analytic functions, tailored for specific ap-
plications. For example, in application to mechanics of continua, Bers and Gelbart
investigated a class of functions defined by the system of equations of “mixed type”
[7, 8], [6, p. 30], whose generalized version was used to determine a class of Σ-
monogenic functions [4]. A special case of Položii’s system for p = rk, known also as
generalized Stokes–Beltrami equations, finds its application in the 3D axially symmet-
ric theory of elasticity [20] and was also studied in the context of generalized axially
symmetric potential theory [28]. The relationship between p-analytic functions and
the Schrödinger equation was discussed in [13].

In [30], we introduced a special class of generalized analytic functions that arise
from the fundamental relationship between a scalar field φ and vectorial field Λ:

(1) gradφ = − curlΛ, div Λ = 0,

which maintains that φ and Λ are related scalar and vectorial potentials, respectively.
This relationship is encountered in various areas of applied mathematics, particularly
in hydrodynamics, the theory of elasticity, electromagnetism, etc.; see [30].

Example 1 (Stokes flows). The behavior of steady flows of a viscous incompress-
ible fluid under the assumption of a zero (low) Reynolds number (so-called Stokes
creeping flows) is described by the Stokes equations

(2) μΔu = grad℘, div u = 0,

where u is the fluid velocity field, ℘ is the pressure in the fluid, μ is the shear viscosity,
and Δu ≡ grad(div u)− curl curlu; see [11, 14]. With div u = 0, the first equation in
(2) can be rewritten as grad℘ = −μ curl (curlu), whence it follows that the vorticity
ω = curlu and pressure ℘ are related by grad℘ = −μ curlω with div ω = 0, and
thus, ℘ and μω are related potentials satisfying (1).

In the two-dimensional (2D) case in Cartesian coordinates, (1) reduces to the clas-
sical Cauchy–Riemann system for ordinary analytic functions, and in the 3D axially
symmetric case in the cylindrical coordinates2 (r, ϕ, z), (1) defines so-called r-analytic
functions; see [30]. In the 3D asymmetric case, (1) relates the kth harmonics of φ
and Λ, k ∈ Z

+
0 , with respect to ϕ, and reduces to a series of systems of two linear

first-order partial differential equations

(3)
(
∂

∂r
− k

r

)
U (k) =

∂

∂z
V (k+1),

∂

∂z
U (k) = −

(
∂

∂r
+
k + 1
r

)
V (k+1),

1In contrast to generalized analytic functions, pseudoanalytic functions are defined axiomatically
via generators [6].

2In this case, the z-axis is the axis of symmetry, and φ and Λ are independent of the angular
coordinate ϕ.
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which for each k ∈ Z
+
0 defines a class of generalized analytic functions G(k)(r, z) =

U (k)(r, z) + i V (k+1)(r, z) with i =
√
−1; see [30]. In particular, for k = 0, the system

(3) defines the class of r-analytic functions.
It follows from (3) that U (k) and V (k+1) are k-harmonic and (k + 1)-harmonic

functions, respectively; i.e., they satisfy

(4) ΔkU
(k) = 0 and Δk+1V

(k+1) = 0,

where Δk denotes the so-called k-harmonic operator:

(5) Δk ≡ ∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
− k2

r2
.

To emphasize this fact and in particular that (3) is associated with the kth harmonics
of the related potentials and also to differentiate this class from other classes of gen-
eralized analytic (or pseudoanalytic) functions, we call the functions defined by the
system (3) k-harmonically analytic functions.

Introducing the complex variable ζ = r + i z, its conjugate ζ = r − i z (whence
r = 1

2 (ζ + ζ) and z = 1
2i (ζ − ζ)), and corresponding partial derivatives

∂

∂ζ
=

1
2

(
∂

∂r
− i

∂

∂z

)
,

∂

∂ζ
=

1
2

(
∂

∂r
+ i

∂

∂z

)
,

we can represent the system (3) in the form

(6)
∂G(k)

∂ζ
=

1
4r

(
(2k + 1)G(k) −G(k)

)
,

which has an advantage over (3) in certain formal manipulations. However, we should
note that there is a difference in defining G(k) by (3) and (6): the derivative ∂/∂ζ may
exist when ∂/∂r and ∂/∂z do not. Further, we will formally write G(k)(ζ) = G(k)(r, z)
without assuming analyticity of G(k). It follows from (6) that a k-harmonically ana-
lytic function multiplied by a real-valued constant remains k-harmonically analytic,
and the sum and difference of any two k-harmonically analytic functions are again
k-harmonically analytic. The last property, however, does not hold for the product
of two arbitrary k-harmonically analytic functions.

The class of 0-harmonically analytic functions was studied by Alexandrov and
Soloviev [1] in application to axially symmetric problems of the linear theory of elas-
ticity. In particular, they generalized Cauchy’s integral formula and constructed an
integral representation for 0-harmonically analytic functions via ordinary analytic
functions for an arbitrary region. Also, for this class of functions, the Hilbert formu-
lae were derived for the regions exterior to cyclidal bodies (spindle, lens, bispheres,
and torus) and used for obtaining analytic expressions of the pressure in 3D axially
symmetric Stokes flows about solid spindle, lens, bispheres, and torus [32, 31, 30].

As discussed in [30], the system (3) is a particular case of the Bers–Vekua sys-
tem and also, in some sense, can be viewed as a particular case of Položii’s system
with p = r2k+1, U (k) = rkÛ , and V (k+1) = r−(k+1)V̂ . However, specializing results
of the theories of generalized analytic (pseudoanalytic) and p-analytic functions to
the class of k-harmonically analytic functions is not straightforward. For example,
obtaining Cauchy’s integral formula in the framework of the Bers–Vekua system for
each particular subclass requires solving certain singular integral equations for find-
ing so-called “main solutions,” which is a nontrivial task. Also, the existing Cauchy
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integral formula for p-analytic functions with the characteristic p = r2k+1 cannot be
translated directly to the one for functions satisfying (3), since the dependence be-
tween G(k) and P is established only through their real and imaginary parts. On the
other hand, the fact that U (k) and V (k+1) solve (4) makes constructing representa-
tions for k-harmonically analytic functions in canonical regions3 significantly easier
via (3) than doing so as a corollary of the aforementioned theories. In this paper, we
construct an integral representation for k-harmonically analytic functions via ordi-
nary analytic functions and derive series representations for k-harmonically analytic
functions for the regions exterior to sphere and prolate and oblate spheroids. Using
the approach of Alexandrov and Soloviev [1], we also obtain Cauchy’s integral formula
for k-harmonically analytic functions, which plays a central role in solving Stokes flow
problems for noncanonical regions.

1.2. Stokes model in axially symmetric case. As the central result of the
first part of the developed framework, we obtain a representation (solution form) for
the velocity field and pressure for 3D axially symmetric Stokes flows in terms of two
0-harmonically analytic functions. The representation is similar to Goursat’s formula,
representing a solution to a 2D biharmonic equation via two ordinary analytic func-
tions, and reduces axially symmetric Stokes flow problems to boundary-value problems
for two 0-harmonically analytic functions. For the canonical regions, the boundary-
value problems can be solved analytically based on representations of 0-harmonically
analytic functions in corresponding curvilinear coordinates, and for regions in which
Laplace’s equation does not admit separation of variables, they can be reduced to
an integral equation4 based on Cauchy’s integral formula for 0-harmonically analytic
functions. This is the main advantage of the suggested solution form compared to
the stream function approach [11] widely used for solving axially symmetric Stokes
flow problems. We also express the resisting (drag) force, exerted on a solid body of
revolution in the axially symmetric translation, in terms of a 0-harmonically analytic
function entering the solution form. In the second part of the developed framework
(see [29]), we construct a representation (solution form) for the velocity field and
pressure for 3D asymmetric Stokes flows in terms of three k-harmonically analytic
functions and demonstrate the developed framework in solving several asymmetric
Stokes flow problems.

The rest of the paper is organized into four sections. Section 2 presents main
results for k-harmonically analytic functions: integral representation via ordinary
analytic functions, representations for the regions exterior to sphere and prolate and
oblate spheroids, Cauchy’s integral formula, and some auxiliary results. Section 3 con-
structs the solution form for axially symmetric Stokes flow problems in terms of two
0-harmonically analytic functions, proves that the solution form uniquely determines
an external velocity field, expresses the resisting force in terms of a 0-harmonically
analytic function entering the solution form, and derives the integral equation based
on Cauchy’s integral formula for 0-harmonically analytic functions. Section 4 demon-
strates the solution form in obtaining closed-form analytical solutions to the 3D Stokes
flow problem for the axially symmetric translation of solid sphere and solid prolate and
oblate spheroids and solves the integral equation for the axially symmetric translation
of solid bispheroids5 and a solid torus of elliptical cross-section for various values of a

3By canonical regions we mean those in which Laplace’s equation admits separation of variables.
4For discussion of integral equation approaches and standard numerical techniques in application

to hydrodynamic problems, the reader may refer to [21, 22].
5Bispheroids are two separate spheroids of equal size with the same axis of revolution.



k-HARMONICALLY ANALYTIC FUNCTIONS FOR STOKES FLOWS 849

geometrical parameter. The appendix presents the proof of Cauchy’s integral formula
for k-harmonically analytic functions.

2. k-harmonically analytic functions. This section presents several results
for k-harmonically analytic functions which are central in application to 3D Stokes
flow problems: an integral representation via ordinary analytic functions, Cauchy’s
integral formula, series representations for the regions exterior to sphere and prolate
and oblate spheroids, and some auxiliary results.

Let ζ = r + i z, and let G(k)(ζ) = U (k)(ζ) + i V (k+1)(ζ) be a k-harmonically
analytic function satisfying (3) in a region D. In this work, we consider D to be
symmetric with respect to the z-axis. In this case, the boundary � of D consists of
the right part �+ (Re ζ ≥ 0) and the left part �− (Re ζ ≤ 0), which is the symmetric
reflection of �+ with respect to the z-axis. The parts �+ and �− can be either closed
curves or open contours with the endpoints lying on the z-axis. Since G(k)(ζ) has
“physical” meaning only for Re ζ ≥ 0, we can define the function G(k)(ζ) for Re ζ < 0
by the symmetry condition

(7) G(k)
(
−ζ

)
= (−1)kG(k)(ζ),

which is dictated by formulae representing the velocity field of Stokes flows in terms
of k-harmonically analytic functions.

For the class of 0-harmonically analytic functions, Cauchy’s integral formula
and integral representation via ordinary analytic functions were obtained by Alexan-
drov and Soloviev [1], who also suggested (7) for k = 0. Also, some results for k-
harmonically analytic functions can be adopted from the theory of p-analytic functions
[20] through the relationship betweenG(k)(ζ) and a p-analytic function P (ζ) = Û+i V̂
with the characteristic p = r2k+1:

(8) P (ζ) = r−kU (k)(ζ) + i rk+1V (k+1)(ζ).

2.1. Representations of k-harmonically analytic functions. The following
proposition constructs the main integral representation for k-harmonically analytic
functions, which generalizes the integral representation for 0-harmonically analytic
functions [1, formula (28.2), p. 248] and is a modification of the existing integral
representation for p-analytic functions with p = r2k+1 (see [20, p. 177]).

Proposition 1 (main integral representation). In a simply connected region D,
a k-harmonically analytic function G(k)(ζ) can be represented in the form

(9) G(k)(ζ) =
1

rk|r|

∫ ζ

−ζ
f(τ) (ζ − τ)k−

1
2
(
ζ + τ

)k+ 1
2 dτ,

where f(τ) is an analytic function of τ = r1 + i z1 in the region D such that f (−τ) =
f(τ); and the points −ζ and ζ are connected by an arbitrary simple curve C lying in
D and symmetric with respect to the z-axis. If D is unbounded, then convergence of
the integral (9) requires f(τ) ∼ O

(
|τ |−2k−1−ε) with ε > 0 at |τ | → ∞.

Proof. We use the relationship (8) and the existing representations for the real
and imaginary parts of a p-analytic function (see [20, p. 178, formulae (48) and (49)])
with p = r2k+1 to formally write

U (k)(ζ) =
1

rk−1|r|

∫ ζ

−ζ
f(τ)

[
(ζ − τ)(ζ + τ)

]k− 1
2 dτ,(10)

i V (k+1)(ζ) =
1

rk|r|

∫ ζ

−ζ
f(τ)(τ − i z)

[
(ζ − τ)(ζ + τ)

]k− 1
2 dτ,(11)



850 MICHAEL ZABARANKIN

where a curve connecting ζ and −ζ is simple and symmetric with respect to the z-
axis. The representation (9) follows from (10) and (11). The absolute value of r in
the multipliers at the integrals in (10) and (11) is introduced to satisfy the symmetry
condition (7). We need to show that (9) is in fact a k-harmonically analytic function.

The function
[
(ζ − τ)

(
ζ + τ

)]k− 1
2 is analytic with respect to τ everywhere in the

complex plane except for τ = ζ and τ = −ζ and has two branches. With a branch cut
connecting the points −ζ and ζ, each branch is uniquely determined, and we choose
the one which assumes nonnegative values at the upper bank of the branch cut (see
Figure 1(a)). Consequently, at the upper and lower banks of the branch cut, the
integral (9) has opposite signs, and we can equivalently represent it as the integral
over the closed curve L consisting of parts of the upper and lower banks of the branch
cut and of the circles Cρ and C′

ρ with radius ρ and centers at ζ and −ζ, respectively
(see Figure 1(a)):

(12) G(k)(ζ) =
1

2rk|r|

∫
L

f(τ) (ζ − τ)k−
1
2
(
ζ + τ

)k+ 1
2 dτ.

Indeed, as ρ → 0, the integrals of g(τ) = f(τ) (ζ − τ)k−
1
2
(
ζ + τ

)k+ 1
2 over the circles

Cρ and C′
ρ for k ≥ 0 vanish, and thus (12) reduces to the sum of the integrals along

the upper and lower banks of the branch cut.
First, we show that (9) is independent of the curve C, connecting the points −ζ

and ζ within the region D. Since C can be chosen to be the upper bank of the branch
cut, we need to show that (9) is independent of the form of the branch cut. To this
end, we use the representation (12) and make a crosscut in the region D connecting
the closed curve L with the boundary ∂D and forming a simply connected region D1;
see Figure 1(b). In D1, the function g(τ) is analytic, and, consequently, its integral
over the boundary of D1 vanishes. This means that the integral of g(τ) over L with
an arbitrary branch cut in D equals the integral of g(τ) over ∂D with the opposite
orientation.

(a)

r0

z
D∂

D

ζ
ρCρC′

ζ−
+

−

(b)

r0

z

1D

ζ
ρC

D∂

ρC′
ζ−

+
−

L L

Fig. 1. (a) Closed curve L consisting of parts of the upper and lower banks of the branch cut,
connecting the points −ζ and ζ, and of the circles Cρ and C′

ρ with radius ρ and centers at ζ and

−ζ, respectively; (b) The region D1 is formed by connecting L with ∂D via a crosscut.

Next, we show that (9) has continuous partial derivatives ∂/∂r and ∂/∂z in D, in
particular at r = 0. We represent (9) in the form of (12). Since the curve L in (12)
contains neither ζ nor −ζ, the integral (12) is continuously differentiable with respect
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to r and z. For the case of r → 0, let ζ be close to the z-axis and let the branch
cut connecting −ζ and ζ be a segment, i.e., τ = r1 + i z, r1 ∈ [−r, r], and dτ = dr1.
Using the condition f (−τ) = f(τ) and the change of variable τ(x) = r sinx + i z,
x ∈ [0, π/2], we obtain
(13)

G(k)(ζ) = 2 rk
∫ π

2

0

(Re [f (r sinx+ i z)] + i sinx Im [f (r sinx+ i z)]) (cosx)2k dx,

for which the derivatives ∂/∂r and ∂/∂z at r = 0 obviously exist and are continuous.
Finally, we show that (12) satisfies the Carleman system (6). Since the partial

derivatives ∂/∂r and ∂/∂z of (9) are continuous in D, the derivative ∂/∂ζ of (9) is
also continuous in D and for r > 0 it takes the form

(14)
∂

∂ζ
G(k)(ζ) =

1
4r

(
(−1)k (2k + 1)G(k)

(
−ζ

)
−G(k)(ζ)

)
.

Since f (−τ) = f(τ), we have G(k)
(
−ζ

)
= (−1)kG(k)(ζ), which is the symmetry

condition (7), and thus with (7), (14) is equivalent to (6).
For k = 0, the formula (9) coincides with the one presented by Alexandrov and

Soloviev [1] (with a necessary modification due to the difference in notation6).
We illustrate (9) in obtaining a series representation for a k-harmonically analytic

function for the region exterior to a sphere. Let (R, ϑ, ϕ) be the spherical coordinates
related to the cylindrical coordinates (r, ϕ, z) by r = R sinϑ and z = R cosϑ with
R ∈ R

+
0 and ϑ ∈ [0, π].

Example 2 (region exterior to a sphere). For the region exterior to a sphere, a
k-harmonically analytic function G(k) is represented by

(15)

G(k)(R, ϑ) = U (k)(R, ϑ) + i V (k+1)(R, ϑ)

=
∞∑
n=1

AnR
−n−k−1

{
nP(k)

n+k(cosϑ) − iP(k+1)
n+k (cosϑ)

}
,

where An, n ≥ 1, is a real-valued constant, and P(k)
m (cosϑ) is the associated Legendre

polynomial of the first kind of order m and rank k (for k = 0, the superscript is
omitted). The behavior of An at n → ∞ follows from the requirements for (15) to
converge.

Detail. The region D exterior to a sphere with the branch cut along the ray ϑ = π
is simply connected. For D, an analytic function f(ζ), vanishing as |ζ|−2k−1−ε, ε > 0,
at |ζ| → ∞ and satisfying the condition f

(
−ζ

)
= f(ζ), can be represented by the

series

f(ζ) =
∞∑

n=2(k+1)

an(−iζ)−n,

where an, n ≥ 1, is a real-valued constant.
According to (10) and (11), for r ≥ 0, the real and imaginary parts of a k-

harmonically analytic function are represented by

(16) U (k)(ζ) =
∞∑

n=2(k+1)

anIn(ζ), i V (k+1)(ζ) =
∞∑

n=2(k+1)

anJn(ζ),

6In [1], the complex variable ζ is introduced as ζ = z + i r.



852 MICHAEL ZABARANKIN

where

In(ζ) = r−k
∫ ζ

−ζ
(−iτ)−n

[
(ζ − τ)(ζ + τ)

]k− 1
2 dτ,

Jn(ζ) = r−k−1

∫ ζ

−ζ
(−iτ)−n(τ − i z)

[
(ζ − τ)(ζ + τ)

]k− 1
2 dτ.

To calculate the integrals In(ζ) and Jn(ζ), let a curve connecting ζ and −ζ be the
arc of the circle with the radius |ζ| and center at ζ = 0. In this case, in the spherical
coordinates, we have ζ = i R e−iϑ and τ = i R e−iϕ , and thus, the arc is parameterized
by ϕ ∈ [−ϑ, ϑ] and does not intersect the ray ϑ = π. Consequently, (ζ − τ)(ζ + τ) =
2R2e−iϕ(cosϕ− cosϑ), and the integrals In and Jn reduce to

(17)
In(R, ϑ) = 2k+

1
2Rk−n(sinϑ)−k

∫ ϑ

0

cos
[(
k + 1

2 − n
)
ϕ
]
(cosϕ− cosϑ)k−

1
2 dϕ

= (−2)k
√
π

Γ
(
k + 1

2

)
Γ(n− 2k)

Γ(n)
Rk−n P(k)

n−k−1(cosϑ),

(18)

Jn(R, ϑ) = i 2k+
1
2Rk−n(sinϑ)−k−1

{∫ ϑ

0

cos
[(
k + 1

2 − n
)
ϕ
]
(cosϕ− cosϑ)k+

1
2 dϕ

−
∫ ϑ

0

sinϕ sin
[(
k + 1

2 − n
)
ϕ
]
(cosϕ− cosϑ)k−

1
2 dϕ

}

= −i (−2)k
√
π

Γ
(
k + 1

2

)
Γ(n− 2k − 1)
Γ(n)

Rk−n P(k+1)
n−k−1(cosϑ),

where Γ(·) is the Gamma function, and we used the representation for the associated
Legendre polynomial
∫ ϑ

0

cos
[(
k + 1

2 − n
)
ϕ
]
(cosϕ−cosϑ)k−

1
2 dϕ =

√
π

2
(sinϑ)k Γ

(
k + 1

2

)
P(−k)
n−k−1(cosϑ);

see [3]. Denoting An = (−2)k
√
π

Γ(k+ 1
2 )Γ(n)

Γ(n+2k+1) an+2k+1, and substituting (17) and (18)
into (16), we obtain (15).

Another approach for deriving representations for the k-harmonically analytic
function in a canonical region, i.e., in which Laplace’s equation admits separation of
variables, e.g., prolate and oblate spheroids, two spheres, torus, lens, spindle, etc., is
based on Hilbert formulae [30, 31, 32] and usually requires less effort compared to that
of making use of the general representation (9). This approach represents solutions
to (4) in the form of integrals or series in curvilinear coordinates, associated with
the geometry of the region, and finds a relationship between those integrals or series
based on the system (3). It is shown in [30] that for the functions satisfying (4) and
vanishing at infinity (in an outer region), it is sufficient to use only one equation of
(3).

The next example illustrates this approach for the region exterior to a prolate
spheroid. To this end, we introduce prolate spheroidal coordinates (ξ, η, ϕ) related to
the cylindrical coordinates by

(19) r = c sinh ξ sin η, z = c cosh ξ cos η, ξ ∈ [0,∞), η ∈ [0, π],
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where the angular coordinate ϕ ∈ [0, 2π) coincides with the one in (r, ϕ, z) and c is a
metric parameter. A prolate spheroid is determined by fixing the coordinate ξ, i.e.,
ξ = ξ0.

Example 3 (region exterior to a prolate spheroid). For the region exterior to the
prolate spheroid (ξ ≥ ξ0), a k-harmonically analytic function G(k) is represented by

(20)

G(k)(ξ, η) = U (k)(ξ, η) + i V (k+1)(ξ, η)

=
∞∑
n=0

An

{
(n− k)(n+ k + 1)Q(k)

n (cosh ξ) P(k)
n (cos η)

+iQ(k+1)
n (cosh ξ) P(k+1)

n (cos η)
}
,

where An, n ≥ 1, are real-valued constants and Q(k)
n (cosh ξ) is the associated Legendre

function of the second kind.
Detail. It is known that the functions U (k)(ξ, η) and V (k+1)(ξ, η) that satisfy (4)

in the region exterior to the prolate spheroid can be represented in the form of series
(see [12, 16])

(21)

U (k)(ξ, η) =
∞∑
n=0

an Q(k)
n (cosh ξ) P(k)

n (cos η),

V (k+1)(ξ, η) =
∞∑
n=0

bn Q(k+1)
n (cosh ξ) P(k+1)

n (cos η),

where an and bn are real-valued coefficients. In the prolate spheroidal coordinates
(19), the system (3) takes the form(

∂

∂ξ
− k coth ξ

)
U (k) = −

(
∂

∂η
+ (k + 1) cot η

)
V (k+1),

(
∂

∂η
− k cot η

)
U (k) =

(
∂

∂ξ
+ (k + 1) coth ξ

)
V (k+1).

Substituting the series (21) into any equation of the system above, we obtain the
relationship for an and bn:

an = (n− k)(n+ k + 1) bn.

Consequently, with An = bn, the representation (20) follows.
The following example presents a k-harmonically analytic function in the form of

series for the region exterior to an oblate spheroid. In the oblate spheroidal coordinates
(ξ, η, ϕ) related to the cylindrical coordinates by

(22) r = c cosh ξ sin η, z = c sinh ξ cos η, ξ ∈ [0,∞), η ∈ [0, π],

with the same angular coordinate ϕ (c is a metric parameter), the oblate spheroid is
determined by fixing the coordinate ξ, i.e., ξ = ξ0.

Example 4 (region exterior to an oblate spheroid). For the region exterior to the
oblate spheroid (ξ ≥ ξ0), a k-harmonically analytic function G(k) is represented by

(23)

G(k)(ξ, η) = U (k)(ξ, η) + i V (k+1)(ξ, η)

=
∞∑
n=0

An i
n+1

{
(n− k)(n+ k + 1)Q(k)

n (i sinh ξ) P(k)
n (cos η)

+iQ(k+1)
n (i sinh ξ) P(k+1)

n (cos η)
}
,
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whereAn, n ≥ 1, are real-valued constants and in+1 Q(k)
n (i sinh ξ) and in+1 Q(k+1)

n (i sinh ξ)
are real-valued functions.

Detail. In the oblate spheroidal coordinates (22), the system (3) takes the form

(
∂

∂ξ
− k tanh ξ

)
U (k) = −

(
∂

∂η
+ (k + 1) cot η

)
V (k+1),

(
∂

∂η
− k cot η

)
U (k) =

(
∂

∂ξ
+ (k + 1) tanh ξ

)
V (k+1),

and the representation (23) is obtained similarly to (20).
Representations for k-harmonically analytic functions for the regions exterior to

bispheres, torus, lens, and spindle are discussed in [32, 31, 30].

2.2. Cauchy’s integral formula for k-harmonically analytic functions. In
the previous section, we have transformed the integral representation for p-analytic
functions with p = r2k+1 into the integral representation (9) for k-harmonically an-
alytic functions. However, doing the same for the existing Cauchy integral formula
for p-analytic functions is not a straightforward task, since the relationship between
p-analytic and k-harmonically analytic functions is established only via their real
and imaginary parts. To derive Cauchy’s integral formula for k-harmonically analytic
functions, we use the approach of Alexandrov and Soloviev [1], who obtained Cauchy’s
integral formula for the class of 0-harmonically analytic functions.

In the rz-plane, let D+ be a bounded (inner) region symmetric with respect to
the z-axis, and let D− be the outer region with respect to D+ (i.e., the complement of
intD+). D+

0 and D−
0 will denote D+ with r ≥ 0 and D− with r ≥ 0, respectively, i.e.,

the right parts of the corresponding regions. Let � be the common boundary of D+

and D−, and let �+ denote the right part of � (� for r ≥ 0), which is either a closed
curve or an open curve with the endpoints lying on the z-axis. Thus, � = �+

⋃
�−,

where �− is the reflection of �+ with respect to the z-axis. The boundary � is positively
oriented or traversed in the counterclockwise direction if D+ remains on the left side
when one travels along � in this direction.7

Theorem 2 (Cauchy’s integral formula for k-harmonically analytic functions).
Let D+ be a simply connected region with the smooth, positively oriented boundary
� = �+

⋃
�− (symmetric with respect to the z-axis), and let G(k)(ζ) be a k-harmonically

analytic function in D+
0 satisfying the symmetry condition (7) and the Hölder condi-

tion8 on �. Cauchy’s integral formula for the function G(k)(ζ) is given by
(24)

G(k)(ζ) =
1

2πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ

≡ 1
2πi

∫
�+

(
G(k)(τ)Ω(k)

+ (ζ, τ)
dτ

τ − ζ
−G(k)(τ) Ω(k)

− (ζ, τ)
dτ

τ + ζ

)
, ζ ∈ intD+,

7The orientation of a closed curve is always determined with respect to the corresponding inner
region.

8This condition means that for some parametrization ζ(t) of the curve �, the boundary value
G(k)(ζ(t)) satisfies |G(k)(ζ(t2)) − G(k)(ζ(t1))| ≤ C |t2 − t1|β for all t1 and t2, some β ∈ (0, 1], and
nonnegative constant C.
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where Ω(k)
+ (ζ, τ) and Ω(k)

− (ζ, τ) are real-valued functions determined by

Ω(k)
+ (ζ, τ) =

[
Γ
(
k + 3

2

)]2
Γ(2(k + 1))

∣∣∣∣τ + τ

ζ + τ

∣∣∣∣ [λ(ζ, τ)]2k

(25a)

×
(
1 − λ2(ζ, τ)

)
F
(
k + 3

2 , k + 3
2 , 2(k + 1), λ2(ζ, τ)

)
,

Ω(k)
− (ζ, τ) =

[
Γ
(
k + 3

2

)]2
Γ(2(k + 1))

∣∣∣∣τ + τ

ζ + τ

∣∣∣∣ [λ(ζ, τ)]2k F
(
k + 1

2 , k + 3
2 , 2(k + 1), λ2(ζ, τ)

)
,

(25b)

in which F(a, b, c, κ) is the hypergeometric function

(26) F(a, b, c, κ) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − κ t)a
dt

and

(27) λ2(ζ, τ) =

∣∣(ζ + ζ
)
(τ + τ )

∣∣
|ζ + τ |2

.

If in the above conditions G(k)(ζ) is instead k-harmonically analytic in D−
0 and van-

ishing at infinity, then (24) holds for ζ ∈ intD− with negatively oriented � (with
respect to D+).

Proof. The proof is presented in the appendix.
We should note that 1

2πi

∮
�G

(k)(τ)W(k)(ζ, τ) dτ in Cauchy’s integral formula (24)
should be understood as an operator A

(
G(k); �

)
rather than an ordinary integral. For

example, it follows from the second line in (24) that A
(
cG(k); �

)

= cA

(
G(k); �

)
for

an arbitrary complex-valued constant c, whereas this fact does not come from the
properties of integrals.

Remark 1. Cauchy’s integral formula (24) holds for multiply connected regions.
The proof is similar to that for Cauchy’s integral formula for ordinary analytic func-
tions in the case of a multiply connected region.

Remark 2. In Cauchy’s integral formula (24), while limτ→ζ Ω(k)
+ (ζ, τ) = 1, the

function Ω(k)
− (ζ, τ) has a logarithmic singularity at τ = ζ:

(28)

Ω(k)
− (ζ, τ) = −(2k+1)

(
ln

|τ − ζ|
|ζ + τ | +

1
2k + 1

+ γ + ψ
(
k + 1

2

))
+O(|τ − ζ|) as τ → ζ,

where γ is the Euler constant and ψ(·) is the digamma function. This result follows
from the asymptotic representation of F

(
k + 1/2, k + 3/2, 2(k + 1), λ2(ζ, τ)

)
as λ →

1− (see the appendix). Note that there is no singularity at τ = ζ if Re ζ = 0.
Corollary 3 (Cauchy’s integral formula for 0-harmonically analytic functions).

In the case of 0-harmonically analytic functions, Ω(0)
+ (ζ, τ) and Ω(0)

− (ζ, τ) simplify (see
also [1]):

Ω(0)
+ (ζ, τ) =

∣∣∣∣τ + ζ

ζ + ζ

∣∣∣∣ {(λ2(ζ, τ) − 1
)

K(λ(ζ, τ)) + E(λ(ζ, τ))
}
,

Ω(0)
− (ζ, τ) =

∣∣∣∣τ + ζ

ζ + ζ

∣∣∣∣ {K(λ(ζ, τ)) − E(λ(ζ, τ))} ,



856 MICHAEL ZABARANKIN

where K(λ(ζ, τ)) and E(λ(ζ, τ)) are complete elliptic integrals of the first and second
kinds, respectively9:

K(λ(ζ, τ)) =
∫ π

2

0

dt√
1 − λ2(ζ, τ) sin2 t

, E(λ(ζ, τ)) =
∫ π

2

0

√
1 − λ2(ζ, τ) sin2 t dt.

The function K(λ) has a logarithmic singularity as λ→ 1−: K(λ) = − 1
2 ln

(
1 − λ2

)
+

O(1).
Remark 3 (behavior at infinity). Let ζ = i R e−iϑ, ϑ ∈ [0, π], in the spherical

coordinates (R, ϑ, ϕ). At |ζ| → ∞, the asymptotic form for a k-harmonically analytic
function, represented by Cauchy’s integral formula (24), is determined by

G(k)(ζ) =
1
2π

(2k + 1) B
(
k + 3

2 , k + 1
2

)
Re

[∫
�+

G(k)(τ) |τ + τ |k+1
dτ

]

× (2 sinϑ)k eiϑ

|ζ|k+2
+ O

(
|ζ|−(k+3)

)
, |ζ| → ∞,

where B
(
k + 3

2 , k + 1
2

)
is the beta function.

Detail. Since |ζ| → ∞, we can represent

(29)
1

τ − ζ
= − ζ−1

1 − τ
ζ

= −
∞∑
n=0

τn

ζn+1
,

1
τ + ζ

=
ζ−1

1 + τ
ζ

=
∞∑
n=0

(−1)n
τn

ζn+1
.

When |ζ| → ∞, we have λ2(ζ, τ) ∼ 2 |τ + τ | sinϑ/|ζ| and

(30)
Ω(k)

+ (ζ, τ) =
(
k +

1
2

)
B
(
k + 3

2 , k + 1
2

) (2 sinϑ)k |τ + τ |k+1

|ζ|k+1
+ O

(
|ζ|−(k+2)

)
,

Ω(k)
− (ζ, τ) =

(
k +

1
2

)
B
(
k + 3

2 , k + 1
2

) (2 sinϑ)k |τ + τ |k+1

|ζ|k+1
+ O

(
|ζ|−(k+2)

)
.

Substituting (29) and (30) into (24), we obtain the statement of the remark.

2.3. Auxiliary results for k-harmonically analytic functions. This section
presents several auxiliary results for k-harmonically analytic functions.

Proposition 4. Let G(k)(ζ), G(k)
1 (ζ), and G

(k)
2 (ζ) be k-harmonically analytic

functions; then

(i)
∂

∂ζ

(
rG(k)

)
=

1
4

(
(2k + 1)G(k) +G(k)

)
,

(ii)
∂

∂ζ

(
rG

(k)
1 G

(k)
2

)
=

1
4

(2k + 1)
(
G

(k)
1 G

(k)
2 +G

(k)
1 G

(k)
2

)
;

in particular,
∂

∂ζ

(
r
[
G(k)

]2
)

=
1
2

(2k + 1)G(k)G(k).

Proof. Formulae (i) and (ii) follow from (6).

9In Wolfram Research’s Mathematica, K(λ) and E(λ) are defined by K(λ) =
∫ π

2
0

dt√
1−λ sin2 t

and

E(λ) =
∫ π

2
0

√
1 − λ sin2 t dt.
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Proposition 5. Let L be a piecewise smooth, positively oriented curve bounding
a simply connected region D, and let Φ(ζ) = U(ζ)+i V (ζ) be a complex-valued function
with continuous first-order partial derivatives in D. Then

(31)
∮
L

Φ dζ = 2i
∫∫

D

∂Φ
∂ζ

drdz.

Proof. Using Green’s theorem, we obtain∮
L

Φ dζ =
∮
L

(Udr − V dz) + i

∮
L

(V dr + Udz)

= −
∫∫

D

(
∂V

∂r
+
∂U

∂z

)
drdz + i

∫∫
D

(
∂U

∂r
− ∂V

∂z

)
drdz

= −2
∫∫

D
Im

[
∂Φ
∂ζ

]
drdz + 2i

∫∫
D

Re
[
∂Φ
∂ζ

]
drdz = 2i

∫∫
D

∂Φ
∂ζ

drdz,

and the proposition is proved.
Proposition 6. Let G(0)(ζ) be a 0-harmonically analytic function, and let �+ be

a simple, positively oriented, piecewise smooth curve in the right half of the rz-plane
(�+ either is closed or has the endpoints lying on the z-axis). Then

(32) Re

[∫
�+

r G(0)(ζ) dζ

]
= −2 lim

z→∞

(
z2 ReG(0)(r, z)

∣∣∣
r=0

)
.

Proof. Let DR be a region in the right half of the rz-plane with a piecewise
smooth, negatively oriented boundary L, which consists of �+, segments of the z-axis,
and semicircle LR with large radius R (see Figure 2). Using Proposition 5 and formula
(i) in Proposition 4, we have∮

L

r G(0)(ζ) dζ = −i
∫∫

DR

Re
[
G(0)(r, z)

]
drdz.

Taking the real part of this equality and using the fact that the function r G(0) vanishes
at the z-axis, we obtain

(33) Re

[∫
�+

r G(0)(ζ) dζ +
∫
LR

r G(0)(ζ) dζ

]
= 0.

The integral of r G(0) over LR can be determined as follows. Let (R, ϑ, ϕ) be the
spherical coordinates related to the cylindrical coordinates (r, ϕ, z) in the ordinary
way, and let the function G(0) be represented in the spherical coordinates by (15) for
k = 0, i.e.,
(34)

G(0)(R, ϑ) =
∞∑
n=1

AnR
−n−1

{
nPn(cosϑ) − iP(1)

n (cosϑ)
}

= A1R
−2eiϑ + O

(
R−3

)
.

For LR with negative (clockwise) orientation, we have ζ = i R e−iϑ, where ϑ ∈ [0, π],
and

(35)
∫
LR

r G(0)(ζ) dζ = 2A1 + O(R−1),

where A1 can be expressed from (34) as A1 = limz→∞
(
z2 ReG(0)(r, z)

∣∣
r=0

)
. Passing

R to infinity in (35) and using (33), we obtain (32).
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Fig. 2. The region DR with the piecewise smooth negatively oriented boundary L in two cases:
(a) �+ is an open curve with the endpoints lying on the z-axis; and (b) �+ is a closed curve.

3. Axially symmetric Stokes flows. In the axially symmetric case, in the
cylindrical coordinates (r, ϕ, z) with the basis (er, eϕ,k) and the z-axis of symmetry,
the velocity components ur and uz and the pressure ℘ for Stokes flows governed by
(2) are independent of the angular coordinate ϕ, i.e.,

u = ur(r, z) er + uz(r, z)k, uϕ ≡ 0, ℘ = ℘(r, z).

To simplify notation, we will write a function of the variables of r and z as
the function of ζ without assuming analyticity; e.g., ur(r, z) and uz(r, z) will be
represented as ur(ζ) and uz(ζ), respectively.

A central result of this work is the representation of an external, axially symmetric
velocity field and pressure that vanish at infinity in terms of two 0-harmonically ana-
lytic functions. This representation is similar to Goursat’s formula with two ordinary
analytic functions for a 2D biharmonic equation.

Proposition 7 (representation of axially symmetric velocity field). Let G(0)
1 (ζ) =

U
(0)
1 (ζ) + i V

(1)
1 (ζ) and G(0)

2 (ζ) = U
(0)
2 (ζ) + i V

(1)
2 (ζ) be 0-harmonically analytic func-

tions vanishing at infinity. Then in the axially symmetric case of the Stokes equations,
the components ur and uz of an external velocity field vanishing at infinity can be rep-
resented in the form

(36) uz(ζ) + i ur(ζ) =
(
z − i

2
r

)
G

(0)
1 (ζ) +G

(0)
2 (ζ),

and the pressure and vorticity also vanishing at infinity are determined by

(37) ℘(ζ) = μReG(0)
1 (ζ), curlu = ImG

(0)
1 (ζ) eϕ.

Proof. In the axially symmetric case, the Stokes equations (2) reduce to

(38) μΔ1ur =
∂℘

∂r
, μΔ0uz =

∂℘

∂z
,

and the continuity equation divu = 0 takes the form

(39)
(
∂

∂r
+

1
r

)
ur +

∂

∂z
uz = 0,
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where Δk is defined by (5). Our aim is to represent the velocity components ur and
uz by linear combinations of 0-harmonically analytic functions (avoiding derivatives).

It follows from the Stokes equations (2) that the vorticity ω = curlu satisfies
Δω = 0. In the axially symmetric case, ω takes the form ω =

(
∂ur

∂z − ∂uz

∂r

)
eϕ,

and the equation Δω = 0 reduces to Δ1

(
∂ur

∂z − ∂uz

∂r

)
= 0. Consequently, ω can be

represented by ω = V
(1)
1 (ζ) eϕ, where V (1)

1 (ζ) is a 1-harmonic scalar vorticity function,
i.e., Δ1V

(1)
1 = 0.

The functions ℘ and ω are related harmonic potentials (see Example 1). Con-
sequently, U (0)

1 (ζ) = ℘(ζ)/μ and V
(1)
1 (ζ) satisfy (3) for k = 0 and form the 0-

harmonically analytic function G
(0)
1 (ζ) = U

(0)
1 (ζ) + i V

(1)
1 (ζ), which under the condi-

tion U (0)
1 → 0 and V (1)

1 → 0 at |ζ| → ∞, is uniquely determined; see [30, Proposition
1]. Using the system (3) for k = 0, we can restate (38) as

(40)
Δ1ur =

∂

∂r
U

(0)
1 =

∂

∂z
V

(1)
1 ,

Δ0uz =
∂

∂z
U

(0)
1 = −

(
∂

∂r
+

1
r

)
V

(1)
1 .

With the identities

Δ1

(
r U

(0)
1

)
= 2

∂

∂r
U

(0)
1 , Δ1

(
z V

(1)
1

)
= 2

∂

∂z
V

(1)
1 ,

Δ0

(
z U

(0)
1

)
= 2

∂

∂z
U

(0)
1 , Δ0

(
r V

(1)
1

)
= 2

(
∂

∂r
+

1
r

)
V

(1)
1 ,

equations (40) are integrated, and the components ur and uz can be represented in
the form

(41)
ur(ζ) = a r U

(0)
1 (ζ) + b z V

(1)
1 (ζ) + V

(1)
2 (ζ),

uz(ζ) = c z U
(0)
1 (ζ) + d r V

(1)
1 (ζ) + U

(0)
2 (ζ),

where a, b, c, and d are real-valued constants, and U
(0)
2 and V

(1)
2 are arbitrary 0-

harmonic and 1-harmonic functions, respectively, i.e.,

(42) Δ0U
(0)
2 = 0, Δ1V

(1)
2 = 0.

Substituting (41) into (40), we have

(43) 2a+ 2b = 1, 2c− 2d = 1.

Then, substituting (41) into (39) and using (3) for k = 0, we obtain

(44)
(
∂

∂r
+

1
r

)
V

(1)
2 +

∂

∂z
U

(0)
2 = 0,

provided that

(45) a+ d = 0, c− b = 0, 2a+ c = 0.

Consequently, four constants a, b, c, and d satisfy five equations (43) and (45).
However, these equations are dependent. Indeed, adding a+b = 1/2 and c−b = 0 and
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then subtracting a+ d = 0 from the sum, we obtain the second equation in (43), i.e.,
c − d = 1/2. Excluding c− d = 1/2 from (43) and (45), we obtain four independent
equations, whose unique solution is given by a = −1/2, b = 1, c = 1, and d = 1/2.
Consequently, the representation (41) takes the form

(46)
ur(ζ) = z V

(1)
1 (ζ) − 1

2
r U

(0)
1 (ζ) + V

(1)
2 (ζ),

uz(ζ) = z U
(0)
1 (ζ) +

1
2
r V

(1)
1 (ζ) + U

(0)
2 (ζ).

It follows from (42) and (44) that U (0)
2 and V (1)

2 form the 0-harmonically analytic
function G

(0)
2 (ζ) = U

(0)
2 (ζ) + i V

(1)
2 (ζ). Since U (0)

2 and V
(1)
2 vanish at |ζ| → ∞, the

function G(0)
2 (ζ) is uniquely determined; see [30, Proposition 1].

Thus, multiplying the first equation in (46) by i and adding with the second one
in (46), we obtain the representation (36).

Remark 4. With u and ℘ vanishing at infinity in an unbounded region, (37)
implies that G(0)

1 |∞ = 0. According to Remark 3, such G(0)
1 behaves as O

(
|ζ|−2

)
when

ζ → ∞. Consequently, with this fact and u|∞ = 0, (36) implies that G(0)
2 |∞ = 0.

Remark 5 (multiply connected region). The functions G(0)
1 and G

(0)
2 are con-

tinuous and single-valued in multiply connected D−
0 . Indeed, since the pressure and

vorticity are continuous in D−
0 , (37) implies that G(0)

1 is continuous, and thus single-
valued in D−

0 . Also, since u is continuous in D−
0 , the solution form (36) and continuity

of G(0)
1 imply that G(0)

2 is continuous and thus single-valued in D−
0 as well.

Remark 6. The solution form (36) can be used for representing u for an inner
Stokes flow problem. However, in this case, there is no requirement onG(0)

1 andG(0)
2 to

vanish at infinity, and consequently G(0)
1 and G(0)

2 may not be uniquely determined.
The next proposition presents yet another solution form for the velocity field of

axially symmetric Stokes flows in terms of 0-harmonically analytic and 1-harmonically
analytic functions.

Proposition 8. Let G(1)
1 (ζ) = U

(1)
1 (ζ) + i V

(2)
1 (ζ) and G

(0)
2 (ζ) = U

(0)
2 (ζ) +

i V
(1)
2 (ζ) be 1-harmonically analytic and 0-harmonically analytic functions, respec-

tively, vanishing at |ζ| → ∞; then the velocity field for an outer region in the axially
symmetric case of the Stokes equations (2) can be represented in the form

(47) uz(ζ) + i ur(ζ) = r G
(1)
1 (ζ) +G

(0)
2 (ζ),

and the vorticity is determined by

curlu = −2 ReG(1)
1 (ζ) eϕ.

Proof. The proof is similar to that of Proposition 7.
Let D+ and D− denote the inner and outer regions with respect to the cross-

section of the finite body of revolution in the rz-plane,10 and let � be the common
boundary of D+ and D−. As in section 2.2, �+ denotes the right part of � (i.e., �
with r ≥ 0), which, being the contour of the body in the right half of the rz-plane,
is either a closed curve or an open curve with the endpoints lying on the z-axis. The
contour of the body in the rz-plane is, thus, � = �+

⋃
�−, where �− is the reflection

10We always assume that the z-axis is the body’s axis of revolution.
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of �+ with respect to the z-axis. Also, D+
0 and D−

0 denote D+ with r ≥ 0 and D−

r ≥ 0, respectively, i.e., the right parts of the corresponding regions.
The representation (36) reduces an axially symmetric Stokes flow problem to a

boundary-value problem for determining two 0-harmonically analytic functions.
Problem I (boundary-value problem for two 0-harmonically analytic functions).

Given a complex-valued function f(ζ) on �+ such that f
(
−ζ

)
= f(ζ), find two 0-

harmonically analytic functions G(0)
1 (ζ) and G(0)

2 (ζ) in (multiply connected) D−
0 that

vanish at infinity and satisfy

(48)
(
z − i

2
r

)
G

(0)
1 (ζ) +G

(0)
2 (ζ) = f(ζ), ζ ∈ �+.

Remark 7. The relationship (48) is equivalent to
(
z − i

2 r
)
G

(0)
1 (ζ) + G

(0)
2 (ζ) =

f(ζ) on �. Indeed, with the symmetry condition for f(ζ) and G(k)(ζ) (see (7)),(
z − i

2 r
)
G

(0)
1 (ζ)+G

(0)
2 (ζ) = f(ζ) for ζ ∈ �− can be restated as

(
z + i

2 r
)
G

(0)
1

(
−ζ

)
+

G
(0)
2

(
−ζ

)
= f

(
−ζ

)
for ζ ∈ �+, or

(
z − i

2 r
)
G

(0)
1 (ζ) +G

(0)
2 (ζ) = f(ζ) for ζ ∈ �+,

which is equivalent to (48).
There are two approaches to solving (48): (i) representing the functions G(0)

1 (ζ)
and G

(0)
2 (ζ) in the form of integrals or series in curvilinear coordinates associated

with the geometry of the boundary �+ and finding unknown integral densities or
series coefficients from (48); and (ii) reducing (48) to an integral equation based
on Cauchy’s integral formula for 0-harmonically analytic functions. For the second
approach, Remark 7 is critical.

Problem I has a unique solution if it has only a zero homogeneous solution. The
next proposition considers the homogeneous problem (48) for the outer region D−

0

and the inner region D+
0 .

Proposition 9 (homogeneous boundary-value problems).
(i) If functions G

(0)
1 (ζ) and G

(0)
2 (ζ) are 0-harmonically analytic in the outer

(multiply connected) region D−
0 and vanish at infinity, then the homogeneous

boundary-value problem

(49)
(
z − i

2
r

)
G

(0)
1 (ζ) +G

(0)
2 (ζ) = 0, ζ ∈ �+,

has only a zero solution.
(ii) If functions G

(0)
1 (ζ) and G

(0)
2 (ζ) are 0-harmonically analytic in the inner

(multiply connected) region D+
0 , and D+

0 consists of disjoint simply connected
subregions D+

j , 1 ≤ j ≤ m, then a solution to (49) is given by G(0)
1 (ζ) = aj

and G(0)
2 (ζ) = −aj

(
z − i

2 r
)

for ζ ∈ D+
j , 1 ≤ j ≤ m, where aj is a real-valued

constant.
Proof. We first prove statement (i). Let a function Φ(ζ) be defined by

(50) Φ(ζ) = r G
(0)
1 (ζ)

((
z − i

2
r

)
G

(0)
1 (ζ) +G

(0)
2 (ζ)

)
,

and let DR be a region in the right half of the rz-plane with piecewise smooth,
negatively oriented boundary L, which consists of the positively oriented curve �+,
segments of the z-axis, and semicircle LR with large radius R (see Figure 2(a)). For
multiply connected DR, the boundary L also contains crosscuts making DR simply
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connected (see Figure 2(b)). Since G(0)
1 and G

(0)
2 vanish at infinity as O

(
|ζ|−2

)
(see

Remark 3), the integral of Φ over LR vanishes at R → ∞. Also, the function Φ
vanishes on the z-axis. Consequently, we have

(51) lim
R→∞

∮
L

Φ dζ =
∫
�+

Φ dζ,

where, in the left-hand side, the integral over corresponding banks of the crosscuts
vanishes, since Φ, being a combination of continuous single-valued functions G(0)

1 and
G

(0)
2 in D−

0 (see Remark 5), is continuous in D−
0 as well.

From (50) and Proposition 4(ii), it follows that

Im
∂Φ
∂ζ

= −1
2
r
(
ImG

(0)
1

)2

.

Consequently, using Proposition 5, we obtain

(52) lim
R→∞

Re
[∮

L

Φ dζ
]

= −Re

[
2i
∫∫

D−
0

∂Φ
∂ζ

drdz

]
= −

∫∫
D−

0

r
(
ImG

(0)
1

)2

drdz.

However, since Φ = 0 on �+, (51) and (52) imply that the integral in the right-hand
side in (52) vanishes, whence it follows that ImG

(0)
1 = 0 in D−

0 . In this case, ReG(0)
1

can be a constant, which, however, equals zero, since G(0)
1 vanishes at infinity. Thus,

G
(0)
1 ≡ 0 in D−

0 , and the proof is finished.
Statement (ii) is proved similarly. Let �̂j be the part of �+ that corresponds to

D+
j , 1 ≤ j ≤ m. In this case, it is sufficient to conduct the proof for D+

j . The
boundary of D+

j is the closed, piecewise smooth, positively oriented curve Lj which
either is the curve �̂j if �̂j is closed or consists of the curve �̂j and the segment of the
z-axis connecting the endpoints of �̂j if �̂j is an open curve with the endpoints lying
on the z-axis. For the same function (50), we have

∮
Lj

Φ dζ =
∫
�̂j

Φ dζ and obtain

a relationship similar to (52): Re[
∮
Lj

Φ dζ] =
∫∫

D+
j
r(ImG

(0)
1 )2drdz. Consequently,

since Φ = 0 on �̂j , we conclude that G(0)
1 is a real-valued constant on each D+

j . Since
z − i

2 r is a 0-harmonically analytic function in D+
0 , statement (ii) follows.

Alternatively, Proposition 9(i) can be proved based on the fact that the outer
Stokes flow problem with the zero boundary condition u|S = 0 and with the velocity
field and pressure vanishing at infinity has only a zero solution, i.e., u ≡ 0; see [2,
sections 2.8, 4.9]. Indeed, with (36), this implies that

(53)
(
z − i

2
r

)
G

(0)
1 (ζ) +G

(0)
2 (ζ) ≡ 0, ζ ∈ D−

0 ,

whence it follows that
(
z − i

2 r
)
G

(0)
1 (ζ) should be a 0-harmonically analytic function

in D−
0 . With (6), this requirement is equivalent to the equation

∂

∂ζ

((
z − i

2
r

)
G

(0)
1

)
=

1
4r

((
z − i

2
r

)
G

(0)
1 −

(
z − i

2
r

)
G

(0)
1

)
, ζ ∈ D−

0 ,

which reduces to having

G
(0)
1 = G

(0)
1 , ζ ∈ D−

0 .
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Consequently, ImG
(0)
1 ≡ 0 in D−

0 , and (3) implies that G(0)
1 is a real-valued constant

a. Note that z − i
2 r is the 0-harmonically analytic function. Thus, the only solution

to (53) in the class of 0-harmonically analytic functions is G(0)
1 ≡ a and G

(0)
2 ≡

−a
(
z − i

2 r
)
. However, since G(0)

1 and G(0)
2 vanish at infinity, we conclude that a = 0,

and statement (i) of Proposition 9 follows.
As one of the approaches to solving Problem I, we reduce (48) to an integral

equation based on Cauchy’s integral formula for 0-harmonically analytic functions.
Theorem 10 (integral equation in the axially symmetric case). For the outer

multiply connected region D−
0 , Problem I reduces to the integral equation of the first

kind,
(54)

1
πi

∫
�+

([(
z1 −

i

2
r1

)
−
(
z − i

2
r

)]
G

(0)
1 (τ)Ω(0)

+ (ζ, τ)
dτ

τ − ζ

−
[(
z1 +

i

2
r1

)
−
(
z − i

2
r

)]
G

(0)
1 (τ) Ω(0)

− (ζ, τ)
dτ

τ + ζ

)
= F (ζ), ζ ∈ �+,

where ζ = r + i z and τ = r1 + i z1, and

(55) F (ζ) = f(ζ) +
1
πi

∮
�

f(τ)W(0)(ζ, τ) dτ.

If D+
0 consists of several disjoint, simply connected subregions D+

j , 1 ≤ j ≤ m, and �̂j
is the part of �+ that corresponds to D+

j (obviously, �+ =
⋃m
j=1 �̂j), then a solution to

(54) is determined with the accuracy of a real-valued constant aj on each �̂j.11 Given
a solution G̃

(0)
1 (ζ) to (54), the constants are determined by

aj =
1
2
G̃

(0)
1 (ζ) +

1
2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ �̂j, 1 ≤ j ≤ m

(the right-hand side is constant for any ζ ∈ �̂j), and the solution to Problem I takes
the form

(56) G
(0)
1 (ζ) = G̃

(0)
1 (ζ) − aj, ζ ∈ �̂j , 1 ≤ j ≤ m.

Proof. The derivation of the integral equation (54) follows Muskhelishvili’s ap-
proach, developed for solving 2D problems of an elastic medium; see [17, 18].

In view of Remark 7, Problem I for D−
0 is equivalent to the one for D−. Necessary

and sufficient conditions for the functions G(0)
1 and G(0)

2 to be 0-harmonically analytic
in the outer (multiply connected) region D− and vanishing at infinity follow from the
generalized Sokhotski–Plemelj formulae12 and can be written in the form

G
(0)
1 (ζ) +

1
πi

∮
�

G
(0)
1 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �,(57a)

G
(0)
2 (ζ) +

1
πi

∮
�

G
(0)
2 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �.(57b)

11In other words, any function which is a real-valued constant on each �̂j is a homogeneous solution
to (54).

12These formulae can be derived similarly to the Sokhotski–Plemelj formulae for ordinary analytic
functions; see [1, formula (31.13)] and [9, formula (4.8)].
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According to Remark 7, the boundary condition (48) on �+ is equivalent to (48) on
�. Expressing the boundary value of G(0)

2 from (48),

G
(0)
2 (ζ) = f(ζ) −

(
z − i

2
r

)
G

(0)
1 (ζ), ζ ∈ �,

and substituting it into (57b), we obtain
(58)(

z − i

2
r

)
G

(0)
1 (ζ) +

1
πi

∮
�

(
z1 −

i

2
r1

)
G

(0)
1 (τ)W(0)(ζ, τ) dτ = F (ζ), ζ ∈ �,

where F (ζ) is defined by (55). Then the combination (58)−
(
z − i

2 r
)
· (57a) reduces

to the integral equation of the first kind

(59)
1
πi

∮
�

[(
z1 −

i

2
r1

)
−
(
z − i

2
r

)]
G

(0)
1 (τ)W(0)(ζ, τ) dτ = F (ζ), ζ ∈ �,

which can equivalently be rewritten as (54).
Now we need to show that any function which is a real-valued constant on each

�̂j is a homogeneous solution to (54) and that the solution to Problem I is determined
by (56).

Let G̃(0)
1 solve (59). Adding the term

(
z − i

2 r
)
G̃

(0)
1 (ζ) to the left-hand and right-

hand sides of (59) and denoting G̃
(0)
2 (ζ) = f(ζ) −

(
z − i

2 r
)
G̃

(0)
1 (ζ) for ζ ∈ �, we

rewrite (59) in the form

(60)

(
z − i

2
r

)(
G̃

(0)
1 (ζ) +

1
πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ

)

+ G̃
(0)
2 (ζ) +

1
πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �.

Let Φ+(ζ) and Ψ+(ζ) be determined by the generalized Cauchy-type integrals for
the region D+ excluding its boundary �:

Φ+(ζ) =
1

2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ intD+,

Ψ+(ζ) =
1

2πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ, ζ ∈ intD+.

These functions are 0-harmonically analytic in intD+, since W(0)(ζ, τ) satisfies (6) for
k = 0 with respect to ζ.13 Then when ζ approaches � from within D+, the boundary
values of Φ+(ζ) and Ψ+(ζ) on � are determined by the corresponding generalized
Sokhotski–Plemelj formula:

Φ+(ζ) =
1
2
G̃

(0)
1 (ζ) +

1
2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ �,(61a)

Ψ+(ζ) =
1
2
G̃

(0)
2 (ζ) +

1
2πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ, ζ ∈ �.(61b)

13In fact, the generalized Cauchy-type integrals determine 0-harmonically analytic functions in
the whole rz-plane, which are, however, discontinuous on the boundary �; see [1, 9].
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With (61a) and (61b), (60) reduces to

(62)
(
z − i

2
r

)
Φ+(ζ) + Ψ+(ζ) = 0, ζ ∈ �,

which is a homogeneous boundary-value problem for the 0-harmonically analytic
functions Φ+(ζ) and Ψ+(ζ) in D+. Note that since Φ+(ζ) and Ψ+(ζ) are deter-
mined by the generalized Cauchy-type integrals, they satisfy the symmetry condi-
tion (7) and thus, in view of Remark 7, the problem (62) is equivalent to (49) for
D+

0 . However, according to Proposition 9(ii), the only solution to (49) for D+
0 is

Φ+(ζ) ≡ aj and Ψ+(ζ) ≡ −aj
(
z − i

2 r
)
, ζ ∈ D+

j , 1 ≤ j ≤ m, where aj is a real-

valued constant. Consequently, (61a) and (61b) imply that G(0)
1 (ζ) = G̃

(0)
1 (ζ) − aj

and G
(0)
2 (ζ) = G̃

(0)
2 (ζ) + aj

(
z − i

2 r
)
, ζ ∈ �̂j , 1 ≤ j ≤ m, satisfy (57a) and (57b),

respectively, and thus are the boundary values of 0-harmonically analytic functions
in D−

0 .
Remark 8. The first term in the integrand of (54) is regular:

lim
τ→ζ

(
z1 − i

2r1
)
−
(
z − i

2r
)

τ − ζ
=
i

4

(
e
−2i lim

τ→ζ
arg[τ−ζ]

−3
)
.

This expression is obtained by setting τ = ζ + ρ eiβ and passing ρ → 0. Also, if
ζ = ζ(t) is a parameterization of smooth �+, then limτ→ζ arg[τ − ζ] = arg[ζ′(t)]. The
second term in (54) has a logarithmic singularity at τ = ζ because of the function
Ω(0)

− (ζ, τ).
Remark 9 (integral equation for nonsmooth bodies). In the case when the sur-

face of the body, i.e., spindle or lens, is nonsmooth, the necessary and sufficient
condition for a function G(0) to be 0-harmonically analytic in D− and vanishing at in-
finity follows from modified generalized Sokhotski–Plemelj formulae (see [1, (31.13a),
(31.13b)]) and takes the form

(63) h(ζ)G(0)(ζ) +
1
πi

∮
�

G(0)(τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �,

where h(ζ) = 2 − α(ζ)/π for Re ζ 
= 0 and h(ζ) = 1 + cos(α(ζ)/2) for Re ζ = 0 (if �
intersects the z-axis), and α(ζ) is the angle between the right and left tangent vectors
to the curve � at the point ζ. For all points at which � is smooth, α(ζ) = π and
h(ζ) = 1; see [1, (31.13a), (31.13b)].

As in the proof of Theorem 10, it can be shown that for bodies with nonsmooth
surface, the integral equation (54) will be the same except for the right-hand side
F (ζ), which in this case takes the form

(64) F (ζ) = h(ζ) f(ζ) +
1
πi

∮
�

f(τ)W(0)(ζ, τ) dτ.

Note that if f(ζ) is a 0-harmonically analytic function in D+, then F (ζ) = 2f(ζ).
The problem of axially symmetric Stokes flows that attracted much of the at-

tention is the steady axially symmetric translation of a solid body of revolution with
constant velocity vz in the fluid. Let the body’s axis of revolution coincide with the
z-axis in the cylindrical coordinates. The fluid velocity u satisfies the Stokes equations
(2) and no-slip boundary conditions on the surface S of the body:

(65) u|S = vz k.
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Also, u and ℘ vanish at infinity:

(66) u|∞ = 0, ℘|∞ = 0.

In terms of 0-harmonically analytic functions, this problem is a particular case of
Problem I with f(ζ) = vz. Obviously, vz satisfies the symmetry condition f

(
−ζ

)
=

f(ζ). In this case, since vz is a 0-harmonically analytic function in D+, the right-hand
side of (54) reduces to F (ζ) = 2vz.

The next proposition shows that the resisting (drag) force, exerted on the body
of revolution in the axially symmetric translation, can be expressed in terms of G(0)

1 .
Proposition 11 (drag force in axially symmetric translation). For the axially

symmetric Stokes flow problem for the body translating along the z-axis,14 let the
velocity field be represented by (36) with the boundary conditions (65) and (66). The
resisting force, exerted on the body, can be represented in two equivalent forms

Fz = 2πμ Re

[∫
�+

r G
(0)
1 (ζ) dζ

]
,(67a)

Fz = −4πμ lim
z→∞

(
z2 ReG(0)

1 (ζ)
∣∣∣
r=0

)
,(67b)

where �+ in (67a) is positively oriented with respect to D+
0 .

Proof. First, we prove (67a).
The resulting force exerted by the fluid on a solid body is defined as the integral

over the body’s surface S:

(68) F =
∫∫

S

Pn dS, Pn = 2μ
∂u
∂n

+ μ [n × curlu] − ℘ n,

where n = nr er + nz k is the outer normal to the body’s surface with nr = ∂r
∂n and

nz = ∂z
∂n ; see [11].

It can be shown that for the axially symmetric velocity field with the boundary
conditions (65),

(69)
∂u
∂n

= −[n × curlu] on S.

Indeed, in this case, in the cylindrical coordinates (r, ϕ, z), the velocity field is
independent of the angular coordinate ϕ: u = ur(r, z) er + uz(r, z)k and uϕ ≡ 0, and
we have curlu =

(
∂ur

∂z − ∂uz

∂r

)
eϕ. With n = ∂r

∂n er + ∂z
∂n k, we obtain

(70) −[n× curlu] =
∂z

∂n

(
∂ur
∂z

− ∂uz
∂r

)
er +

∂r

∂n

(
∂uz
∂r

− ∂ur
∂z

)
k.

Let (s, ϕ, n) be a characteristic coordinate system with the right-handed orthog-
onal basis (s, eϕ, n), in which s has negative orientation. Then using the relationships

∂r

∂s
=
∂z

∂n
,

∂r

∂n
= −∂z

∂s

14The z-axis is the body’s axis of revolution.
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and the continuity equation (39), we have

(71)

∂z

∂n

(
∂ur
∂z

− ∂uz
∂r

)
=
∂ur
∂n

− ∂uz
∂s

− ur
r

∂z

∂s
,

∂r

∂n

(
∂uz
∂r

− ∂ur
∂z

)
=
∂uz
∂n

+
∂ur
∂s

+
ur
r

∂r

∂s
.

The boundary conditions (65) imply that on the surface S, the first and second
equations in (71) reduce to ∂ur/∂n and ∂uz/∂n, respectively, and thus (69) holds.

Consequently, for the axially symmetric translation, Pn in (68) is determined on
the surface S by

(72) Pn = −μ [n × curlu] − ℘ n on S.

Finally, in the cylindrical coordinates, we have dS = r ds dϕ, where ds is the
differential of the curve length. In the axially symmetric case, curlu and ℘ are
represented by (37), and F has the component in the direction k only. Thus, the
corresponding component of the integral (68) with (72) takes the form

Fz = (F · k) = −2πμ
∫
�+

r
(
(n · er) ImG

(0)
1 (ζ) + (n · k) ReG(0)

1 (ζ)
)
ds.

With (n · er) ds = dz and (n · k) ds = −dr (for positively oriented �+), the formula
(67a) follows.

The formula (67b) follows from (67a) and Proposition 6.
Remark 10. The formula (67a) is invariant with respect to adding a real-valued

constant to G(0)
1 |�+ . This means that the drag force Fz can be calculated by (67a) for

any solution of the integral equation (54).

4. Exact solutions to axially symmetric Stokes flow problems. As an
illustration to the developed framework, this section presents exact solutions in the
form (36) to the problem of Stokes flows due to the steady axially symmetric transla-
tion of a solid body of revolution. In this case, the boundary conditions for the Stokes
equations (2) are given by (65) and (66).

Example 5 (axially symmetric translation of a solid sphere). Let (R, ϑ, ϕ) be
the spherical coordinates related to the cylindrical coordinates in the ordinary way,
and let a solid sphere be centered at the origin and have radius c. For the axially
symmetric translation of the sphere, the 0-harmonically analytic functions G(0)

1 and
G

(0)
2 in (36) are determined in the region R ≥ c by

(73) G
(0)
1 (R, ϑ) =

3vzc
2

R−2 eiϑ, G
(0)
2 (R, ϑ) = −vzc

3

8
R−3

(
1 + 3 e2iϑ

)
,

and the drag force Fz = −6πcμvz follows from (67b).
Detail. Let the velocity field be determined by (36). Representing G(0)

1 and G(0)
2

for the region exterior to the sphere by (15) with k = 0,

G
(0)
1 (R, ϑ) =

∞∑
n=1

AnR
−n−1

{
nPn(cosϑ) − iP(1)

n (cosϑ)
}
,

G
(0)
2 (R, ϑ) =

∞∑
n=1

BnR
−n−1

{
nPn(cosϑ) − iP(1)

n (cosϑ)
}
,
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and substituting these series into (48) with f(ζ) = vz, we obtain 2A1/(3c) = vz and
the following system:

c2
n(n− 1)
2(2n− 1)

An−1 +
(n+ 1)(3n+ 4)

2(2n+ 3)
An+1 + nBn = 0, n ≥ 1,(74a)

c2
(n− 1)

2(2n− 1)
An−1 +

(3n+ 4)
2(2n+ 3)

An+1 +Bn = 0, n ≥ 1.(74b)

The difference (74a)− n · (74b) reduces to An+1 = 0 for n ≥ 1, and, hence, it follows
from either (74a) or (74b) that B1 = 0, B2 = −A1c

2/6, and Bn = 0 for n ≥ 3.

The next two examples present analytical solutions for the axially symmetric
translation of solid prolate and oblate spheroids in the form (36). Analytical solutions
to these problems in terms of a stream function can be found in [11].

Example 6 (axially symmetric translation of a solid prolate spheroid). Let a solid
prolate spheroid be described in the prolate spheroidal coordinates (19) by ξ = ξ0. For
the axially symmetric translation of the prolate spheroid, the 0-harmonically analytic
functions G(0)

1 and G(0)
2 in (36) are determined in the region ξ ≥ ξ0 by

(75)

G
(0)
1 (ξ, η) =

q

c

(cos η + i coth ξ sin η)
cosh2 ξ − cos2 η

,

G
(0)
2 (ξ, η) =

q

2
(
1 + cosh2 ξ0

)(
ln (coth[ξ/2]) − sinh[2ξ] + i sin[2η]

2 sinh ξ
(
cosh2 ξ − cos2 η

)
)
,

where q = 2vz
/((

1 + cosh2 ξ0
)
ln (coth[ξ0/2]) − cosh ξ0

)
. The drag force Fz = −4πcμq

follows from (67b) and (75).

Detail. For the region exterior to the prolate spheroid, the 0-harmonically analytic
functions G(0)

1 and G(0)
2 are determined by (20) for k = 0:

(76)

G
(0)
1 (ξ, η) =

∞∑
n=1

An

{
n(n+ 1)Qn(cosh ξ)Pn(cos η) + iQ(1)

n (cosh ξ)P(1)
n (cos η)

}
,

G
(0)
2 (ξ, η) =

∞∑
n=1

Bn

{
n(n+ 1)Qn(cosh ξ)Pn(cos η) + iQ(1)

n (cosh ξ)P(1)
n (cos η)

}
,

and the boundary-value problem ((z − i
2 r)G

(0)
1 +G

(0)
2 )|ξ=ξ0 = vz reduces to

Ln(ξ0)An−1 +Mn(ξ0)An+1 + Q(1)
n (cosh ξ0)Bn = 0, n ≥ 1,(77a)

K0(ξ0)A1 = vz ,(77b)
Nn(ξ0)An−1 +Kn(ξ0)An+1 + n(n+ 1)Qn(cosh ξ0)Bn = 0, n ≥ 1,(77c)
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where the functions Ln(ξ0), Mn(ξ0), Nn(ξ0), and Kn(ξ0) are defined by

Ln(ξ0) = c
(n− 1)
2n− 1

(
cosh ξ0 Q(1)

n−1(cosh ξ0) +
n

2
sinh ξ0 Qn−1(cosh ξ0)

)
,

Mn(ξ0) = c
(n+ 2)
2n+ 3

(
cosh ξ0 Q(1)

n+1(cosh ξ0) −
(n+ 1)

2
sinh ξ0 Qn+1(cosh ξ0)

)
,

Nn(ξ0) = c
n(n− 1)
2n− 1

(
n cosh ξ0 Qn−1(cosh ξ0) +

1
2

sinh ξ0 Q(1)
n−1(cosh ξ0)

)
,

Kn(ξ0) = c
(n+ 1)(n+ 2)

2n+ 3

(
(n+ 1) cosh ξ0 Qn+1(cosh ξ0)

−1
2

sinh ξ0 Q(1)
n+1(cosh ξ0)

)
.

The combination Q(1)
n (cosh ξ0) · (77c) − n(n+ 1)Qn(cosh ξ0) · (77a) reduces to

(78)
(
−Ãn−1 + Ãn+1

)
δn(ξ0) = 0, n ≥ 2,

where Ãn = n(n+1)
2(2n+1) An and

δn(ξ0) =
(
1 + cosh2 ξ0

)
Qn(cosh ξ0)Q(1)

n (cosh ξ0)

+ sinh ξ0 cosh ξ0

[(
Q(1)
n (cosh ξ0)

)2

− n(n+ 1) (Qn(cosh ξ0))
2

]
.

From (77b), we have Ã1 = vz /(3K0(ξ0)) = q/(2c), and solving (77a) and (77c) for
n = 1, we obtain Ã2 = 0 and B1 = 0. Consequently, since δn(ξ0) 
= 0 for n ≥ 2, it
follows from (78) that Ã2m+1 = Ã1, Ã2m = 0, B2m−1 = 0, and

B2m = −c
(
1 + cosh2 ξ0

) (4m+ 1)
2m(2m+ 1)

Ã2m−1, m ≥ 1.

Thus, the series (76) take the form
(79)

G
(0)
1 (ξ, η) = 2Ã1

∞∑
m=0

(4m+ 3)
{

Q2m+1(cosh ξ) P2m+1(cos η)

+
i

(2m+ 1)(2m+ 2)
Q(1)

2m+1(cosh ξ) P(1)
2m+1(cos η)

}
,

G
(0)
2 (ξ, η) = −c

(
1 + cosh2 ξ0

)
Ã1

∞∑
m=1

(4m+ 1)
{

Q2m(cosh ξ) P2m(cos η)

+
i

2m(2m+ 1)
Q(1)

2m(cosh ξ) P(1)
2m(cos η)

}
,

which reduce to (75) with the representations (see [3])

(80)

1
cosh ξ − cos η

=
∞∑
n=0

(2n+ 1)Qn(cosh ξ) Pn(cos η),

sin η
sinh ξ (cosh ξ − cos η)

=
∞∑
n=1

(2n+ 1)
n(n+ 1)

Q(1)
n (cosh ξ) P(1)

n (cos η)
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and the fact that P(k)
n (− cos η) = (−1)n+k P(k)

n (cos η) for integers n and k.
Example 7 (axially symmetric translation of a solid oblate spheroid). Let a solid

oblate spheroid be described in the oblate spheroidal coordinates (22) by ξ = ξ0. For
the axially symmetric translation of the oblate spheroid, the 0-harmonically analytic
functions G(0)

1 and G(0)
2 in (36) are determined in the region ξ ≥ ξ0 by

(81)

G
(0)
1 (ξ, η) = −q

c

(cos η + i tanh ξ sin η)
sinh2 ξ + cos2 η

,

G
(0)
2 (ξ, η) =

q

2
(
sinh2 ξ0 − 1

)(
arccot[sinh ξ] − sinh[2ξ] − i sin[2η]

2 cosh ξ
(
sinh2 ξ + cos2 η

)
)
,

where q = −2vz
/(

sinh ξ0 −
(
sinh2 ξ0 − 1

)
arccot[sinh ξ0]

)
. The drag force Fz = 4πcμq

follows from (67b) and (81).
Detail. The solution (81) is obtained similarly to (76).
We also solve the integral equation (54) for the axially symmetric translation of

the sphere and prolate and oblate spheroids and compare the obtained solutions with
the corresponding closed-form analytical solutions (73), (76), and (81).

Remark 11. In Problem I, the boundary conditions (65), corresponding to the
axially symmetric translation, satisfy f

(
ζ
)

= f(ζ) on �+. In this case, if, for a
given body, D+

0 is symmetric with respect to the r-axis, then we have the symmetry

condition15 G
(0)
1

(
ζ
)

= −G(0)
1 (ζ). If also D+

0 is simply connected, then this condition
implies that a solution to (54) is uniquely determined (see Theorem 10).

For the sphere and prolate and oblate spheroids, G(0)
1

(
ζ
)

= −G(0)
1 (ζ), and a

solution to (54) is uniquely determined (see Remark 11). For example, for the sphere
of unit radius, we parameterize �+ by r(t) = cos t and z(t) = sin t, t ∈ [−π/2, π/2],
and represent the boundary-value of the function G(0)

1 on �+ by

(82) G
(0)
1 (ζ(t)) =

∑n

k=1
(ak sin[k t] + i bk cos[(k − 1)t]) , t ∈ [−π/2, π/2],

where the real and imaginary parts are odd and even functions of t, respectively,
and the unknown coefficients ak and bk can be found by various techniques, e.g., by
minimizing the total quadratic error of (54) with (82). For the sphere, we can take
only first two terms in (82), i.e., n = 2, to obtain an exact solution coinciding with
(73). For prolate and oblate spheroids, we solve (54) using the same approach with
corresponding parameterization of r and z and obtain that with only n = 8 in (82),
the drag force Fz , being compared to the corresponding exact values, has the relative
error of 10−5.

The next two examples illustrate solutions to the integral equation (54) for bi-
spheroids (two separate spheroids of equal size and having the same axis of revolution)
and a torus of elliptical cross-section for various values of a geometrical parameter.16

The Stokes flow problem for two spheres was solved analytically in [23, 26, 30]. The
axially symmetric problem of sedimentation of bispheroids was considered in [25] (see
also [11]); however, the pressure was not investigated in this case.

Example 8 (axially symmetric translation of solid bispheroids). Let the centers
of bispheroids lie on the z-axis, which is the axis of revolution, and have coordinates

15This condition should not be confused with the symmetry condition (7).
16The integral equation (54) holds for multiply connected regions.
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Fig. 3. Profile of the pressure, ℘/(2vzμ), on the surface of the solid bispheres (κ = 1) in the
axially symmetric translation along the z-axis.
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(a) ℘/(8vzμ), prolate bi-spheroids (b) ℘/(vzμ), oblate bi-spheroids

Fig. 4. Profile of the pressure on the surface of the solid bispheroids in the axially symmetric
translation along the z-axis: (a) ℘/(8vzμ), prolate bispheroids with κ = 0.5; (b) ℘/(vzμ), oblate
bispheroids with κ = 2.

z = coth 1 (upper spheroid) and z = − coth 1 (lower spheroid). Let the upper spheroid
be parameterized in the right half of the rz-plane by r(t) = κ sin t/ sinh 1, z(t) =
coth 1 − cos t/ sinh 1, t ∈ [0, π], where κ is a positive parameter. The case κ = 1
corresponds to bispheres, for which a closed form solution to the axially symmetric
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Stokes flow problem can be obtained in terms of a stream function [23, 30]. On �+
for z ≥ 0 (upper spheroid), we represent G(0)

1 (ζ) by

G
(0)
1 (ζ(t)) = a0 +

n∑
k=1

(ak cos[k t] + i bk cos[(k − 1)t]) , t ∈ [0, π],

and on �+ for z ≤ 0 (lower spheroid), we determine G(0)
1 (ζ) using G(0)

1 (ζ) = −G(0)
1 (ζ)

(see Remark 11). Since for the bispheroids D+
0 is a doubly connected region, the

function g(ζ) defined by g(ζ) = a0 on �+ for z ≥ 0 and by g(ζ) = −a0 on �+ for
z ≤ 0 is a homogeneous solution to (54). Consequently, we solve (54) for G̃(0)

1 (ζ(t)) =
G

(0)
1 (ζ(t)) − a0 and then determine the constant a0 by (see Theorem 10)

a0 = −1
2
G̃

(0)
1 (ζ) − 1

2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ �+.

Figures 3 and 4 illustrate profiles of the pressure on the surface of the bispheres
(κ = 1) and bispheroids for κ = 0.5 and κ = 2. Table 1 presents the ratio, dz, of the
drag, exerted on one of the two spheroids and calculated by (67a), to the drag of a
single same-size spheroid17 for κ = 0.5, 1, and 2.

As another illustration, we solve the integral equation (54) for the axially symmet-
ric translation of a torus of elliptical cross-section.18 To the best of our knowledge,
only the case of the torus of circular cross-section in this Stokes flow problem was
addressed in the literature; see [19, 27, 10, 30].

Example 9 (axially symmetric translation of a solid torus of elliptical cross-
section). Let the surface of a torus of elliptical cross-section be parameterized in
the right half of the rz-plane by r(t) = 2 + cos t, z(t) = κ sin t, t ∈ [−π, π], where
κ is a positive parameter. The case κ = 1 corresponds to the torus of circular
cross-section, for which a closed form solution can be obtained in terms of a stream

function [10, 30]. According to Remark 11, G(0)
1

(
ζ
)

= −G(0)
1 (ζ), and a solution to

(54) is uniquely determined and can be represented on �+ by

G
(0)
1 (ζ(t)) =

n∑
k=1

(ak sin[k t] + i bk cos[(k − 1)t]) , t ∈ [−π, π].

Figures 5, 6, and 7 illustrate profiles of the pressure on the surface of the torus of

Table 1

The ratio, dz, of the drag, exerted on one of the two spheroids to the drag of a single same-size
spheroid in the axially symmetric translation along the z-axis for κ = 0.5, 1, and 2.

κ 0.5 1.0§ 2
dz 0.7736 0.7025 0.6332

§The case corresponds to the bispheres.
�The value coincides with the one in [23]; see also [30].

elliptical cross-section in the axially symmetric translation for κ = 1, 0.5, and 2,
respectively. Table 2 presents the drag Fz, calculated by (67a) and normalized to the
drag of the circumscribed sphere with the radius 3 for κ = 0.5, 1, and 2.
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Fig. 5. Profile of the pressure, ℘/(vzμ), on the surface of the solid torus of circular cross-
section (κ = 1) in the axially symmetric translation along the z-axis (for z < 0, the profile is
antisymmetric).
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Fig. 6. Profile of the pressure, ℘/(vzμ), on the surface of the solid torus of elliptical cross-
section for κ = 0.5 in the axially symmetric translation along the z-axis (for z < 0, the profile is
antisymmetric).

The developed framework is not, however, limited to the case of smooth bodies.
Remark 9 states that for bodies with nonsmooth surfaces, we need to solve the

integral equation (54) with the right-hand side F (ζ) in the form of (64). Since f(ζ) =
vz is a 0-harmonically analytic function in D+, (64), corresponding to the modified
generalized Sokhotski–Plemelj formula, reduces to F (ζ) = 2vz. Thus, based on this
fact and Remark 9, we conclude that (54) with the right-hand side of 2vz holds for
bodies with smooth and nonsmooth surfaces. In the next example, we solve (54)
for a spindle-shaped body and biconvex lens and compare solutions to the analytical
solutions obtained in our previous work [32, 31].

Example 10 (axially symmetric translation of a solid spindle and biconvex lens).
In the first quadrant of the rz-plane, let the surface of the spindle be parameterized
by

r(t) =
cos

[
2(π−η)t

π

]
+ cos η

sin η
, z(t) =

sin
[

2(π−η)t
π

]
sin η

, t ∈ [0, π/2] ,

and let the surface of the biconvex lens be parameterized by

r(t) =
sin

[
(π − η)

(
1 − 2t

π

)]
sin η

, z(t) =
cos

[
(π − η)

(
1 − 2t

π

)]
+ cos η

sin η
, t ∈ [0, π/2] ,

where η ∈ (0, π)19 is a parameter coinciding with the coordinate η in the bispherical

17This spheroid has the size of one spheroid in the bispheroids.
18Special functions associated with the geometry of a torus of elliptical cross-section were con-

sidered in [15] and could potentially be used for obtaining analytical solutions to the corresponding
Stokes flow problem.



874 MICHAEL ZABARANKIN

- 3 - 2 - 1 1 2 3
r

- 2

- 1

1

2

z

Fig. 7. Profile of the pressure, ℘/(vzμ), on the surface of the solid torus of elliptical cross-
section for κ = 2 in the axially symmetric translation along the z-axis (for z < 0, the profile is
antisymmetric).

Table 2

Normalized drag, dz = Fz/(18πμvz ), for the torus of elliptical cross-section in the axially
symmetric translation along the z-axis for κ = 0.5, 1, and 2.

κ 0.5 1.0§ 2

dz 0.8667 0.9072� 0.9982

§The case corresponds to the torus of circular cross-section.
�The value coincides with the one in [10]; see also [30].

and toroidal coordinates (see [32, 31]).
In both cases, the function G(0)

1 can be represented on �+ for z ≥ 0 by

(83) G
(0)
1 (ζ(t)) =

n∑
k=1

(ak + i bk)Tk−1

(
4t
π

− 1
)
, t ∈ [0, π/2],

where Tk(t) is the Chebyshev polynomial of the first kind and can be determined on

�+ for z < 0 by the symmetry condition G
(0)
1

(
ζ
)

= −G(0)
1 (ζ) (see Remark 11). It is

known that both the pressure and vorticity are unbounded at t = π/2 for the spindle
with η > 2π/3 and are unbounded at t = 0 for the biconvex lens with η > π/2 (see
[32, 31]). Consequently, the representation (83) is valid for the spindle with η < 2π/3
and for the biconvex lens with η ≤ π/2. Figure 8 shows profiles of the pressure on
the surface of the solid spindle and biconvex lens with η = π/3 and n = 16. For
the spindle and biconvex lens, the pressure, μReG(0)

1 , and vorticity, ImG
(0)
1 , on �+

coincide with the corresponding analytical expressions (see [32, 31]), and the values of
the normalized drag Fz/(6πμvz) are 1.660188 (spindle) and 1.341761 (biconvex lens),
which are accurate to within 10−6, compared to the corresponding values obtained
by the stream function approach in [32, 31].

Examples 8 and 10 and can be readily extended to the case of two unequal-size
spheroids and two fused unequal-size spheres, respectively.

19For η ∈ (0, π/2), the spindle resembles an “apple,” while the biconvex lens is two fused equal
spheres; for η = π/2, surfaces of both the spindle and the lens form a sphere; and for η ∈ (π/2, π),
the spindle resembles a “lemon.”
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(a) ℘/(2vzμ), spindle (η = π/3) (b) ℘/(2vzμ), biconvex lens (η = π/3)

Fig. 8. Profiles of the pressure on the surface of the solid spindle and biconvex lens in the
axially symmetric translation along the z-axis: (a) ℘/(2vzμ), spindle with η = π/3 (“apple”); (b)
℘/(2vzμ), biconvex lens with η = π/3 (two fused equal spheres).

Appendix. Derivation of Cauchy’s integral formula for k-harmonically
analytic functions.

In this section, we prove Cauchy’s integral formula (24) for k-harmonically an-
alytic functions using the approach of Alexandrov and Soloviev [1], who obtained
Cauchy’s integral formula for 0-harmonically analytic functions.

Let D be a region symmetric with respect to the z-axis in the rz-plane and having
a smooth, positively oriented boundary � = �+

⋃
�−, where �+ is the part of � in the

right half of the rz-plane (r ≥ 0) and �− is the reflection of �+ with respect to the
z-axis (�+ is either a closed curve or an open curve with the endpoints lying on the
z-axis).

Let G(k)(ζ) be a k-harmonically analytic function in the region D. In order for
the function G(k)(ζ) to be represented in the form of Cauchy’s integral formula,

(84) G(k)(ζ) =
1

2πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ, ζ ∈ intD,

the following conditions should hold:
(C1) W(k)(ζ, τ) is a k-harmonically analytic function with respect to the variable

ζ = r + i z; i.e., it solves the Carleman system (3) with respect to ζ.
(C2) The integral (84) is independent of the form of the curve � enclosing the point

ζ.
(C3) limτ→ζ [(τ − ζ)(W(k)(ζ, τ) − 1

τ−ζ )] = 0.
With the condition (7) and the symmetry of the contour � with respect to the

z-axis, the representation (84) can be reduced to the integral along the curve �+:

(85) G(k)(ζ) =
1

2πi

∫
�+

G(k)(τ)W(k)(ζ, τ) dτ + (−1)kG(k)(τ)W(k) (ζ,−τ ) dτ .



876 MICHAEL ZABARANKIN

From (85) and (7), it follows that

(86) W(k)
(
−ζ,−τ

)
= −W(k)(ζ, τ).

We begin with examining condition (C1). Substituting (85) into (6) and using
(86), we obtain

(87)
1

2πi

∫
�+

G(k)(τ)S(ζ, τ) dτ + (−1)kG(k)(τ)S (ζ,−τ ) dτ = 0,

where

S(ζ, τ) =
∂

∂ζ
W(k)(ζ, τ) − 1

4r

(
(−1)k (2k + 1)W(k)

(
−ζ, τ

)
−W(k)(ζ, τ)

)
.

Consequently, (87) holds if S(ζ, τ) = 0. This means that W(k)(ζ, τ) satisfies the
equation

(88)
∂

∂ζ
W(k)(ζ, τ) − 1

4r

(
(−1)k (2k + 1)W(k)

(
−ζ, τ

)
−W(k)(ζ, τ)

)
= 0.

Now we consider condition (C2). Let

U1(ζ, τ) = Re
[
G(k)(τ)W(k)(ζ, τ)

]
, U2(ζ, τ) = Re

[
(−1)kG(k)(τ)W(k)(ζ,−τ )

]
,

V1(ζ, τ) = Im
[
G(k)(τ)W(k)(ζ, τ)

]
, V2(ζ, τ) = Im

[
(−1)kG(k)(τ)W(k)(ζ,−τ)

]
;

then the integral (85) can be rewritten as

(89)
G(k)(ζ) =

1
2πi

∫
�+

(U1(ζ, τ) + U2(ζ, τ)) dr1 + (V2(ζ, τ) − V1(ζ, τ)) dz1

+ i [(U1(ζ, τ) − U2(ζ, τ)) dz1 + (V2(ζ, τ) + V1(ζ, τ)) dr1] ,

where r1 = Re τ and z1 = Im τ . By Green’s theorem, (89) is independent of the form
of �+, i.e., it satisfies (C2) if ∂

∂r1
(U1 − U2) − ∂

∂z1
(V1 + V2) = 0 and ∂

∂z1
(U1 + U2) −

∂
∂r1

(V2 − V1) = 0, which can be restated as

(90)
∂

∂τ

(
G(k)(τ)W(k)(ζ, τ)

)
− ∂

∂τ

(
(−1)kG(k)(τ)W(k) (ζ,−τ)

)
= 0.

Figure 9 shows that Green’s theorem is applied to the integral (89) along a closed
curve consisting of �+, �′+, and auxiliary segments. In the case when �+ is an open
curve with the endpoints lying on the z-axis, W(k)(ζ, τ) should vanish at Re τ = 0;
see Figure 9(a).

Since the function G(k) satisfies (6), equation (90) reduces to

(91) G(k)(τ) T1(ζ, τ) − (−1)kG(k)(τ) T2(ζ, τ) = 0,

where

(92)
T1(ζ, τ) =

∂

∂τ
W(k)(ζ, τ) − 1

4r1

(
(−1)k (2k + 1)W(k) (ζ,−τ ) + W(k)(ζ, τ)

)
,

T2(ζ, τ) =
∂

∂τ
W(k) (ζ,−τ ) − 1

4r1

(
(−1)k (2k+)W(k)(ζ, τ) + W(k) (ζ,−τ)

)
.
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Fig. 9. Green’s theorem is applied to the integral (89) along a closed curve consisting of �+,
�′+, and auxiliary segments: (a) �+ is an open curve with the endpoints lying on the z-axis; (b) �+
is a closed curve.

It follows from (86) and (92) that T2(ζ, τ) = −T1

(
−ζ, τ

)
, and consequently, (91) will

hold for any G(k) if T1(ζ, τ) = 0; i.e., W(k)(ζ, τ) solves the equation

(93)
∂

∂τ
W(k)(ζ, τ) − 1

4r1

(
(−1)k (2k + 1)W(k) (ζ,−τ ) + W(k)(ζ, τ)

)
= 0.

Consequently, W(k)(ζ, τ) solves (88) and (93). Noticing the similarity between
(14) and (88), we can represent W(k)(ζ, τ) in the form similar to (9)

(94) W(k)(ζ, τ) =
1

rk |r|

∫ ζ

−ζ
f(t, τ) (ζ − t)k−

1
2
(
ζ + t

)k+ 1
2 dt,

where f(t, τ) is an analytic function in the region D with respect to t except for the
points t = τ and t = −τ lying on the boundary of D. If D is unbounded, then we
also require f(t, τ) ∼ O

(
|t|−2k−1−ε), ε > 0, at |t| → ∞. However, in contrast to

the representation (9), f(t, τ) is not required to satisfy f (−τ) = f(τ). Making two
branch cuts connecting each of the points ζ and −ζ with the boundary D, we can
show that (94) is independent of the form of a simple curve that connects −ζ and ζ
in D and contains neither τ nor −τ (similar to that in Proposition 1).

Substituting (94) into (93), we obtain an equation for f(t, τ):

(95)
∂

∂τ
f(t, τ) − 1

4r1

(
(−1)k (2k + 1) f (t,−τ) + f(t, τ)

)
= 0.

The similarity between (14) and (93) implies that the simplest solution to (95)
can be determined by

f(t, τ) =

(
k + 1

2

)
rk1 |r1|

(τ − t)k+
3
2 (τ + t)k+

1
2
,

which is an analytic function with respect to t in the whole plane except for the points
t = τ and t = −τ . Thus, W(k)(ζ, τ), represented by (94), takes the form

(96) W(k)(ζ, τ) =
(
k +

1
2

)(r1
r

)k ∣∣∣r1
r

∣∣∣
∫ ζ

−ζ

1
(τ − t)(ζ − t)

[(
ζ + t

)
(ζ − t)

(τ + t) (τ − t)

]k+ 1
2

dt.
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It is seen that (96) satisfies (86) and the condition W(k)(ζ, τ) = 0 at Re τ = r1 = 0.
First, we evaluate (96) and then show that (C3) holds. In order to evaluate (96), we
assume that r > 0 and consider two cases: r1 > 0 and r1 < 0, which correspond to
W(k)(ζ, τ) and W(k) (ζ,−τ ) in (85), respectively.

With four branch cuts connecting each of the points ζ, −ζ, τ , and −τ with
infinite points, the integral (96) does not depend on a curve connecting −ζ and ζ,
and consequently, for τ 
= ζ, we can choose a curve t = t(x) determined by

(97) t(x) =
ζ
(
τ − ζ

)
− ζ τ cos2 x

τ + ζ −
(
ζ + ζ

)
sin2 x

, x ∈ [0, π/2],

for which (
t(x) + ζ

)
(ζ + τ)

(t(x) + τ )
(
ζ + ζ

) = sin2 x, x ∈ [0, π/2].

In the case when r1 > 0, the integral (96) along the curve (97) reduces to
(98)

W(k)(ζ, τ) = 2−2k(2k + 1)
λ(ζ, τ)2k

(
1 − λ(ζ, τ)2

)
τ − ζ

∣∣∣∣τ + τ

ζ + τ

∣∣∣∣
∫ π

2

0

(sin[2x])2k sin2 x(
1 − λ2 sin2 x

)k+ 3
2
dx,

where λ(ζ, τ) ∈ [0, 1] is a real-valued function defined by (27). With the definition of
the hypergeometric function (26), the integral (98) takes the form

W(k)(ζ, τ) =
Ω(k)

+ (ζ, τ)
τ − ζ

, Re ζ ≥ 0, Re τ ≥ 0,

where Ω(k)
+ (ζ, τ) is determined by (25a).

In the case when r1 < 0, we have

(99)

W(k) (ζ,−τ)

= (−1)k+1

(
k +

1
2

)(r1
r

)k ∣∣∣r1
r

∣∣∣
∫ ζ

−ζ

1
(τ + t) (ζ − t)

[(
ζ + t

)
(ζ − t)

(τ + t) (τ − t)

]k+ 1
2

dt.

Using the same curve (97), we obtain

W(k) (ζ,−τ ) = (−1)k+1 Ω(k)
− (ζ, τ)
τ + ζ

, Re ζ ≥ 0, Re τ ≥ 0,

where Ω(k)
− (ζ, τ) is determined by (25b).

Now we are ready to verify (C3). Note that λ → 1− as τ → ζ. Using the
asymptotic representation for the hypergeometric functions

F
(
k + 3

2 , k + 3
2 , 2(k + 1), λ2

)
=

Γ(2(k + 1))[
Γ
(
k + 3

2

)]2 1
1 − λ2

+
Γ(2(k + 1))[
Γ
(
k + 1

2

)]2 ln
(
1 − λ2

)

+ O (1) as λ→ 1−,

F
(
k + 1

2 , k + 3
2 , 2(k + 1), λ2

)
= − Γ(2(k + 1))

Γ
(
k + 1

2

)
Γ
(
k + 3

2

)

×
(

ln(1 − λ2) + 2
(

1
2k + 1

+ γ + ψ
(
k + 1

2

)))

+ O
(
(1 − λ2)

)
as λ→ 1−,
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where γ is the Euler constant and ψ(·) is the digamma function, we have limτ→ζ Ω(k)
+ (ζ, τ)

= 1. Similarly, the asymptotic form of Ω(k)
− (ζ, τ) as τ → ζ is determined by (28). In

other words, the function Ω(k)
− (ζ, τ) has a logarithmic singularity at τ = ζ,† and conse-

quently, the difference W(k)(ζ, τ) − 1
τ−ζ has only integrable (logarithmic) singularity.

Finally, we show that Cauchy’s integral formula (84) holds. Let Cρ be the posi-
tively oriented circle of the radius ρ with the center at ζ; then the integral (85) along
�+ equals the integral over Cρ:

(100)

1
2πi

∫
�+

G(k)(τ)W(k)(ζ, τ) dτ + (−1)kG(k)(τ)W(k) (ζ,−τ ) dτ

=
1

2πi

∮
Cρ

G(k)(τ)
Ω(k)

+ (ζ, τ)
τ − ζ

dτ

︸ ︷︷ ︸
I1

−G(k)(τ)
Ω(k)

− (ζ, τ)
τ + ζ

dτ

︸ ︷︷ ︸
I2

, ζ ∈ intD.

Indeed, we can form a closed simple curve, consisting of �+, the circle Cρ, and auxiliary
segments (see Figure 10), that bounds the region in which G(k)(τ)W(k)(ζ, τ) has con-
tinuous partial derivatives, and then apply Green’s theorem. Let τ = ζ + ρ eiϕ. Since
Ω(k)

− (ζ, τ) has only logarithmic singularity as τ → ζ, the integral I2 in (100) vanishes
at ρ → 0; and since limτ→ζ Ω(k)

+ (ζ, τ) = 1, the integral I1 reduces to G(k)(ζ) when
ρ → 0, which completes the proof of Cauchy’s integral formula for k-harmonically
analytic functions.

Acknowledgment. We are grateful to the anonymous referees for their valuable
comments and suggestions, which helped to improve the quality of the paper.

Fig. 10. A closed simple curve, consisting of �+, the circle Cρ, and auxiliary segments, bounds
the region in which G(k)(τ)W(k)(ζ, τ) has continuous partial derivatives: (a) �+ is an open curve
with the endpoints lying on the z-axis; (b) �+ is a closed curve.
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THE FRAMEWORK OF k-HARMONICALLY ANALYTIC
FUNCTIONS FOR THREE-DIMENSIONAL STOKES FLOW

PROBLEMS, PART II∗

MICHAEL ZABARANKIN†

Abstract. A solution form representing the velocity field and pressure for asymmetric three-
dimensional (3D) Stokes flows has been constructed in terms of three k-harmonically analytic func-
tions. It has also been shown that it uniquely determines an external velocity field vanishing at
infinity. With the obtained solution form, problems of 3D Stokes flows due to asymmetric motions of
solid bodies of revolution have been reduced to boundary-value problems for the three k-harmonically
analytic functions, and the resisting force and torque, exerted on bodies in corresponding motions,
have been expressed in terms of the k-harmonically analytic functions entering the solution form.
For regions, in which Laplace’s equation admits separation of variables, the boundary-value prob-
lems can be solved in closed form via series or integral representations of k-harmonically analytic
functions in corresponding curvilinear coordinates. This approach has been demonstrated for asym-
metric translation and rotation of solid sphere and solid prolate and oblate spheroids. As the second
approach, the boundary-value problems have been reduced to integral equations based on Cauchy’s
integral formula for k-harmonically analytic functions. As an illustration, the integral equations have
been solved for asymmetric translation and rotation of solid bispheroids and a solid torus of elliptical
cross-section for various values of a geometrical parameter.

Key words. asymmetric Stokes flows, generalized analytic functions, exact solution, generalized
Cauchy’s integral formula, integral equation

AMS subject classifications. 30E20, 35Q15, 35Q30, 76D07

DOI. 10.1137/080715925

1. Introduction. This article presents the second part of the developed two-part
framework of k-harmonically analytic functions in application to three-dimensional
(3D) Stokes flows. In the first part [32], we obtained Cauchy’s integral formula for
k-harmonically analytic functions and constructed a solution form for the velocity
field and pressure for axially symmetric Stokes flows in terms of two 0-harmonically
analytic functions. This work extends all the results obtained in [32] to asymmetric
3D Stokes flows.

1.1. Stokes equations. The behavior of steady flows of a viscous incompressible
fluid under the assumption of zero (low) Reynolds number (so-called Stokes creeping
flows) is described by the Stokes equations

(1) μΔu = grad℘, div u = 0,

where u is the fluid velocity field, ℘ is the pressure in the fluid, μ is the shear viscosity,
and Δu ≡ grad (div u)− curl (curlu). In (1), the first equation is known as the Stokes
creeping flow equation and the second one is the equation of continuity; see, e.g.,
[10, 9]. The model (1) can also be represented in the form grad℘ = −μ curl (curlu),
div u = 0, whence it follows that the pressure ℘ and vorticity ω = curlu are related
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scalar and vectorial potentials, i.e., they satisfy grad℘ = −μ curlω with div ω = 0;
see [33, 32].

In this work, we consider asymmetric 3D Stokes flows due to motion of a solid
body of revolution. By asymmetric motion of the body, we will understand translation
along and rotation around axes transversal to the axis of revolution. Let S be the
surface of the body and let the body move in the fluid with the velocity u0. The
no-slip boundary conditions on the surface of the body are formulated by

(2) u = u0 on S,

and also the velocity field u and pressure ℘ vanish at infinity:

(3) u|∞ = 0, ℘|∞ = 0.

It is known that the Stokes flow problem (1)–(3) has a unique solution; see, e.g.,
[2, section 4.9]. This fact follows from the following proposition.

Proposition 1 (homogeneous Stokes flow problem). The problem (1) and (3)
with zero boundary conditions u|S = 0 has only a zero solution, i.e., u ≡ 0, in the
corresponding outer region.

Proof. The proof can be found in [2, section 4.9]. First, it is shown that the Stokes
equations with (3) and u|S = 0 imply curlu = 0, and then it is proved that the
problem div u = 0, curlu = 0 subject to (3) and u|S = 0 has only a zero solution. For
the last problem, special attention is paid to multiply connected regions. For details,
see [2, sections 2.8, 4.9].

Proposition 1 will be central in establishing uniqueness of solutions for the velocity
field represented in terms of k-harmonically analytic functions.

Let (r, ϕ, z) be the cylindrical coordinate system with the basis (er, eϕ,k). With-
out loss of generality, we can represent the velocity field u and pressure ℘ by

(4)
u(r, ϕ, z) =

∞∑
k=0

u(k)
r (r, z)

{
cos
sin (kϕ)

}
er + u(k)

ϕ (r, z)
{

sin
− cos (kϕ)

}
eϕ

+ u(k)
z (r, z)

{
cos
sin (kϕ)

}
k

and

(5) ℘(r, ϕ, z) =
∞∑
k=0

℘(k)(r, z)
{

cos
sin (kϕ)

}
,

where the choice of either upper or lower functions in the curly brackets depends on
whether u and ℘ are even or odd functions with respect to ϕ. If u and ℘ are neither
odd nor even, they are represented by sums of series, corresponding to even and odd
parts of u and ℘, respectively.

For convenience, we denote

(6) u
(k)
1 = u(k)

r − u(k)
ϕ , u

(k)
2 = u(k)

r + u(k)
ϕ .

The first equation in (1) reduces to a series of equations for k ∈ Z
+
0 :

(7)

μΔk−1u
(k)
1 =

(
∂

∂r
+
k

r

)
℘(k), μΔk+1u

(k)
2 =

(
∂

∂r
− k

r

)
℘(k), μΔku

(k)
z =

∂

∂z
℘(k),
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where Δk denotes the so-called k-harmonic operator:

(8) Δk ≡ ∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
− k2

r2
.

Similarly, the continuity equation divu = 0 reduces to

(9)
(
∂

∂r
− k − 1

r

)
u

(k)
1 +

(
∂

∂r
+
k + 1
r

)
u

(k)
2 + 2

∂

∂z
u(k)
z = 0.

Since ℘(r, ϕ, z) satisfies div (grad℘) = 0, the function ℘(k)(r, z) is k-harmonic,
i.e.,

(10) Δk ℘
(k) = 0,

and consequently, it follows from (7) and (10) that

(11) Δ2
k−1 u

(k)
1 = 0, Δ2

k+1 u
(k)
2 = 0, Δ2

k u
(k)
z = 0.

In the axially symmetric case, all equations (7)–(11) are considered for k = 0, and
in the case of asymmetric motion of a body of revolution, it is sufficient to consider
(7)–(11) for only k = 1.

There are two well-known solution forms for the Stokes flow problem (1)–(3): one
in terms of a stream function, which identically solves (9) for k = 0 and is applicable
only for the axially symmetric case (see [9]), and the other due to Dean and O’Neill
[6], which should satisfy the continuity equation. Both solution forms are mainly
used for canonical regions, i.e., those in which Laplace’s equation admits separation
of variables. Stream-function solutions to the axially symmetric Stokes flow problem
were obtained for particles of virtually all known canonical shapes, including sphere
[23], prolate and oblate spheroids [14, 9], circular disk [14, 9], spherical cap [16, 5, 25],
two spheres [22], torus [17, 28], spindle [18, 35], and lens [16, 34]. As for asymmetric
problems, exact solutions in the form of Dean and O’Neill’s were also constructed for
the majority of particles of canonical shape as follows: two spheres [15, 27, 13], torus
[28, 8, 24], two fused equal spheres [30], and spindle [31].

For particles of arbitrary shape, exact solutions to 3D Stokes flow problems can
be obtained by integral equation approaches [20, 21]. A well-known approach uses
integral representations for harmonic functions via Green’s functions [21, 29]. Yet
another approach can be contemplated based on the fact that for an incompressible
isotropic elastic medium, the Lamé equation formally corresponds to the Stokes model
(1) (see [25, 35]), and that in the axially symmetric case, the displacement vector
u can be represented by a generalized Kolosov–Muskhelishvili formula in terms of
two p-analytic functions (with p = r) and their derivatives [19, 1]. However, to the
best of our knowledge, no representation of an asymmetric 3D velocity field in terms
of either generalized analytic or pseudoanalytic functions has been encountered in
the existing literature. Coupled with a corresponding generalized Cauchy’s integral
formula, such a representation would allow one to reduce 3D Stokes flow problems to
integral equations.

As a central result of this work, we obtain a solution form for the velocity field
and pressure for asymmetric 3D Stokes flow problems in terms of three k-harmonically
analytic functions. This solution form is similar to Goursat’s formula representing a
solution to a 2D biharmonic equation via two ordinary analytic functions. Its main
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advantage is that, in contrast to Dean and O’Neill’s solution form, it identically sat-
isfies the continuity equation, and in contrast to generalized Kolosov–Muskhelishvili
formulae, it does not involve derivatives of k-harmonically analytic functions.1 It is
applicable to obtaining closed-form analytical solutions for the canonical regions as
well as to obtaining exact solutions via integral equations for arbitrary regions.

1.2. k-harmonically analytic functions. Here we define only k-harmonically
analytic functions and refer the reader to the first part of this work [32], in which
we derived a Cauchy’s integral formula for k-harmonically analytic functions and
constructed series representations for k-harmonically analytic functions for the regions
exterior to a sphere and prolate and oblate spheroids.

For each k ∈ Z
+
0 , k-harmonically analytic functions G(k)(r, z) = U (k)(r, z) +

i V (k+1)(r, z), i =
√
−1, constitute a class of generalized analytic functions [3, 4, 19, 26]

and are determined by a particular case of the Bers–Vekua system

(12)
(
∂

∂r
− k

r

)
U (k) =

∂

∂z
V (k+1),

∂

∂z
U (k) = −

(
∂

∂r
+
k + 1
r

)
V (k+1).

In [33], we showed that (12) arises from an asymmetric 3D case of the relationship

(13) gradφ = − curlΛ, div Λ = 0

for a scalar field φ and vectorial field Λ, which in view of (13) are called related poten-
tials. In the 2D case in Cartesian coordinates, (13) reduces to the classical Cauchy–
Riemann system for ordinary analytic functions, and in the axially symmetric 3D case
in the cylindrical coordinates (r, ϕ, z),2 (13) defines so-called r-analytic functions; see
[33]. In the asymmetric 3D case, (13) reduces to (12), which relates kth harmonics of
φ and Λ in the cylindrical coordinates with respect to the angular coordinate ϕ.

It follows from (12) that U (k) and V (k+1) are k-harmonic and (k + 1)-harmonic
functions, respectively:

ΔkU
(k) = 0 and Δk+1V

(k+1) = 0.

To emphasize this fact, we call G(k) satisfying (12) a k-harmonically analytic function.
In particular, for k = 0, the system (12) defines the class of r-analytic functions; see
[33, 34, 35].

Let ζ = r+i z be a complex variable. Introducing the derivative ∂
∂ζ

= 1
2

(
∂
∂r + i ∂

∂z

)
,

we can represent the system (12) in the form

(14)
∂G(k)

∂ζ
=

1
4r

(
(2k + 1)G(k) −G(k)

)
.

1For example, in the asymmetric problem of Stokes flows due to transversal translation of a solid
torus or two solid spheres (see [8, 27]), the continuity equation with Dean and O’Neill’s solution form
reduces to a second-order difference equation. This procedure relies substantially on the peculiar
properties of the special functions associated with the bispherical and toroidal coordinates and is
unlikely to be extended to the problem with a body of arbitrary shape. Also, the integral equation
for the axially symmetric problem of an elastic isotropic medium obtained via generalized Kolosov–
Muskhelishvili formulae (see [1, equation (46.40)]) involves a derivative of a generalized Cauchy’s
kernel, which complicates numerical analysis of the equation.

2In this case, the z-axis is the axis of revolution, and φ and Λ are independent of the angular
coordinate ϕ.
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Without assuming analyticity, we will formally write G(k)(ζ) = G(k)(r, z). A k-
harmonically analytic function can be defined for r < 0 by introducing the symmetry
condition

(15) G(k)
(
−ζ

)
= (−1)kG(k)(ζ).

This condition is dictated by the representation of the velocity field in terms of k-
harmonically analytic functions.

The paper is organized into three sections. Section 2 constructs the solution form
for asymmetric Stokes flow problems in terms of three k-harmonically analytic func-
tions; proves that the solution form uniquely determines an external velocity field
vanishing at infinity; expresses the resisting force and torque, exerted on a solid body
of revolution in the Stokes flow in terms of the k-harmonically analytic functions en-
tering the solution form; and reduces Stokes flow problems to integral equations based
on Cauchy’s integral formula for k-harmonically analytic functions. Section 3 demon-
strates the solution form in obtaining analytical solutions to the problems of Stokes
flows due to transversal translation and rotation of a solid sphere and solid prolate
and oblate spheroids. It also solves the integral equations for transversal translation
and rotation of solid bispheroids and a solid torus of elliptical cross-section for var-
ious values of a geometrical parameter. The appendix presents two auxiliary results
dealing with implementation of the necessary and sufficient condition for a function
to be k-harmonically analytic in an outer region and vanishing at infinity.

2. Stokes equations in the asymmetric case. This section constructs a rep-
resentation for the velocity field and pressure for asymmetric 3D Stokes flows in terms
of three k-harmonically analytic functions.

To simplify notation, we will write a function of the variables of r and z as the
function of ζ without assuming analyticity.

Proposition 2 (representation for the velocity field and pressure). Let G(k−1)
1 (ζ) =

U
(k−1)
1 (ζ) + i V

(k)
1 (ζ), G(k−1)

2 (ζ) = U
(k−1)
2 (ζ) + i V

(k)
2 (ζ), and G

(k)
3 (ζ) = U

(k)
3 (ζ) +

i V
(k+1)
3 (ζ) be k-harmonically analytic functions satisfying (12) for k − 1, k − 1, and

k, respectively, and vanishing at |ζ| → ∞. Then for k ≥ 1, the components of the
velocity field in the asymmetric case of the Stokes equations can be represented in the
form

(16)

2
(
u(k)
z (ζ) + i u(k)

r (ζ)
)

=
(
k + 1
2k − 1

r − i
k − 2
2k − 1

z

)
G

(k−1)
1 (ζ) + i G

(k−1)
2 (ζ) +G

(k)
3 (ζ),

2u(k)
ϕ (ζ) = Im

[
k − 2
2k − 1

(r + i z)G(k−1)
1 (ζ) − i G

(k−1)
2 (ζ) +G

(k)
3 (ζ)

]
,

and the kth harmonic of the pressure is determined by

(17) ℘(k)(ζ) = μ ImG
(k−1)
1 (ζ), k ≥ 1.

Proof. For k ≥ 1, the components u(k)
1 , u(k)

2 , and u
(k)
z satisfy (7) and (9). We

denote ℘(k)(ζ) = V
(k)
1 (ζ), where V (k)

1 is a k-harmonic function. Since ℘(k)(ζ) vanishes
at |ζ| → ∞, there exists a unique (k− 1)-harmonic function U (k−1)

1 (ζ) also vanishing
at |ζ| → ∞ such that U (k−1)

1 and V (k)
1 form a (k − 1)-harmonically analytic function

G
(k−1)
1 (ζ) = U

(k−1)
1 (ζ) + i V

(k)
1 (ζ); see [33, Proposition 1]. Using the system (12) for
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k − 1, we can restate the Stokes equations (7) as

(18)

Δk−1u
(k)
1 =

(
∂

∂r
+
k

r

)
V

(k)
1 = − ∂

∂z
U

(k−1)
1 ,

Δk+1u
(k)
2 =

(
∂

∂r
− k

r

)
V

(k)
1 ,

Δku
(k)
z =

∂

∂z
V

(k)
1 =

(
∂

∂r
− k − 1

r

)
U

(k−1)
1 .

With the identities
(19)

Δk−1

(
r V

(k)
1

)
= 2

(
∂

∂r
+
k

r

)
V

(k)
1 ,

Δk+1

(
r V

(k)
1

)
= 2

(
∂

∂r
− k

r

)
V

(k)
1 ,

Δk

(
z V

(k)
1

)
= 2

∂

∂z
V

(k)
1 ,

Δk−1

(
z U

(k−1)
1

)
= 2

∂

∂z
U

(k−1)
1 ,

Δk

(
r U

(k−1)
1

)
= 2

(
∂

∂r
− k − 1

r

)
U

(k−1)
1 ,

equations (18) are integrated, and the components u(k)
1 , u(k)

2 , and u(k)
z are represented

in the form

(20)

u
(k)
1 (ζ) = a r V

(k)
1 (ζ) + b z U

(k−1)
1 (ζ) + U

(k−1)
2 (ζ),

u
(k)
2 (ζ) =

1
2
r V

(k)
1 (ζ) + V

(k+1)
3 (ζ),

u(k)
z (ζ) = c z V

(k)
1 (ζ) + d r U

(k−1)
1 (ζ) +W (k)(ζ),

where a, b, c, and d are real-valued constants and U
(k−1)
2 , V (k+1)

3 , and W (k) are
arbitrary functions that satisfy

Δk−1U
(k−1)
2 = 0, Δk+1V

(k+1)
3 = 0, ΔkW

(k) = 0

and vanish at |ζ| → ∞. Substituting (20) into (18), we have

(21) 2a− 2b = 1, 2c+ 2d = 1.

Then substituting (20) into (9) and using (12) for k − 1, we obtain

(22)
(
∂

∂r
− k − 1

r

)
U

(k−1)
2 +

(
∂

∂r
+
k + 1
r

)
V

(k+1)
3 + 2

∂

∂z
W (k) = 0,

provided that

(23) −a+ 2d =
1
2
, b+ 2c = 0, 2(1 − k)a+ 2c = −1.

As in the axially symmetric case [32, Proposition 7], (21) and (23) are dependent.
Indeed, adding a − b = 1/2, −a + 2d = 1/2, and b + 2c = 0, we have 2c + 2d = 1.
Excluding, for example, 2c+2d = 1 from (21) and (23), we obtain the unique solution
to the remaining four equations:

a =
3

2(2k − 1)
, b = − k − 2

2k − 1
, c =

k − 2
2(2k − 1)

, d =
k + 1

2(2k − 1)
,

where 2k − 1 �= 0 for any integer k.
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Equation (22) becomes an identity for W (k)(ζ) = 1
2 (U (k)

3 (ζ) − V
(k)
2 (ζ)), where

V
(k)
2 (ζ) is the imaginary part of the (k−1)-harmonically analytic functionG(k−1)

2 (ζ) =
U

(k−1)
2 (ζ)+ i V

(k)
2 (ζ) and U (k)

3 (ζ) is the real part of the k-harmonically analytic func-
tion G(k)

3 (ζ) = U
(k)
3 (ζ)+i V (k+1)

3 (ζ). Under the condition that G(k−1)
2 and G(k)

3 vanish
at infinity, G(k−1)

2 and G
(k)
3 are uniquely determined by U

(k−1)
2 and V

(k+1)
3 , respec-

tively; see [33, Proposition 1].
Consequently, the representation (20) takes the form

(24)

u
(k)
1 (ζ) =

3
2(2k − 1)

r V
(k)
1 (ζ) − k − 2

2k − 1
z U

(k−1)
1 (ζ) + U

(k−1)
2 (ζ),

u
(k)
2 (ζ) =

1
2
r V

(k)
1 (ζ) + V

(k+1)
3 (ζ),

u(k)
z (ζ) =

k − 2
2(2k − 1)

z V
(k)
1 (ζ) +

k + 1
2(2k − 1)

r U
(k−1)
1 (ζ) +

1
2

(
U

(k)
3 (ζ) − V

(k)
2 (ζ)

)
.

With the relationships u(k)
r = 1

2 (u(k)
1 + u

(k)
2 ) and u(k)

ϕ = 1
2 (u(k)

2 − u
(k)
1 ), the represen-

tation (16) follows from (24).
Proposition 3. Another solution form for the asymmetric velocity field in terms

of three k-harmonically analytic functions vanishing at infinity is given by
(25)

2
(
u(k)
z (ζ) + i u(k)

r (ζ)
)

=
(
k + 2
2k + 1

z + i
k − 1
2k + 1

r

)
G

(k)
1 (ζ) + i G

(k−1)
2 (ζ) +G

(k)
3 (ζ),

2u(k)
ϕ (ζ) = Im

[
k + 2
2k + 1

(z − i r)G(k)
1 (ζ) − i G

(k−1)
2 (ζ) +G

(k)
3 (ζ)

]

for k ≥ 1, and the kth harmonic of the pressure is determined by

℘(k)(ζ) = μ ReG(k)
1 (ζ), k ≥ 1.

Proof. The proof is similar to that of Proposition 2.
Without loss of generality, an asymmetric motion of a solid body of revolution,

whose axis of revolution is determined by the z-axis, can be decomposed into two
motions: (i) translation of the body along the x-axis with the constant velocity vx
(“x-translation”), and (ii) rotation of the body around the y-axis with the constant
angular velocity�y (“y-rotation”). For these motions, the no-slip boundary conditions
(2) for the velocity field u on the body’s surface S take the form

x-translation: u = vxi on S,(26)
y-rotation: u = [�y j× (x i + z k)] on S,(27)

and in both problems, u and ℘ vanish at infinity, i.e., satisfy (3).
For the components (ur, uϕ, uz) of the velocity field in the cylindrical coordinates

(r, ϕ, z), the boundary conditions (26) and (27) are reformulated as

x-translation: ur = vx cosϕ, uϕ = −vx sinϕ, uz = 0 on S,(28)
y-rotation: ur = �y z cosϕ, uϕ = −�y z sinϕ, uz = −�y r cosϕ on S.(29)

It follows from (28) and (29) that the velocity field u has only a first harmonic
with respect to the angular coordinate ϕ, and consequently, its components can be
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represented in the form (16) for k = 1:

u(1)
z (ζ) + i u(1)

r (ζ) =
1
2

(
(2r + i z)G(0)

1 (ζ) + i G
(0)
2 (ζ) +G

(1)
3 (ζ)

)
,(30a)

u(1)
ϕ (ζ) =

1
2

Im
[
−(r + i z)G(0)

1 (ζ) − i G
(0)
2 (ζ) +G

(1)
3 (ζ)

]
.(30b)

Consequently, asymmetric problems of 3D Stokes flows due to motion of the solid
body of revolution reduce to boundary-value problems for two 0-harmonically analytic
functions and one 1-harmonically analytic function.

In the rz-plane, let D+ and D− denote the inner and outer regions with respect to
the cross-section of the finite body of revolution.3 By D+

0 and D−
0 , we will understand

D+ with r ≥ 0 and D− with r ≥ 0, respectively, i.e., the right parts of the correspond-
ing regions. In general, D+

0 is a multiply connected region, e.g., a cross-section of two
spheres. Let � be the common boundary of D+ and D−, and let �+ and �− denote
the parts of � for r ≥ 0 (right part) and r ≤ 0 (left part), respectively, which, being
symmetric with respect to the z-axis, are either closed curves or open curves with
the endpoints lying on the z-axis. The contour of the body in the rz-plane is thus
� = �+

⋃
�−. It is positively oriented, i.e., traversed in the counterclockwise direction,

if D+ remains on the left side when one travels along � in this direction.4

Problem I. Given a complex-valued function f1(ζ) and real-valued function f2(ζ)
on �+ such that f1

(
−ζ

)
= −f1(ζ) and f2

(
−ζ

)
= f2(ζ), find 0-harmonically analytic

functions G(0)
1 (ζ) and G(0)

2 (ζ) and a 1-harmonically analytic function G
(1)
3 (ζ) in D−

0

that vanish at |ζ| → ∞ and satisfy the boundary conditions

(2r + i z)G(0)
1 (ζ) + i G

(0)
2 (ζ) +G

(1)
3 (ζ) = f1(ζ), ζ ∈ �+,(31a)

Im
[
−(r + i z)G(0)

1 (ζ) − i G
(0)
2 (ζ) +G

(1)
3 (ζ)

]
= f2(ζ), ζ ∈ �+.(31b)

For example, for the x-translation (28), we have f1(ζ) = 2ivx and f2(ζ) = −2vx,
and for the y-rotation (29), we have f1(ζ) = −2�yζ and f2(ζ) = −2�yz.

Remark 1. With the symmetry condition (15) and with f1
(
−ζ

)
= −f1(ζ) and

f2
(
−ζ

)
= f2(ζ), the boundary conditions (31a) and (31b) are equivalent to the bound-

ary conditions on � = �+
⋃
�−:

(2r + i z)G(0)
1 (ζ) + i G

(0)
2 (ζ) +G

(1)
3 (ζ) = f1(ζ), ζ ∈ �,(32a)

Im
[
−(r + i z)G(0)

1 (ζ) − i G
(0)
2 (ζ) +G

(1)
3 (ζ)

]
= f2(ζ), ζ ∈ �.(32b)

For details, see Remark 7 in [32]. This fact will be critical in reducing Problem I to
integral equations.

Remark 2. For multiply connected D−
0 , the functions G(0)

1 (ζ), G(0)
2 (ζ), and G(1)

3 (ζ)
are continuous and single valued. Indeed, in this case, G(0)

1 (ζ), G(0)
2 (ζ), and G

(1)
3 (ζ)

may contain multivalued terms analogous to a complex logarithm, which change their
values along a continuous closed path enclosing a branch point lying in D+

0 ; see [1,
formula (32.22)] and [11, formulae (35.2), (36.4)]. However, the solution form (30a)–
(30b) and the continuity of the velocity field and pressure imply that those terms
vanish.

3We always assume that the z-axis is the body’s axis of revolution.
4The orientation of a closed curve is always determined with respect to the corresponding inner

region.
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Proposition 4. Problem I has a unique solution in the outer region D−
0 .

Proof. The proposition is equivalent to the fact that (31a) and (31b) have only
a zero homogeneous solution in the specified class of functions. Since the Stokes flow
problem (1) and (3) with zero boundary condition u|S = 0 has only a zero solution
(see Proposition 1), we have u(1)

r ≡ 0, u(1)
ϕ ≡ 0 and u(1)

z ≡ 0 in D−
0 , which in terms of

G
(0)
1 (ζ) = U

(0)
1 (ζ) + i V

(1)
1 (ζ), G(0)

2 (ζ) = U
(0)
2 (ζ) + i V

(1)
2 (ζ), and G(1)

3 (ζ) = U
(1)
3 (ζ) +

i V
(2)
3 (ζ) with (30a)–(30b) reduces to

2r U (0)
1 − z V

(1)
1 − V

(1)
2 + U

(1)
3 = 0,(33a)

2r V (1)
1 + z U

(0)
1 + U

(0)
2 + V

(2)
3 = 0,(33b)

−
(
r V

(1)
1 + z U

(0)
1

)
− U

(0)
2 + V

(2)
3 = 0(33c)

in the whole region D−
0 . We should prove that the system (33a)–(33c) has only a

zero solution. Indeed, applying the 1-harmonic operator to (33a) and using the first
equation of (12) forG(0)

1 (ζ), we obtain ∂
∂rU

(0)
1 = 0 in D−

0 . Subtracting (33c) from (33b)
and applying the 0-harmonic operator to the resulting equation, we have ∂

∂zU
(0)
1 = 0

in D−
0 . Consequently, we conclude that U (0)

1 is a constant, which however, equals
zero, since G(0)

1 vanishes at infinity. With U
(0)
1 ≡ 0, (12) implies that V (1)

1 = b/r,
where b is a constant, which also equals zero because of the same reason, and thus,
G

(0)
1 ≡ 0 in D−

0 . Substituting this result into (33b) and (33c), we obtain U (0)
2 ≡ 0 and

V
(2)
3 ≡ 0. Similarly, in this case, the only G(0)

2 and G(1)
3 that vanish at infinity are zero

functions.
Remark 3. If in Problem I the functions G(0)

1 , G(0)
2 , and G(1)

3 are not required to
vanish at infinity, then in this case, Problem I has the homogeneous solution G(0)

1 (ζ) =
a, G(0)

2 (ζ) = −a
(
z − i

2r
)
, and G(1)

3 (ζ) = − 3
2a r, where a is an arbitrary constant. This

fact can be established by modifying the proof of Proposition 4.
Further, we will need the following result.
Proposition 5 (auxiliary homogeneous boundary-value problem). For 0-harmo-

nically analytic functions G(0)
1 (ζ) and G(0)

2 (ζ) in the inner (multiply connected) region
D+

0 , the homogeneous boundary-value problem

(34)
(
(2r + i z)G(0)

1 (ζ) + i G
(0)
2 (ζ)

)∣∣∣
�+

= 0

has only zero solution.
Proof. The proof is analogous to that of Proposition 9(ii) in [32]. We assume that

D+
0 is simply connected. In the case when D+

0 is multiply connected and consists of
disjoint simply connected subregions D+

j , 1 ≤ j ≤ m, the proof is conducted for D+
j

instead of D+
0 . Let a function Φ(ζ) be defined by

(35) Φ(ζ) = r G
(0)
1 (ζ)

(
(2r + i z)G(0)

1 (ζ) + i G
(0)
2 (ζ)

)
,

and let L be the positively oriented boundary of D+
0 , which either is �+ if �+ is closed

or consists of �+ and the segment of the z-axis connecting the endpoints of �+ if �+
is an open curve with the endpoints lying on the z-axis. It follows from (35) and
Proposition 4(ii) in [32] that

Re
∂Φ
∂ζ

=
1
2
r

(
3
[
ReG(0)

1

]2

+
[
ImG

(0)
1

]2
)
.
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Consequently, using Propositions 5 in [32], we obtain

(36)

Im
[∮

L

Φ dζ
]

= Im

[
2i

∫∫
D+

0

∂Φ
∂ζ

drdz

]
=

∫∫
D+

0

r

(
3
[
ReG(0)

1

]2

+
[
ImG

(0)
1

]2
)
drdz.

However, since Φ = 0 on the z-axis and �+, the integral in the right-hand side of the
last equality vanishes, whence it follows that G(0)

1 (ζ) ≡ 0 in D+
0 .

Problem I can be reduced to integral equations based on the generalized Cauchy
integral formula

G(k)(ζ) = − 1
2πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ, ζ ∈ intD−,

for k-harmonically analytic functions in the outer region D− that vanish at infin-
ity, where W(k)(ζ, τ) is a generalized Cauchy kernel and � is the positively oriented
boundary with respect to D+; see Theorem 2 in the first part of this work [32].

Theorem 6 (two integral equations in the asymmetric case). For the outer mul-
tiply connected region D−

0 , Problem I reduces to two integral equations for determining
boundary values of G(0)

1 (ζ) = U
(0)
1 (ζ) + i V

(1)
1 (ζ) and U (1)

3 (ζ) = ReG(1)
3 (ζ):

(37)
1
πi

∫
�+

(
[z − z1 − 2i(r − r1)]G

(0)
1 (τ)Ω(0)

+ (ζ, τ)
dτ

τ − ζ

− [z − z1 − 2i(r + r1)]G
(0)
1 (τ) Ω(0)

− (ζ, τ)
dτ

τ + ζ

)

+
1
πi

∫
�+

([
1
2
r1V

(1)
1 (τ) + i U

(1)
3 (τ)

] (
Ω(0)

+ (ζ, τ) − Ω(1)
+ (ζ, τ)

) dτ

τ − ζ

−
[
1
2
r1V

(1)
1 (τ) − i U

(1)
3 (τ)

] (
Ω(0)

− (ζ, τ) + Ω(1)
− (ζ, τ)

) dτ

τ + ζ

)
= F1(ζ), ζ ∈ �,

(38)

U
(1)
3 (ζ) − i

2
r V

(1)
1 (ζ) +

1
πi

∮
�

(
U

(1)
3 (τ) − i

2
r1 V

(1)
1 (τ)

)
W(1)(ζ, τ) dτ = F2(ζ), ζ ∈ �,

where ζ = r+ i z, τ = r1 + i z1, the functions Ω(k)
+ (ζ, τ) and Ω(k)

− (ζ, τ) are determined
by (25a) and (25b) in [32], and

(39)

F1(ζ) = i f1(ζ) +
1

2πi

∮
�

(2i f1(τ) + f3(τ))W(0)(ζ, τ) dτ +
1
2π

∮
�

i f3(τ)W(1)(ζ, τ) dτ,

(40) F2(ζ) = − i

2
f3(ζ) −

1
2πi

∫
�

i f3(τ)W(1)(ζ, τ) dτ,

f3(ζ) = Im[f1(ζ)] + f2(ζ).

Proof. As in the axially symmetric case [32, Theorem 10], the derivation of the
integral equations follows Muskhelishvili’s approach [11, 12] used for reducing 2D
problems of an elastic medium to integral equations.
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According to Remark 1, Problem I for D−
0 is equivalent to Problem I for D−.

Necessary and sufficient conditions for the functions G(0)
1 , G(0)

2 , and G
(1)
3 to be k-

harmonically analytic in D− for k = 0, 0, and 1, respectively, and vanishing at infinity
follow from the corresponding generalized Sokhotski–Plemelj formulae5 and are given
by

G
(0)
1 (ζ) +

1
πi

∮
�

G
(0)
1 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �,(41a)

G
(0)
2 (ζ) +

1
πi

∮
�

G
(0)
2 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �,(41b)

G
(1)
3 (ζ) +

1
πi

∮
�

G
(1)
3 (τ)W(1)(ζ, τ) dτ = 0, ζ ∈ �.(41c)

Expressing the boundary value of G(0)
2 from the boundary condition (32a),

(42) G
(0)
2 (ζ) = −i

(
f1(ζ) − (2r + i z)G(0)

1 (ζ) −G
(1)
3 (ζ)

)
, ζ ∈ �,

and substituting (42) into (41b), we have
(43)

(2ir − z)G(0)
1 (ζ) + i G

(1)
3 (ζ) +

1
πi

∮
�

(
(2ir1 − z1)G

(0)
1 (τ) + i G

(1)
3 (τ)

)
W(0)(ζ, τ) dτ

= i f1(ζ) +
1
πi

∮
�

i f1(τ)W(0)(ζ, τ) dτ, ζ ∈ �.

Similarly, expressing the boundary value of V (2)
3 (ζ) from the sum of (32b) and the

imaginary part of (32a),

(44) V
(2)
3 (ζ) =

1
2

(
Im[f1(ζ)] + f2(ζ) − r V

(1)
1 (ζ)

)
, ζ ∈ �,

and substituting (44) into (41c), we obtain (38). Finally, substituting (44) into (43)
and subtracting the combination (2ir− z) · (41a) + i · (38) from (43), we obtain (37).

Now we need to show that if G̃(0)
1 (ζ) and Ũ (1)

3 (ζ) solve (37) and (38), then G̃(0)
1 (ζ),

G̃
(0)
2 (ζ), determined by (42), and G̃(1)

3 (ζ) satisfy (41a), (41b), and (41c), respectively.
With Ṽ

(1)
1 , the imaginary part Ṽ (2)

3 (ζ) is determined by (44), and (38) can be
restated as (41c) for G̃(1)

3 (ζ) = Ũ
(1)
3 (ζ) + i Ṽ

(2)
3 (ζ). Thus, G̃(1)

3 (ζ) satisfies (41c). Sim-
ilarly, with (44), (37) can be rewritten in terms of G̃(1)

3 (ζ), and the combination
(37) + i · (41c) reduces to

(45)

1
πi

(∮
�

(2ir1 − z1)G̃
(0)
1 (τ)W(0)(ζ, τ) dτ − (2ir − z)

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ

)

+ i G̃
(1)
3 (ζ) +

1
πi

∮
�

i G̃
(1)
3 (τ)W(0)(ζ, τ) dτ

= i f1(ζ) +
1
πi

∮
�

i f1(τ)W(0)(ζ, τ) dτ, ζ ∈ �.

5These formulae are derived similarly to the Sokhotski–Plemelj formulae for ordinary analytic
functions; see [1, formula (31.13)] and [7, formula (4.8)].
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Now adding (2ir − z)G̃(0)
1 (ζ) to the right-hand and left-hand sides of (45) and using

(42), we rewrite (45) in the form

(46)
− (2ir − z)

(
G̃

(0)
1 (ζ) +

1
πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ

)

+ G̃
(0)
2 (ζ) +

1
πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ = 0, ζ ∈ �.

Let Φ+(ζ) and Ψ+(ζ) be determined by the generalized Cauchy-type integrals in
the region D+ excluding its boundary �:

Φ+(ζ) =
1

2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ intD+,

Ψ+(ζ) =
1

2πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ, ζ ∈ intD+.

These functions are 0-harmonically analytic in intD+, since W(0)(ζ, τ) satisfies (14)
for k = 0 with respect to ζ. Then when ζ approaches � from within D+, the boundary
values of Φ+(ζ) and Ψ+(ζ) on � are determined by the corresponding generalized
Sokhotski–Plemelj formula

Φ+(ζ) =
1
2
G̃

(0)
1 (ζ) +

1
2πi

∮
�

G̃
(0)
1 (τ)W(0)(ζ, τ) dτ, ζ ∈ �,(47a)

Ψ+(ζ) =
1
2
G̃

(0)
2 (ζ) +

1
2πi

∮
�

G̃
(0)
2 (τ)W(0)(ζ, τ) dτ, ζ ∈ �,(47b)

and the relationship (46) reduces to

(2r + i z)Φ+(ζ) + iΨ+(ζ) = 0, ζ ∈ �,

which, in view of the symmetry condition (15),6 is the auxiliary homogeneous boundary-
value problem (34) for the 0-harmonically analytic functions Φ+(ζ) and Ψ+(ζ) in D+

0 .
According to Proposition 5, the only solution to this problem is Φ+(ζ) ≡ 0 and
Ψ+(ζ) ≡ 0. Consequently, (47a) and (47b) imply that G̃(0)

1 (ζ) and G̃
(0)
2 (ζ) satisfy

(41a) and (41b), respectively, and thus are the boundary values of 0-harmonically
analytic functions in D−.

Remark 4. The kernels of the integral equation (37) have only logarithmic sin-
gularity because of the functions Ω(0)

− (ζ, τ) and Ω(1)
− (ζ, τ) (see Remark 2 in [32]).

Indeed,

lim
τ→ζ

z − z1 − 2i(r − r1)
τ − ζ

=
i

2

(
3 + e

−2i lim
τ→ζ

arg[τ−ζ]
)
,

which is obtained by setting τ = ζ + ρ eiβ and passing ρ → 0 (also, if ζ = ζ(t) is a
parameterization of smooth �+, then limτ→ζ arg[τ − ζ] = arg[ζ′(t)]), and

lim
τ→ζ

Ω(0)
+ (ζ, τ) − Ω(1)

+ (ζ, τ)
τ − ζ

= 0.

6The functions Φ+(ζ) and Ψ+(ζ), being determined by the generalized Cauchy-type integrals,
satisfy the symmetry condition (15).
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Remark 5. Let �+ be symmetric with respect to the r-axis. If f1
(
ζ
)

= f1(ζ) and

f2
(
ζ
)

= −f2(ζ), then G(1)
3

(
ζ
)

= G
(1)
3 (ζ), and (38) reduces to

U
(1)
3 (ζ) + Re

[
1
πi

∮
�

(
U

(1)
3 (τ) − i

2
r1 V

(1)
1 (τ)

)
W(1)(ζ, τ) dτ

]
= Re[F2(ζ)], ζ ∈ �,

and if f1
(
ζ
)

= −f1(ζ) and f2
(
ζ
)

= f2(ζ), then G(1)
3

(
ζ
)

= −G(1)
3 (ζ), and (38) reduces

to

−1
2
r V

(1)
1 (ζ) + Im

[
1
πi

∮
�

(
U

(1)
3 (τ) − i

2
r1 V

(1)
1 (τ)

)
W(1)(ζ, τ) dτ

]
= Im[F2(ζ)], ζ ∈ �.

These equations follow from Proposition 10 (see the appendix) applied to (41c) with
(44).

The singular integral equation (38) can be reduced to an integral equation with a
logarithmic singularity based on Proposition 11 (see the appendix) and the fact that
(38) is (41c) with (44).

Now we represent the resisting force and torque, exerted on a solid body of rev-
olution in the x-translation (26) and y-rotation (27), respectively, in terms of the
functions G(0)

1 and G(0)
2 , entering the solution form (30a)–(30b).

Proposition 7 (resisting force in the asymmetric translation). For the Stokes
flow due to the x-translation (28) of the body,7 let the velocity field be represented
by (30a)–(30b). The resisting (drag) force, exerted on the body by the fluid, can be
represented in two equivalent forms,

Fx = 2πμ Re

[∫
�+

r G
(0)
1 (ζ) dζ

]
,(48a)

Fx = −4πμ lim
z→∞

(
z2 ReG(0)

1 (r, z)
∣∣∣
r=0

)
,(48b)

where �+ in (48a) is positively oriented with respect to D+
0 .

Proof. We first prove the formula (48a).
For the x-translation (28), the resulting force, exerted on the body of revolution,

is the integral over the body’s surface S and has the component in the direction i
only:

(49) Fx =
∫∫

S

(i · Pn) dS, Pn = 2μ
∂u
∂n

+ μ [n × curlu] − ℘ n,

where n = nr er + nz k is the outer normal to the body’s surface with nr = ∂r
∂n and

nz = ∂z
∂n ; see [9].

Using the representations (30a)–(30b) and (17) for k = 1 that correspond to the
boundary conditions (28), we have

(50)

ur(r, ϕ, z) =
1
2

(
z U

(0)
1 (r, z) + 2r V (1)

1 (r, z) + U
(0)
2 (r, z) + V

(2)
3 (r, z)

)
cosϕ,

uϕ(r, ϕ, z) =
1
2

(
−z U (0)

1 (r, z) − r V
(1)
1 (r, z) − U

(0)
2 (r, z) + V

(2)
3 (r, z)

)
sinϕ,

uz(r, ϕ, z) =
1
2

(
2r U (0)

1 (r, z) − z V
(1)
1 (r, z) − V

(1)
2 (r, z) + U

(1)
3 (r, z)

)
cosϕ,

℘(r, ϕ, z) = μV
(1)
1 (r, z) cosϕ.

7The z-axis is the body’s axis of revolution.
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Let (s, ϕ, n) be a characteristic coordinate system with the right-hand orthogonal
basis (s, eϕ, n), in which s has negative orientation. Then with the relationships

∂r

∂s
=
∂z

∂n
,

∂r

∂n
= −∂z

∂s
,

the system (12) with k = 0, defining the functions G(0)
1 = U

(0)
1 + i V

(1)
1 and G

(0)
2 =

U
(0)
2 + i V

(1)
2 , can be represented by

(51)
∂

∂s
U

(0)
j =

1
r

∂

∂n

(
rV

(1)
j

)
,

∂

∂n
U

(0)
j = −1

r

∂

∂s

(
rV

(1)
j

)
, j = 1, 2,

and (12) with k = 1, defining the function G(1)
3 = U

(1)
3 + i V

(2)
3 , takes the form

(52)

∂

∂s
U

(1)
3 − 1

r

∂r

∂s
U

(1)
3 =

1
r2

∂

∂n

(
r2V

(2)
3

)
,

∂

∂n
U

(1)
3 − 1

r

∂r

∂n
U

(1)
3 = − 1

r2
∂

∂s

(
r2V

(2)
3

)
.

In the cylindrical coordinates, dS = r ds dϕ, where ds is the differential of the
curve length (s is the same variable as in the system (s, ϕ, n)). Substituting (50) into
(49) and also using (12) along with (51) and (52), we obtain∫ 2π

0

(i · Pn) dϕ =
πμ

2r

(
4r

(
−∂r
∂s
U

(0)
1 +

∂z

∂s
V

(1)
1

)

+
∂

∂s

[
r
(
5r U (0)

1 − 3z V (1)
1 − 3V (1)

2 + U
(1)
3

)])
,

and consequently, Fx in (49) reduces to

(53) Fx =
∫
�+

[∫ 2π

0

(i · Pn) dϕ
]
r ds = 2πμ

∫
�+

r

(
−∂r
∂s
U

(0)
1 +

∂z

∂s
V

(1)
1

)
ds,

under the condition that∫
�+

∂

∂s

[
r
(
5r U (0)

1 − 3z V (1)
1 − 3V (1)

2 + U
(1)
3

)]
ds = 0,

which obviously holds, since the functions G(0)
1 (ζ), G(0)

2 (ζ), and G(1)
3 (ζ) are continuous

in D−
0 (see Remark 2) and since �+ either is a closed curve or has the endpoints on

the z-axis.
Finally, since �+ in (53) has positive orientation, dr = −∂r

∂sds and dz = −∂z
∂sds on

�+, and thus, with these relationships, (53) can be represented in the form of (48a).
The formula (48b) follows from (48a) and Proposition 6 in [32].
Proposition 8 (resisting torque in the asymmetric rotation). For the Stokes

flow due to the y-rotation (29) of the body,8 let the velocity field be represented by
(30a)–(30b). The resisting torque, exerted on the body by the fluid, can be represented
in two equivalent forms,

Ty = 2πμRe

[∫
�+

r
(
(2z − ir)G(0)

1 (ζ) +G
(0)
2 (ζ)

)
dζ

]
,(54a)

Ty = 4πμ
{
2 lim
r→∞

(
r3 ReG(0)

1 (r, z)
∣∣∣
z=0

)
− lim
z→∞

(
z2 ReG(0)

2 (r, z)
∣∣∣
r=0

)}
,(54b)

where �+ in (54a) is positively oriented with respect to D+
0 .

8The z-axis is the body’s axis of revolution.
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Proof. We first prove the formula (54a).
For the y-rotation (29), the resulting torque, exerted on the body of revolution,

has the component in the direction j only:

(55) Ty =
∫∫

S

(j · [r × Pn]) dS =
∫∫

S

([j × r] · Pn) dS,

where Pn is defined as in (49), r = r er + z k is the radius vector, and n is the outer
normal to the body’s surface as in (49).

As in the proof of Proposition 7, we introduce a characteristic coordinate system
(s, ϕ, n) with the right-hand orthogonal basis (s, eϕ, n) and also have dS = r ds dϕ in
the cylindrical coordinates with the length differential ds. For the boundary conditions
(29), the velocity field can also be represented in the form (50).

Substituting (50) into (55) and using (12) along with (51) and (52), we obtain

∫ 2π

0

([j × r] ·Pn) dϕ

=
πμ

2r

(
−4r

[
r

(
∂z

∂s
U

(0)
1 +

∂r

∂s
V

(1)
1

)
+ 2z

(
∂r

∂s
U

(0)
1 − ∂z

∂s
V

(1)
1

)
+
∂r

∂s
U

(0)
2 − ∂z

∂s
V

(1)
1

]

+
∂

∂s

[
r
(
7rz U (0)

1 + (4r2 − 3z2)V (1)
1 + 2r U (0)

2 − 3z V (1)
2 + z U

(1)
3 + 2r V (2)

3

)])
,

and consequently, Ty in (55) reduces to

(56)
Ty = −2πμ

∫
�+

r

[
r

(
∂z

∂s
U

(0)
1 +

∂r

∂s
V

(1)
1

)
+ 2z

(
∂r

∂s
U

(0)
1 − ∂z

∂s
V

(1)
1

)

+
∂r

∂s
U

(0)
2 − ∂z

∂s
V

(1)
1

]
ds,

under the condition that∫
�+

∂

∂s

[
r
(
7rz U (0)

1 + (4r2 − 3z2)V (1)
1 + 2r U (0)

2 − 3z V (1)
2 + z U

(1)
3 + 2r V (2)

3

)]
ds = 0,

which holds, since G(0)
1 (ζ), G(0)

2 (ζ), and G
(1)
3 (ζ) are continuous in D−

0 (see Remark
2) and since �+ either is closed or has the endpoints on the z-axis. As in the proof of
Proposition 7, dr = −∂r

∂sds and dz = −∂z
∂sds on �+, which is positively oriented, and

consequently, (56) can be represented in the form of (54a).
The formula (54b) is obtained from (54a). Indeed, it follows from Proposition 6

in [32] that Re[
∫
�+
r G

(0)
2 (ζ) dζ] = −2 limz→∞(z2 ReG(0)

2 (r, z)|r=0). Also, as in Propo-
sition 6 in [32], it can be shown that

Re

[∫
�+

r (2z − ir)G(0)
1 (ζ) dζ

]
= 4 lim

r→∞

(
r3 ReG(0)

1 (r, z)
∣∣∣
z=0

)
,

and formula (54b) follows.

3. Exact solutions to asymmetric Stokes flow problems. As an illustra-
tion for the developed framework, we solve asymmetric 3D Stokes flow problems for
the x-translation (28) and y-rotation (29) of a solid sphere and solid prolate and
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oblate spheroids using the solution form (30a)–(30b) and series representations for
k-harmonically analytic functions for corresponding regions. We also solve the inte-
gral equations (37) and (38) for the x-translation of solid bispheroids (two separate
spheroids of equal size and having the same axis of revolution) and for the y-rotation
of a solid torus of elliptical cross-section for various values of a geometrical parameter.

Example 1 (asymmetric translation and rotation of a solid sphere). Let (R, ϑ, ϕ)
be the spherical coordinates related to the cylindrical coordinates in the ordinary way,
and let a solid sphere be centered at the origin and have radius c.

(i) For the x-translation of the sphere, the functions G(0)
1 , G(0)

2 , and G
(1)
3 in

(30a)–(30b) are determined in the region R ≥ c by

(57)

G
(0)
1 (R, ϑ) =

3vxc
2

R−2 eiϑ,

G
(0)
2 (R, ϑ) =

vxc
3

8
R−3

(
1 + 3 e2iϑ

)
,

G
(1)
3 (R, ϑ) = −3vxc3

4
R−3 eiϑ sinϑ,

and the drag force Fx = −6πμcvx follows from (48b) and (57).
(ii) For the y-rotation of the sphere, the functions G(0)

1 , G(0)
2 , and G(1)

3 in (30a)–
(30b) are determined in the region R ≥ c by

(58) G
(0)
1 (R, ϑ) ≡ 0, G

(0)
2 (R, ϑ) = 2�yc

3R−2 eiϑ, G
(1)
3 (R, ϑ) ≡ 0,

and the resisting torque Ty = −8πμc3�y follows from (54b) and (58).
Detail. For the components u(1)

1 and u(1)
2 , related to u(1)

r and u(1)
ϕ by (6), and u(1)

z ,
the boundary conditions (28) and (29) for the sphere take the form

x-translation: u
(1)
1

∣∣∣
R=c

= 2vx, u
(1)
2

∣∣∣
R=c

= 0, u(1)
z

∣∣∣
R=c

= 0,(59)

y-rotation: u
(1)
1

∣∣∣
R=c

= 2�y c cosϑ, u
(1)
2

∣∣∣
R=c

= 0, u(1)
z

∣∣∣
R=c

= −�y c sinϑ.(60)

We seek to find solutions that satisfy (59) and (60) in the form (30a)–(30b). For
the region exterior to a sphere, the k-harmonically analytic functions G(0)

1 , G(0)
2 , and

G
(1)
3 are represented in the spherical coordinates by the series (15) in [32] for k = 0,

0, and 1, respectively:

(61)

G
(0)
1 (R, ϑ) =

∞∑
n=1

AnR
−n−1

{
nPn(cosϑ) − iP(1)

n (cosϑ)
}
,

G
(0)
2 (R, ϑ) =

∞∑
n=1

BnR
−n−1

{
nPn(cosϑ) − iP(1)

n (cosϑ)
}
,

G
(1)
3 (R, ϑ) =

∞∑
n=1

CnR
−n−2

{
nP(1)

n+1(cosϑ) − iP(2)
n+1(cosϑ)

}
.

From (59), (60), and (30a)–(30b), along with (61), we obtain second-order differ-
ence equations for the coefficients An, Bn, and Cn:

x-translation:
4
3
c−1A1 = 2vx,

13
5
A2 +B1 = 0,

7
10
A2 +

1
2
B1 = 0,(62)

y-rotation:
4
3
c−1A1 = 0,

13
5
A2 +B1 = 2�yc

3,
7
10
A2 +

1
2
B1 = �y c

3,(63)
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and (for the x-translation and y-rotation)

− c2
n(n− 1)
2(2n− 1)

An−1 +
(n+ 1)(5n+ 8)

2(2n+ 3)
An+1 + nBn = 0, n ≥ 2,(64a)

c2

2(2n− 1)
An−1 −

1
2(2n+ 3)

An+1 − Cn−1 = 0, n ≥ 2,(64b)

− c2
(n− 1)

2(2n− 1)
An−1 +

(3n+ 4)
2(2n+ 3)

An+1 +
1
2
Bn +

(n− 1)
2

Cn−1 = 0, n ≥ 2.(64c)

The combination 2n · (64c) + n(n − 1) · (64b) − (64a) reduces to having An+1 = 0
for n ≥ 2, and consequently, it follows from (64a)–(64c) for n ≥ 3 that Bn = 0 and
Cn−1 = 0 for n ≥ 3.

Solving (62) and (64a)–(64c) for n = 2, we obtain A1 = 3 c vx/2, A2 = 0, B1 = 0,
B2 = c3vx/4, and C1 = c3vx/4, which results in (57); similarly, solving (63) and
(64a)–(64c) for n = 2, we have A1 = 0, A2 = 0, B1 = 2�yc

3, B2 = 0, and C1 = 0,
which corresponds to the solution (58).

Example 2 (asymmetric translation and rotation of a solid prolate spheroid). Let
(ξ, η, ϕ) be the prolate spheroidal coordinates related to the cylindrical coordinates
by

(65) r = c sinh ξ sin η, z = c cosh ξ cos η, ξ ∈ [0,∞), η ∈ [0, π],

where the angular coordinate ϕ ∈ [0, 2π) coincides with the one in (r, ϕ, z) and c is
a metric parameter. In (ξ, η, ϕ), a solid prolate spheroid with the z-axis of revolution
is determined by fixing the coordinate ξ, i.e., ξ = ξ0. For the x-translation (28) and
y-rotation (29), let the velocity field be represented by (30a)–(30b).

(i) For the x-translation, the functions G(0)
1 , G(0)

2 , and G
(1)
3 are determined in

the region ξ ≥ ξ0 by

(66)

G
(0)
1 (ξ, η) =

q1
c

(cos η + i coth ξ sin η)
cosh2 ξ − cos2 η

,

G
(0)
2 (ξ, η) =

q1
2

(
cosh2 ξ0 − 3

)( sinh[2ξ] + i sin[2η]
2 sinh ξ

(
cosh2 ξ − cos2 η

) − ln (coth[ξ/2])

)
,

G
(1)
3 (ξ, η) = −q1

2
sinh2 ξ0

sin η
sinh ξ

(cos η + i coth ξ sin η)
cosh2 ξ − cos2 η

,

where q1 = 4vx
/(

cosh ξ0 − (cosh2 ξ0 − 3) ln (coth[ξ0/2])
)
. The drag force Fx =

−4πμcq1 follows from (48b) and (66).
(ii) For the y-rotation, the functions G

(0)
1 , G(0)

2 , and G
(1)
3 are determined in

the region ξ ≥ ξ0 by

(67)

G
(0)
1 (ξ, η) =

4q2
c

(
sinh[2ξ] + i sin[2η]

2 sinh ξ
(
cosh2 ξ − cos2 η

) − ln (coth[ξ/2])

)
,

G
(0)
2 (ξ, η) = q2

(
cosh2 ξ0 + 3

)(
2Q1(cosh ξ) cos η − iQ(1)

1 (cosh ξ) sin η
)

+ 2q2
(
cosh2 ξ0 − 3

) (cos η + i coth ξ sin η)
cosh2 ξ − cos2 η

,

G
(1)
3 (ξ, η) = −q2 sinh2 ξ0 sin η

(
3Q(1)

1 (cosh ξ) +
sinh[2ξ] + i sin[2η]

sinh2 ξ
(
cosh2 ξ − cos2 η

)
)
,
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where q2 = −�yc
/(

cosh ξ0 −
(
cosh2 ξ0 + 1

)
ln (coth[ξ0/2])

)
, and

Q1(cosh ξ) = cosh ξ ln (coth[ξ/2]) − 1,

Q(1)
1 (cosh ξ) = sinh ξ ln (coth[ξ/2]) − coth ξ.

The resisting torque Ty = −16πμc2q2 cosh[2ξ0]/3 follows from (54b) and (67).

Detail. In terms of the components u(1)
1 , u(1)

2 , and u
(1)
z (see (6)), the boundary

conditions (28) and (29) for the prolate spheroid take the form

x-translation: u
(1)
1

∣∣∣
ξ=ξ0

= 2vx, u
(1)
2

∣∣∣
ξ=ξ0

= 0, u(1)
z

∣∣∣
ξ=ξ0

= 0,(68a)

y-rotation: u
(1)
1

∣∣∣
ξ=ξ0

= 2�y c cosh ξ0 cos η, u
(1)
2

∣∣∣
ξ=ξ0

= 0,

u(1)
z

∣∣∣
ξ=ξ0

= −�y c sinh ξ0 sin η.
(68b)

For the region exterior to the prolate spheroid,G(0)
1 ,G(0)

2 , andG(1)
3 are represented

in the prolate spheroidal coordinates (65) by the series (20) in [32] for k = 0, 0,
and 1, respectively:

(69)

G
(0)
1 (ξ, η) =

∞∑
n=1

An

{
n(n+ 1)Qn(cosh ξ) Pn(cos η) + iQ(1)

n (cosh ξ) P(1)
n (cos η)

}
,

G
(0)
2 (ξ, η) =

∞∑
n=1

Bn

{
n(n+ 1)Qn(cosh ξ) Pn(cos η) + iQ(1)

n (cosh ξ) P(1)
n (cos η)

}
,

G
(1)
3 (ξ, η) =

∞∑
n=2

Cn

{
(n− 1)(n+ 2)Q(1)

n (cosh ξ) P(1)
n (cos η)

+iQ(2)
n (cosh ξ) P(2)

n (cos η)
}
.

Substituting (30a)–(30b) with (69) into (68a) and (68b), we obtain second-order dif-
ference equations for the coefficients An, Bn, and Cn:

(70) x-translation:

M̃0(ξ0)A1 = 2vx,

M̃1(ξ0)A2 + 2Q1(cosh ξ0)B1 = 0,

K̃1(ξ0)A2 −
1
2
Q(1)

1 (cosh ξ0)B1 = 0,

(71) y-rotation:

M̃0(ξ0)A1 = 0,

M̃1(ξ0)A2 + 2Q1(cosh ξ0)B1 = 2�y c cosh ξ0,

K̃1(ξ0)A2 −
1
2
Q(1)

1 (cosh ξ0)B1 = �y c sinh ξ0,
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and for both problems of the x-translation and y-rotation for n ≥ 2:

L̃n(ξ0)An−1 + M̃n(ξ0)An+1 + n(n+ 1)Qn(cosh ξ0)Bn = 0,(72a)

− c sinh ξ0
2(2n− 1)

Q(1)
n−1(cosh ξ0)An−1 +

c sinh ξ0
2(2n+ 3)

Q(1)
n+1(cosh ξ0)An+1(72b)

+ Q(2)
n (cosh ξ0)Cn = 0,

Ñn(ξ0)An−1 + K̃n(ξ0)An+1 +
1
2
Q(1)
n (cosh ξ0) (−Bn + (n− 1)(n+ 2)Cn) = 0,(72c)

where the functions L̃n(ξ), M̃n(ξ), Ñn(ξ), and K̃n(ξ) are determined by

L̃n(ξ0) = c
n(n− 1)
2n− 1

(
3
2

sinh ξ0 Q(1)
n−1(cosh ξ0) + n cosh ξ0 Qn−1(cosh ξ0)

)
,

M̃n(ξ0) = c
(n+ 1)(n+ 2)

2n+ 3

(
−3

2
sinh ξ0 Q(1)

n+1(cosh ξ0)

+ (n+ 1) cosh ξ0 Qn+1(cosh ξ0)
)
,

Ñn(ξ0) = −c (n− 1)
2n− 1

(
1
2

cosh ξ0 Q(1)
n−1(cosh ξ0) + n sinh ξ0 Qn−1(cosh ξ0)

)
,

K̃n(ξ0) = c
(n+ 2)
2n+ 3

(
−1

2
cosh ξ0 Q(1)

n+1(cosh ξ0) + (n+ 1) sinh ξ0 Qn+1(cosh ξ0)
)
.

The combination

(72c) · Qn(cosh ξ0)Q(2)
n (cosh ξ0) − (72b) · 1

2
(n− 1)(n+ 2)Qn(cosh ξ0)Q(1)

n (cosh ξ0)

+ (72a) · 1
2n(n+ 1)

Q(1)
n (cosh ξ0)Q(2)

n (cosh ξ0)

reduces to

(73) c
(
−Ãn−1 + Ãn+1

)
δ̃n = 0, n ≥ 2,

where Ãn = n(n+1)
2(2n+1) An and

δ̃n =
n(n+ 1)

2
sinh[2ξ0] (Qn(cosh ξ0))

3 +
cosh2 ξ0
n(n+ 1)

(
Q(1)
n (cosh ξ0)

)3

−
(
4 coth ξ0 + (n2 + n− 1) sinh[2ξ0]

)
2n(n+ 1)

Qn(cosh ξ0)
(
Q(1)
n (cosh ξ0)

)2

− cosh[2ξ0] (Qn(cosh ξ0))
2 Q(1)

n (cosh ξ0).

Since δ̃n �= 0 for n ≥ 2, it follows from (73) and (72a)–(72c) that for both x-translation
and y-rotation,

Ãn+1 = Ãn−1, n ≥ 2,(74a)

Bn = c
(
cosh2 ξ0 − 3

) (2n+ 1)
n(n+ 1)

Ãn−1, n ≥ 2,(74b)

Cn = −c sinh2 ξ0
(2n+ 1)

n(n− 1)(n+ 1)(n+ 2)
Ãn−1, n ≥ 2.(74c)
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Solving (70) and (71), we obtain

x-translation: Ã1 =
q1
2c
, Ã2 = 0, B1 = 0,(75a)

y-rotation: Ã1 = 0, Ã2 =
2q2
c
, B1 = 2q2 (cosh[2ξ0] − 2).(75b)

Finally, substituting (74a)–(74c) along with (75a) and (75b) into (69), and using the
representations (80) in [32] and also

sin2 η

sinh2 ξ (cosh ξ − cos η)
=

∞∑
n=2

(2n+ 1)
(n− 1)n(n+ 1)(n+ 2)

Q(2)
n (cosh ξ) P(2)

n (cos η),

we obtain (66) and (67). The resisting force and torque follow from (48b) and (54b),
respectively.

Example 3 (asymmetric translation and rotation of a solid oblate spheroid). Let
(ξ, η, ϕ) be the oblate spheroidal coordinates related to the cylindrical coordinates by

(76) r = c cosh ξ sin η, z = c sinh ξ cos η, ξ ∈ [0,∞), η ∈ [0, π],

where the angular coordinate ϕ ∈ [0, 2π) coincides with the one in (r, ϕ, z) and c is
a metric parameter. In (ξ, η, ϕ), a solid oblate spheroid with the z-axis of revolution
is determined by fixing the coordinate ξ, i.e., ξ = ξ0. For the x-translation (28) and
y-rotation (29), let the velocity field be represented by (30a)–(30b).

(i) For the x-translation, the functions G(0)
1 , G(0)

2 , and G
(1)
3 are determined in

the region ξ ≥ ξ0 by

(77)

G
(0)
1 (ξ, η) = −q1

c

(cos η + i tanh ξ sin η)
sinh2 ξ + cos2 η

,

G
(0)
2 (ξ, η) =

q1
2

(
sinh2 ξ0 + 3

)( sinh[2ξ] − i sin[2η]
2 cosh ξ

(
sinh2 ξ + cos2 η

) − arccot[sinh ξ]

)
,

G
(1)
3 (ξ, η) =

q1
2

cosh2 ξ0
sin η
cosh ξ

(cos η + i tanh ξ sin η)
sinh2 ξ + cos2 η

,

where q1 = 4vx
/(

sinh ξ0 −
(
sinh2 ξ0 + 3

)
arccot[sinh ξ0]

)
. The drag force Fx =

4πμcq1 follows from (48b) and (77).
(ii) For the y-rotation, the functions G(0)

1 , G(0)
2 , and G

(1)
3 are determined in the

region ξ ≥ ξ0 by

(78)

G
(0)
1 (ξ, η) =

4q2
c

(
− arccot[sinh ξ] +

sinh[2ξ] − i sin[2η]
2 cosh ξ

(
sinh2 ξ + cos2 η

)
)
,

G
(0)
2 (ξ, η) = q2

(
sinh2 ξ0 − 3

)(
−2Q1(−i sinh ξ) cos η + iQ(1)

1 (−i sinh ξ) sin η
)

+ 2q2
(
sinh2 ξ0 + 3

) (cos η + i tanh ξ sin η)
sinh2 ξ + cos2 η

,

G
(1)
3 (ξ, η) = q2 cosh2 ξ0 sin η

(
3Q(1)

1 (−i sinh ξ) − sinh[2ξ] − i sin[2η]
cosh2 ξ

(
sinh2 ξ + cos2 η

)
)
,
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where q2 = �yc
/(

sinh ξ0 −
(
sinh2 ξ0 − 1

)
arccot[sinh ξ0]

)
, and

Q1(−i sinh ξ) = sinh ξ arccot(cosh ξ) − 1,

Q(1)
1 (−i sinh ξ) = cosh ξ arccot(cosh ξ) − tanh ξ.

The resisting torque Ty = −16πμc2q2 cosh[2ξ0]/3 follows from (54b) and (78).
Detail. Obtaining (77) and (78) is similar to how (66) and (67) have been obtained.
Similarly, exact solutions to 3D Stokes flow problems for asymmetric motion of

a solid spindle, lens, bispheres, and torus of circular cross-section can be obtained in
terms of (30a)–(30b) with integral or series representations for k-harmonically analytic
functions for corresponding regions; see [35, 34, 33].

In the next two examples, we solve the integral equations (37) and (38) for the
x-translation of solid bispheroids (two separate, equal-size spheroids with the same
axis of revolution) and for the y-rotation of a solid torus of elliptical cross-section.
Exact solutions to these asymmetric Stokes flow problems are available only for two
spheres [27] and a torus of circular cross-section [8]. To determine (39) and (40) for
the x-translation (28) and y-rotation (29), we have

x-translation: f1(ζ) = 2ivx, f2(ζ) = −2vx, f3(ζ) = 0,
y-rotation: f1(ζ) = −2�yζ, f2(ζ) = −2�yz, f3(ζ) = 0.

Example 4 (x-translation of solid bispheroids). Let the centers of bispheroids lie
on the z-axis, which is the axis of revolution, and have coordinates z = coth 1 (upper
spheroid) and z = − coth 1 (lower spheroid). Let �+ for z ≥ 0 (upper spheroid) be
parameterized by r(t) = κ sin t/ sinh 1, z(t) = coth 1− cos t/ sinh 1, t ∈ [0, π], where κ

is a positive parameter. The case κ = 1 corresponds to bispheres. For the x-translation
(28), we represent G(0)

1 (ζ(t)) and U (1)
3 (ζ(t)) on �+ for z ≥ 0 (upper spheroid) by

(79)

G
(0)
1 (ζ(t)) =

n∑
k=1

(ak + i bk) cos[(k − 1)t], t ∈ [0, π],

U
(1)
3 (ζ(t)) =

n∑
k=1

ck cos[(k − 1)t], t ∈ [0, π],

and determine G
(0)
1 (ζ(t)) and U

(1)
3 (ζ(t)) on �+ for z ≤ 0 (lower spheroid) using

G
(0)
1

(
ζ
)

= −G(0)
1 (ζ) and U

(1)
3

(
ζ
)

= −U (1)
3 (ζ) (see Remark 5). The integral equa-

tions (37) and (38) can be solved with respect to the coefficients ak, bk, and ck in (79)
either by minimizing the total quadratic error of (37) and (38) with (79) or by the
collocation method. In both cases, ak, bk, and ck are found from a system of linear
equations. Figures 1 and 2 illustrate profiles of the pressure on the surface of the
bispheres (κ = 1) and bispheroids for κ = 0.5 and 2. Table 1 presents the ratio, dx,
of the drag, exerted on one of the two spheroids and calculated by (48a), to the drag
of a single same-size spheroid9 in the x-translation for κ = 0.5, 1, and 2.

9This spheroid has the size of one spheroid in the bispheroids.
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Table 1

The ratio, dx, of the drag, exerted on one of the two solid spheroids, to the drag of a single
same-size solid spheroid in the asymmetric translation along the x-axis for κ = 0.5, 1, and 2. The
case κ = 1 corresponds to the bispheres. The value 0.7996 for κ = 1 coincides with the one provided
in [27].

κ 0.5 1.0 2
dx 0.8486 0.7996 0.7365

0.5 0.5 1.0 1.5
x

2

1

1

2

z

_

_

_

Fig. 1. Profile of the pressure, ℘/(2vxμ) on the surface of the solid bispheres (κ = 1) in the
asymmetric translation along the x-axis.

_ 0.4 0.4 0.8
x

_ 2

1

1

2

z

_ _1 1 2
x

2

_1

1

2

z

_

(a) ℘/(5vxμ), prolate bispheroids (b) ℘/(vxμ), oblate bispheroids

Fig. 2. Profile of the pressure on the surface of the solid bispheroids in the asymmetric trans-
lation along the x-axis: (a) ℘/(5vxμ), prolate bispheroids (κ = 0.5); (b) ℘/(vxμ), oblate bispheroids
(κ = 2).
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Table 2

The normalized resisting torque, tx = Tx/(216πμ�y), for the solid torus of elliptical cross-
section in the asymmetric rotation around the y-axis for κ = 0.5, 1, and 2. The case κ = 1
corresponds to the torus of circular cross-section. The value 0.5590 for κ = 1 coincides with the one
reported in [8].

κ 0.5 1.0 2
tx 0.4636 0.5590 0.8903

Example 5 (y-rotation of a solid torus of elliptical cross-section). For torus of
elliptical cross-section, let �+ be parameterized by r(t) = 2 + cos t, z(t) = κ sin t,
t ∈ [−π, π], where κ is a positive parameter. The case κ = 1 corresponds to the
torus of circular cross-section. For the y-rotation (29), we represent G(0)

1 (ζ(t)) and
U

(1)
3 (ζ(t)) on �+ by

(80)

G
(0)
1 (ζ(t)) =

n∑
k=1

(ak cos[(n− 1)t] + i bk sin[k t]) , t ∈ [−π, π],

U
(1)
3 (ζ(t)) =

n∑
k=1

ck cos[(k − 1)t], t ∈ [−π, π],

for which G
(0)
1

(
ζ
)

= G
(0)
1 (ζ) and U

(1)
3

(
ζ
)

= U
(1)
3 (ζ) on �+ (see Remark 5). The

integral equations (37) and (38) can be solved with respect to the coefficients ak, bk,
and ck by the same methods as in Example 4. Figures 3, 4, and 5 illustrate profiles
of the pressure on the surface of the torus of elliptical cross-section for κ = 1, 0.5,
and 2, respectively. Table 2 presents the ratio of the resisting torque, exerted on the
torus and calculated by (54a), to the resisting torque, 216πμ�y, of the circumscribed
sphere of radius 3 in the y-rotation for κ = 0.5, 1, and 2.

Appendix. Auxiliary results for k-harmonically analytic functions. This
section presents two auxiliary results dealing with implementation of the necessary
and sufficient condition for a function G(k) to be k-harmonically analytic in an outer
region and vanishing at infinity.

Let �+, �, D+, D+
0 , D−, and D−

0 be defined as in section 2, where D+
0 consists

of disjoint simply connected subregions D+
j , 1 ≤ j ≤ m. Also let �̂j be the part of

the boundary �+ that corresponds to D+
j . It is either a closed curve or open curve

with the endpoints lying on the z-axis. Obviously, �+ =
⋃m
j=1 �̂j. We first establish

the following result.

Proposition 9. Let G(k)(ζ) = U (k)(ζ) + i V (k+1)(ζ) be a k-harmonically an-
alytic function in D+

j , 1 ≤ j ≤ m, and let the functions
(
∂
∂r −

k
r

)
U (k), ∂

∂zU
(k),(

∂
∂r + k+1

r

)
V (k+1), and ∂

∂zV
(k+1) be continuously differentiable in D+

j , 1 ≤ j ≤ m.

(i) If U (k)
∣∣
�+

= 0, then V (k+1)(ζ) = aj r
−k−1 in D+

j , where aj is a real-valued
constant.

(ii) If V (k+1)
∣∣
�+

= 0, then U (k)(ζ) = bj r
k in D+

j , where bj is a real-valued
constant.

Proof. First we prove (i). If �̂j is an open curve, we close it by connecting its
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3 2 1 1 2 3
x

1.5

1.0

0.5

0.5

1.0

z

_ _ _

_

_

_

Fig. 3. Profile of the pressure, ℘/(4�yμ), on the surface of the solid torus of circular cross-
section (κ = 1) in the asymmetric rotation around the y-axis (for z > 0, the profile is antisymmet-
ric).

3 2 1 1 2 3
x

1.0

0.5

0.5
z

_ _
_

_

_

Fig. 4. Profile of the pressure, ℘/(4�yμ), on the surface of the solid torus of elliptical cross-
section with κ = 0.5 in the asymmetric rotation around the y-axis (for z > 0, the profile is anti-
symmetric).

_ 3 _ 2 _ 1 1 2 3
x

_ 2

_1

1

2

z

Fig. 5. Profile of the pressure, ℘/(4�yμ), on the surface of the solid torus of elliptical cross-
section with κ = 2 in the asymmetric rotation around the y-axis (for z > 0, the profile is antisym-
metric).

endpoints by the segment on the z-axis. By Green’s theorem, we have
∮
�̂j

r U (k)

([(
∂

∂r
− k

r

)
U (k)

]
dz −

[
∂

∂z
U (k)

]
dr

)

=
∫∫

D+
j

r U (k) ΔkU
(k) drdz +

∫∫
D+

j

r

([
∂

∂z
U (k)

]2

+
[(

∂

∂r
− k

r

)
U (k)

]2
)
drdz.

Since U (k)
∣∣
�+

= 0 implies U (k)
∣∣
�̂j

= 0, the left-hand side of this equation is zero. Also

the first integral in the right-hand side vanishes, since U (k) is a k-harmonic function,
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i.e., ΔkU
(k) = 0. Thus,

[
∂
∂zU

(k)
]2

+
[(

∂
∂r −

k
r

)
U (k)

]2 ≡ 0 in D+
j , whence U (k) = cj r

k,
where cj is a real-valued constant. However, from U (k)

∣∣
�̂j

= 0, it follows that cj = 0,

and thus, U (k) ≡ 0 in D+
j . Then, from (12), we have V (k+1) = aj r

−k−1 in D+
j , where

aj is a real-valued constant, and statement (i) is proved.
Statement (ii) is proved similarly. Observing that
∮
�̂j

r V (k+1)

([(
∂

∂r
+
k + 1
r

)
V (k+1)

]
dz −

[
∂

∂z
V (k+1)

]
dr

)

=
∫∫

D+
j

r V (k+1) Δk+1V
(k+1) drdz

+
∫∫

D+
j

r

([
∂

∂z
V (k+1)

]2

+
[(

∂

∂r
+
k + 1
r

)
V (k+1)

]2
)
drdz,

and arguing as in the proof of part (i), we conclude that V (k+1) ≡ 0 in D+
j , and the

result follows.
The necessary and sufficient condition for a functionG(k)(ζ) = U (k)(ζ)+i V (k+1)(ζ)

to be k-harmonically analytic in the outer region D− and vanishing at infinity follows
from the generalized Sokhotski–Plemelj formulae and can be written in the form

(81) G(k)(ζ) +
1
πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ = 0, ζ ∈ �,

where � is the boundary of D−.
Proposition 10. Let D− be symmetric with respect to the r-axis.
(i) If G(k)

(
ζ
)

= G(k)(ζ), then (81) is equivalent to

(82) U (k)(ζ) + Re
[

1
πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ
]

= 0, ζ ∈ �.

(ii) If G(k)
(
ζ
)

= −G(k)(ζ), then (81) is equivalent to

(83) V (k+1)(ζ) + Im
[

1
πi

∮
�

G(k)(τ)W(k)(ζ, τ) dτ
]

= 0, ζ ∈ �.

Proof. The integral equations (82) and (83) are the real and imaginary parts of
(81), respectively, and thus, any solution to (81) solves (82) and (83). We need to
show that under the given conditions, the converse is also true.

First we prove statement (i). Let G(k)
∗ (ζ), ζ ∈ �, be a solution to (82) such that

G
(k)
∗

(
ζ
)

= G
(k)
∗ (ζ), and let a k-harmonically analytic function Ψ+(ζ) in intD+ (the

complement of D−) be determined by the generalized Cauchy-type integral

Ψ+(ζ) =
1

2πi

∮
�

G
(k)
∗ (τ)W(k)(ζ, τ) dτ, ζ ∈ intD+.

In the case when ζ approaches � from within the inner region D+, the boundary value
of Ψ+ on � is determined by the corresponding generalized Sokhotski–Plemelj formula

Ψ+(ζ) =
1
2
G

(k)
∗ (ζ) +

1
2πi

∮
�

G
(k)
∗ (τ)W(k)(ζ, τ) dτ, ζ ∈ �.
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Since G(k)
∗ is a solution to (82), Re Ψ+(ζ) = 0 on �, whence Re Ψ+(ζ) = 0 on �+.

Then, by Proposition 9(i), we have Im Ψ+(ζ) = aj r
−k−1 in D+

j , where aj is a real-
valued constant, and D+

j , 1 ≤ j ≤ m, are disjoint simply connected subregions of D+
0

such that D+
0 =

⋃m
j=1 D

+
j . However, since G(k)

∗
(
ζ
)

= G
(k)
∗ (ζ), we have Im Ψ+

(
ζ
)

=

− ImΨ+(ζ), and consequently, aj = 0 and Ψ+(ζ) ≡ 0 on �+. Thus, G(k)
∗ satisfies (81),

and under the given condition the equivalence of (82) and (81) follows.
Statement (ii) is proved similarly. In this case, we have the same function Ψ+(ζ)

and use Proposition 9(ii).
The necessary and sufficient condition for a function f(ζ) to be (ordinary) analytic

in the outer region D− and vanishing at infinity is given by f(ζ) + 1
πi

∮
�
f(τ)
τ−ζ dτ = 0,

ζ ∈ �, which reduces to the nonsingular integral equation 2f(ζ)+ 1
πi

∮
�
f(τ)−f(ζ)

τ−ζ dτ = 0,
ζ ∈ �, with the fact that c − 1

πi

∮
�

c
τ−ζ dτ = 0, ζ ∈ �, for an arbitrary constant c.

The next proposition extends this well-known technique for k-harmonically analytic
functions, where the function rk assumes the role of constant.

Proposition 11. The singular integral equation (81) reduces to

(84)
2 rk G(k)(ζ) +

1
πi

∫
�+

(
rk G(k)(τ) − rk1 G

(k)(ζ)
) Ω(k)

+ (ζ, τ)
τ − ζ

dτ

−
(
rk G(k)(τ) − rk1 G

(k)(ζ)
) Ω(k)

− (ζ, τ)
τ + ζ

dτ = 0, ζ ∈ �+,

where r1 = Re τ . Equation (84) has only logarithmic singularity because of the function
Ω(k)

− ; see Remark 2 in [32].
Proof. Since rk is a k-harmonically analytic function in D+ (the symmetry con-

dition (15) holds), the generalized Sokhotski–Plemelj formula, corresponding to the
case when ζ approaches � from within D+, implies that

(85) rk − 1
πi

∮
�

rk1 W(k)(ζ, τ) dτ = 0, ζ ∈ �.

The combination rk · (81) +G(k)(ζ) · (85) reduces to (84).
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Abstract. Traditional imaging methods use coherent signals as data. Here, we discuss recent
developments in imaging that aim at exploiting as data incoherent noisy signals that are not asso-
ciated with well-defined arrival times. Indeed, signal constituents that in a classical setting may be
regarded as noise may contain important information about the medium to be imaged. We show
how it is possible to use the statistics of such noisy signals, specifically, the second-order statistics,
for imaging. We consider two particular situations: first, the estimation of an (“empirical”) Green’s
function from noisy signals which can subsequently be used in imaging; second, the localization of a
cluster of random sources from noisy signals (passive imaging). The analysis presented here is based
on assuming a remote sensing scaling and the paraxial approximation, and it uses in part the results
set forth in Papanicolaou, Ryzhik, and Solna [SIAM J. Appl. Math., 64 (2004), pp. 1133–1155] that
relate to time-reversal, statistical stability, and superresolution. Robustness with respect to model-
ing assumptions is illustrated by considering other scaling regimes also. We demonstrate how the
estimation problem and its robustness can be considered as a dual to that of time-reversal and stable
superresolution. We obtain a novel analysis and foundation for the use of ambient seismic noise in
body-wave (tomographic) imaging, motivated by the recent successes of surface-wave tomography
using ambient seismic noise.
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1. Introduction.

1.1. Time-reversal and cross-correlation–based imaging. Recent work on
time-reversal of waves in a random medium has shown that medium fluctuations
are not necessarily detrimental to, but may in fact enhance various operations with,
waves. This has been analyzed mathematically as well as demonstrated experimen-
tally [4, 20, 22, 25, 30, 31, 33]. In classical time-reversal, the wave received by an active
transducer (receiver-emitter) array is recorded and then re-emitted into the configu-
ration time-reversed; that is, the tails of the recorded signals are sent first. In the
absence of absorption, the re-emitted signal will propagate back toward the source
and focus, approximately, on it. This phenomenon has a large number of applica-
tions, in inverse problems, medical imaging, remote sensing, target identification, and
secure communication, for instance. Here, we discuss the notion of “field-field” cross-
correlations associated with noise observed at pairwise distinct receivers, to obtain
an “empirical” Green’s function. This notion is naturally related to the time-reversal
mentioned above [13, 14]. We will give a precise characterization of the “empiri-
cal” Green’s function, which can subsequently be used for imaging the interrogated
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medium. To this end, we consider a configuration consisting of a randomly hetero-
geneous halfspace, possibly containing a scatterer, which is exposed to random noisy
sources concentrated at the surface (that is, the top of the halfspace). The idea is
to use cross-correlations between a set of measurements of noise to infer information
about the medium in the halfspace as well as about the location of the scatterer.

With seismology as a key application in mind, the goal is to obtain an image
of Earth’s interior from all possible signals recorded at an array of receiver stations.
Robust imaging requires, essentially, a regular distribution of sources. Effectively
using receivers as sources through the mentioned “field-field” cross-correlations, this
requirement can be satisfied, even where deterministic sources (earthquakes) are nec-
essarily absent. The idea of using ambient noise for the retrieval of a body-wave
reflection response, in a planarly layered medium, dates back to Claerbout [8]. He
also conjectured that, in general media, cross-correlating ambient noise traces from
two locations recaptures the wavefield at one of the locations, excited by a point
source at the other location. An early example of a field application was reported by
Scherbaum [37], who analyzed auto-correlations of recordings of low-magnitude earth-
quakes and generated pseudoreflection seismograms. Moreover, the cross-correlation
method has been developed in helioseismology [16]. In recent years, the understanding
of how cross-correlating diffuse fields recaptures the Green’s function has been a topic
of research [46, 42]. Cross-correlating (diffuse) coda waves [7] and ambient seismic
noise [38, 39] resulted in the retrieval of surface waves observed at one station and
excited at the other station; for a detailed study, see Yao, van der Hilst, and deHoop
[43]. Furthermore, turning body waves have been observed in cross-correlating am-
bient noise [35]; in an exploration seismology setting, reflected body waves have also
been recovered by cross-correlations [15]. The exploitation of a scattering medium in
capturing the Green’s function by field-field cross-correlations was studied by Derode
et al. [14]. The mathematical analysis of field-field cross-correlations in the men-
tioned setting from the point of view of heterogeneous media has just begun. See [26]
for analysis of the case with a layered random medium and [3] for a recent analysis
based on the semiclassical approximation and that explicitly discusses stability of the
traveltime estimates associated with the correlations which requires a careful analysis
of the time scales involved. In [10], field-field cross-correlations from ambient noise,
which is not necessarily localized or directional, are analyzed in the high-frequency
limit, again making use of Egorov’s theorem of microlocal analysis. Here, motivated
by applications to propagation in the heterogeneous earth and the atmosphere, we
will consider the far field regime and consider a stochastic modeling approach. We
exploit the random fluctuations in the medium and consider a variety of (scaling)
regimes. In the above, noisy sources are passive sources, while the medium is sub-
jected to random fluctuations. Controlled sources can be used to retrieve the Green’s
function from cross-correlations of wavefields observed at pairwise distinct receivers
as well. Time-reversal and Rayleigh’s reciprocity relation can be combined to eas-
ily identify the cross-correlation as the Green’s function in the interior of a compact
domain with controlled sources (everywhere) on its boundary without knowledge of
the (deterministic) medium [12]; applications of this general result in borehole seismic
imaging can be found in [28, 47, 44]. Insights in extending this situation to the case
with decorrelating random sources (on the boundary) can be found, for example, in
[45].

A proper estimate of the Green’s function between a set of locations can be
used for robust imaging from ambient noise [27, 39, 43] and for encoding signals
also. The technique of cross-correlations is furthermore relevant in the context of
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Fig. 1.1. Top left: a map and the array of receivers. Top right: phase velocities at T = 10 s
(obtained from the Green’s function estimates between all pairs of receivers, and given in [43]);
these phase velocities play the role of c0. Bottom: Green’s function estimates from 10 months of
data cross-correlations. The positive times correspond to the Green’s function from the “source”
station MC04 (red) to receivers MC∗∗ (blue), while the negative times correspond to the Green’s
function from the “source” stations MC∗∗ (blue) to receiver station MC04 (red). We observe an
asymmetry (in time) that will appear in the analysis presented here also. The dotted line indicates
the traveltimes computed from the top right figure.

communication in a waveguide [36] and synchronization of transducer array elements.
Detection based on cross-correlations in a noisy environment is discussed in [1] and
interferometric imaging in [6]. The theory for analysis of cross-correlations in layered
media is presented in [25] with applications presented in, for instance, [23, 24]. While
current studies relating to the heterogeneous earth mostly make use of surface-wave
contributions to the Green’s function estimate, we emphasize, here, the importance
of understanding the behavior of body waves for future applications. In Figure 1.1 we
illustrate surface-wave contributions to the Green’s function estimate over an array in
Southeastern Tibet (obtained from [43], upon cross-correlating noise between receiver
pairs over a 10 month period).

In this paper, we analyze estimation based on incoherent waves in the context of
the paraxial approximation and the associated Wigner distribution. We prove that,
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Fig. 1.2. The experimental setup: A slab of random medium is located in (0, zmax). In the
plane z = 0 a set of random sources probe the medium, and we record the signal transmitted to the
two points of observation �x1 and �x2.

in principle, the Green’s function can be recovered from cross-correlations, up to a
filter that depends only mildly on the medium realization. Moreover, we show that
much better estimates (when the Green’s function is better resolved) may be obtained
in a randomly inhomogeneous medium than in a deterministic (quasi-)homogeneous
medium, as a consequence of the wider angular spread in the phase-space represen-
tation of a wave in the random medium; this is in agreement with the results of the
experiment described in [13]. The enhanced resolution occurs due to an exponential
damping factor that appears in the analysis of the cross-correlation and that involves
the structure function of the medium; thus, relatively strong disorder gives relatively
high resolution. The damping factor was also responsible for superresolution in the
time-reversal experiment elucidated in [33], revealing an intrinsic connection. It ap-
pears to be important that the signals generating the cross-correlations are subjected
to frequency-bandlimitation: The low frequencies must be removed to obtain accurate
estimates.

Furthermore, we discuss the localization of a cluster of random sources from noisy
signals, a problem which is closely related to the Green’s function estimation.

1.2. Configuration and procedure. We consider a configuration and an ex-
periment similar to the one described in [13], while motivated by the procedure and
study described in [43]; the configuration is illustrated in Figure 1.2. We use x ∈ R

d,
with d ∈ {1, 2} denoting the lateral spatial dimension, to represent the “lateral” co-
ordinate(s) and z ∈ R≥0 to represent the “principal” or “depth” coordinate; we write
�x = (z,x). The above-mentioned halfspace contains a heterogeneous slab, the ran-
dom medium, with a large extent in the lateral directions and supported in (0, zmax)
in the principal direction. The sources are concentrated in the plane z = 0 and are
independent of the random medium; they model the ambient noise field. The sources
are incoherent and statistically stationary. The aperture, or lateral extent, of the
source field is denoted A, and its correlation length X0, while the correlation length
of the random medium is denoted l. We observe the signal, u say, that is due to the
noisy sources at the points, �x1 and �x2, which may be inside or outside (z > zmax)
the random medium, over the time interval (0, T ). The key quantity considered is the
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cross-correlation function,

C(τ) =
1
T

∫ T

0

u(t, �x1)u(t+ τ, �x2) dt ,(1.1)

for a large time window (0, T ). We will also consider the situation with more than
two points of observation: �x1, . . . , �xN , N ≥ 3.

1.3. Outline. The outline of the paper is as follows. In section 1.2 we discussed
the configurational setup that we will consider. In section 2 we describe the modeling
of the sources, the medium, and the stochastic paraxial wave equation formulation.
Using this model, we analyze the estimation based on (1.1) in section 3. The main
result shows that the cross-correlations give the Green’s function blurred by a statis-
tically stable “filter”; cf. (3.19). A striking property of the filter is that its support
may be much smaller in a random medium than in a (quasi-)homogeneous medium,
which is the counterpart of superresolution in this context. In section 4 we develop
an approach to localizing a cluster of random sources from noisy signals. The main
aspects of the results we derive are general, and we demonstrate this by discussing
different scaling regimes in section 5. In subsection 5.4 we touch upon the scaling
regime anticipated in applying the analysis to Southeastern Tibet for the estimation
of body-wave constituents from ambient noise. We provide some numerical examples
in section 6, and concluding remarks in section 7.

2. High-frequency paraxial regime and modeling.

2.1. The random sources. We shall model the ambient or background far field
noise in terms of a random field. The impinging noise will be modeled as an initial
condition in the plane z = 0 supplementing the paraxial evolution equation to be
introduced in the next subsection; see Figure 1.2.

Let ν be a random field in R × R
d, and χ be a smooth, deterministic, envelope

function. We assume that ν has zero mean, is isotropic in x and stationary, and is
independent of the medium with spectrum,

E[ν(t′,x′)ν(t′ + τ,x′ + Δx)] = C0 (τ,Δx) ,(2.1)

and with rapidly decaying correlations. The noisy sources are then collectively mod-
eled as

(2.2) Y (t,x) = σyν

(
t

T0
,

x
X0

)
χ

(
x− xc
A

)
.

The envelope function χ models the locality of the sources. We shall consider both
an extended source field, with χ having a “large” support, and a concentrated source
field, with χ having a “small” support. It is convenient to introduce a characteristic
wavelength scale, λ0, associated with the noise source spectrum,

λ0 = c0T0 =
2πc0
ω0

=
2π
k0

,(2.3)

where T0 is a characteristic time scale associated with the temporal noise correlations
(cf. (2.2)) and c0 background or homogenized medium wavespeed. Note that the
central wavenumber is defined by

k0 =
ω0

c0
.
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2.2. The parabolic wave equation. In recent decades the parabolic or parax-
ial wave equation has emerged as the primary tool to describe small scale scattering
situations as they appear in radiowave propagation, radar, remote sensing, propa-
gation in urban environments, and in underwater acoustics [29, 32, 41], as well as
in propagation problems in the earth’s crust [9]. The paraxial equation models wave
propagation if the dominant scattering occurs in the direction(s) transverse to a princi-
pal propagation direction. Here, we take this model as our starting point and consider
propagation in a random medium in the regime of waves propagating over distances
that are large compared to the correlation length of the random inhomogeneities and
the characteristic wavelength. The relevant wavelength scale is determined by the
support of the noise auto-covariance function.

Fundamental to the problem at hand is the role of scales. Different scaling rela-
tions will give rise to different qualitative behavior of the estimation of the Green’s
function. The important scales are the following:

• z1, the characteristic depth (longitudinal distance) from noisy sources to the
recordings;

• A, the characteristic size for the support of noisy sources collectively;
• T0, X0, the temporal and lateral (spatial) extent of the noise spectrum;
• σc, the relative magnitude of medium fluctuations; see (2.5);
• l, the correlation length of the (isotropic) medium fluctuations; see (2.5).

The correlation length corresponds to the dominant spatial scale at which the medium
fluctuates, and it typically defines the microscale in the problem.

To introduce the paraxial wave approximation, we consider first the wave equation
governing the propagation of acoustic waves:

1
c2(�x)

∂2u

∂t2
−�u = 0 , t ∈ R , �x ∈ R

d+1 .(2.4)

Here, the slowness squared, c−2(z,x), is given by

c−2(z,x) = c−2
0

[
1 + σc μ

(z
l
,
x
l

)]
,(2.5)

in which μ is a random field modeling the medium fluctuations; c0 denotes the (de-
terministic) background wavespeed. In the regime of homogenization, with relatively
rapidly fluctuating medium variations, the effective wavespeed is c0. The regime of
homogenization corresponds to the case when the wavelength is large relative to the
correlation length of the medium fluctuations, and the propagation distance is on the
order of the wavelength. However, in a regime of large propagation distances the
effect of the randomness will build up, and this phenomenon will be captured by a
random potential, namely through μ, in the paraxial wave equation. We shall here
assume that the background wavespeed is constant; see [40] for a discussion of the
case with a variable background.

Because “locally” the waves sense a homogeneous medium, it is common practice
to introduce the following Fourier transform incorporating the centering in a frame
moving with the effective wavespeed,

(2.6) u(t, z,x) =
1
2π

∫
eiω(z/c0−t)ψ(z,x, ω/c0) dω ,

so that the complex amplitude ψ(z,x, k) satisfies the Helmholtz equation

(2.7) 2ik
∂ψ

∂z
+ �xψ + k2(n2 − 1)ψ = −∂

2ψ

∂z2
,



GREEN’S FUNCTION ESTIMATION 915

with k = ω/c0 being the wavenumber and n = n(z,x) = c0/c(z,x) the random
index of refraction relative to the background wavespeed c0. The fluctuations in the
refraction index attain the form

(2.8) n2(z,x) − 1 = σc μ
(z
l
,
x
l

)
.

We assume that the fluctuations are modeled by an isotropic and smooth in x, zero
mean, stationary rapidly decorrelating random field μ(·, ·), which moreover is Marko-
vian in z. The normalized and dimensionless covariance is given by

R(Δz,Δx) = E[μ(z′,x′)μ(Δz + z′,Δx + x′)] ,(2.9)

with R(0, 0) = 1. We, again, assume rapidly decaying correlations. Note that the di-
mensionless function R is supported on the O(1) scale. Thus, the correlation radius of
the medium fluctuations is l. We shall consider a specific scaling regime characterized
by a certain relation between the parameters that we have introduced in the problem;
this scaling regime essentially corresponds to the one introduced in [33]. The regime
will follow from the next step where we introduce dimensionless coordinates. To this
end, we introduce the characteristic length scales as

• lx, the characteristic length scale in the lateral direction,
• lz, the characteristic length scale in the principal (depth) direction.

The following dimensionless parameters will be important in the further analysis:

ε =
l

lz
, δ =

l

lx
, θ =

k0l
2
x

lz
;(2.10)

θ is commonly referred to as the Rayleigh number, while ε and δ are the medium
correlation length relative to, respectively, characteristic principal and lateral scales.
We remark that we specify in (3.5) below how the correlation scale of the ambient
noise field relates to these small parameters. The important scaling regime considered
here is the high-frequency paraxial scaling as introduced in [33], with

1
θ

� ε � δ � 1 .(2.11)

We hasten to add that there are other relevant scaling regimes [2, 5, 18, 34]; we discuss
some scaling alternatives in section 5. However, the regime set forth above is charac-
teristic for the estimation problem at hand and captures key aspects of the physical
phenomenon under discussion. Note that it follows from our scaling assumptions that
lx � lz, which corresponds to the characteristic propagation distance being much
larger than the characteristic aperture size and the classical paraxial or beam scaling.
This follows, since with �xj = (zj ,xj) denoting the recording points as before, we shall
assume a regime where

z′j =
zj
lz
, x′

j =
xj
lx
,

as well as

A′ =
A

lx
, z′max =

zmax

lz
,

are fixed, while considering the limits 1/θ, ε, δ → 0. The dimensionless coordinates
are

z′ =
z

lz
, x′ =

x
lx
, k′ =

k

k0
, ω′ =

ω

ω0
,(2.12)
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and we let

t′ =
2πt
T0

= ω0t , c =
c0
ω0lz

=
1
k0lz

,(2.13)

so that

ω(z/c0 − t) = ω′(z′/c̄− t′) .

Note that we have k′ = ω′.
In the further analysis, we shall drop the primes in the nondimensionalized coor-

dinates; in dimensionless variables (z,x, ω), the paraxial wave equation then becomes

2i (θk)
∂ψ

∂z
+ �xψ +

δ√
ε

(
θ2k2

)
μ
(z
ε
,
x
δ

)
ψ = 0 ,(2.14)

with ψ = ψ(z,x, k), upon the identification (cf. (2.7))

σc =
√
ε
(ε
δ

)
=
√
l/lz

(
lx
lz

)
.

This is the product of the white noise normalization factor
√
ε and the paraxial scaling

parameter. These factors are small so that the modeling corresponds to relatively
small medium fluctuations. This is exactly the scaling of the fluctuations that gives
partly coherent propagation of the wavefield. The fluctuations are sufficiently strong
so that the wavefield is affected beyond the homogenization situation, but not so
strong that the field completely loses its coherence.

In the scaling regime considered, ∂2ψ
∂z2 on the right-hand side of (2.7) can be

neglected. Equation (2.14) is an evolution equation, which is supplemented with the
initial conditions (cf. (2.2))

(2.15)
1
2π

∫
eiω(−t)ψ(z = 0,x, ω) dω = Y (T0t, lxx) .

Indeed, the paraxial field ψ satisfies an initial value problem rather than a boundary
value problem as in the case of the Helmholtz equation. This reflects the fact that
we consider a regime where lateral scattering is dominant over scattering along the
principal direction.

2.3. White noise model. We shall consider functionals of the field, ψ, in the
scaling regime in (2.11). Following [33], we introduce the Wigner distribution:

(2.16) Wθ(z,x,p;ω) =
∫∫

1
(2π)d

eip·yψ
(
z,x− y

2θ
, ω
)
ψ
(
z,x +

y
2θ
, ω
)∗

dy ,

where we have used “∗” to represent complex conjugation. It can then be shown
[17, 33] that in the high-frequency (θ → ∞) and white noise (ε → 0) limit, the
limiting Wigner transform that we denote as Wδ is characterized weakly (in law) by
the Itô–Liouville stochastic partial differential equation, as follows.

Proposition 2.1. The Wigner distribution Wθ converges in the limit 1/θ → 0
followed by ε→ 0 weakly in law to the process Wδ solving

(2.17) dWδ =
[
−p
k
· ∇xWδ +

k2D

2
�pWδ

]
dz − k

2
∇pWδ · dB

(
z,

x
δ

)
.
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Here, B(x, z) is a vector-valued Brownian field with covariance

(2.18) E[Bi(z1,x1)Bj(z2,x2)] = −
(
∂2R0(x1 − x2)

∂xi∂xj

)
z1 ∧ z2 ,

where z1 ∧ z2 = min{z1, z2}; in the assumed isotropic case, we have (cf. (2.9))

(2.19) D = −R
′′

0 (0)
4

, with R0(x) =
∫ ∞

−∞
R(ζ,x) dζ .

We remark that the second derivative of the (isotropic) medium correlation function
is negative: R′′

0 (0) < 0 so that indeed (2.17) is well posed. It now follows directly
from (2.17) that the mean, W = E[Wδ], is independent of δ and solves the advection-
diffusion equation

(2.20)
∂W

∂z
+

p
k
· ∇xW =

k2D

2
�pW .

The explicit expression for the Green’s function of (2.20) is

U(z,x,p;x0,p0) =
∫∫

1
ωd(2π)2d

exp
(

i
[
w · (x − x0) + r · (p − p0)

ω
− zw · p0

ω

])

× exp
(
−Dz

2

[
r2 + zr · w +

w2z2

3

])
dw dr ,(2.21)

with r = ‖r‖2 and w = ‖w‖2. This expression will be useful in order to characterize
how the computed cross-correlations relate to the propagation Green’s function of
interest. That the computed cross-correlations give a stable and “low noise” estimate
of the Green’s function shall emerge as a consequence of assuming a stabilization
regime. Indeed, here we shall assume the stabilization regime corresponding to the
limit δ → 0, as discussed in [33]. The robust estimation of the empirical Green’s
function will be a consequence of the following stabilization result.

Proposition 2.2. Assume that the initial Wigner distribution, WI(x,p), is
uniformly bounded and Lipschitz continuous. Define

(2.22) Iδ(z,x,y) =
∫∫

Wδ(z,x,p)e−ip·y dp.

Then

(2.23) lim
δ→0

E
{
I2
δ (z,x,y)

}
= E

2 {Iδ(z,x,y)} ,

where E {Iδ(z,x,y)} is independent of δ.
This result is a slight generalization of the stability result derived in [33]; see the

appendix.

3. Analysis of cross-correlations.

3.1. Time averaging. The quantity of interest is the cross-correlation function,

CH(τ, �x1, �x2) =
∫

H(t)u(t, �x1)u(t+ τ, �x2) dt ,(3.1)
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in which H is a time-window function; cf. (1.1). Here, u is modeled from the solution
of the paraxial wave equation (cf. (2.14)) subject to initial conditions (2.15). We
introduce the notation v̌ for the partial Fourier transform of v with respect to time,
and v̂ for the complete transform:

v(t,x) =
1
2π

∫
e−iωtv̌(ω,x) dω =

1
(2π)d+1

∫∫
e−i(ωt−p·x)v̂(ω,p) dp dω .

Let Gθ be the Green’s function associated with the paraxial wave equation (2.14);
then we have in the standardized variables

(3.2) u(t, �x) =
∫∫

G̃θ(t− s, �x; �xn)Y (T0s, lxxn) dxnds,

where �xn = (0,xn) and

(3.3) G̃θ(t, z,x; 0,xn) =
1
2π

∫
eiω(z/c−t)Gθ(ω, z,x; 0,xn) dω

(cf. (2.6)). Substituting (3.2) into (3.1) yields

(3.4) CH(τ, �x1, �x2) =
∫∫

H(t)G̃θ(t− s1, �x1; �xn1)Y (T0s1, lxxn1)

× G̃θ(t+ τ − s2, �x2; �xn2)Y (T0s2, lxxn2) dt ds1 ds2 dxn1 dxn2 .

Note that by the result (2.20) the paraxial field decorrelates laterally on the scale 1/θ.
We now assume that the ambient noise field decorrelates on this scale by choosing

(3.5) X0 =
lx
θ
.

When we substitute (2.2) into (3.4), we then obtain

(3.6) CH(τ, �x1, �x2) =
∫∫

σ2
y

{∫
H(t)ν(t− v1, θxn1) ν(t− v2, θxn2) dt

}

× G̃θ(v1, �x1; �xn1)G̃θ(v2+τ, �x2; �xn2)χ
(

xn1 − xc
A

)
χ

(
xn2 − xc

A

)
dv1 dv2 dxn1 dxn2 .

We may choose for H the indicator function

HT (·) =
I(−T

2 ,
T
2 )(·)

T
;

then

lim
T→∞

∫ ∞

−∞
HT (t)ν(t− v1, θxn1) ν(t− v2, θxn2) dt = C0(v2 − v1, θ(xn2 − xn1)) ,

the mean square with respect to the distribution of the impinging noise sources. Our
interest is in such a regime where the time average effectively removes the fluctuations
in the quantity of interest, exploiting the randomness of the sources. Substituting the
above average into (3.6) leads to the introduction of

(3.7) 〈C〉θ (τ, �x1, �x2) =
∫∫

σ2
yC0(v2 − v1, θ(xn2 − xn1))

× G̃θ(v1, �x1; �xn1)G̃θ(v2+τ, �x2; �xn2)χ
(

xn1 − xc
A

)
χ

(
xn2 − xc

A

)
dv1 dv2 dxn1 dxn2 .
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3.2. Green’s function filter and limits. We obtain the following representa-
tion for the quantity of interest.

Proposition 3.1. Let 〈C〉θ be as in (3.7), and assume the relative ordering

z1 < z2 .

Then

(3.8)

〈C〉θ (τ, �x1, �x2) =
∫∫

G̃θ

(
τ − s, z2,x2; z1,x1 −

y
θ

)
Λθ
(
z1, s,x1 −

y
2θ
,y
)
ds dy,

in which

Λθ(z, τ,x,y) =
∫
e−iωτ

2π

{∫∫
σ2
yČ0(ω, θ(xn2 − xn1))

× Gθ

(
ω, z,x− y

2θ
; 0,xn2

)
Gθ

(
ω, z,x +

y
2θ

; 0,xn1

)∗
(3.9)

× χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dxn1 dxn2

}
θ−d dω .

Here, Λθ is referred to as the Green’s function filter.
Proof. We begin with substituting (3.3) into (3.7), and we obtain

(3.10) 〈C〉θ (τ, �x1, �x2) = (2π)−2

∫∫
σ2
yC0(v2 − v1, θ(xn2 − xn1))

× Gθ(ω1, z1,x1; 0,xn1)
∗eiω1(v1−z1/c)Gθ(ω2, z2,x2; 0,xn2)e

−iω2((v2+τ)−z2/c)

× χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dv1 dv2 dxn1 dxn2 dω1 dω2 ,

where we made use of the fact that G̃θ is real-valued. We carry out the integration
over v1 yielding a Fourier transform of C0 with respect to its time argument; the
integration over v2 then gives a factor δ(ω2 − ω1):

(3.11) 〈C〉θ (τ, �x1, �x2) = (2π)−2

∫∫
σ2
yČ0(ω1, θ(xn2 − xn1))

×Gθ(ω1, z1,x1; 0,xn1)
∗Gθ(ω2, z2,x2; 0,xn2) e

−i((ω2−ω1)v2+ω2τ)ei(ω2z2−ω1z1)/c

× χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dv2 dxn1 dxn2 dω1 dω2

= (2π)−1

∫∫
σ2
yČ0 (ω, θ(xn2 − xn1)) e

−iω(τ−(z2−z1)/c)

×Gθ(ω, z1,x1; 0,xn1)
∗Gθ(ω, z2,x2; 0,xn2)

× χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dxn1 dxn2 dω .
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We invoke the semigroup property of the solution operator to the paraxial wave equa-
tion, and, using that z2 > z1, we get

(3.12) 〈C〉θ (τ, �x1, �x2) =
∫∫

e−iω(τ−(z2−z1)/c)

2π

{ ∫∫
σ2
yČ0(ω, θ(xn2 − xn1))

× Gθ(ω, z1,x1; 0,xn1)
∗Gθ(ω, z1,y; 0,xn2)χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dxn1 dxn2

}

× Gθ(ω, z2,x2; z1,y) dω dy .

We then change variables of integration,

(3.13) 〈C〉θ (τ, �x1, �x2) =
∫∫

e−iω(τ−(z2−z1)/c)

2π

{ ∫∫
σ2
yČ0(ω, θ(xn2 − xn1))

× Gθ(ω, z1,x1; 0,xn1)
∗Gθ

(
ω, z1,x1 −

y
θ

; 0,xn2

)

× χ

(
xn1 − xc

A

)
χ

(
xn2 − xc

A

)
dxn1 dxn2

}
Gθ

(
ω, z2,x2; z1,x1 −

y
θ

)
θ−d dω dy

=
∫∫

e−iω(τ−(z2−z1)/c)

2π
Gθ

(
ω, z2,x2; z1,x1 −

y
θ

)
Λ̌θ
(
z1, ω,x1 −

y
2θ
,y
)
dω dy ,

which gives the result (3.8).
We will now make the following assumption.
Assumption 1.

σ2
y = θd .(3.14)

The expression (3.9) then simplifies, and this assumption corresponds to letting
the correlation radius of the impinging noise field be θ independent.

We remark that the paraxial Green’s function will decorrelate in the lateral di-
mensions on the 1/θ scale, and that this is the motivation for the choice of parame-
terization of the filter Λθ.

It will prove natural to introduce the Wigner distribution

(3.15) Wθ(z,x,p;ω) =
∫∫

eip·y

(2π)d
Gθ

(
ω, z,x− y

2θ
; 0,xn2

)
Gθ

(
ω, z,x +

y
2θ

; 0,xn1

)∗

× Č0(ω, θ(xn2 − xn1)) χ
(

xn1 − xc
A

)
χ

(
xn2 − xc

A

)
dxn1 dxn2 dy ,

so that

Λ̌θ(z, ω,x,y) =
∫∫

Wθ(z,x,p;ω)e−ip·ydp .(3.16)

This Wigner distribution coincides with the one given in (2.16) subject to initial
conditions that derive from (2.15), which follows from (2.6), (3.2), and (3.3). In the
high-frequency (θ → ∞) and white noise (ε → 0) limits, the Wigner distribution in
(3.15) is characterized weakly (in law) by (2.17), while its mean satisfies (2.20).
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The initial condition, at z = 0, for the Wigner distribution follows directly from
the corresponding initial condition for the Green’s function Gθ:

(3.17) Wθ(0,x,p;ω) =
∫∫

eiθp·2(x−xn2)

(2π)d
Č0(ω, θ(2(xn2 − x)))

× χ

(
2x − xn2 − xc

A

)
χ

(
xn2 − xc

A

)
θd dxn2

∼ Ĉ0 (ω,p)
χ2
(
x−xc

A

)
(4π)d

≡WI(x,p;ω) as θ → ∞.

We will apply this approximation below.
We now use the Green’s function (2.21), and initial condition (3.17), in (3.16)

and define the following Green’s function filter,

Λ̌(z, ω,x,y) =
∫∫

e−ip·y

(2π)2d
exp

(
i
[
w · (x − x0) + r · (p − p0)

ω
− zw · p0

ω

])

× exp
(
−Dz

2

[
r2 + zr · w +

w2z2

3

])
Ĉ0 (ω,p0)

×
χ2
(
x0−xc

A

)
(4π)d

ω−d dw dr dp dx0 dp0

=
1

(4π)d

∫∫
eiωw·(x−xc) exp

(
−ω

2Dz

2

[
y2 + zy · w +

w2z2

3

])

× Č0(ω,y + zw)χ̂A (ωw)ωd dw ,(3.18)

in which

χ̂A (w) =
∫∫

e−iw·x0 χ2
(x0

A

)
dx0 .

The characterization of a statistically stable filter now follows from the representation
(3.16) and Propositions 2.1 and 2.2, as follows.

Proposition 3.2. The deterministic Green’s function filter converges to a de-
terministic filter

(3.19) lim
δ→0

lim
ε→0

lim
θ→∞

Λ̌θ (z, ω,x,y) = Λ̌(z, ω,x,y)

in L2(P).

3.3. Effective filter. In order to obtain qualitative and quantitative insight on
the Green’s function filtering behavior, we shall assume that the spectrum of the
envelope function and the spectrum of the noise covariance have Gaussian shapes.
That is, we shall assume

χ(x) =
1

(2π)d/2
e−

|x|2
2 , Č0 (ω,y) = f̂0(ω)e

−|y|2

2σ2
x .(3.20)

We recall that the filter will be evaluated at z = z1, corresponding to the longitudinal
distance from the source plane to the first recording point. We find that then

Λ̌(z, ω,x,y) =
(

A

4π
√

2

)d
ωdf̂0(ω)

∫∫
eiωw·(x−xc) exp

(
−ω

2Dz

2

[
y2 + zy · w +

w2z2

3

])

× e
−|y+zw|2

2σ2
x e

−ω2|w|2A2

4 dw .
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We rewrite this expression as

(3.21)

Λ̌(z, ω,x,y) =
(

A

4π
√

2

)d
ωdf̂0(ω)

∫∫
eiωw·(x−xc)e−ω

2(a1w
2+2a2y·w+a3y

2)/2 dw

=
(

A2

16πa1

)d/2
f̂0(ω)e−

|x−xc|2
2a1 e−ω

2(a3−a2
2/a1)y2/2e−iω(a2/a1)y·(x−xc)

with

a1(ω) =
A2

2
+

z2

ω2σ2
x

+
Dz3

3
, a2(ω) =

z

ω2σ2
x

+
Dz2

2
, a3(ω) =

1
ω2σ2

x

+Dz .

Furthermore, we shall assume that the noise source field has a temporal frequency
spectrum of the form

f̂0(ω) =
1
2

(
f̂ (Ts(ω − ωc)) + f̂ (Ts(ω + ωc))

)
.(3.22)

We can now associate two characteristic length scales and one characteristic tem-
poral scale with the Green’s function filter in the narrow band situation so that Ts is
large:

• The refocusing length scale

lf (ωc) =
λc

2π
√
a3(ωc) − a2

2(ωc)
a1(ωc)

=
λc
2π

⎛
⎝ A2

2 + λ2
cz

2

4π2σ2
x

+ Dz3

3(
A2 + Dz3

6

)
Dz
2 +

(
A2

2 + Dz3

3

) λ2
c

4π2σ2
x

⎞
⎠

1/2

,

for

λc = 2π/ωc

with ωc a characteristic frequency of the noise source spectrum. This length
scale determines the smoothing scale in the spatial source coordinates of the
Green’s function estimate, since the Green’s function is blurred on the scale
lf/θ; see (3.19), (3.21). Note that in the low-frequency limit with λc → ∞
the estimate of the Green’s function degrades since the refocusing length scale
becomes large in this limit.

• The effective aperture length scale

la(ωc) =
√
a1(ωc) =

√
A2

2
+

λ2
cz

2

4π2σ2
x

+
Dz3

3
.

This corresponds to the lateral range, relative to the center xc, of impinging
noise sources contributing to the Green’s function estimate through 〈C〉θ. If
the lateral separation between xj and xc is large relative to this length, then
the filter will weaken the Green’s function significantly. In the limit λc → 0,
la corresponds to the effective aperture in [33].
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x1

x2•

xc•

A/2

lf

la

z = 0z1z2

Fig. 3.1. The effective aperture la and the refocusing length scale lf .

• The Green’s function will be blurred in time, on the scale Ts, corresponding
to the support of the ambient noise correlations in time.

The characteristic length scales are illustrated in Figure 3.1.
We comment on how the characteristic length scales depend on some of the pa-

rameters. In the case of a homogeneous medium, with D = 0 and low frequencies, we
have

lf (ωc)|D=0
λc→∞∼

(
λcz

A

)
1√
2π

,

which corresponds to the classical Rayleigh resolution. While in the high-frequency
limit and homogeneous medium case, with D = 0, we find

lf (ωc)|D=0
λc→0∼ σx ,

that is, a length scale corresponding to that of the support of the ambient noise field
in the lateral spatial dimensions. Next, we consider the limit of (relatively) strong
medium fluctuations:

lf (ωc)
D→∞∼ λc

π
√
zD

,

which leads to a small refocusing scale.

4. Source location estimation. Here, we consider the case of narrow noise
aperture, A, and discuss the problem of estimating the “source location” xc. We
assume that the points of observation lie in the plane z2 = z1 = z. From (3.8) we
then find that

〈C〉θ (τ, z,x1, z,x2) = θd
∫
e−iωτ

2π
Λ̌θ(z, ω, 1

2 (x1 + x2), θ(x1 − x2)) dω .

For two points separated on the 1/θ scale, we write

x1 = x +
y
2θ
, x2 = x − y

2θ
.(4.1)

In the case of source estimation, we replace assumption (3.14) by the following.
Assumption 2.

σ2
y ≡ 1 .(4.2)
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�x1

�x2

�x3

�x4
�xcO(θ)

Fig. 4.1. Estimation of source location: By computing the cross-correlations between the points
�x1, . . . , �x4 on the mirror, one obtains differential traveltimes, corresponding to |�xi − �xc| − |�xj − �xc|,
which can be used to estimate the source location �xc.

Thus, the magnitude of the localized noise source field is now θ independent. We
then have

〈C〉θ
(
τ, z,x +

y
2θ
, z,x− y

2θ

)
=
∫
e−iωτ

2π

∫∫
Wθ(z,x,p;ω)e−ip·ydp ,

and it follows by Proposition 2.2 that 〈C〉θ is statistically stable.
We consider, moreover, a tight lateral support for the noise field correlations:

σx � 1 in the model (3.20). Then, using Proposition 3.2 and (3.18), we obtain

σ−d
x 〈C〉θ

(
τ, z,x +

y
θ
, z,x− y

θ

)

∼
(

A2

16πz2

)d/2 ∫
|ω|df̂0(ω)

e−iωτ

2π
e−

ω2σ2
ay2

2 e−iωy·(x−xc)/z dω

=

{(
A2

16πz2

)d/2
f̃ (·) ∗ Nσa(·)

}(
τ + y · x − xc

z

)
,

where “∗” denotes convolution, Nσ is the Gaussian distribution with standard devia-
tion σ, and we define

σa =

√
A2

2z2
+
Dz

3
,

f̃(τ) =
∫
e−iωτ

2π
|ω|df̂0(ω) dω.

We remark that in the paraxial regime we have

(4.3) τ+y·(x−xc)/z =
2π
T0

{
t̃+
(
|x̃1 − x̃c|2

2z̃c0
− |x̃2 − x̃c|2

2z̃c0

)}
≈ 2π
T0

(t̃+(τ̃s1−τ̃s2) ,

with t̃, z̃, x̃j , and x̃j denoting the original scaled coordinates and τ̃sj being the trav-
eltime from the noise source at �xc to observation point �xj . Thus, given observations
at array points �x1, . . . , �x4, separated as in (4.1), one can estimate the location of the
source via differential traveltime estimates in the (d + 1) = 3-dimensional case; see
Figure 4.1. The resolution of the estimate is limited by the support of the noise cor-
relation function, the strength of the medium fluctuations, and the aperture A. We
remark that in contrast to the situation where one aims at estimating the Green’s
function, here, a large value for σa leads to a poor resolution.
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5. White noise paraxial regimes and applications. In this section, we dis-
cuss alternative scaling scenarios that have been introduced in [34] and [20]. We
demonstrate the robustness of the results derived above by showing that their es-
sential features prevail under a wide range of scaling scenarios. Indeed, the general
analysis will be the same, but the Green’s function filter changes through replacing
the function U in (2.21) by the Green’s function associated with the relevant modifi-
cation of (2.20). In subsection 5.4 we conclude the discussion on scaling scenarios by
considering a particular application, namely, body-wave scattering in Southeastern
Tibet motivated in the introduction, and its characteristic scales.

We consider a scaling and a nondimensionalization as above. We shall here discuss
the situation with ε → 0 being the smallest parameter. This limit gives the Itô form
of (2.14):

(5.1) 2i (θk) dzψ + �xψ dz +
i(θ3k3)δ2

4
R0(0)ψ dz + (θ2k2)δψdzB

(
z,

x
δ

)
= 0 ,

with the law of the Brownian flow ∇B coinciding with the law of the flow B in
(2.17). This Itô form of the Schrödinger equation is discussed in, for instance, [11].
Now different regimes lead to different Wigner distributions and equations that they
satisfy, and, hence, different Green’s functions, which shape the Green’s function filter.

5.1. Subsequent high-frequency scaling. First, we consider the situation
with a subsequent high-frequency or geometrical optics limit followed by the large
diversity scaling. That is, we have

(5.2) ε� 1
θ
� δ � 1 .

In this case, the Wigner distribution in (2.16) again satisfies (2.20)! Therefore, the
Green’s function estimation corresponds to the estimation discussed above.

5.2. The joint limit. We discuss next the joint limit with θ and δ going to zero
simultaneously, that is,

(5.3) ε� ξ

θ
= δ � 1

for ξ = O(1). As shown in [34], the Wigner distribution in (2.16) converges in the
limit δ = ξθ → 0 weakly (in S′(R2d)) and in probability to W̃ , solving

(5.4)
∂W̃

∂z
(z,x,p) +

p
ω
· ∇xW̃ (z,x,p)

=
ω2ξ2

4

∫∫ ∞

−∞

dq
(2π)d

R̂0(q)
(
W̃ (z,x,p + q) − W̃ (z,x,p)

)

(cf. (2.19) for the definition of R0). The Green’s function of (5.4) is explicitly given
by

Ũ(z,x,p;x0,p0) =
∫∫ ∞

−∞

1
ωd(2π)2d

exp
(

iw · (x − x0) + ir · (p − p0)
ω

− izw · p0

ω

)

× exp
(
−ω

2ξ2

4

∫ z

0

DR

(
r + ws
ω

)
ds

)
dw dr(5.5)
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and replaces U in (2.21). Here, DR is the medium structure function,

(5.6) DR(r) = R0(0) −R0(r);

cf. (2.19). The expression (3.18) for the Green’s function filter then becomes

(5.7) ˇ̃Λ(z, ω,x,y;σt, σx)

≈
∫∫ ∞

−∞

e−ip·y

(2π)2d
exp

(
iw · (x − x0) + ir · (p − p0)

ω
− izw · p0

ω

)

× exp
(
−ω

2ξ2

4

∫ z

0

DR

(
r + sw
ω

)
ds

)

× Ĉ0 (ω,p0)
χ2
(
x0−xc

A

)
(2π)d

(
1
ω

)d
dw dr dp dx0 dp0

=
1

(4π)d

∫∫
eiωw·(x−xc) Č0(ω,y + zw) e−

ω2ξ2
4

∫
z
0 DR(y+sw) ds χ̂A (ωw) ωd dw .

In the case where the correlation length associated with the structure function DR is
large, we can expand this, assumed smooth, function DR,

DR(y) �→ 2D|y|2 ,

and recover (3.18). In the joint scaling limit, however, the whole spectrum of the
medium fluctuations is involved in the definition of the Green’s function filter.

5.3. Long-range media. We finally comment on the situation with rough and
long-range media as, for instance, in the turbulent atmosphere and heterogeneous
regions of the earth’s crust. Here we will consider a white noise limit, however, with
the Fresnel number and lateral diversity scales fixed. In this scaling, which is analyzed
in detail by Fannjiang and Solna [19, 20, 21], (2.14) becomes

2i (θk)
∂ψ

∂z
+ �xψ +

1√
ε

(
θ2k2

)
μ̃
(z
ε
,x
)
ψ = 0,(5.8)

where the power spectrum of the random field, μ̃(·, ·), is given by

Φ(�k) ≈ σH |�k|−1−2H |�k|−d ,(5.9)

for |�k| in the inertial range, where �k ∈ Rd+1 is the spectral variable and H the Hurst
exponent characterizing the roughness of the medium fluctuations. That is, we assume
that the medium fluctuations follow a power law form over a set of scales called the
intertial range, which corresponds to turbulent or long-range medium modeling. In
this case, the Wigner distribution solves, in the white noise limit, in the sense of
L2-weak solutions, a Wigner–Itô equation driven by an operator-valued Brownian
motion. In particular, the first moment in (2.20) now becomes

∂W

∂z
+

1
ω

p · ∇xW = Q0W ,(5.10)

with

Q0W =
θ2ω2

4

∫
Φ(0,q)

(
−2W (p) +W

(
p +

q
θ

)
+W

(
p− q

θ

))
dq;
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see [20] for details. The Green’s function of (5.10) is

Ũθ(z,x,p;x0,p0) =
∫∫ ∞

−∞

1
ωd(2π)2d

exp
(

iw · (x − x0) + ir · (p − p0)
ω

− izw · p0

ω

)

× exp
(
−ω

2θ2

2

∫ z

0

D∗

(
r + ws
θω

))
dw dr ,(5.11)

corresponding to the form (5.5). The structure function can now be expressed as

D∗(x) =
∫

Φ(0,q)
(
1 − eix·q

)
dq .(5.12)

The Green’s function filter is therefore again characterized by (5.7). For the power
law medium we have the short distance asymptotic

D∗(x) ≈ C2
∗ |x|2H∗ ,(5.13)

where the effective Hölder exponent H∗ is given by

H∗ =
{
H + 1/2 for H ∈ (0, 1/2),
1 for H ∈ (1/2, 1] ,(5.14)

in which H is the Hölder exponent of the original medium and C2
∗ a structure param-

eter.
Note that the effective Hölder exponent H∗ is always bigger than 1/2, correspond-

ing to a “persistent” or a long-range power law. Using this asymptotic and considering
a regime with relatively narrow support for the impinging noise field by setting

Č0 (σtω,y) �→ f̂0 (ω)δ(y) ,

we find

Λ̌H(z, ω,x,y) ≈ ωd

(4πz)d
e−iωy·x/zχ̂A

(
−ωy
z

)
f̂0 (ω)∗ e−

(ω2θ2−2H∗ z|y|2H∗ )C2
∗

2(2H∗+1) .

For the normalized noise field supported at the carrier frequency ωc as in (3.22) we
thus find that for a fixed Fresnel number the spatial support of the Green’s function
filter scales as ω−1/H∗

c . That is, the resolution depends nonlinearly on the wavelength
associated with the characteristic temporal scale of the impinging noise field. In the
limit of rough media with H∗ → 0 the lateral spatial support of the Green’s function
filter scales like λ2

c .

5.4. Applications. Here, we address the application of our analysis to passive
seismic tomography, making use of continuous recordings in an array of detectors or
receivers. We discuss which scaling regime would apply to the regional study in South-
eastern Tibet [43]. In the latter study, the focus was on the “generation” of surface
waves. Here, we seek insight into the behavior of body-wave contributions for future
applications in the same region. Our analysis incorporates what seismologists refer
to as “ambient noise” (our random source distribution) and “coda waves” (through
random medium fluctuations).

Concerning the Southeastern Tibet data set discussed in section 1, we obtain
the following characterization [43]. The characteristic distance between individual
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stations (receivers) is approximately O(100km), and, similarly, the characteristic
transversal distance between passive sources (magnitude Mw > 5) is O(100km). (For
smaller earthquakes—but with magnitudeMw > 4—the characteristic transversal dis-
tance reduces to O(10km).) The distance from the array to the sources is O(5000km);
most of the sources are likely to be located in the Western Pacific margins and Eastern
Indian Ocean margins. The dominant wavelength for shear (S) waves is O(20km),
while the dominant wavelength for compressional (P) waves is O(5km). (Under cer-
tain simplifying conditions, shear waves have been modeled by a scalar wave equa-
tion, whence the current analysis would still be applicable.) The correlation length
of medium fluctuations is, with the present knowledge, hard to estimate, but a value
of O(10km) is plausible, also, given the complexity in tectonics of the region. The
“asymmetry” observed in the cross-correlations in [43] is explained and inherent in
our setup based on the paraxial wave equation.

In our modeling, the characteristic transversal distance between stations or sources
roughly corresponds to lx, the distance from the array to the sources roughly corre-
sponds to lz, and the correlation length of medium fluctuations to l; the dominant
wavelength is λ0. For compressional body waves this results in δ ≈ 10−1, ε ≈ 2×10−3,
and θ−1 ≈ 4× 10−1, thus, corresponding most closely to the scaling discussed in sec-
tion 5.2.

6. Numerical illustrations. In this section we present a numerical illustra-
tion where we show the effect of the Green’s function filter. We shall use the filter
corresponding to the scaling regime discussed in section 3.3.

We assume that the medium is homogeneous for z > z1 and plot the quantity

I(τ,x1;A,AD) =
∫∫

Gθ

(
τ − s, z2,x2; z2 − z1,x1 −

y
θ

)
Λ(z1, s,x1,y) ds dy ,

using the approximation in (3.21) for the filter and where we introduce

AD =

√
A2 +

2D
3
.

We choose d = 2, and in the nondimensionalized coordinates we let

f0(t) = e−
t2D
2 cos(fct) ,(6.1)

with D = 5, and moreover choose

z1 = 1 , xc = x2 = 0 , fc = 30 , σx = 1 .

In Figure 6.1, we plot I in the case with a homogeneous medium. We use the
parameter values A = AD = 20 in the left plot. The estimation then captures the
wavefield and wavefront for relatively large lateral offsets for the Green’s function.
The right plot corresponds to the situation with a small aperture, A = AD = 1.5, in
which case the wavefield and corresponding “moveout” are not captured.

In Figure 6.2 we plot I in the case with a random medium. We use the parameter
values A = 1.5, AD = 9.3. We then recapture a large part of the wavefield and
wavefront (following a hyperbolic “moveout”).
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Fig. 6.1. The normal moveout for a homogeneous medium and large (left) or small (right)
aperture.
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Fig. 6.2. The normal moveout for a random medium with relatively large effective aperture.

7. Conclusions. Pairwise cross-correlations between receivers forming arrays
provide invaluable data sets where (deterministic) sources (earthquakes) are neces-
sarily absent. The data sets are used to carry out tomography, or inverse scattering,
to reveal the properties of the medium away from (below) the array. We tailored
a scaling regime to applications in global earth seismology, generating “empirical”
Green’s functions and “virtual” source experiments. Characterization and knowledge
about the structure of the incoherent waves and their correlations is crucial in this
context. We have presented a first analysis of this approach to data acquisition in the
framework of the paraxial wave approximation in a random medium. The analysis
exploits the connection between cross-correlations and time-reversal. The connection
is direct in the sense that the Green’s function estimation problem can be articulated
as the dual of time-reversal superresolution.

Important questions remain, for instance, how to design “optimal” filters, that
is, how to combine optimally data in space and frequency to obtain stable and high-
resolution estimates so that the filter Λ in (3.19) is near the identity, while enforcing
statistical stability.

Appendix. Elements of the proof of Proposition 2.2. Consider the quan-
tity

Iδ(z,x,y) =
∫∫

Wδ(z,x,p)e−ip·y dp .
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The initial condition in (3.17),

Wδ(0,x,p) = WI(x,p) ,

is assumed to be uniformly bounded, Lipschitz continuous, and positive. As explained
in [33] we can then write

Wδ(z,x,p) = WI(Xδ(z,x,p),Pδ(z,x,p)) ,

for the stochastic flow (X,P) satisfying

dXz = −1
k
P dz , dPz = −k

2
dB(z) , X0 = x , P0 = p .

Observe first that∫∫
E {Wδ(z,x,p)} e−ip·y dp =

∫∫
E {WI(Xδ(z,x,p),Pδ(z,x,p))} e−ip·y dp

is finite and independent of δ by (2.21). Writing the complex exponential in terms
of its real and imaginary parts and decomposing the domain of integration for the
corresponding integrals into subsets where cos(p·y) (respectively, sin(p·y)) is positive
(respectively, negative), we can apply Tonelli’s theorem and interchange the order of
integration and expectation and get

E{Iδ(z,x,y)} =
∫∫

E {Wδ(z,x,p)} e−ip·y dp;(A.1)

thus, Iδ(z,x,y) is finite with probability one, and its expectation given by (A.1).
By a corresponding application of Tonelli’s theorem we can write

E{I2
δ (z,x,y)} =

∫∫
E {Wδ(z,x,p1)Wδ(z,x,p2)} e−i(p1+p2)·y dp1 dp2 .

In [33] it is shown that E{W 2
δ (z,x,p)} is integrable in p, and that

lim
δ→0

E {Wδ(z,x,p1)Wδ(z,x,p2)} = E {Wδ(z,x,p1)}E {Wδ(z,x,p2)} .

By the Lebesgue dominated convergence theorem we can therefore conclude that

lim
δ→0

E{I2
δ (z,x,y)} = E

2{Iδ(z,x,y)} .
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Abstract. A new boundary integral formulation of the second kind for exterior Stokes flow is in-
troduced. The formulation is stable, complete, singularity-free, and natural for bodies of complicated
shape and topology. We prove an existence and uniqueness result for the formulation for arbitrary
flows and illustrate its performance via several numerical examples using a Nyström method with
Gauss–Legendre quadrature rules of different order.
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1. Introduction. In this article we study boundary integral formulations of ex-
terior Stokes flow problems around arbitrary bodies with prescribed velocity data.
For such problems it is well known that a formulation based on either of the classic
single- or double-layer Stokes potentials is inadequate [29, 30]. A formulation based
on the single-layer potential leads to a boundary integral operator which is unstable
in the sense that its condition number is unbounded and incomplete in the sense that
its range is deficient. Consequently, such a formulation is not optimal for numerical
discretization and not capable of representing an arbitrary exterior flow. A formula-
tion based on the double-layer potential leads to a boundary integral operator which
is stable in the sense that its condition number is bounded but which is incomplete—
even more so than the single-layer potential. Thus, in contrast to the single-layer
case, a double-layer formulation is optimal for numerical discretization, but like the
single-layer case, it is not capable of representing an arbitrary exterior flow.

Various authors have shown that a double-layer formulation can be modified so
as to obtain completeness while retaining stability [14, 18, 20, 26, 28]. In Power and
Miranda [28] it was shown that a complete formulation can be obtained by adding two
classic singular flow solutions (a stokeslet and rotlet) to the double-layer potential,
where the poles of the singular solutions are coincident and placed at an arbitrary
location within the body. In Hebeker [14] it was shown that a complete formulation
can be obtained by simply taking a positive linear combination of the classic single-
and double-layer potentials. The approach of Power and Miranda has the desirable
feature of being singularity-free in the sense that it leads to an integral equation
involving only bounded integrands. In contrast, the approach of Hebeker leads to
an integral equation with unbounded integrands. On the other hand, the approach
of Power and Miranda is not natural for flows around bodies of complex shape or
topology for which there is no distinguished point for the stokeslet and rotlet pole.
In contrast, the approach of Hebeker is natural for flows around bodies of arbitrary
shape.
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Here we introduce a new boundary integral formulation for exterior Stokes flow
which combines the strengths of the Power and Miranda and the Hebeker formu-
lations. The new formulation is stable, complete, singularity-free, and natural for
bodies of complicated shape and topology. The formulation is made complete by
virtue of a positive linear combination of single- and double-layer potentials and is
made singularity-free by mapping the single-layer potential onto an appropriate par-
allel surface. We prove an existence and uniqueness result for the formulation for
arbitrary flows and illustrate its performance via several numerical examples using a
standard Nyström method based on Gauss–Legendre quadrature rules. Our results
show that a standard method applied to the singularity-free formulation provides
a simple and viable alternative to specialized methods required by classic formula-
tions.

Classic boundary integral formulations of the Stokes equations involve weakly sin-
gular kernels that require special treatment. Such formulations can be treated with
variants of the Nyström method which employ kernel-adapted product integration
rules [3, 19] or coordinate transformations and projections which effectively remove
the singularity [33]. Several types of Galerkin and collocation methods [3, 5, 6, 19]
can also be applied to these formulations, as well as spectral Galerkin [2, 10, 12] and
wavelet-based methods [1, 21, 32]. However, these approaches generally require basis
functions that may be difficult to construct or which may exist only for certain classes
of geometries. Moreover, they require special techniques for computing weakly singu-
lar integrals, which can be expensive. Here we show that such issues associated with
classic formulations can be avoided in a simple and efficient way by a straightforward
discretization of the singularity-free formulation.

The presentation is structured as follows. In section 2 we outline the Stokes equa-
tions for the steady flow of an incompressible viscous fluid in an exterior domain. In
sections 3 and 4 we establish notation and collect several results on singular solutions
and surface potentials for the Stokes equations that will be employed throughout our
developments. In sections 5 and 6 we summarize, for purposes of comparison, the
Hebeker and the Power and Miranda formulations of the exterior Stokes problem and
highlight several of their properties. In section 7 we introduce our new formulation
and establish its solvability properties for arbitrary data. In section 8 we describe a
numerical discretization of our formulation using a standard Nyström method with
an arbitrary quadrature rule. In section 9 we illustrate our approach with numerical
examples and summarize our conclusions.

2. The exterior Stokes problem. In this section we define the boundary-value
problem that we will study. We briefly outline standard assumptions which guarantee
existence and uniqueness of solutions, and we introduce various flow quantities of
interest that will be used to understand the properties of different boundary integral
formulations.

2.1. Problem formulation. We consider the steady motion of a body of ar-
bitrary shape through an incompressible viscous fluid at a low Reynolds number.
In a body-fixed frame, we denote the body domain by B, the fluid domain exterior
to the body by Be, and the body-fluid interface by Γ . Given a body velocity field
v : Γ → R3, the basic problem is to find a fluid velocity field u : Be → R3 and pressure
field p : Be → R which satisfy the classic Stokes equations, which in nondimensional
form are
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(2.1)
Be

B

Γ

ui,jj − p,i = 0, x ∈ Be,
ui,i = 0, x ∈ Be,
ui = vi, x ∈ Γ,
ui, p→ 0, |x| → ∞.

Equation (2.1)1 is the local balance law of linear momentum for the fluid and
(2.1)2 is the local incompressibility constraint. Equation (2.1)3 is the no-slip boundary
condition which states that the fluid and body velocities coincide at each point of the
boundary. The limits in (2.1)4 are boundary conditions which are consistent with
the fluid being at rest at infinity. Unless mentioned otherwise, all vector quantities
are referred to a single basis and indices take values from one to three. Here and
throughout we will use the usual conventions that a pair of repeated indices implies
summation and that indices appearing after a comma denote partial derivatives.

2.2. Solvability. We assume B∪Γ ∪Be fills all of three-dimensional space, B is
open and bounded, and Be is open and connected. Moreover, we assume Γ consists
of a finite number of disjoint, closed, bounded, and orientable components, each of
which is a Lyapunov surface [13]. These conditions on Γ imply that standard results
from potential theory for the Stokes equations may be applied [20, 26, 29]. Moreover,
together with the continuity of v, they are sufficient to guarantee that (2.1) has a
unique solution (u, p) with the following decay properties [9, 20]:

(2.2) ui = O(|x|−1), ui,j = O(|x|−2), p = O(|x|−2) as |x| → ∞.

The solution (u, p) is smooth in Be but may possess only a finite number of bounded
derivatives in Be ∪ Γ depending on the precise smoothness of Γ and v.

2.3. Basic flow quantities. The volume flow rate associated with a flow (u, p)
and a given oriented surface S is defined by

(2.3) Q =
∫
S

ui(x)ni(x) dAx,

where n : S → R3 is a given unit normal field and dAx denotes an infinitesimal area
element at x ∈ S. When S is closed and bounded, we always choose n to be the
outward unit normal. In this case, Q quantifies the volume expansion rate of the
domain enclosed by S.

The fluid stress field associated with a flow (u, p) is a function σ : Be → R3×3

defined by

(2.4) σij = −pδij + ui,j + uj,i,

where δij is the standard Kronecker delta symbol. For each x ∈ Be the stress tensor
σ is symmetric in the sense that σij = σji. The traction field f : S → R3 exerted by
the fluid on a given oriented surface S is defined by

(2.5) fi = σijnj .

The resultant force F and torque T , about an arbitrary point c, associated with f are

(2.6) Fi =
∫
S

fi(x) dAx, Ti =
∫
S

εijk(xj − cj)fk(x) dAx,
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where εijk is the standard permutation symbol. As before, when S is closed and
bounded, we always choose n to be the outward unit normal field. In this case, F and
T are loads exerted on S by the fluid exterior to S.

For convenience, we assume all quantities have been nondimensionalized using a
characteristic length scale � > 0, a velocity scale ϑ > 0, and a force scale μϑ� > 0,
where μ is the absolute viscosity of the fluid. The dimensional quantities correspond-
ing to {x, u, p, v} are {�x, ϑu, μϑ�−1p, ϑv}, and the dimensional quantities correspond-
ing to {Q, σ, f, F, T} are {ϑ�2Q,μϑ�−1σ, μϑ�−1f, μϑ�F, μϑ�2T }.

3. Singular solutions of the Stokes equations. In this section we outline
various classic singular solutions of the homogeneous, free-space Stokes equations

(3.1)
ui,jj − p,i = 0, x �= y,
ui,i = 0, x �= y,
ui, p→ 0, |x| → ∞.

Here y is a given point called the pole of the solution. Various representations of the
solution of (2.1) can be derived and understood in terms of these solutions and their
properties. Notice that, by linearity, any multiple or linear combination of solutions
of (3.1) is also a solution where defined. In what follows, we let z = x− y and r = |z|,
and we let Sint and Sext denote the interior and exterior domains associated with
a given closed, bounded surface S. The notation and results outlined here will be
employed throughout our developments.

3.1. Point-source solution. The point-source solution is defined by ui = UPS
i ,

p = ΠPS, σik = ΞPS
ik , where

(3.2) UPS
i =

zi
r3
, ΠPS = 0, ΞPS

ik =
2δik
r3

− 6zizk
r5

.

This solution may be derived from (3.1) by making the ansatz ui = φ,i and p = 0
for some radially symmetric function φ [30]. The resultant force F , torque T about
an arbitrary point c, and volume flow rate Q associated with an arbitrary closed,
bounded surface S can be found by direct computation and depend on the relative
location of the pole y. When y ∈ Sext the divergence theorem and (3.1) can be used
to show that the relevant integrals over S all vanish. When y ∈ Sint the divergence
theorem and (3.1) can be used to transform the relevant integrals over S into integrals
over an arbitrary sphere in Sint centered at y, which can then be evaluated directly.
The results are

(3.3)
Fi = 0, Ti = 0, Q = 4π, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.2. Point-source dipole solution. The point-source dipole solution is de-
fined by ui = UPSD

ij gj, p = ΠPSD
j gj , σik = ΞPSD

ikj gj, where gj is an arbitrary vector
independent of x and

(3.4)
UPSD
ij :=

∂

∂yj
UPS
i = −δij

r3
+

3zizj
r5

, ΠPSD
j :=

∂

∂yj
ΠPS = 0,

ΞPSD
ikj :=

∂

∂yj
ΞPS
ik =

6(δikzj + δijzk + δkjzi)
r5

− 30zizkzj
r7

.

This solution is implied by the solution in (3.2) and the linearity of (3.1). The resultant
force F , torque T about an arbitrary point c, and volume flow rate Q associated with
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an arbitrary closed, bounded surface S can be computed as previously described. The
results are

(3.5) Fi = 0, Ti = 0, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.3. Point-force solution: Stokeslet. The point-force solution is defined by
ui = UPF

ij gj, p = ΠPF
j gj , σik = ΞPF

ikjgj , where gj is an arbitrary vector independent
of x and

(3.6) UPF
ij =

δij
r

+
zizj
r3

, ΠPF
j =

2zj
r3
, ΞPF

ikj = −6zizkzj
r5

.

Up to a normalizing constant, this solution corresponds to the classic fundamental
solution of (3.1) and can be derived using the technique of Fourier transforms [20, 30].
It is typically referred to as a stokeslet. The resultant force F , torque T about an
arbitrary point c, and volume flow rateQ associated with an arbitrary closed, bounded
surface S can be computed as previously described. The results are

(3.7)
Fi = −8πgi, Ti = −8πεijk(yj − cj)gk, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.4. Point-force dipole solution: Stresslet, rotlet. The point-force dipole
solution is defined by ui = UPFD

ijl gjl, p = ΠPFD
jl gjl, σik = ΞPFD

ikjl gjl, where gjl is an
arbitrary tensor independent of x and

(3.8)

UPFD
ijl :=

∂

∂yl
UPF
ij =

δijzl − δilzj − δjlzi
r3

+
3zizjzl
r5

,

ΠPFD
jl :=

∂

∂yl
ΠPF
j = −2δjl

r3
+

6zjzl
r5

,

ΞPFD
ikjl :=

∂

∂yl
ΞPF
ikj =

6(δilzkzj + δklzizj + δjlzizk)
r5

− 30zizkzjzl
r7

.

This solution is implied by the solution in (3.6) and the linearity of (3.1). By
considering the decomposition gjl = gsymjl + gskwjl , where gsymjl = 1

2 (gjl + glj) and
gskwjl = 1

2 (gjl−glj), and by using the parameterization gskwjl = 1
2εjmlg

vec
m , we find that

the point-force dipole solution can be decomposed as

(3.9)
UPFD
ijl gjl = −UPS

i δjlg
sym
jl + USTR

ijl gsymjl + UROT
im gvecm ,

ΠPFD
jl gjl = −ΠPSδjlg

sym
jl +ΠSTR

jl gsymjl +ΠROT
m gvecm .

Here (UPS
i , ΠPS) is the point-source solution given in (3.2) and (USTR

ijl , ΠSTR
jl ) and

(UROT
im , ΠROT

m ) are detailed below. By linearity, and the fact that gsymjl and gvecm are
independent, we deduce that each of these pairs provides an independent solution of
(3.1).

Stresslet solution. The stresslet solution is ui = USTR
ijl hjl, p = ΠSTR

jl hjl, σik =
ΞSTR
ikjl hjl, where hjl is an arbitrary tensor independent of x and

(3.10)
USTR
ijl =

3zizjzl
r5

, ΠSTR
jl = −2δjl

r3
+

6zjzl
r5

,

ΞSTR
ikjl =

2δikδjl
r3

+
3(δijzkzl + δilzjzk + δjkzizl + δlkzizj)

r5
− 30zizjzkzl

r7
.
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Due to the symmetry of the above functions in the indices j and l we notice that
only the symmetric part of hjl contributes to the solution in concordance with (3.9).
The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with an arbitrary closed, bounded surface S can be computed as previously
described. The results are

(3.11) Fi = 0, Ti = 0, Q = 4πhjj , y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

Rotlet (or couplet) solution. The rotlet solution is ui = UROT
ij hj , p = ΠROT

j hj ,
σik = ΞROT

ikj hj , where hj is an arbitrary vector independent of x and

(3.12) UROT
ij =

εijlzl
r3

, ΠROT
j = 0, ΞROT

ikj =
3(εiljzkzl + εkljzizl)

r5
.

The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with an arbitrary closed, bounded surface S can be computed as previously
described. The results are

(3.13)
Fi = 0, Ti = −8πhi, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

Remarks 3.1.

1. It can be shown that all higher-order point-source solutions beginning with
the dipole can be expressed in terms of the point-force solution [30]. In
particular, we have

UPSD
ij = −1

2
∂2UPF

ij

∂yk∂yk
, ΠPSD

j = −1
2
∂2ΠPF

j

∂yk∂yk
.

Thus the family of higher-order point-source solutions is contained within the
family of higher-order point-force solutions.

2. One approach to solving the boundary-value problem in (2.1) is to consider
a linear combination (discrete or continuous) of singular solutions with poles
placed arbitrarily within the body domain B. The coefficients in the combina-
tion are then determined by enforcing the boundary condition on Γ . However,
because arbitrary boundary conditions can in general not be satisfied exactly
in this approach, it yields only approximate solutions of (2.1) [7, 30]. For
example, slender-body theory is based on this approach [4, 15, 17].

3. A related approach to solving (2.1) is to consider a linear combination of
singular solutions with poles distributed continuously over the surface Γ .
The density of the distribution is then determined by enforcing the boundary
condition on Γ . This approach leads to the classic theory of surface potentials
for the Stokes equations and yields exact representations of the solutions of
(2.1) [20, 26, 29, 30].

4. Surface potentials for the Stokes equations. In this section we outline
the classic single- and double-layer surface potentials for the Stokes equations and
summarize their main properties. All the boundary integral formulations that we will
study are based on these potentials. In what follows Γ is an arbitrary closed, bounded
surface with interior domain B and exterior domain Be, as described in section 2.
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4.1. Definition. Let ψ : Γ → R3 be given. Then by the Stokes single-layer
potentials on Γ with density ψ we mean

(4.1)
Vi[Γ, ψ](x) =

∫
Γ

UPF
ij (x, y)ψj(y) dAy ,

PV [Γ, ψ](x) =
∫
Γ

ΠPF
j (x, y)ψj(y) dAy,

and by the Stokes double-layer potentials on Γ with density ψ we mean

(4.2)
Wi[Γ, ψ](x) =

∫
Γ

USTR
ijl (x, y)ψj(y)νl(y) dAy ,

PW [Γ, ψ](x) =
∫
Γ

ΠSTR
jl (x, y)ψj(y)νl(y) dAy.

Here (UPF
ij , Π

PF
j ) is the point-force or stokeslet solution in (3.6) with pole at y,

(USTR
ijl , ΠSTR

jl ) is the stresslet solution in (3.10) with pole at y, and ν is the unit
normal field on Γ directed outwardly from B. All densities ψ will be assumed con-
tinuous.

4.2. Analytic properties. For arbitrary density ψ the single-layer potentials
(V [Γ, ψ], PV [Γ, ψ]) and double-layer potentials (W [Γ, ψ], PW [Γ, ψ]) are smooth at each
x /∈ Γ . Moreover, by virtue of their definitions as continuous linear combinations of
stokeslets and stresslets, they satisfy the homogeneous Stokes equations (2.1)1,2,4 at
each x /∈ Γ .

For arbitrary ψ the functions V [Γ, ψ] and W [Γ, ψ] are well defined for all x ∈
B ∪ Γ ∪ Be. For x ∈ Γ the integrands in (4.1)1 and (4.2)1 are unbounded functions
of y ∈ Γ , but the integrals exist as improper integrals in the usual sense [13] provided
that Γ is a Lyapunov surface. The restrictions of V [ψ, Γ ] and W [ψ, Γ ] to Γ are
denoted by V [ψ, Γ ] and W [ψ, Γ ]. These restrictions are continuous functions on
Γ [20]. Moreover, for any x0 ∈ Γ the following limit relations hold [20, 29, 30]:

lim
x→x0
x∈Be

V [Γ, ψ](x) = V [Γ, ψ](x0),(4.3)

lim
x→x0
x∈B

V [Γ, ψ](x) = V [Γ, ψ](x0),(4.4)

lim
x→x0
x∈Be

W [Γ, ψ](x) = αψ(x0) +W [Γ, ψ](x0),(4.5)

lim
x→x0
x∈B

W [Γ, ψ](x) = −αψ(x0) +W [Γ, ψ](x0).(4.6)

Here α is a constant that depends on the choice of normalization of the stresslet
solution (3.10). For our choice we have α = 2π. Notice that, by continuity of ψ and
W [Γ, ψ], the one-sided limits in (4.5) and (4.6) are themselves continuous functions
on Γ .

In contrast to the case with V [Γ, ψ] and W [Γ, ψ], for arbitrary ψ the functions
PV [Γ, ψ] and PW [Γ, ψ] do not exist as improper integrals in the usual sense when
x ∈ Γ . In particular, the integrands in (4.1)2 and (4.2)2 are excessively singular
functions of y ∈ Γ . Nevertheless, for sufficiently smooth Γ and ψ, the functions
PV [Γ, ψ] and PW [Γ, ψ] have well-defined limits as x approaches the surface Γ [20,
29, 33]. Introducing xε = x0 + εν(x0), where x0 ∈ Γ , the continuity properties of
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the functions V [Γ, ψ], W [Γ, ψ], PV [Γ, ψ], PW [Γ, ψ] around ε = 0 can be illustrated as
follows:

ε

V i [Γ,ψ]

ε

i [Γ,ψ]W

ε

P [Γ,ψ]
V

ε

P
W

[Γ,ψ]

In general, the limits of the functions V [Γ, ψ], W [Γ, ψ], PV [Γ, ψ], PW [Γ, ψ] as x
approaches Γ from Be or B have more physical significance than any directly defined
values of these functions on Γ . In particular, physically meaningful boundary condi-
tions are imposed on limit values and not on directly defined values. We remark that
directly defined values of PV [Γ, ψ] and PW [Γ, ψ] on Γ may be obtained by appealing
to the theory of singular and hypersingular integrals [22, 24, 25].

4.3. Associated stress fields. For arbitrary ψ the stress fields associated with
the single- and double-layer potentials are

Σik
V [Γ, ψ](x) =

∫
Γ

ΞPF
ikj (x, y)ψj(y) dAy,(4.7)

Σik
W [Γ, ψ](x) =

∫
Γ

ΞSTR
ikjl (x, y)ψj(y)νl(y) dAy,(4.8)

where ΞPF
ikj and ΞSTR

ikjl are the stress functions corresponding to the point-force and
stresslet solutions in (3.6) and (3.10). For arbitrary ψ the single-layer stress field
ΣV [Γ, ψ] is smooth at each x /∈ Γ and is the actual stress field associated with the
Stokes flow with velocity field V [Γ, ψ] and pressure field PV [Γ, ψ]. A similar remark
applies to the double-layer stress field ΣW [Γ, ψ].

For x ∈ Γ and arbitrary ψ the single-layer traction field ΣV [Γ, ψ]ν exists as an im-
proper integral in the usual sense—but not the double-layer traction field ΣW [Γ, ψ]ν.
Moreover, for sufficiently smooth Γ and ψ the following limit relations for ΣV [Γ, ψ]ν
[20, 29] and ΣW [Γ, ψ]ν [29] hold for each x0 ∈ Γ :

lim
ε→0
ε>0

ΣV [Γ, ψ](xε)ν(x0) = βψ(x0) +ΣV [Γ, ψ](x0)ν(x0),(4.9)

lim
ε→0
ε<0

ΣV [Γ, ψ](xε)ν(x0) = −βψ(x0) +ΣV [Γ, ψ](x0)ν(x0),(4.10)

lim
ε→0
ε>0

ΣW [Γ, ψ](xε)ν(x0) = lim
ε→0
ε<0

ΣW [Γ, ψ](xε)ν(x0).(4.11)

Here xε = x0 +εν(x0) and β is a constant that depends on the choice of normalization
of the point-force solution (3.6). For our choice we have β = −4π. The result in (4.11)
is commonly referred to as the Lyapunov–Tauber condition.

For arbitrary ψ and x0 ∈ Γ the continuity properties of ΣV [Γ, ψ](xε)ν(x0) and
ΣW [Γ, ψ](xε)ν(x0) around ε = 0 can be illustrated as follows:

ε

k
ν[Γ,ψ]

V
Σ

ik

ε

k
ν[Γ,ψ]

W
Σ

ik
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We remark that, as with PW [Γ, ψ], a directly defined value of ΣW [Γ, ψ]ν on Γ may
be obtained by appealing to the theory of hypersingular integrals.

4.4. Flow properties. Let S be an arbitrary closed, bounded surface with
Γ ⊂ Sint, and let n be the outward unit normal field on S. For arbitrary ψ the
resultant force FV [Γ, ψ], torque TV [Γ, ψ] about an arbitrary point c, and volume flow
rate QV [Γ, ψ] associated with S and the single-layer flow (V [Γ, ψ], PV [Γ, ψ]) are

FV [Γ, ψ] =
∫
S

ΣV [Γ, ψ](x)n(x) dAx = −8π
∫
Γ

ψ(y) dAy,(4.12)

TV [Γ, ψ] =
∫
S

(x − c) ×ΣV [Γ, ψ](x)n(x) dAx = −8π
∫
Γ

(y − c) × ψ(y) dAy,(4.13)

QV [Γ, ψ] =
∫
S

V [Γ, ψ](x) · n(x) dAx = 0.(4.14)

These results follow from the definitions of the single-layer stress and velocity fields
in (4.7) and (4.1) and the properties of the point-force solution in (3.6) and (3.7) with
gi replaced by ψi. Because the above results are independent of S with Γ ⊂ Sint, we
can pass to the limit and conclude that the resultant force, torque, and volume flow
rate associated with Γ and the exterior single-layer flow are also given by the above
results.

Similar calculations can be performed in the double-layer case. For arbitrary ψ
the resultant force FW [Γ, ψ], torque TW [Γ, ψ] about an arbitrary point c, and volume
flow rate QW [Γ, ψ] associated with S and the double-layer flow (W [Γ, ψ], PW [Γ, ψ])
are

FW [Γ, ψ] =
∫
S

ΣW [Γ, ψ](x)n(x) dAx = 0,(4.15)

TW [Γ, ψ] =
∫
S

(x− c) ×ΣW [Γ, ψ](x)n(x) dAx = 0,(4.16)

QW [Γ, ψ] =
∫
S

W [Γ, ψ](x) · n(x) dAx = 4π
∫
Γ

ψ(y) · ν(y) dAy .(4.17)

These results follow from the definitions of the double-layer stress and velocity fields
in (4.8) and (4.2) and the properties of the stresslet solution in (3.10) and (3.11) with
hjl replaced by ψjνl. As before, because the above results are independent of S with
Γ ⊂ Sint, we can pass to the limit and conclude that the resultant force, torque, and
volume flow rate associated with Γ and the exterior double-layer flow are also given
by the above results.

5. Hebeker formulation. In this section we outline the boundary integral for-
mulation of (2.1) introduced by Hebeker [14] and highlight several of its properties for
comparison. In what follows Γ is an arbitrary closed, bounded surface with interior
domain B and exterior domain Be, as described in section 2.

5.1. Formulation. Given an arbitrary density ψ : Γ → R3 and number θ ∈
[0, 1], define u : Be → R3 and p : Be → R by

(5.1) u = θV [Γ, ψ] + (1 − θ)W [Γ, ψ], p = θPV [Γ, ψ] + (1 − θ)PW [Γ, ψ].

By properties of the single- and double-layer potentials, the fields (u, p) are smooth
at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4 at each x ∈ Be. The stress
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field σ : Be → R3×3 associated with (u, p) is given by

(5.2) σ = θΣV [Γ, ψ] + (1 − θ)ΣW [Γ, ψ],

and the resultant force F , torque T about an arbitrary point c, and volume flow rate
Q associated with Γ are

(5.3) F = θFV [Γ, ψ], T = θTV [Γ, ψ], Q = (1 − θ)QW [Γ, ψ].

Here we have used linearity and the flow properties of the single- and double-layer
potentials outlined in section 4.4.

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R3, we require

(5.4) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.

Substituting for u from (5.1) and using the limit relations in (4.3) and (4.5), we obtain
a boundary integral equation for the unknown density ψ:

(5.5) θV [Γ, ψ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (5.1) will be the unique solution of
(2.1) if and only if ψ satisfies (5.5). This equation can be written in the standard
form

(5.6)
∫
Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience, cθ = (1 − θ)α, and

(5.7) Kij
θ (x, y) = θUPF

ij (x, y) + (1 − θ)USTR
ijl (x, y)νl(y).

Remarks 5.1.

1. Assuming Γ is a Lyapunov surface the kernel function Kθ(x, y) can be shown
to be weakly singular. Thus the solvability of the linear integral equation
(5.6) can be assessed via the Fredholm theory [19, 23]. Notice that cθ = 0
when θ = 1, and cθ �= 0 when θ ∈ [0, 1). Thus (5.6) is a Fredholm equation
of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

2. The case θ = 0 in (5.1) corresponds to a classic double-layer representation of
(u, p). It is well known that this representation is incomplete in the sense that
it can represent only those flows for which the resultant force and torque on
Γ vanish, that is, F = 0 and T = 0 [20, 26, 29, 30]. Equivalently, the range of
the linear operator in (5.6) is deficient, leading to solvability conditions and
nonuniqueness for ψ.

3. The case θ = 1 in (5.1) corresponds to a classic single-layer representation of
(u, p). It is well known that this representation is also incomplete in the sense
that it can represent only those flows for which the volumetric expansion rate
of Γ vanishes, that is, Q = 0 [20, 26, 29, 30]. Equivalently, the range of the
linear operator in (5.6) is again deficient, leading to solvability conditions and
nonuniqueness for ψ.
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4. The main idea in Hebeker [14] was to consider a mixed representation cor-
responding to θ ∈ (0, 1). The intuitive motivation is that, by considering
a linear combination, each potential can make up for the deficiencies of the
other. As outlined below, such a representation is complete in the sense that
it can represent arbitrary flows and stable in the sense that the density ψ
depends continuously on the boundary data v.

5.2. Solvability result. The following is a slight generalization of the solvability
result given in Hebeker [14].

Theorem 5.1 (see [14]). Assume Γ is a closed, bounded Lyapunov surface. If
θ ∈ (0, 1), then (5.6) possesses a unique continuous solution ψ for any continuous
boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (5.1) with a unique density ψ for each θ ∈ (0, 1). The pres-
ence of the double-layer potential in (5.1) ensures that the representation is stable. In
particular, because (5.6) is a uniquely solvable Fredholm equation of the second kind,
the linear operator in (5.6) has a finite condition number and the density ψ depends
continuously on the data v. The presence of the single-layer potential in (5.1) ensures
that the representation is complete. In particular, the single-layer potential com-
pletes the deficient range associated with the double-layer potential. The smoothness
properties of the density ψ depend on those of the surface Γ and the data v.

Remarks 5.2.

1. Aside from the restriction of solvability, the parameter θ is arbitrary and can
be exploited. For example, θ ∈ (0, 1) might be chosen by some means to
optimize the conditioning of the linear operator in (5.6).

2. Numerical methods for (5.6), Nyström methods in particular, must deal with
the singularities in the kernels of the single- and double-layer potentials. The
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8). However, there seems to be no similar removal technique
for the singularity in the kernel of the single-layer potential.

3. In general numerical treatments, the singularity in the kernel of the single-
layer potential can be dealt with by employing a kernel-adapted product
quadrature rule [3, 19], together with a local coordinate transformation such
as a Duffy transformation [3, 8, 30], or a floating polar transformation [33].
The same techniques can also be applied to the double-layer potential. In view
of the inconvenience associated with the single-layer potential, we investigate
alternative formulations.

6. Power and Miranda formulation. In this section we outline the bound-
ary integral formulation of (2.1) introduced by Power and Miranda [28] and highlight
several of its properties for comparison. In what follows Γ is an arbitrary closed,
bounded surface with interior domain B and exterior domain Be, as described in sec-
tion 2. For simplicity, in this section we assume that B consists of only one connected
component. All the results outlined generalize in a straightforward way to the case
when B has a finite number of disjoint components [29].

6.1. Formulation. Given an arbitrary density ψ : Γ → R3, number θ ∈ [0, 1],
and point x∗ ∈ B, define u : Be → R3 and p : Be → R by

(6.1) u = θY [Γ, ψ] + (1 − θ)W [Γ, ψ], p = θPY [Γ, ψ] + (1 − θ)PW [Γ, ψ],
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where Y [Γ, ψ] and PY [Γ, ψ] are fields defined in terms of the point-force (stokeslet)
and rotlet solutions as

(6.2)
Yi[Γ, ψ](x) =

∫
Γ

(
UPF
ij (x, x∗) + UROT

il (x, x∗)εlpj(yp − x∗p)
)
ψj(y) dAy,

PY [Γ, ψ](x) =
∫
Γ

(
ΠPF
j (x, x∗) +ΠROT

l (x, x∗)εlpj(yp − x∗p)
)
ψj(y) dAy .

By properties of the point-force and rotlet solutions and the double-layer potentials,
the fields (u, p) are smooth at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4
at each x ∈ Be. The stress field σ : Be → R3×3 associated with (u, p) is given by

(6.3) σ = θΣY [Γ, ψ] + (1 − θ)ΣW [Γ, ψ],

where ΣY [Γ, ψ] is the stress field associated with the flow (Y [Γ, ψ], PY [Γ, ψ]), namely,

(6.4) Σik
Y [Γ, ψ](x) =

∫
Γ

(
ΞPF
ikj (x, x∗) +ΞROT

ikl (x, x∗)εlpj(yp − x∗p)
)
ψj(y) dAy.

The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with Γ are

(6.5) F = θFY [Γ, ψ], T = θTY [Γ, ψ], Q = θQY [Γ, ψ] + (1 − θ)QW [Γ, ψ],

where FY [Γ, ψ], TY [Γ, ψ], and QY [Γ, ψ] are the resultant force, torque, and volume
flow rate associated with the flow (Y [Γ, ψ], PY [Γ, ψ]). From the properties of the
point-force and rotlet solutions given in (3.7) and (3.13), we deduce that QY [Γ, ψ] = 0
and

(6.6) FY [Γ, ψ] = −8π
∫
Γ

ψ(y) dAy, TY [Γ, ψ] = −8π
∫
Γ

(y − c) × ψ(y) dAy .

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R3, we require

(6.7) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.

Substituting for u from (6.1) and using the limit relation in (4.5), we obtain a boundary
integral equation for the unknown density ψ:

(6.8) θY [Γ, ψ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (6.1) will be the unique solution of
(2.1) if and only if ψ satisfies (6.8). This equation can be written in the standard
form

(6.9)
∫
Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience, cθ = (1 − θ)α, and

(6.10)
Kij
θ (x, y) = θUPF

ij (x, x∗) + θUROT
il (x, x∗)εlpj(yp − x∗p)

+ (1 − θ)USTR
ijl (x, y)νl(y).
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Remarks 6.1.

1. As before, assuming Γ is a Lyapunov surface, the kernel function Kθ(x, y)
can be shown to be weakly singular. Thus the solvability of the linear integral
equation (6.9) can be assessed via the Fredholm theory [19, 23]. Notice that
cθ = 0 when θ = 1, and cθ �= 0 when θ ∈ [0, 1). Thus (6.9) is a Fredholm
equation of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

2. The main idea in Power and Miranda [28] can be described intuitively as
follows. A double-layer potential is deficient in the sense that it can only
produce flows with zero resultant force and torque on Γ . Thus, in view of
the flow properties outlined in (3.7) and (3.13), the enhancement of a double-
layer potential with point-force and rotlet solutions should produce flows with
arbitrary resultant force and torque on Γ .

3. The intuitive arguments above are made rigorous by the results outlined
below. They show that the representation in (6.1) with θ ∈ (0, 1) is complete
in the sense that it can represent arbitrary flows and stable in the sense that
the density ψ depends continuously on the boundary data v.

6.2. Solvability result. The following is a slight generalization of the solvability
result given in Power and Miranda [28].

Theorem 6.1 (see [28]). Assume Γ is a closed, bounded Lyapunov surface, and
let x∗ ∈ B be arbitrary. If θ ∈ (0, 1), then (6.9) possesses a unique continuous solution
ψ for any continuous boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (6.1) with a unique density ψ for each x∗ ∈ B and θ ∈ (0, 1).
The presence of the double-layer potential in (6.1) ensures that the representation is
stable. In particular, because (6.9) is a uniquely solvable Fredholm equation of the
second kind, the linear operator in (6.9) has a finite condition number and the density
ψ depends continuously on the data v. The presence of the point-force and rotlet
functions in (6.1) ensures that the representation is complete. In particular, these
two singular solutions complete the deficient range associated with the double-layer
potential. The smoothness properties of the density ψ depend on those of the surface
Γ and the data v.

Remarks 6.2.

1. Aside from the restriction of solvability, the parameters θ and x∗ are arbitrary
and can be exploited. For example, θ ∈ (0, 1) and x∗ ∈ B might be chosen
by some means to optimize the conditioning of the linear operator in (6.9).

2. The boundary integral equation in (6.9) can be described as being singularity-
free. The singularity in the point-force and rotlet contributions is avoided
because their poles are contained in the body domain B. Moreover, the
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8).

3. The above results hold for bodies of arbitrary shape. For certain types of
bodies, for example convex or star-shaped bodies, there are various reasonable
choices for the point x∗ ∈ B. The center of volume is one obvious choice. In
contrast, for other types of bodies, for example, toroidal or knotted tubular
bodies, there seems to be no natural choice for the point x∗ ∈ B. Motivated
by this latter class of bodies, we investigate an alternative formulation.

7. A new formulation. Here we introduce a new boundary integral formulation
of (2.1) which combines the strengths of the Power and Miranda and the Hebeker
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formulations. The new formulation is stable, complete, singularity-free, and natural
for bodies of complicated shape and topology. In what follows Γ is an arbitrary
closed, bounded surface with interior domain B and exterior domain Be, as described
in section 2.

7.1. Formulation. Let γ be a surface parallel to Γ offset towardB by a distance
φ ≥ 0. In particular, γ is the image of the map ξ = ζ(y) : Γ → R3 defined by

(7.1)
ξ γ

Γ

ν(y)
y

ξ = y − φν(y).

By virtue of the fact that Γ is a Lyapunov surface, it follows that the map ζ : Γ → γ is
continuous and one-to-one for all φ ∈ [0, φΓ ), where φΓ is a positive constant. In the
absence of any global obstructions, we have φΓ = 1/κΓ , where κΓ is the maximum
of the signed principal curvatures of Γ [27]. Here we use the convention that the
curvature is positive when Γ curves away from its outward unit normal ν. As a
consequence, the principal curvatures are the eigenvalues of the gradient of ν (not
−ν) restricted to the tangent plane. From the geometry of parallel surfaces we have
the following relations for all y ∈ Γ , ξ = ζ(y) ∈ γ, and φ ∈ [0, φΓ ) [27]:

(7.2) n(ξ) = ν(y), dAξ = Jφ(y) dAy , Jφ(y) = 1 − 2φκm(y) + φ2κg(y).

Here n is the outward unit normal on γ, dAξ and dAy are area elements on γ and Γ ,
and κm and κg are the mean and Gaussian curvatures of Γ . For φ ∈ [0, φΓ ) we denote
the inverse of ξ = ζ(y) by y = ϕ(ξ). In view of (7.1) and (7.2)1 we have y = ξ+φn(ξ).

Given an arbitrary density ψ : Γ → R3 and number θ ∈ [0, 1], define u : Be → R3

and p : Be → R by

(7.3) u = θV [γ, ψ ◦ ϕ] + (1 − θ)W [Γ, ψ], p = θPV [γ, ψ ◦ ϕ] + (1 − θ)PW [Γ, ψ].

Notice that the double-layer potentials are defined on the surface Γ with density ψ,
while the single-layer potentials are defined on the parallel surface γ with density
ψ ◦ ϕ. In particular, the two types of potentials are defined on different surfaces but
involve only one arbitrary density.

By properties of the single- and double-layer potentials, the fields (u, p) are smooth
at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4 at each x ∈ Be. The stress
field σ : Be → R3×3 associated with (u, p) is given by

(7.4) σ = θΣV [γ, ψ ◦ ϕ] + (1 − θ)ΣW [Γ, ψ],

and the resultant force F , torque T about an arbitrary point c, and volume flow rate
Q associated with Γ are

(7.5) F = θFV [γ, ψ ◦ ϕ], T = θTV [γ, ψ ◦ ϕ], Q = (1 − θ)QW [Γ, ψ].

Here we have used linearity and the flow properties of the single- and double-layer
potentials outlined in section 4.4.

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R3, we require

(7.6) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.
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Substituting for u from (7.3) and using the limit relation in (4.5), we obtain a boundary
integral equation for the unknown density ψ:

(7.7) θV [γ, ψ ◦ ϕ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (7.3) will be the unique solution of (2.1)
if and only if ψ satisfies (7.7). By definition of the single- and double-layer potentials,
this equation can be written in integral form as

(7.8)
θ

∫
γ

UPF
ij (x, ξ)ψj(ϕ(ξ)) dAξ

+ (1 − θ)
∫
Γ

USTR
ijl (x, y)ψj(y)νl(y) dAy + cθψi(x) = vi(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience and cθ = (1− θ)α. By performing a
change of variable in the first integral, this equation can then be put into the standard
form

(7.9)
∫
Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where

(7.10) Kij
θ (x, y) = θJφ(y)UPF

ij (x, ζ(y)) + (1 − θ)USTR
ijl (x, y)νl(y).

Remarks 7.1.

1. In all three formulations the kernel function Kθ(x, y) can be described as the
positive linear combination of a double-layer kernel and a range completion
term. In the Hebeker formulation (5.7), the completion term is an unbounded
single-layer kernel. In the Power and Miranda formulation (6.10), the com-
pletion term is the sum of a point-force and a rotlet kernel, both of which are
bounded and dependent on a point x∗ ∈ B. In the new formulation (7.10),
the completion term can be interpreted as a regularized single-layer kernel,
where φ ≥ 0 is the regularization parameter. The regularized single-layer
kernel is bounded when φ > 0 and unbounded exactly as in the Hebeker
formulation when φ = 0.

2. Assuming Γ is a Lyapunov surface, the kernel function Kθ(x, y) in (7.10) can
be shown to be weakly singular. Thus the solvability of the linear integral
equation (7.9) can be assessed via the Fredholm theory [19, 23]. Notice that
cθ = 0 when θ = 1 and cθ �= 0 when θ ∈ [0, 1). Thus (7.9) is a Fredholm
equation of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

3. As outlined below, the representation in (7.3) with θ ∈ (0, 1) is complete in
the sense that it can represent arbitrary flows and stable in the sense that
the density ψ depends continuously on the boundary data v.

7.2. Solvability result. The following result establishes the solvability of the
integral equation (7.9), or, equivalently, (7.7). Its proof is given in section 7.3 below.

Theorem 7.1. Assume Γ is a closed, bounded Lyapunov surface, and let γ be
a surface parallel to Γ offset toward B by a distance φ ∈ [0, φΓ ). If θ ∈ (0, 1), then
(7.9) possesses a unique continuous solution ψ for any continuous boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (7.3) with a unique density ψ for each θ ∈ (0, 1) and
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φ ∈ [0, φΓ ). The presence of the double-layer potential in (7.3) ensures that the
representation is stable. In particular, because (7.9) is a uniquely solvable Fredholm
equation of the second kind, the linear operator in (7.9) has a finite condition number,
and the density ψ depends continuously on the data v. The presence of the single-
layer potential in (7.3) ensures that the representation is complete. In particular, the
single-layer potential on the parallel surface γ completes the deficient range associated
with the double-layer potential on the surface Γ . The smoothness properties of the
density ψ depend on those of the surface Γ and the data v.

Remarks 7.2.

1. Aside from the restriction of solvability, the parameters θ and φ are arbitrary
and can be exploited. For example, θ ∈ (0, 1) and φ ∈ [0, φΓ ) might be chosen
by some means to optimize the conditioning of the linear operator in (7.9).

2. Just like the Power and Miranda formulation, the current boundary integral
equation in (7.9) is singularity-free in the case when φ > 0. The singularity
in the single-layer potential is removed by virtue of the parallel surface. The
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8).

3. Just like the Hebeker formulation, the current boundary integral formulation
is natural for bodies of arbitrary shape. It seems particularly well suited for
long, uniform, tubular bodies with complicated topology. In this case, the
maximum offset distance φΓ can be explicitly identified as the tube radius,
and Γ and γ would be parallel tubular surfaces of different radii centered on
the same axial curve. In general, however, an explicit characterization of φΓ
is not necessary, and the formulation is valid for any type of body.

4. All three formulations can be viewed as extensions to Stokes flow of ideas
developed in classic potential theory. The idea of taking a linear combi-
nation of single- and double-layer potentials was considered in the work of
Günter [13], and the idea of moving the single-layer potential to an inner
surface, or limit thereof, was suggested in the work of Mikhlin [23]. (Mikhlin
explicitly considered an inner point-source, which can be interpreted as the
limit of a single-layer potential as the inner surface is squeezed to a point.)
Other generalized formulations could also be considered. For example, the
Power and Miranda formulation can be generalized by using a continuous
distribution of stokeslet and rotlet singularities over an inner surface.

7.3. Proof of Theorem 7.1. Assume θ ∈ (0, 1) and consider the homogeneous
version of (7.7). Replacing ψ by ψh for notational convenience, we have

(7.11) θV [γ, ψh ◦ ϕ](x0) + (1 − θ)W [Γ, ψh](x0) + (1 − θ)αψh(x0) = 0 ∀x0 ∈ Γ.

According to the Fredholm theory [19, 23], if (7.11) possesses only the trivial solution
ψh = 0, then (7.7) possesses a unique continuous solution ψ for any continuous data
v. To show that ψh = 0 is the only solution of (7.11), we proceed in four steps.

(1) Let ψh be an arbitrary solution of (7.11), and introduce fields (u(1), p(1)) and
(u(2), p(2)) by

(7.12)
u(1) = (1 − θ)W [Γ, ψh], p(1) = (1 − θ)PW [Γ, ψh],

u(2) = −θV [γ, ψh ◦ ϕ], p(2) = −θPV [γ, ψh ◦ ϕ].

Then (u(1), p(1)) and (u(2), p(2)) satisfy the homogeneous Stokes equations (2.1)1,2,4
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in Be. Moreover, from (7.11) and the limit relation for W [Γ, ψh] in (4.5), we have

(7.13) lim
x→x0
x∈Be

u(1)(x) − u(2)(x) = 0 ∀x0 ∈ Γ.

Thus u(1) = u(2) on Γ , and by uniqueness of solutions of the boundary-value problem
(2.1), we have (u(1), p(1)) = (u(2), p(2)) in Be. Furthermore, by properties of the single-
and double-layer potentials defined in (4.1) and (4.2), we have u(1) = O(|x|−2) and
u(2) = O(|x|−1) as |x| → ∞, and p(1) = O(|x|−3) and p(2) = O(|x|−2). Thus we
deduce

(7.14) u(1) = u(2) = 0 and p(1) = p(2) = 0 ∀x ∈ Be.

(2) Since u(1) = 0 in Be and 1 − θ �= 0, we deduce from (7.12) that W [Γ, ψh] = 0
in Be, which implies

(7.15) lim
x→x0
x∈Be

W [Γ, ψh](x) = 0 ∀x0 ∈ Γ.

Using the limit relation in (4.5), we get

(7.16) W [Γ, ψh](x0) + αψh(x0) = 0 ∀x0 ∈ Γ.

By well-known properties of the double-layer potential [20, 26], the above equation
possesses exactly six independent eigenfunctions ψh,(1), . . . , ψh,(6) defined for x ∈ Γ
by

(7.17)
ψ
h,(a)
i (x) = δia, a = 1, 2, 3,

ψ
h,(a)
i (x) = εij(a−3)xj , a = 4, 5, 6.

Thus every solution ψh of (7.11) satisfies (7.16) and must necessarily be of the form

(7.18) ψh(x) =
6∑
a=1

caψ
h,(a)(x),

where c1, . . . , c6 are arbitrary constants.
(3) Since u(2) = 0 and p(2) = 0 in Be and θ �= 0, we deduce from (7.12)

that V [γ, ψh ◦ ϕ] = 0 and PV [γ, ψh ◦ ϕ] = 0 in Be. Thus the resultant force and
torque, about an arbitrary point q, exerted on Γ by the exterior single-layer flow
(V [γ, ψh ◦ ϕ], PV [γ, ψh ◦ ϕ]) must vanish. By properties of the single-layer potentials
outlined in section 4.4, and considering that γ ⊂ Γint when φ > 0 and γ = Γ when
φ = 0, we find in both cases that

(7.19)
FV [γ, ψh ◦ ϕ] = −8π

∫
γ

ψh(ϕ(ξ)) dAξ = 0,

TV [γ, ψh ◦ ϕ] = −8π
∫
γ

(ξ − q) × ψh(ϕ(ξ)) dAξ = 0.

Dividing by −8π and substituting for ψh using (7.18) and (7.17), we find that the
above equations yield a linear system for c = (c1, . . . , c6) of the form

(7.20)
[
A B
C D

]
c = 0,
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where A,B,C,D ∈ R3×3 are defined by

(7.21)
Aij =

∫
γ

δij dAξ, Bik =
∫
γ

εijkϕj(ξ) dAξ,

Cij =
∫
γ

εipj(ξp − qp) dAξ, Dik =
∫
γ

εiplεljk(ξp − qp)ϕj(ξ) dAξ.

(4) For convenience, let the torque reference point q be the centroid of γ, and
assume without loss of generality that q = 0. Then Cij = 0 and (7.20) will possess
only the trivial solution provided that the matrix Dik is invertible. Notice that the
matrix Aij is always invertible since γ has positive measure. With q = 0 we have

(7.22) Dik =
∫
γ

εiplεljkξpϕj(ξ) dAξ.

Substituting ϕ(ξ) = ξ + φn(ξ), where n is the outward unit normal field on γ
(see section 7.1), and using the standard permutation symbol identity εiplεljk =
δijδpk − δikδpj , we obtain

(7.23) Dik =
∫
γ

ξiξk − δikξjξj dAξ + φ

∫
γ

ξkni dAξ − φδik

∫
γ

ξjnj dAξ.

Applying the divergence theorem to the last two integrals in the above equation, we
get, after straightforward simplification,

(7.24) Dik = −[Gik + 2φ vol(γint)δik].

Here vol(γint) > 0 is the volume of the interior domain enclosed by γ and Gik =∫
γ
δik|ξ|2 − ξiξk dAξ is the symmetric, positive-definite, second moment tensor associ-

ated with γ. Since Dik is invertible for any φ ≥ 0, we deduce that (7.20) admits only
the trivial solution c = 0. Combining this with (7.18), we deduce that (7.11) admits
only the trivial solution ψh = 0. This completes the proof of Theorem 7.1.

8. Nyström approximation. In this section we describe a numerical method
for the formulation presented in section 7. We outline a singularity-free formula-
tion of the boundary integral equation for the unknown density, discretize it using
a straightforward Nyström method with an arbitrary quadrature rule, and introduce
corresponding discretizations for various flow quantities of interest.

8.1. Singularity-free formulation. Given arbitrary parameters θ ∈ (0, 1) and
φ ∈ (0, φΓ ), the integral equation (7.9) can be written in the convenient form

(8.1)
θ

∫
Γ

G(x, y)ψ(y) dAy + (1 − θ)
∫
Γ

H(x, y)ψ(y) dAy

+ (1 − θ)αψ(x) = v(x) ∀x ∈ Γ,

where Gij(x, y) = Jφ(y)UPF
ij (x, ζ(y)) is the regularized, bounded, single-layer kernel

and Hij(x, y) = USTR
ijl (x, y)νl(y) is the standard, weakly-singular, double-layer kernel.

The singularity in H(x, y) can be avoided in a simple way by exploiting the double-
layer identity [11, 28, 30, 31]

(8.2)
∫
Γ

Hij(x, y) dAy = −αδij ∀x ∈ Γ.
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In particular, substitution of (8.2) into (8.1) gives

(8.3)
θ

∫
Γ

G(x, y)ψ(y) dAy

+ (1 − θ)
∫
Γ

H(x, y)[ψ(y) − ψ(x)] dAy = v(x) ∀x ∈ Γ.

Assuming ν and ψ are Lipschitz continuous and Γ is a Lyapunov surface, it can be
shown that the functions G(x, y)ψ(y) and H(x, y)[ψ(y)−ψ(x)] are uniformly bounded
for all x and y on Γ . Thus (8.3) is singularity-free and can be discretized by Nyström
methods.

Remarks 8.1.

1. Following standard practice [28, 30, 31], we define H(x, y)[ψ(y)−ψ(x)] to be
zero when y = x. This modification does not alter the value of the integral and
is necessary to obtain a well-defined Nyström discretization, which requires
a value for this function for arbitrary x and y. The results in [31] show
that Nyström methods defined using this practice are, in general, convergent.
However, there is generally an upper bound on the order of convergence of
these methods because of the above modification.

2. There is some freedom in the treatment of the first term in (8.3). When
written as an integral over Γ as above, the kernel function G(x, y) contains
the factor Jφ(y), which depends on the curvature of Γ (see section 7.1). By
a change of variable, this term could also be written as an integral over the
parallel surface γ. In this case, the curvature factor disappears, but an explicit
parameterization of γ becomes necessary.

8.2. Approximation of integral equation. We suppose Γ can be decomposed
into a union of nonoverlapping patches Γp, p = 1, . . . ,Mp, where each patch is the
image of a smooth map y = χp(s, t) : Dp → R3, and each Dp is a domain in R2.
By subdividing each domain Dp into nonoverlapping subdomains De

p, e = 1, . . . ,Me,
we decompose each patch Γp into curved, nonoverlapping patch elements Γ ep . In each
patch element we introduce quadrature points yp,e,q and weightsWp,e,q, q = 1, . . . ,Mq,
such that

(8.4)
∫
Γ e

p

f(y) dAy =
∫
De

p

f(χp(s, t))Jp(s, t) ds dt ≈
Mq∑
q=1

f(yp,e,q)Wp,e,q.

Here Jp is the Jacobian associated with the patch parameterization χp, which is
assumed to be included in the weights Wp,e,q.

Let ψp,e,q be an approximation to ψ(yp,e,q), and for convenience let a and b denote
values of the multi-index (p, e, q). Then a Nyström discretization of (8.3) is

(8.5) θ
∑
b

GabψbWb + (1 − θ)
∑
b�=a

Hab[ψb − ψa]Wb = va ∀a,

where Gab = G(xa, yb), Hab = H(xa, yb), and va = v(xa). Here the product Hab[ψb−
ψa] has been set equal to zero when b = a. The above equation can be written in the
standard form

(8.6)
∑
b

Aabψb = va ∀a,
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where Aab ∈ R3×3 are defined by

(8.7) Aab =

{
θGabWb + (1 − θ)HabWb, a �= b,

θGaaWa − (1 − θ)
∑

c �=aHacWc, a = b.

Equation (8.6) is a linear system of algebraic equations for the approximate density
values ψb at the quadrature points yb. This system is dense and nonsymmetric and
can be solved using any suitable numerical technique.

8.3. Approximation of flow quantities. Various flow quantities of interest
take the form of an integral of ψ over Γ . For example, from (7.5), the resultant force
and torque on Γ about an arbitrary point c are given by

(8.8) F = −8πθ
∫
γ

ψ(ϕ(ξ)) dAξ , T = −8πθ
∫
γ

(ξ − c) × ψ(ϕ(ξ)) dAξ .

After a change of variable (see section 7.1), these integrals can be transformed from
the parallel surface γ to the body surface Γ to obtain

(8.9) F = −8πθ
∫
Γ

Jφ(y)ψ(y) dAy , T = −8πθ
∫
Γ

Jφ(y)(ζ(y) − c) × ψ(y) dAy.

By discretizing these integrals using the same quadrature points and weights as before,
we get the approximations

(8.10) F approx = −8πθ
∑
b

Jφb ψbWb, T approx = −8πθ
∑
b

Jφb (ζb − c) × ψbWb.

An approximation to the volume flow rate Q associated with Γ can be obtained in a
similar manner.

9. Numerical experiments. Here we present results from numerical experi-
ments on three different bodies: a sphere, torus, and helical tube with hemispherical
endcaps. For one or more prescribed motions of each body, we computed the resul-
tant force and torque about the origin of a body-fixed frame and examined various
measures of convergence.

9.1. Methods. Following the general procedure outlined above, we decomposed
the surface of each body into nonoverlapping patches Γp, each parameterized over a
rectangular domainDp. We subdivided each patch into curved, quadrilateral elements
Γ ep , and in each element we used an m×m tensor product Gauss–Legendre quadrature
rule, with order of accuracy rabs = 2m on absolute errors. For the sphere we employed
six patches based on stereographic projection from the faces of a bounding cube. For
the torus we employed a single patch based on an explicit parameterization of the
axial curve. For the helical tube we employed multiple patches based on explicit
parameterizations of the axial curve and endcaps.

The resultant force F and torque T on each body were computed by solving the
linear algebraic system (8.6) of size (3MpMeMq)×(3MpMeMq). Because this system is
nonsymmetric and was observed to be well conditioned, we used the GMRES iterative
solver implemented in MATLAB with no preconditioning and a residual tolerance of
10−12. Using the solution of (8.6), we computed approximations to F and T according
to (8.10). The total number of quadrature points, MpMeMq, was varied up to a
maximum value of 4000 to 8000 depending on the example. All computations were
performed with the parameter values θ = 1/2 and φ/φΓ = 1/2, where φΓ is the
maximum offset distance for the parallel surface associated with Γ .



ON INTEGRAL FORMULATIONS OF EXTERIOR STOKES FLOW 953

(a)

10 30 50 70 90
18.849554

18.849556

18.849558

1/h

|F
|

(b)

10 30 50 70 90
25.132730

25.132745

25.132760

1/h

|T
|

(c)

1 1.2 1.4 1.6 1.8 2
−12

−11

−10

−9

−8

−7

−6

−5

log
10

 1/h

lo
g 10

 |Δ
 F

|

(d)

1 1.2 1.4 1.6 1.8 2
−12
−11
−10

−9
−8
−7
−6
−5
−4

log
10

 1/h

lo
g 10

 |Δ
 T

|

(e)

Fig. 9.1. Convergence results for resultant force F and torque T on a sphere. Computations
were performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of
|Fhk

| and |Thk
| versus 1/hk for the translational and rotational motion, respectively. The dotted

horizontal lines indicate exact values. (d),(e) Plots of log10 |Fhk
− Fhk−1 | and log10 |Thk

− Thk−1 |
versus log10(1/hk) for the translational and rotational motion, respectively. In all plots, triangles
denote results for the 1 × 1 quadrature rule, and circles denote results for the 2 × 2 rule.

9.2. Results. Figure 9.1 shows convergence results for the resultant force and
torque about the origin on a sphere obtained with the 1 × 1 and 2 × 2 quadrature
rules. The sphere had a radius r = 1 and was centered at the origin. For this surface,
the maximum signed curvature is κΓ = 1/r, which gives a maximum offset distance
of φΓ = r. Results are given for two independent boundary conditions—translation
along the x-axis with unit velocity, and rotation about the same axis with unit angular
velocity. In these cases, exact values are known: F = (−6π, 0, 0) and T = (0, 0, 0)
for the translational motion, and F = (0, 0, 0) and T = (−8π, 0, 0) for the rotational
motion.

Plot (a) of Figure 9.1 illustrates the geometry and a sample mesh. In our com-
putations, a sequence of five increasingly refined meshes were considered for each
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quadrature rule, with each mesh being relatively uniform. The meshes were chosen
such that, at each stage in the sequence, the linear algebraic systems for the 1×1 and
2 × 2 quadrature rules were approximately the same size. The mesh shown in (a) is
the coarsest used with the 1× 1 rule. Plot (b) shows convergence results for the mag-
nitude of F in the translational motion as a function of the element size parameter
h, defined by MpMeh

2 = 1, where MpMe is the total number of elements in a mesh.
In particular, h is proportional to the average element size. Plot (c) shows similar
convergence results for the magnitude of T in the rotational motion. In all computa-
tions, the appropriate entries in both F and T were found to be zero within machine
precision for each type of motion. Thus the errors illustrated can be attributed to the
appropriate nonzero components.

Plot (d) of Figure 9.1 shows the difference in the computed values of F between
successive meshes as a function of h for the translational motion. Although an exact
solution is available, we consider solution differences rather than absolute errors for
purposes of later comparison. Plot (e) shows similar results for the difference in the
computed values of T for the rotational motion. For an m × m Gauss–Legendre
quadrature rule, the convergence rate rdiff for solution differences is expected to be
2m+1, which is one order higher than the standard convergence rate rabs for absolute
errors. The plots show that the observed convergence rate for solution differences was
significantly higher than expected. Considering both F and T , we have 5 ≤ rdiff ≤ 6
for m = 1 and 19 ≤ rdiff ≤ 20 for m = 2. On the finest two meshes used with the
2 × 2 rule, the relative change in F for the translational motion was of order 10−13,
and the relative change in T for the rotational motion was of order 10−12.

Figure 9.2 shows convergence results for the resultant force and torque about
the origin on a torus. The axial curve of the torus was a circle of radius ρ = 1
centered at the origin in the xy-plane, and the tube section was a circle of radius
r = ρ(1− η)/(1+ η), where η = tanh2(1). This value of the tube radius was chosen to
compare results against an exact solution from [34]. For this surface, the maximum
signed curvature is κΓ = 1/r, which gives a maximum offset distance of φΓ = r.
Results are given for two independent boundary conditions—translation along the
z-axis with unit velocity, and rotation about the same axis with unit angular velocity.
Symmetry implies that the force and torque have the form F = (0, 0, Fz) and T =
(0, 0, 0) for the translational motion and F = (0, 0, 0) and T = (0, 0, Tz) for the
rotational motion. For the translational motion, the force Fz has been characterized,
and its approximate numerical value is Fz = −20.7379 [34]. For the rotational motion,
the torque Tz has also been characterized [16], but its approximate numerical value
does not appear to be well known.

Plots (a) through (e) of Figure 9.2 are analogous to the previous example. In our
computations, we again found that the appropriate entries in both F and T were zero
within machine precision for each type of motion. Moreover, the observed convergence
rate for solution differences was again higher than expected. Considering both F and
T , we have 9 ≤ rdiff ≤ 16 for m = 1 and 6 ≤ rdiff ≤ 8 for m = 2. Interestingly, for
the range of meshes considered here, the 1 × 1 rule performed better than the 2 × 2
rule. On the finest two meshes used with the 1 × 1 rule, the relative change in F
for the translational motion was of order 10−9, and the relative change in T for the
rotational motion was of order 10−6.

Figure 9.3 shows convergence results for the resultant force and torque about
the origin on a helical tube. The axial curve of the tube was a helical curve about
the z-axis with radius ρ = 2, pitch λ = 3, and arclength l = 2π. The tube had
uniform, circular cross-sections of radius r = 0.2 and hemispherical endcaps of the



ON INTEGRAL FORMULATIONS OF EXTERIOR STOKES FLOW 955

(a)

10 30 50 70 90
20.72

20.73

20.74

20.75

1/h

|F
|

(b)

10 30 50 70 90
31.92

31.93

31.94

31.95

31.96

1/h

|T
|

(c)

1 1.2 1.4 1.6 1.8 2
−8

−7

−6

−5

−4

−3

−2

−1

log
10

 1/h

lo
g 10

 |Δ
 F

|

(d)

1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

−1

log
10

 1/h

lo
g 10

 |Δ
 T

|

(e)

Fig. 9.2. Convergence results for resultant force F and torque T on a torus. Computations were
performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of |Fhk

|
and |Thk

| versus 1/hk for the translational and rotational motion, respectively. The dotted horizon-
tal line in (b) indicates an exact value. (d),(e) Plots of log10 |Fhk

−Fhk−1 | and log10 |Thk
−Thk−1 |

versus log10(1/hk) for the translational and rotational motion, respectively. In all plots, triangles
denote results for the 1 × 1 quadrature rule, and circles denote results for the 2 × 2 rule.

same radius. These geometrical parameters were chosen so as to produce a tubular
body of moderately high curvature. As with the torus, the maximum signed curvature
is κΓ = 1/r, which gives a maximum offset distance of φΓ = r. In contrast to the
previous two examples, results are given for a single boundary condition—rotation
about the x-axis with unit angular velocity. In this case, the resultant force and
torque are not known exactly and are not known to have any special form.

Plots (a) through (e) of Figure 9.3 are analogous to the previous two examples,
with the exception that only one type of motion is considered. For this single motion
the force and torque were each found to possess three nonzero components, in contrast
to the previous examples. The observed convergence rate for solution differences was
again higher than expected. Considering both F and T , we have 3 ≤ rdiff ≤ 6 for
m = 1 and 8 ≤ rdiff ≤ 10 for m = 2. For T we notice that the results from the 2 × 2
rule converge to a limiting value monotonically from below, whereas the results from
the 1× 1 rule converge nonmonotonically from above. On the finest two meshes used
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Fig. 9.3. Convergence results for resultant force F and torque T on a helical tube. Computations
were performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of
|Fhk

| and |Thk
| versus 1/hk. (d),(e) Plots of log10 |Fhk

− Fhk−1 | and log10 |Thk
− Thk−1 | versus

log10(1/hk). In all plots, triangles denote results for the 1 × 1 quadrature rule, and circles denote
results for the 2 × 2 rule.

with the 2×2 rule, the relative change in F was of order 10−6, and the relative change
in T was of order 10−7.

9.3. Discussion. The examples outlined above suggest that the singularity-free
boundary integral formulation introduced here leads to a viable numerical scheme for
exterior Stokes flow problems. Issues associated with weakly singular integrals are
avoided in a simple and efficient way without the need for product integration rules
or specialized coordinate transformations and projections. In all three examples, the
schemes exhibited convergence rates that were higher than expected and produced
reasonably accurate results with reasonable meshes. For meshes of comparable size,
the results for the torus and helical tube examples were less accurate than those for
the sphere example. This is likely due to the relatively high curvature and more
complicated shapes of the torus and helical tube. As can be expected, finer meshes



ON INTEGRAL FORMULATIONS OF EXTERIOR STOKES FLOW 957

are needed in these cases to achieve a level of accuracy similar to that for the sphere.
The role of the parameters θ and φ in the conditioning and performance of these
schemes for different classes of bodies will be investigated in a separate work.
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MULTIPARASITOID-HOST INTERACTIONS WITH EGG-LIMITED
ENCOUNTER RATES∗

RYUSUKE KON† AND SEBASTIAN J. SCHREIBER‡

Abstract. To address the contentious issue of multiple parasitoid introductions in classical
biological control, a discrete-time model of multiparasitoid-host interactions that accounts for host
density dependence and egg limitation is introduced and analyzed. For parasitoids that are egg
limited but not search limited, the model is proven to exhibit four types of dynamics: host failure
in which the host becomes extinct in the presence or absence of the parasitoids; parasitoid-driven
extinction in which the parasitoid complex invariably drives the host extinct; host persistence; and
conditional host persistence in which, depending on the initial ratios of host to parasitoid densities,
the host is either driven extinct or persists. In the case of host persistence, the dynamics of the system
are shown to be asymptotic to the dynamics of an appropriately defined one-dimensional difference
equation. The results illustrate how the establishment of one or more parasitoids can facilitate the
invasion of another parasitoid and how a complex of parasitoids can drive a host extinct despite
every species in the complex being unable to do so. The effects of including search limitation are also
explored.
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1. Introduction. Classical biological control is the introduction of natural ene-
mies of a pest species with the goal of suppressing the abundance of the pest to a level
at which it no longer causes economic damage [23]. For insect pests, control is often
achieved by parasitoids: organisms, typically wasps and flies, whose young develop on
and eventually kill their hosts. One of the earliest successes of biological control was
with the cottony cushion scale, a pest that was devastating the developing California
citrus industry in the late 1800s [4]. A predatory insect, the vedalia beetle (which
functions as a parasitoid), and a parasitoid fly were introduced from Australia to con-
trol the cottony cushion scale. Within several years, these natural enemies suppressed
this pest to very low densities, where they remain to this day when not disrupted
by the use of broad-spectrum insecticides [23]. Since this pioneering project, there
have been more than 3,600 intentional introductions of parasitoids to control more
than 500 insect pests around the world [8]. Of these introductions, only 30% have
resulted in the natural enemy establishing successfully, and of these only 36% have
lead to substantial control of the targeted pest [8]. Consequently, there have been
extensive theoretical and empirical efforts to understand what factors contribute to
the success or failure of biological control programs. One particular contentious is-
sue in these studies concerns whether or not the release of a single species or several
species of natural enemy will lead to a lower host density. On the one hand, scien-
tists have argued that it is essential to screen all natural enemies and release only
the most effective species [32, 34, 5]. Others have argued that testing for the best
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parasitoid species takes too much time and money and, consequently, have advocated
releasing all available natural enemies [33, 15]. Theoretical studies have shown that
whether multiple species introductions are advisable depends on the details of the
biology [21, 18, 2, 29]. For instance, May and Hassell [21] argued that, in general,
multiple parasitoid introductions result in greater suppression of the host than sin-
gle parasitoid introductions. This conclusion, however, relied on the assumption that
the parasitoid species aggregate independently of one another and independently of
host density. Indeed, Kakehashi, Suzuki, and Iwasa [18] showed that single parasitoid
introductions are more effective when both parasitoid species aggregate to the same
regions of space. These theoretical studies assume that the parasitoids are search
limited and not egg limited. Moreover, their analysis is typically limited to numeri-
cal simulations and, occasionally, equilibrium stability analysis. In contrast to these
earlier studies, we analyze the global dynamics for multiparasitoid-host interactions
when the parasitoids are egg limited but not search limited.

All parasitoids experience egg limitation to some degree [6, 12, 17, 19]. For in-
stance, synovigenic parasitoids, which continuously produce eggs over their lifetime,
experience egg limitation whenever the number of hosts they encounter in a day ex-
ceeds their daily production of eggs. In a field study, Heimpel and Rosenheim [12]
caught and dissected 270 synovigenic parasitoids of the species Aphelinidae aonidiae.
They found 18% of the dissected individuals had an egg load of zero and, conse-
quently, were extremely egg limited. Several theoretical studies have examined the
combined effects of egg limitation and search limitation on host-parasitoid dynam-
ics [6, 10, 26, 30, 27, 28]. If one takes a broad view that egg limitation is a form of
predator saturation, then it can be said that Rogers [26] was the first to consider
egg limitation by translating Holling’s type II functional response to a host encounter
rate. Analyzing Roger’s model, May and Hassell [10] found that egg limitation tends
to destabilize host-parasitoid interactions. It was not until two decades later that
the interaction of this destabilizing factor with a stabilizing factor (heterogeneity in
the distribution of parasitoid attacks) was considered. Studying models without host
self-regulation, Getz and Mills [6] found that stability of the host-parasitoid equilib-
rium requires parasitic attacks to be sufficiently aggregated and the intrinsic fitness
of the parasitoid to exceed the intrinsic fitness of the host. Including host regula-
tion, Schreiber found that parasitoids with aggregated attacks and sufficiently weak
search limitation can suppress their hosts to extremely low densities and even drive
them to extinction [27, 28]. None of these studies, however, considered how egg limita-
tion influences multiparasitoid-host interactions. Given that classical biological control
programs often involve the release of multiple parasitoid species, and that most para-
sitoids experience some degree of egg-limitation, an important facet of host-parasitoid
dynamics remains to be understood.

To address this gap in our knowledge about host-parasitoid dynamics, we in-
troduce and analyze a model of multiparasitoid-host interactions that accounts for
egg-limitation. This model is presented in section 2. Using a simple change of vari-
ables introduced in [27], we provide in sections 3 and 4 a rather detailed analysis of
the global dynamics for purely egg-limited parasitoids. In section 5, we examine the
combined effects of weak search limitation and egg limitation. In section 6, we discuss
the implications of our results for classical biological control.

2. Model. The discrete-time model describes the dynamics of host-parasitoid
interactions with synchronized generations. The host of density N is subject to par-
asitism by n parasitoids of densities P1, . . . , Pn. The fraction gi(Ei) of hosts escaping
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parasitism for species i depends on the host encounter rate Ei of parasitoid species i,
a function of host and parasitoid density that is described in further detail below. The
fraction of hosts escaping intraspecific density-dependent mortality is f(N). Intraspe-
cific density-dependent mortality is assumed to precede mortality due to parasitism
(see, e.g., [13, 22, 27]). One interpretation of this assumption is that the parasitoids
are koinobionts. Hence, the host continues to develop after being parasitized and ex-
periences density-dependent mortality (via the survival function f(·)) independent of
parasitism. Hosts escaping parasitism and density-dependent mortality produce on
average λ progeny that survive to the next generation. Following the approach taken
by May and Hassell [21], we assume that there is a competitive hierarchy amongst
parasitoid larvae: within a parasitized host, larvae from species i always outcompete
larvae from species j whenever j > i. This assumption is appropriate for two types of
interactions that are frequently found in host-parasitoid systems [21]. First, it applies
when parasitoid species 1 attacks first, species 2 attacks second, etc. In these cases,
the older parasitoid larvae are usually able to eliminate the younger competitors by
physical suppression [7]. This situation is common when the parasitoid species attack
different developmental stages of the host, e.g., parasitoid 1 attacks the egg stage
while parasitoid 2 attacks the larval or pupal stage. Second, the assumption can also
apply when the parasitoids attack the same stage of the host but exhibit a compet-
itive hierarchy. For instance, Chow and Mackauer [3] studied multiple parasitism of
the pea aphid by the solitary hymenopterous parasites Aphidius smithi and Praon
pequodorum in the laboratory. They found in larval competition, P. pequodorum was
intrinsically superior to A. smithi, regardless of the latter’s age. Finally, we assume
that, on average, θi parasitoids emerge from a host parasitized by species i. Under
these assumptions, the model is given by

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N ′ = λf(N)Ng1(E1)g2(E2) · · · gn(En),
P ′

1 = θ1f(N)N{1 − g1(E1)},
P ′

2 = θ2f(N)Ng1(E1){1 − g2(E2)},
...

P ′
n = θnf(N)Ng1(E1) · · · gn−1(En−1){1 − gn(En)},

where N ′ and P ′
i are the densities of the host and parasitoids, respectively, in the next

generation. The state space for the host-parasitoid dynamics is Rn+1
+ = {(N,P ) ∈

R × Rn : N ≥ 0, Pi ≥ 0 for all i}.
To complete the model, it is necessary to specify the density-dependent sur-

vivorship function f(N), the encounter rate function E, and the escape functions
gi. Throughout this article, we assume the following:

A1. f is a continuous decreasing positive function such that f(0) = 1 and
limN→∞ f(N) = 0.

Survivorship functions that satisfy assumption A1 include the generalized Beverton–
Holt function f(N) = 1

1+αNβ with α > 0 and β > 0, the Ricker function f(N) =
exp(−αN) with α > 0, and the Hassell function f(N) = 1

(1+αN)β . To simultaneously
account for search limitation and egg limitation, we follow the approach of Rogers [26]
and define the average host encounter rate as

Ei =
αiPi

1 + αibiN
,

where α is the searching efficiency of the parasitoid and bi corresponds to the han-
dling time or egg limitation of the parasitoid. For parsimony, we rewrite this average
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encounter rate as

(2.2) E =
Pi

ai + biN
,

where ai = 1
αi

. One can view ai as a measurement of search limitation. When there is
no egg limitation (i.e., bi = 0), the encounter rate reduces to the classical Nicholson–
Bailey search limited encounter rate of Ei = Pi/ai. Alternatively, when there is no
search limitation (i.e., ai = 0), the encounter rate reduces to the Thompson model
Ei = Pi/(biN) of egg-limited encounter rates [27, 31]. If eggs are randomly laid on
hosts, then the fraction of hosts escaping parasitism is exp(−Ei). More generally,
the Poisson escape term exp(−Ei) can be viewed as a limiting case of the negative
binomial escape term (1+Ei/ki)−ki as ki ↑ ∞. This negative binomial escape function
is commonly used to model nonrandom or aggregated parasitism events [6, 9, 13, 20].
In particular, 1/ki can be interpreted as the coefficient of variation squared (CV2) of
the host encounter rate [11]. Consequently, larger values of ki correspond to parasitic
attacks being more evenly distributed across the hosts, while smaller values of ki
correspond to parasitoid attacks being aggregated on fewer hosts. To allow for this
continuum of possibilities, we assume the following:

A2. gi(Ei) =
(
1 + Ei

ki

)−ki and Ei = Pi

ai+biNi
with ki > 0 (possibly ∞), ai ≥ 0,

and bi ≥ 0.
For ease of exposition, we write ki = ∞ to refer to the Poisson escape function. The
most important feature of escape function for the analysis is that 1/gi is a concave
function when ki < 1 and 1/gi is a convex function when ki > 1.

Finally, to keep things meaningful, we assume the following:
A3. λ, θ1, . . . , θn > 0.

3. Egg-limited dynamics. Throughout this section, we assume that ai = 0;
i.e., there is no search limitation. For this case, we can make the change of variables

x = N, y1 = E1 =
P1

b1N
, . . . , yn = En =

Pn
bnN

,

for which the dynamics of (2.1) partially decouple as follows:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ = λf(x)xg1(y1)g2(y2) · · · gn(yn),

y′1 = θ1
b1λ

(
1

g1(y1)
− 1
)

1
g2(y2)

1
g3(y3)

· · · 1
gn(yn) ,

y′2 = θ2
b2λ

(
1

g2(y2)
− 1
)

1
g3(y3) · · ·

1
gn(yn) ,

...
y′n−1 = θn−1

bn−1λ

(
1

gn−1(yn−1)
− 1
)

1
gn(yn) ,

y′n = θn

bnλ

(
1

gn(yn) − 1
)
.

To state our main result for this system, we need the following definition. Note
that each 1

gi(yi)
− 1 is an increasing and strictly convex or concave function through

the origin under assumption A2 and ki �= 1. Consequently, the nonnegative y∗i defined
below exist.

Definition 3.1. Assume A2, A3, and ki �= 1 for all i. Let C = {i : ki > 1}.
Define y∗n to be the largest root of yn = θn

bnλ

(
1

gn(yn) − 1
)
. Assuming y∗j is defined for
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j = i+ 1, . . . , n, define y∗i to be the largest root of

yi =
θi
biλ

(
1

gi(yi)
− 1
)

1
gi+1(ŷi+1)

· · · 1
gn(ŷn)

,

where

ŷj =
{

0 if j ∈ C,
y∗j if j /∈ C.

Our main result is the following theorem. A key quantity in this theorem is
λg1(y1) . . . gn(yn), which corresponds to the expected number of progeny produced
per host.

Theorem 3.2. Assume A1–A3, ki �= 1 for all i, ai = 0 for all i, θi �= biλ
∏n
j=i+1

gj(ŷj) for 1 ≤ i ≤ n − 1, and θn �= bnλ. Let C = {i : ki > 1}. Then we have the
following:

Host extinction. If y∗i = 0 for some i ∈ C, or y∗i > 0 for all i ∈ C (possibly
C = ∅) and λg1(ŷ1) . . . gn(ŷn) < 1, then

lim
t→∞

(N(t), P1(t), . . . , Pn(t)) = (0, 0, . . . , 0)

whenever N(0)
∏n
i=1 Pi(0) > 0.

Host persistence. If C = ∅ and λg1(y∗1) . . . gn(y∗n) > 1, then there exists a
positive constant δ > 0 such that

lim inf
t→∞

N(t) ≥ δ and lim
t→∞

Pi(t)
biN(t)

= y∗i

for all i whenever N(0)
∏n
i=1 Pi(0) > 0.

Conditional extinction. If y∗i > 0 for all i ∈ C, C �= ∅, and λg1(ŷ1) . . .
gn(ŷn) > 1, then there exist Borel sets U, V ⊂ Rn+1

+ and δ > 0 such that

lim inf
t→∞

N(t) ≥ δ, lim
t→∞

n∏
i=1

Pi(t) = 0

whenever (N(0), P1(0), . . . , Pn(0)) ∈ U , and

lim
t→∞

(N(t), P1(t), . . . , Pn(t)) = (0, 0, . . . , 0)

whenever (N(0), P1(0), . . . , Pn(0)) ∈ V . Moreover, U has positive (possibly
infinite) Lebesgue measure, V has infinite Lebesgue measure, and Rn+1

+ \
(U ∪ V ) has Lebesgue measure zero.

Theorem 3.2 (modulo equalities) characterizes the persistence and extinction dy-
namics of (2.1). In particular, host extinction can occur in two ways. If the host
intrinsic fitness λ is less than one, then the host is unable to sustain itself and be-
comes extinct. Alternatively if λ > 1, then the host can persist in the absence of the
parasitoids. However, if either ki > 1 and y∗i = 0 for a parasitoid or λ

∏n
i=1 gi(ŷi) < 1,

then the parasitoids drive the host extinct. Unconditional persistence of the host can
occur only if the parasitoid attacks are sufficiently aggregated (i.e., ki < 1 for all i)
and the parasitoids do not overexploit their host (i.e., λ

∏n
i=1 gi(y

∗
i ) > 1). How these

different outcomes depend on the degree of egg limitation is illustrated in Figure 3.1
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Fig. 3.1. Ecological outcomes and how they vary with egg limitation. There are two parasitoids
with conversion efficiencies θi = 1 and aggregation parameters ki = 0.2. The intrinsic fitness of the
host is λ = 1.5. In the shaded region, the species that persist are shown. In the unshaded region,
the host is driven to extinction by the indicated parasitoid(s). The dashed line delineates the region
where both parasitoids but not a single parasitoid can drive the host to extinction.

for parasitoids whose attacks are sufficiently aggregated. When egg limitation is suf-
ficiently severe (i.e., bi is sufficiently large) for a parasitoid species, the parasitoid is
unable to establish itself. When egg limitation is sufficiently weak for a parasitoid
species, it drives the host extinct. At intermediate levels of egg limitation, multiple
parasitoids can drive the host to extinction when a single parasitoid species cannot
(Figure 3.2 with parameter values from the dashed region in Figure 3.1).

When parasitoid attacks are sufficiently aggregated (i.e., ki < 1 for all i), our
results imply that the host dynamics have the limiting equation

N ′ = λf(N)N
n∏
i=1

gi(y∗i ),

and the parasitoid dynamics track the host dynamics; i.e., asymptotically the ratio of
the parasitoid to the host approaches biy∗i for parasitoid species i. Consequently, in
this case a lot more can be said about the dynamics provided that the dynamics of
the host are well understood. For instance, when the host dynamics can be described
by the Beverton–Holt model, we get the following corollary of Theorem 3.2.

Corollary 3.3. Suppose that f(N) = 1
1+αN , ki < 1 for all i, and λ∗ :=

λ
∏n
i=1 gi(y

∗
i ) > 1. Then

lim
t→∞

N(t) =
λ∗ − 1
α

, lim
t→∞

Pi(t) =
biy

∗
i (λ

∗ − 1)
α

whenever N(0)
∏n
i=1 Pi(0) > 0.

Proof. Since ki < 1 for all i and λ∗ > 1, the second assertion of Theorem 3.2
applies. Let Z(t) = (N(t), P1(t), . . . , Pn(t)) be a solution with N(0)

∏n
i=1 Pi(0) > 0.
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Fig. 3.2. The effect of introducing one parasitoid at a time on the host-parasitoid dynamics.
In (a) and (c), parasitoid 1 is introduced first, while parasitoid 2 is introduced later. In (b) and (d),
the introduction order of parasitoids is reversed. In (a) and (b), the host is driven extinct only when
both parasitoids are present. In (c) and (d), parasitoid 1 can establish itself only after parasitoid 2
has been established. In all figures, λ = 1.5, ki = 0.2, f(N) = 1/(1 + (0.01N)10), and θi = 1.0. In
(a) and (b), b1 = b2 = 0.4. In (c) and (d), b1 = 0.75 and b2 = 0.4.

A result of Robinson [25] implies that the ω-limit set of Z(t) is a chain recurrent
set (see [25] for a definition). Theorem 3.2 implies that limt→∞

Pi(t)
N(t) = biy

∗
i for all

i and lim inft→∞N(t) > 0. Since the only chain recurrent set in the invariant ray
{(η, b1y∗1η, . . . , bny∗nη) : η > 0} is the equilibrium λ∗−1

α (1, y∗1b1, . . . , y
∗
nbn), the corollary

follows.

4. Proof of Theorem 3.2. We begin with a lemma that shows that (2.1) is
dissipative.

Lemma 4.1. Assume A1–A3. There exists a constant M > 0 such that

lim sup
t→∞

N(t) ≤M, lim sup
t→∞

Pi(t) ≤M

for all solutions (N(t), P1(t), . . . , Pn(t)) to (2.1).
Proof. Assumption A1 implies that there exists M1 > 0 such that λf(x) < 0.9 for

all x ≥M1. Define M2 = max{M1, λM1} and

M = max{M2, θ1M2, . . . , θnM2}.



966 RYUSUKE KON AND SEBASTIAN J. SCHREIBER

Let (N(t), P1(t), . . . , Pn(t)) be a solution to (2.1). First, we will show that there
exists a T ≥ 0 such that N(T ) ≤ M2. If N(0) ≤ M2, then we are done. Sup-
pose N(0), . . . , N(t) > M2. Since g1 ≤ 1, . . . , gn ≤ 1, f is decreasing, and M2 ≥ M1,
it follows that

N(t) = λf(N(t− 1))N(t− 1)g1(y1(t− 1)) . . . gn(yn(t− 1)) ≤ 0.9N(t− 1).

Induction implies that N(t) ≤ 0.9tN(0). Therefore, there exists T ≥ 0 such that
N(T ) ≤M2. Next, suppose that N(T ), . . . , N(T + t) ≤M2. Since g1 ≤ 1, . . . , gn ≤ 1,
and f is decreasing, N(T + t + 1) ≤ 0.9N(T + t) ≤ 0.9M2 if N(T + t) ≥ M1, else
N(T + t + 1) ≤ λM1 ≤ M2. Hence, induction implies that N(t) ≤ M2 ≤ M for all
t ≥ T . Finally, since f ≤ 1 and gi ∈ [0, 1] for 1 ≤ i ≤ n,

Pi(t+ 1) ≤ θiN(t) ≤ θiM2 ≤M

for all t ≥ T .
Define

Gi(yi) =
θi
biλ

(
1

gi(yi)
− 1
)
.

Lemma 4.2. Assume A2, A3, and ki �= 1. Then

(4.1) zi = cGi(zi)

has a nonnegative root for every c ≥ 0. For every c ≥ 0 define z∗i (c) by the largest
root of (4.1). Then the function z∗i : R+ → R+ is continuous.

Proof. Since 0 = cGi(0), zi = 0 is always a root of (4.1). The function Gi is
increasing and either strictly concave or strictly convex. Therefore, (4.1) has at most
one positive root. This fact implies that z∗i is a nonnegative function of c.

Consider the case where the function Gi is strictly concave, i.e., ki < 1. In this
case, (4.1) has a unique positive root if and only if c > 1/G′

i(0). Therefore, z∗i (c) = 0
if c ∈ [0, 1/G′

i(0)] and z∗i (c) > 0 if c ∈ (1/G′
i(0),∞). Since z∗i (c) is clearly continuous

in [0, 1/G′
i(0)), it remains to show its continuity in [1/G′

i(0),∞). Define

F (c, zi) =
{

1 − cG′
i(0) if zi = 0,

1 − cGi(zi)/zi if zi > 0.

Then, by definition, F (c, z∗i (c)) = 0 for all c ∈ [1/G′
i(0),∞). Furthermore, we can

show that for each c ∈ [1/G′
i(0),∞),

∂F

∂zi
=

⎧⎪⎨
⎪⎩

cθi(1−ki)
2λbiki

�= 0 if zi = 0,

cθi

λbiz2i

{(
1 + 1−ki

ki
zi

)(
1 + zi

ki

)ki−1

− 1
}

�= 0 if zi > 0.

Thus the application of the implicit function theorem to F (c, z) = 0 at (c∗, zi(c∗))
with c∗ ∈ [1/G′

i(0),∞) implies that there exists a continuous function h(c) such that
F (c, h(c)) = 0 holds in a neighborhood of (c∗, z∗i (c

∗)). Since a positive root of (4.1)
is unique, h and z∗i must be identical. The arbitrariness of c∗ implies that z∗i (c) is
continuous.
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The case ki > 1 can be proved similarly. In this case, (4.1) has a unique positive
root if and only if cG′

i(0) < 1.
Lemma 4.3. Assume A2–A3 and ki �= 1. Let z∗i (c) be the same as in Lemma 4.2,

and let yi(t) be a solution to

yi(t+ 1) = Gi(yi(t))c(t),

where c(t) is a positive sequence with lim inft→∞ c(t) = c and lim supt→∞ c(t) = c. If
ki < 1, then

z∗i (c) ≥ lim sup
t→∞

yi(t) ≥ lim inf
t→∞

yi(t) ≥ z∗i (c).

If ki > 1 and c = c, then either

lim
t→∞

yi(t) = ∞, lim
t→∞

yi(t) = z∗i (c) or lim
t→∞

yi(t) = 0.

Proof. Suppose that ki < 1. By assumption, for each ε > 0 there exists a T ≥ 0
such that

Gi(yi(t))(c + ε) ≥ yi(t+ 1) ≥ Gi(yi(t))(c− ε)

for all t ≥ T . Let z(t) and w(t) be the solutions of

z(t+ 1) = Gi(z(t))(c − ε) and w(t+ 1) = Gi(w(t))(c + ε)

with z(T ) = w(T ) = yi(T ). Then, by the monotonicity of Gi, w(t) ≥ yi(t) ≥ z(t)
holds for all t ≥ T . Since Gi is concave and limx→∞Gi(x)/x = 0, it follows that
limt→∞ z(t) = z∗i (c− ε) and limt→∞w(t) = z∗i (c+ ε). Therefore, we have

z∗i (c+ ε) ≥ lim sup
t→∞

yi(t) ≥ lim inf
t→∞

yi(t) ≥ z∗i (c− ε).

Since ε > 0 is arbitrary and z∗i (c) is a continuous function, this inequality implies the
first statement of the lemma.

Suppose that ki > 1 and c = c. Suppose that lim supt→∞ yi(t) < ∞. Then
the limit set of yi(t) is a compact internally chain recurrent set (see, e.g., [1]) for
the dynamics of y′i = Gi(yi)c. Since the only internally chain recurrent sets are the
equilibria, 0, and z∗i (c) (possibly also 0), limt→∞ yi(t) = 0 or limt→∞ yi(t) = z∗i (c).
Suppose that lim supt→∞ yi(t) = ∞. Since limx→∞Gi(x)/x = ∞ (as ki > 1) and Gi
is convex, there exists T > 0, M > 0, and ε > 0 such that

Gi(x)c(t) ≥ (1 + ε)x

for all t ≥ T and x ≥ M . Choose T2 > T such that yi(T2) ≥ M . Then yi(T2 + t) ≥
(1 + ε)tyi(T2) for all t ≥ 0. Hence, limt→∞ yi(t) = ∞.

Let (x(t), y1(t), . . . , yn(t)) be a positive solution to (3.1). An important implica-
tion of Lemma 4.3 is that lim inft→∞ yi(t) ≥ ŷi. Indeed, Lemma 4.3 with c(t) = 1
applied to yn(t) implies lim inft→∞ yn(t) ≥ ŷn. Suppose that lim inft→∞ yi(t) ≥ ŷi
for i = j + 1, . . . , n. To prove the assertion for i = j, consider two cases. If kj > 1,
then ŷj = 0 and the assertion holds. If kj < 1, then apply Lemma 4.3 with c(t) =∏n
i=j+1 1/gi(yi(t)).
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To prove the first assertion of Theorem 3.2 about unconditional host extinction, we
consider two cases. First, suppose that y∗i = 0 for some i ∈ C. Then G′

i(0)ĉ > 1, where
ĉ = 1

gi+1(ŷi+1)
· · · 1

gn(ŷn) . Since lim inft→∞ yj(t) ≥ ŷj for all i + 1 ≤ j ≤ n, continuity
and monotonicity of gj for i ≤ j ≤ n imply that there exists a T ≥ 0 and an η > 1 such
that yi(t+ 1) ≥ ηyi(t) for all t ≥ T . Hence, limt→∞ yi(t) = ∞. Since Pi(t) is bounded
by Lemma 4.1, it follows that limt→∞ x(t) = 0. For the second case, we assume that
y∗i > 0 for all i ∈ C and λf(0)g1(ŷ1) · · · gn(ŷn) < 1. Since lim inft→∞ yi(t) ≥ ŷi for all
i and gi are decreasing functions, there exist constants λM < 1 and T ≥ 0 such that
λf(0)g1(y1(t)) · · · gn(yn(t)) ≤ λM for all t ≥ T . Therefore, x(t + 1) ≤ λMx(t) holds
for all t ≥ T . Hence limt→∞ x(t) = 0.

To prove the second assertion of Theorem 3.2 about unconditional host persis-
tence, assume that C = ∅ and λf(0)g1(y∗1) · · · gn(y∗n) > 1. Applying Lemma 4.3 in-
ductively to yi(t) with c(t) =

∏n
j=i+1 1/gj(yj(t)) implies that limt→∞ yi(t) = ŷi = y∗i

for all i. By the continuity of gi, there exist λM ≥ λm > 1 and T1 ≥ 0 such that

λg1(y1(t)) · · · gn(yn(t)) ∈ [λm, λM ]

for all t ≥ T1. Since f is continuous, we can choose δ > 0 such that λmf(x) > 1 for
x ∈ [0, δ]. Define α = inf{λmf(x)x : x > δ}. Suppose α > 0. Let m = min{δ, α}. Since
λmf(x)x > x for all x ∈ (0,m), there exists T2 ≥ T1 such that x(T2) ∈ [m,∞). By the
definition of m, x does not escape from the interval (m,∞). Finally, suppose α = 0.
Since λMf(x) > 1 for all x ∈ [0, δ] and λMf(x) < 1 for some x > δ, the continuity
of f ensures that the equation λMf(x) = 1 has a positive solution in the interval
(δ,∞). Since f is decreasing, there exists a unique positive solution, say x̄ ∈ (δ,∞).
Let M = max{λMf(x)x : x ∈ [0, x̄]} and β = min{λmf(x)x : x ∈ [δ,M ]}. Define
m = min{δ, β}. By the definitions of m and M , if x(t) ∈ [m,M ] for some t ≥ T1,
then x(t) does not escape from the interval [m,M ]. If x(T1) ∈ (M,∞), then either
x(t) ∈ (M,∞) for all t ≥ T1 or x(T2) ∈ (0,M ] for some T2 ≥ T1. Since the former case
provides the desired conclusion, we consider the latter case. On the interval (0,m),
λmf(x)x > x holds. Therefore, there exists a T3 ≥ T2 such that x(T3) ∈ [m,M ]. This
completes the proof of the second assertion of the theorem.

To prove the final assertion of Theorem 3.2, assume that y∗i > 0 for all i ∈ C, C �=
∅, and λg1(ŷ1) . . . gn(ŷn) > 1. Assume C = {i1, . . . , ik} with i1 > i2 > · · · > ik. For
each 1 ≤ j ≤ n, define U(j) as the set of initial conditions (N(0), P1(0), . . . , Pn(0)) ∈
Rn+1

+ such that

N(0)
n∏
i=1

Pi(0) > 0 and lim
t→∞

yi(t) = ŷi for all i ≥ j,

and define V (j) as the set of initial conditions such that

N(0)
n∏
i=1

Pi(0) > 0 and lim
t→∞

yi(t) = ∞ for some i ≥ j.

For j = i1, i2, . . . , ik, we will prove inductively that Rn+1
+ \(U(j)∪V (j)) has Lebesgue

measure zero.
As the first step of the induction, let j = i1. If j = n, then convexity of Gn implies

that limt→∞ yn(t) = ∞ whenever yn(0) > y∗n, yn(t) = y∗n for all t whenever yn(0) = y∗n,
and limt→∞ yn(t) = 0 whenever yn(0) < y∗n. Hence, Rn+1\(U(j)∪V (j)) has Lebesgue
measure zero. Assume that j < n. Since ki < 1 for i > j, applying Lemma 4.3
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inductively to i = n, n− 1, . . . , j+1 with c(t) = 1, 1/gn(yn(t)), . . . ,
∏n
i=j+2 1/gi(yi(t))

implies that limt→∞ yi(t) = y∗i for i > j whenever yi(0) > 0 for i > j. Applying
Lemma 4.3 to i = j with c(t) =

∏
i>j 1/gi(yi(t)) implies that either

lim
t→∞

yj(t) = ŷj = 0, lim
t→∞

yj(t) = y∗j , or lim
t→∞

yj(t) = ∞.

The derivative of y′j , . . . , y
′
n in (3.1) with respect to yj , . . . , yn is an upper triangular

matrix whose diagonal elements are given by di(yi, . . . , yn) = G′
i(yi)

∏n
l=i+1 1/gl(yl)

for i = j, . . . , n. Since Gi are concave for i = j + 1, . . . , n, Gj is convex, and θi �=
biλ
∏n
l=i+1 gl(ŷl) for 1 ≤ i ≤ n, it follows that di(ŷi, . . . , ŷn) < 1 for i > j and

dj(y∗j , ŷj+1, . . . , ŷn) > 1. Hence, (y∗j , ŷj+1, . . . , ŷn) is a hyperbolic equilibrium for the
dynamics of (3.1) restricted to the yj, . . . , yn subsystem. Moreover, the stable manifold
of this equilibrium has codimension one in the yj , . . . , yn hyperplane. Since the local
stable manifold has Lebesque measure zero, and y′j, . . . , y

′
n in (3.1) is a diffeomorphism,

the global stable manifold which is a countable union of preimages of the local stable
manifold also has Lebesgue measure zero. Thus, Rn+1

+ \ (U(j) ∪ V (j)) has Lebesgue
measure zero.

For the next step of the induction, assume that Rn+1
+ \(U(j)∪V (j)) has Lebesgue

measure zero for j = i1, . . . , il. Let j = il+1. Suppose that limt→∞ yi(t) = ŷi for all
i ≥ il, i.e., (N(0), P1(0), . . . , Pn(0)) ∈ U(il). Since ki < 1 for il+1 < i < il, Lemma 4.3
applied inductively implies that limt→∞ yi(t) = ŷi for il+1 < i < il, and consequently,
limt→∞ yi(t) = ŷi for i > il+1. Since kj > 1, Lemma 4.3 implies that either

lim
t→∞

yj(t) = 0, lim
t→∞

yj(t) = y∗j , or lim
t→∞

yj(t) = ∞

Using an argument similar to the first step of the induction, the equilibrium (y∗j , ŷj+1,
. . . , ŷn) is a hyperbolic equilibrium for the dynamics of (3.1) restricted to the yj , . . . , yn
hyperplane. Moreover, the stable manifold of this equilibrium has codimension greater
than or equal to one. Hence, U(il) \ (U(j) ∪ V (j)) has Lebesgue measure zero. Since
V (il) ⊂ V (j), Rn+1

+ \ (U(j) ∪ V (j)) has Lebesgue measure zero.
Next, we need to show that Rn+1

+ \ U(1) ∪ V (1) has Lebesgue measure zero. If
ik = 1, then we are done by the prior induction. Assume that ik > 1 and let j = ik.
Suppose that limt→∞ yi(t) = ŷi for i ≥ ik, i.e., (N(0), P1(0), . . . , Pn(0)) ∈ U(ik).
Applying Lemma 4.3 inductively implies that limt→∞ yi(t) = ŷi for all i ≥ 1. Hence,
U(1) = U(ik) and V (1) = V (ik). Thus, Rn+1

+ \ (U(1) ∪ V (1)) has Lebesgue measure
zero. Define U = U(1) and V = V (1). If (N(0), P1(0), . . . , Pn(0)) ∈ U , then we can
argue as in the proof of the second assertion of the theorem that lim inf t→∞N(t) ≥ δ
for an appropriate choice of δ > 0.

To complete the proof of the final assertion of Theorem 3.2, we need to show
that U(1) has positive (possibly infinite) Lebesque measure and that V (1) has infinite
Lebesgue measure. The equilibrium (ŷ1, . . . , ŷn) for y′1, . . . , y

′
n in (3.1) is linearly stable

and its basin of attraction is an open subset of Rn
+. Consequently, U(1) is an open

subset of Rn+1
+ and has positive Lebesgue measure. To show that V (1) has infinite

Lebesgue measure, notice that if y(0) is such that |yi(0) − y∗i | is sufficiently small for
i > i1 (vacuously true if i1 = n) and yi1(0) is sufficiently large, then limt→∞ yi1(t) =
∞. Hence, V (i1) has infinite Lebesgue measure. Since V (i1) ⊂ V (1), the proof of the
theorem is complete.

5. Weakly search-limited parasitoids. In this section, we examine the effect
of including search limitation on the host-parasitoid dynamics.
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Proposition 5.1. Assume A1–A3. If λ > 1 and ai > 0, then there exists δ > 0
such that

lim inf
t→∞

N(t) ≥ δ

for all solutions to (2.1) with N(0) > 0.
Proof. By dissipativity and continuity, system (2.1) has a compact forward in-

variant set that attracts all nonnegative solutions. Therefore, we can apply the the-
ory of average Lyapunov functions (e.g., see Theorem 2.2 and Corollary 2.3 in [16])
and show that the face N = 0 is a repellor. More specifically, the application of
the average Lyapunov function L(N,P1, . . . , Pn) = N shows that the face N = 0
is a repellor since every solution on the face N = 0 converges to the origin and
N ′/N |(N,P1,...,Pn)=(0,0,...,0) = λf(0)g1(0)g2(0) · · · gn(0) = λ > 1.

Although search-limited parasitoids cannot drive the host extinct, numerical
simulations suggest that when purely egg-limited parasitoids can drive their host
extinct, the inclusion of search limitation results in the host being suppressed to
low equilibrium densities provided that parasitoid attacks are sufficiently aggregated
(Figure 5.1b).
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Fig. 5.1. The effect of single versus multiple parasitoid introductions when parasitoids exhibit
search limitation. In (a), only one parasitoid is in the system. In (b), two parasitoids are in the
system. In both figures, λ = 10, ki = 0.5, f(N) = 1/(1 + (0.01N)4), θi = 2.0, and bi = 0.1. The
parasitoids’ searching limitations a1 = a2 vary as shown.

Proposition 5.2. Assume A1–A3. Let (N(t), P1(t), . . . , Pn(t)) be a solution to
(2.1). If λ > 1 and θm > bmλ, and am > 0 is sufficiently small, then there exists δ > 0
such that

lim inf
t→∞

Pm(t) ≥ δ

whenever N(0) > 0 and Pm(0) > 0. Alternatively, if θi < biλ for m ≤ i ≤ n, then
there exists a neighborhood U of the Pm = Pm+1 = · · · = Pn = 0 plane such that

lim
t→∞

(Pm(t) + · · · + Pn(t)) = 0

whenever (N(0), P1(0), . . . , Pn(0)) lies in U . Moreover, if ki < 1 for m ≤ i ≤ n, then
U = Rn+1

+ .
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The first statement of Proposition 5.2 shows that if the reproductive ability of
the parasitoid is higher than that of the host (θm/bm > λ) and there is weak search
limitation (small am > 0), then the parasitoid coexists with its host. This type of
coexistence is not always guaranteed if am = 0. However, if am > 0 is not small,
numerical simulations suggest that the parasitoid may become extinct (see Figure 4
in [28]). The second statement of Proposition 5.2 considers the alternative situation
(θm/bm < λ). In this case, the parasitoid whose population density is initially low
becomes extinct irrespective of the intensity of search limitation. This attractivity
result holds globally if the distribution of the parasitoid attack is aggregated (km < 1).
However, this is not true if km > 1, since the system can have a positive fixed point
or attractor. For instance, Figure 5.2 shows an example where a second positive fixed
point bifurcates from the origin at a1 = 0. As a1 increases, this fixed point is stabilized
and finally disappears due to a saddle node bifurcation. In this example, we also
find a stable invariant loop in advance of the stabilization of the second fixed point
(see Figure 5.2). Therefore, intermediate degrees of search limitation can produce a
bistable system in which the initially rare parasitoid becomes extinct but the initially
abundant parasitoid survives (see Figure 5.3).

Proof. Assume that λ > 1 and θm > bmλ. Proposition 5.1 implies that there is
a compact attractor Γ such that the Γ does not intersect the N = 0 plane and such
that the ω-limit set of Z(t) = (N(t), P1(t), . . . , Pn(t)) lies in Γ whenever N(0) > 0.
We will show that Γ intersected with the plane Pm = 0 is a repellor whenever am > 0
is sufficiently small. Let Z(t) = (N(t), P1(t), . . . , Pn(t)) be a solution to (2.1) with
N(0) > 0 and Pm(0) = 0. Since the ω-limit set of Z(t) lies in Γ, we get that

0 = lim
t→∞

1
t

ln
(
N(t)
N(0)

)

= lim
t→∞

1
t

t−1∑
s=0

ln (f(N(s))g1(E1(s)) . . . gn(En(s))λ) ,

where Ei(s) = Pi(s)
ai+biN(s) . It follows that

(5.1) lim
t→∞

1
t

t−1∑
s=0

ln (f(N(s))g1(E1(s)) . . . gn(En(s))) = − lnλ.

Let

Gi(N,P1, . . . , Pn) =
∂P ′

i

∂Pi
.

The Lyapunov exponent [24] corresponding to the Pm direction is given by

(5.2)

lim inf
t→∞

1
t

t−1∑
s=0

lnGm(Z(s))

= lim inf
t→∞

1
t

t−1∑
s=0

ln
(
θmN(s)f(N(s))g1(E1(s)) . . . gm−1(Ei(s))

1
am + bmN(s)

)

= lim inf
t→∞

1
t

t−1∑
s=0

ln
(
θmN(s)

1
gm(Em(s))

. . .
1

gn(En(s))
1

am + bmN(s)
1
λ

)

≥ lim inf
t→∞

1
t

t−1∑
s=0

ln
(
θmN(s)

1
λ(am + bmN(s))

)
,
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Fig. 5.2. Bifurcation diagram of (2.1) with a single parasitoid species P1, i.e., n = 1. The solid
and dashed curves indicate stable and unstable fixed points, respectively. In both figures, f(N) =
1/(1 + N), λ = 10, b1 = 1, k1 = 2, and θ1 = 8. If there is no search limitation (a1 = 0), the
parameters correspond to the conditional extinction case of Theorem 3.2.
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Fig. 5.3. Bistable example of (2.1) with a single parasitoid species P1, i.e., n = 1 The solid and
dashed curves indicate the population density of host and parasitoid, respectively. In both figures,
the survival function and parameters are f(N) = 1/(1 +N), λ = 10, a1 = 0.15, b1 = 1, k1 = 2, and
θ1 = 8. The initial conditions are (a) (N(0), P1(0)) = (5, 2), and (b) (N(0), P1(0)) = (2, 5).

where the second line follows from (5.1) and the third line follows from 1/gj ≥ 1 for
all 1 ≤ j ≤ n. If θm > bmλ and am > 0 is sufficiently small, then (5.2) implies that
there exists ε > 0 such that

(5.3) lim inf
t→∞

1
t

t−1∑
s=0

lnGm(Z(s)) ≥ ε

for all initial conditions with N(0) > 0 and Pm(0) = 0. Equation (5.3) and the average
Lyapunov theory (e.g., see Theorem 2.2 in [16]) with the average Lyapunov function
L(N,P1, . . . , Pn) = Pm implies that Γ intersected with the Pm = 0 plane is a repellor.
This completes the proof of the first statement.

Assume θi < biλ form ≤ i ≤ n and ai ≥ 0 for all i. If λ < 1, then limt→∞ Pi(t) = 0
for all i as Pi(t+1) ≤ θiN(t) and we are done. Assume λ > 1. Proposition 5.1 implies
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that there is a compact attractor Γ such that Γ does not intersect the N = 0 plane
and such that the ω-limit set of Z(t) = (N(t), P1(t), . . . , Pn(t)) lies in Γ whenever
N(0) > 0. Let Γ1 be given by Γ intersected with the Pm = Pm+1 = · · · = Pn = 0
plane. We will show that Γ1 is an attractor by proving that all the normal Lyapunov
exponents (i.e., the Lyapunov exponents corresponding to Lyapunov directions that
are not tangential to the Pm = Pm+1 = · · · = Pn = 0 plane) are negative (see, e.g.,
[35, Thm. 4] or [14]). To this end, consider a solution Z(t) = (N(t), P1(t), . . . , Pn(t))
to (2.1) such that Z(0) ∈ Γ1. Using (5.1) and assuming m ≤ i ≤ n, we get

lim sup
t→∞

1
t

t−1∑
s=0

lnGi(Z(s))

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θiN(s)

1
λ

1
gi(Ei(s))

. . .
1

gn(En(s))
1

ai + biN(s)

)

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θi
λ

N(s)
ai + biN(s)

)

≤ ln
(
θi
λbi

)
< 0,

where the second line follows from Ej(s) = 0 for m ≤ j ≤ n and the third line follows
from N

ai+biN
≤ 1

bi
whenever N > 0. Hence, all the normal Lyapunov exponents are

negative and Γ1 is an attractor. Next, assume that ki < 1 for m ≤ i ≤ n. Let Z(t) be
a solution to (2.1) such that N(0) > 0. We will prove that

lim
t→∞

Pi(t) = 0 for m ≤ i ≤ n

by induction on i. Consider i = n. If Pn(0) = 0, then we are done. Assume Pn(0) > 0.
Then

lim sup
t→∞

1
t

ln
(
Pn(t)
Pn(0)

)

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θnN(s)f(N(s))g1(E1(s)) . . . gn−1(En−1(s))

(1 − gn(En(s))
Pn(s)

)

= lim sup
t→∞

1
t

t∑
s=1

ln
(
θnN(s)

1
λ

(
1

gn(En(s))
− 1
)

1
Pn(s)

)

≤ lim sup
t→∞

1
t

t∑
s=1

ln
(
θn
λ

N(s)
an + bnN(s)

)

≤ ln
(
θn
λ bn

)
< 0,

where the second line follows from (5.1), the third line follows from 1/gn(x)− 1 being
concave (i.e., kn < 1), and the fourth line follows from the fact that N

an+bnN
≤ 1

bn

whenever N > 0. Hence, we have shown that limt→∞ Pn(t) = 0. Next, we proceed to
the inductive step. Assume that limt→∞ Pi(t) = 0 for j + 1 ≤ i ≤ n, where j ≥ m. If
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Pj(0) = 0, then we are done. Assume Pj(0) > 0. Then

lim sup
t→∞

1
t

ln
(
Pj(t)
Pj(0)

)

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θjN(s)f(N(s))g1(E1(s)) . . . gj−1(Ej−1(s))

(1 − gj(Ej(s))
Pj(s)

)

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θjN(s)

1
λ

1
gj+1(Ej+1(s))

. . .
1

gn(En(s))

(
1

gj(Ej(s))
− 1
)

1
Pj(s)

)

= lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θjN(s)

1
λ

(
1

gj(Ej(s))
− 1
)

1
Pj(s)

)

≤ lim sup
t→∞

1
t

t−1∑
s=0

ln
(
θj
λ

N(s)
aj + bjN(s)

)

≤ ln
(
θj
λ bj

)
< 0,

where the second line follows (5.1), the third line follows from induction (i.e., gi(0) = 1
for j < i ≤ n), the fourth line follows from 1/gj(x) − 1 being concave (i.e., kj < 1),
and the final line follows from the fact that N

aj+bjN
≤ 1

bj
whenever N > 0. Hence, we

have shown that limt→∞ Pj(t) = 0, and the proof is complete.

6. Discussion. We have studied the multiparasitoid-host dynamics described
by (2.1). Under the assumption that each parasitoid is purely egg limited (i.e., not
search limited), the dynamics of (2.1) have been classified sharply with respect to the
extinction and persistence dynamics (see Theorem 3.2). Our main result implies that
for the systems considered here, multiple parasitoids regulate a host population more
efficiently than a single parasitoid. This conclusion can be derived for the following
three scenarios in which the parasitoids can regulate the host:

(i) There are parasitoids with aggregated attacks (ki < 1 for all i) such that
λg1(y∗1) · · · gn(y∗n) < 1. This assembly of parasitoids drives the host extinct.
The definition of y∗i and concavity of 1/gi (as ki < 1) imply that y∗i is greater
when you include more parasitoid species. Since gi(y∗i ) < 1 and gi is a de-
creasing function for all i, the inequality λg1(y∗1) · · · gn(y∗n) < 1 is more likely
to hold if there are multiple aggregately distributed parasitoids irrespective
of their superiority within a parasitized host (see Figures 3.1 and 3.2(a),(b)).

(ii) There are parasitoids with aggregated attacks (ki < 1 for all i) such that
λg1(ŷ1) · · · gn(ŷn) > 1. This assembly of parasitoids does not drive the host
extinct. Rather, they coexist with the host. As mentioned in section 3 (see
also Corollary 3.3), after the establishment of these parasitoids, the dynamics
of the host are asymptotic to

N ′ = λf(N)N
n∏
i=1

gi(y∗i ).

This equation suggests that introductions of multiple parasitoids lead to more
efficient regulation of the host population. In fact, the last factor of the equa-
tion depresses the host density at a coexistence equilibrium.
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(iii) There exists a highly reproductive parasitoid (y∗i = 0) whose attacks are
weakly aggregated (ki > 1). By the definition of y∗i , y

∗
i = 0 if

θi > biλgi+1(ŷi+1) · · · gn(ŷn).

This inequality is more likely to hold if there are multiple aggregately dis-
tributed parasitoids that are superior competitors within the parasitized host
(i.e., Pj with kj < 1, j > i).

The conclusion that multiple parasitoid introductions are more effective than
single parasitoid introductions could depend on model assumptions. The main as-
sumptions in our model are that the parasitoids are egg limited; the host suffers
density-dependent mortality between the events of parasitism and death due to the
parasitism; and the distributions of attacks of parasitoids are independent of each
other. Kakehashi, Suzuki, and Iwasa [18] found that introductions disrupted host reg-
ulation when the distributions of parasitoid attacks completely overlap. Therefore, we
expect that incorporation of overlapping parasitoid distributions into our model may
lead to a similar conclusion. Interestingly, our conclusion seems insensitive to other
assumptions. For example, our conclusion agrees with that of May and Hassell [21],
who assume purely search-limited parasitism and no host density dependence.
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NETWORKS∗
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Abstract. For a wide class of chemical reaction networks, including all those governed by
detailed balanced mass-action kinetics, we examine the robustness of equilibrium species concentra-
tions against fluctuations in the overall reactant supply. In particular, we present lower bounds on
the individual species-concentration sensitivities that derive from reaction network structure alone,
independent of kinetic parameters or even of the particular equilibrium state at which sensitivities
are calculated. These bounds suggest that, in the class of reaction networks considered here, very
high robustness (i.e., very low sensitivities) should be expected only when the various molecules are
constructed from a large number of distinct elemental building blocks that appear in high multiplicity
or that combine gregariously. This situation is often encountered in biology.
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1. Introduction.

1.1. Motivation. Our interest is in understanding the relationship between the
general features of a chemical reaction network and the sensitivity of its equilibria to
changes in the overall supply of reactants.

Although our concerns are with reaction networks in general, we are motivated by
questions that arise naturally in biology. The cell is highly dynamic. Nevertheless, it
is reasonable to suppose that in the cytoplasm certain biochemical modules (reaction
networks) act on a timescale that is fast relative to other cellular processes (e.g., rela-
tive to the production of large proteins or relative to the transport of small molecules
across membranes). Thus, the concentrations of species participating in such a “fast”
reaction network might be regarded as instantaneously at or near equilibrium.

At the same time, the “fast” biochemical module under consideration might be
perturbed within the cell by slower changes in the overall reactant supply, as fresh
proteins are produced or as smaller molecules enter the cell from its exterior. In re-
sponse, the “fast” equilibrium composition would shift accordingly. For some purposes
it might be advantageous for certain species concentrations within the module to be
insensitive (robust) against such disturbances, while for other species great sensitivity
might be highly desirable. Thus, as has been suggested by Veitia [25], it becomes
important to understand how reaction network structure affects the responsiveness of
its equilibrated species concentrations to changes in the ambient cellular environment.
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The present inquiry is not dissimilar in nature to other lines of research. One is
biochemical systems theory pioneered by Savageau [23]. Another is metabolic control
analysis developed from work of Higgins [15] by Kacser and Burns [19] and Heinrich
and Rapoport [13, 14]. Here we provide general results along similar lines, but results
that depend only on network structure. These results apply, within a large and
relevant class of chemical reaction systems, to networks of arbitrarily large size and
complexity.

For our purposes, it will suffice to presume that the reaction networks we study
are governed by mass-action kinetics conforming to what chemists call detailed bal-
ance [26, 20, 10]. In fact, even these presumptions are overly strong, for we shall
require only that the system considered have what Horn and Jackson called the quasi-
thermostatic property [16]. (Detailed balancing in mass-action systems is sufficient
but not necessary to ensure quasi-thermostatic behavior.)

The remainder of this introduction is organized as follows: In section 1.2 we
define, in the context of an informal example, what we mean by species sensitivities.
In section 1.3, we indicate the type of theory we seek by stating one principal result:
lower bounds for species sensitivities that derive from network structure alone. In very
rough terms, these bounds suggest that strong robustness (i.e., very low sensitivities)
of equilibrium concentrations against variations in reactant supply can be expected only
when the species are built from highly gregarious or multiplicitous building blocks—
that is, from certain elements that associate indiscriminately with each other or that
appear in high multiplicity within the compound species. In section 1.4 we discuss the
organization of the remainder of the article.

1.2. Sensitivities. To illustrate more concretely the problems that are of inter-
est, it will be useful to consider, informally, the relatively simple reaction network

(1.1) 2A � A2, A2 +B � A2B, A2B + C � A2BC.

Note. Network (1.1) is inspired by a regulated recruitment [22] model for a gene
transcription control mechanism: Species A corresponds to a protein monomer that
can dimerize to form A2, an active transcription factor. The dimer A2 (but not
the monomer A) can bind the DNA promoter B to form the compound A2B. The
compound A2B can subsequently recruit the enzyme RNA polymerase, denoted C, to
form the active compound A2BC. It is the concentration of this last compound that
determines the system’s activity—the rate of transcription of the gene downstream
from B.

Although we shall eventually consider a far wider class of reaction networks,
our example here is an instance of what we shall later call a constructive network :
Network (1.1) contains, explicitly, certain elemental species A, B, and C, from which
all other species are ultimately constructed. (It needn’t be the case in a constructive
network that, as with our example, all reactions merely add a monomer of one of the
elements. Thus, for example, a reaction such as A2B + A2BC � A4B2C might also
be included.) Certainly not all reaction networks are of this kind, but here and in
section 1.3 consideration of constructive networks will facilitate both an introduction
to the questions of interest and a description of some results.

As indicated earlier, we suppose that the individual reactions in network (1.1) are
governed by mass-action kinetics, with fixed positive rate constants. (In the case of
network (1.1), the detailed balance requirements are automatically satisfied, with no
constraints imposed on rate constant values [10].) For the purposes of our discussion,
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we suppose also that the reactions take place in the context of a closed vessel, the
contents of which are maintained at a fixed volume and temperature. Corresponding
to a certain initial supply of various species, the mixture composition will evolve in
time and ultimately approach equilibrium.

Note that the reactions conserve the elements A, B, and C, although these ele-
ments may reside latently within the compound species A2, A2B, and A2BC. In fact,
if cs(t) indicates the molar concentration of species s at time t, we expect that, for
all time, the conservation conditions

cA(t) + 2cA2(t) + 2cA2B(t) + 2cA2BC(t) = TA,(1.2)
cA2B(t) + cB(t) + cA2BC(t) = TB,

cC(t) + cA2BC(t) = TC

would be respected. In (1.2) we have denoted by TA, TB, and TC the time-invariant
total molar concentrations of the elements A, B, and C, regardless of whether they
appear overtly or latently.

For specified positive values of the total element concentrations, say T ∗
A, T ∗

B,
and T ∗

C , the (polynomial) mass-action differential equations for network (1.1), for-
mulated in the usual way [7], will give rise to precisely one equilibrium composition
c∗A, c

∗
B, c

∗
C , c

∗
A2
, c∗A2B

, c∗A2BC
, consistent with that specification. On the other hand, if

the vessel is temporarily opened and additional amounts of A, B, and C are added (ei-
ther directly or by the addition of A2, A2B, and A2BC), the resealed vessel will even-
tually come to a new and different equilibrium c∗∗A , c

∗∗
B , c

∗∗
C , c

∗∗
A2
, c∗∗A2B

, c∗∗A2BC
, which is

the equilibrium consistent with the, now different, total concentrations T ∗∗
A , T ∗∗

B , and
T ∗∗
C of the elements. As we shall see later in the article, the equilibrium concentrations

of the six species are given by smooth functions of TA, TB, and TC .
Our interest is in the way that equilibrium concentrations of the various species

are affected by small variations in the supply of the elements A, B, and C. By the
sensitivity matrix for the system we mean the array whose entries are given by

(1.3)
(
∂ ln c̄s
∂ lnTe

)
,

where s ∈ {A,B,C,A2, A2B,A2BC}, e ∈ {A,B,C}, and c̄s(·, ·, ·) is the function
that gives, for each specification of TA, TB, and TC , the equilibrium concentration
of species s. Values of the entries in the sensitivity matrix will depend, of course,
on the equilibrium composition at which they are evaluated (in particular, on the
values of TA, TB, and TC at that equilibrium). The entry ∂ ln c̄A2BC

∂ lnTB
, for example,

indicates the magnitude, at a particular equilibrium, of the fractional change in the
equilibrium concentration of A2BC in response to a small fractional change in the
total concentration of element B. (The use of logarithms to reflect fractional changes,
which is common in biology [23], is especially compelling when the various species
concentrations can be of very different magnitudes.)

By the sensitivity of species s at equilibrium composition c∗, denoted Λs(c∗), we
mean the largest of the absolute values of the entries in the sensitivity matrix row
corresponding to species s. Thus, for example,

(1.4) ΛA2BC(c∗) = max
{∣∣∣∣∂ ln c̄A2BC

∂ lnTA

∣∣∣∣ ,
∣∣∣∣∂ ln c̄A2BC

∂ lnTB

∣∣∣∣ ,
∣∣∣∣∂ ln c̄A2BC

∂ lnTC

∣∣∣∣
}
c∗
.
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In this instance, ΛA2BC(c∗) gives an indication, at equilibrium c∗, of the most pro-
nounced of the variations in the equilibrium concentration of A2BC, as the mixture
is perturbed, respectively, by variations in the supply of A, B, and C.

Our interest is in providing means to calculate the sensitivity matrix at a particu-
lar equilibrium composition and, even more, in coming to a qualitative understanding
of how reaction network character imposes intrinsic lower bounds on its species sen-
sitivities, bounds that derive from the reaction network alone, independent of rate
constant values or even of the equilibrium composition at which they are calculated.
Bounds of this kind are described in the next section.

1.3. Network-imposed sensitivity bounds: Gregarious or multiplicitous
elements are necessary for highly robust equilibria. Our goal in this section
is to describe, informally and in the context of constructive networks, ways in which
the network itself places a lower bound on species sensitivities. For a constructive
network, we denote by S the set of species and by E the set of elements. In the
case of network (1.1), S = {A,B,C,A2, A2B,A2BC} and E = {A,B,C}. For each
element e ∈ E and each species s ∈ S we denote by M s

e the e-content of species s—
that is, the content of element e in species s. Thus, in our example, MA

A = 1, MB
A = 0,

MC
A = 0, MA2

A = 2, MA2B
A = 2, MA2BC

A = 2, and so on. (Later on, beginning in
section 3, the notion of “element” will have meaning for reaction networks broadly,
not just for those that are constructive. Even in this broader context it will make
sense to speak of “the e-content of species s.” Results described in this section will
then extend to reaction networks in general.)

For each pair of elements e, e′ ∈ E we denote by Mmax
e (e′) the maximal e-content

that can be found as we search over all species that contain the element e′ (i.e., over
all species that have positive e′-content). In network (1.1), the species that contain
A are A, A2, A2B, and A2BC. Thus, for example,

Mmax
B (A) = max

{
MA
B ,M

A2
B ,MA2B

B ,MA2BC
B

}
= max {0, 0, 1, 1} = 1.

Evaluating Mmax
e (e′) for all combinations of e, e′ ∈ E in network (1.1), we obtain

Mmax
A (A) = 2, Mmax

A (B) = 2, Mmax
A (C) = 2,(1.5)

Mmax
B (A) = 1, Mmax

B (B) = 1, Mmax
B (C) = 1,

Mmax
C (A) = 1, Mmax

C (B) = 1, Mmax
C (C) = 1.

Note that in general Mmax
e (e′) will be high when there is an e′-containing species in

which e appears with high multiplicity.
The degree of element e is given by

(1.6) deg(e) =
∑
e′∈E

Mmax
e (e′).

Thus, for network (1.1),

(1.7) deg(A) = 6, deg(B) = 3, deg(C) = 3.

Note that a high degree for a particular element will result if it is free to combine
with many other element partners (resulting in many nonzero terms in (1.6)) or if it
is multiplicitous in at least one instance of those various liaisons (resulting in a high
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value for at least one of the terms in (1.6)). Indeed, a very high degree for a particu-
lar element requires such gregarious or multiplicitous couplings (or a combination of
both).

All this is relevant to the description of a result we shall present as Theorem 7.3,
a theorem that provides a network-imposed lower bound on the species sensitivities:
At every equilibrium composition c∗ and for each species s ∈ S ,

(1.8) Λs(c∗) ≥ max
e∈E

{
M s
e

deg(e)

}
.

It should be noted that the lower bound afforded by (1.8) is an attribute of the network
alone. It is independent of rate constant values and of the particular equilibrium
compositions at which sensitivities are of interest. For network (1.1) we have at every
equilibrium composition c∗,

ΛA(c∗) ≥ 1
6
, ΛB(c∗) ≥ 1

3
, ΛC(c∗) ≥ 1

3
,(1.9)

ΛA2(c∗) ≥ 1
3
, ΛA2B(c∗) ≥ 1

3
, ΛA2BC(c∗) ≥ 1

3
.

The bound given by (1.8) tells us that for an equilibrium concentration of a partic-
ular species s to be very robust against fluctuations in the overall supply of elements
(that is, if s is to have very low sensitivity), the elements of which s is composed
should have very high degree (so they should be gregarious or multiplicitous). It helps
too if species s itself is composed of very few copies of the various elements—that
is, if M s

e is low for the various e ∈ E , especially those elements of low degree. In
the setting of constructive systems, if we consider the sensitivities of the elements
themselves (that is, for s = e), we note that M e

e′ = 1 when e′ = e and 0 otherwise.
Thus, for each e ∈ E , (1.8) reduces to

(1.10) Λe(c∗) ≥ 1
deg(e)

.

As indicated earlier, we have stated here just one principal result, carried by (1.8),
and then only in the context of what we have called constructive networks. That
restriction was solely for the purpose of this introduction. Our concerns extend to
networks in general, and our interests are not limited to the establishment of bounds.
We seek, for example, to provide means to determine how entries in the sensitivity
matrix depend on the current equilibrium state.

1.4. Organization. In section 2 we provide an introduction to the rudimen-
tary aspects of chemical reaction network theory, in particular to properties of quasi-
thermostatic systems.

In section 3 we introduce the idea of elemented reaction networks. These con-
stitute a broad generalization of what we call constructive reaction networks in this
section: The fact is that the differential equations that derive from reaction networks
typically reflect certain “conservation conditions” (integrals of motion), although what
is conserved cannot always be clearly associated with total concentrations of species
appearing overtly in the network (A, B, and C in our example). Nevertheless, one can
generally associate with the network certain “elements,” not necessarily overt species,
whose total concentrations are conserved along solutions of the differential equations
that the network induces. (An element might, for example, be identified with a moiety
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that manifests itself latently within the various species of the network while not itself
appearing overtly.) For a given network there can be many such choices of (indepen-
dently) conserved elements, and a particular application might favor one choice over
another. By an elemented reaction network we mean a reaction network taken with
one such choice of elements.

In section 4 we begin to examine properties of elemented quasi-thermostatic
systems. This will set the stage for a discussion of sensitivities in section 5. Ex-
tended to elemented systems generally, our interest (as in this introductory section)
will be in the variations of the equilibrium concentrations of the species in response
to variations in the total concentrations of its elements. In section 6 we provide com-
putational means to determine the sensitivity matrix—that is, to determine through
explicit formulas how its entries depend on the particular equilibrium state at which
they are calculated.

In section 7 we deduce lower bounds on the species sensitivities, bounds that
are induced by the network alone, independent of rate constants and even of the
equilibrium state at which the sensitivities are calculated. As in this introductory
section, these bounds will be related to the degrees of the various elements. For
elemented networks generally, the degree of an element is again influenced by the
extent to which it combines in a gregarious and multiplicitous fashion. In section 8,
we define formally what we mean by a constructive system, and we state a result that
is particular to them. In section 9 we offer some brief concluding remarks.

2. Some ideas from chemical reaction network theory. In this section we
provide a brief review of rudimentary material from chemical reaction network theory
[10, 16, 7, 5, 6, 8, 9, 2, 3, 4, 17, 11]. (An introduction for mathematicians, with more
motivational discussion, can be found in [7].) Although chemical reaction network
theory addresses a wide variety of dynamical issues, our focus here is exclusively on
what Horn and Jackson [16] called quasi-thermostatic behavior.

2.1. Notation. We denote the real numbers by R, the strictly positive real
numbers by R+, and the nonnegative real numbers by R̄+. For an arbitrary finite set
I (usually the set of species in a reaction network) we denote by RI the real vector
space of all formal sums

∑
i∈I uii in which all ui are real. By RI+ (respectively, R̄I+)

we mean the set of all u ∈ RI for which all ui are positive (respectively, nonnegative).
By the support of an element u ∈ RI we mean the subset of I defined by supp(u) =
{i ∈ I : ui �= 0}.

We use the symbol “◦” to indicate componentwise multiplication. That is, for
every u and v in RI , u ◦ v is the element of RI such that (u ◦ v)i = uivi. We denote
by “·” the (standard) scalar product in R

I : u · v =
∑

i∈I uivi.
The function ln(·) : RI+ → RI is the componentwise logarithm. That is, for each

u ∈ RI+, (lnu)i = ln(ui). The function exp(·) : RI → RI+ is defined similarly: For
each u ∈ RI , (expu)i = exp(ui).

If I is an arbitrary finite set, then by #(I) we mean the number of distinct
elements in I.

2.2. Chemical reaction networks and their differential equations. We
begin with a definition of a chemical reaction network. By the complexes of a re-
action network we shall mean the linear combinations of the species that appear
before and after the reaction arrows. In network (1.1) there are six complexes:
2A,A2, A2 + B,A2B,A2B + C,A2BC. If S is the set of species of the network,
we view the complexes of the network to be members of R̄S

+ . We take a reaction net-
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work to be a specification of its species, a specification of its complexes, and, finally,
a specification of a “reacts to” relation among the complexes.

Definition 2.1. A chemical reaction network consists of three finite sets:
1. A set S of distinct species of the network;
2. a set C ⊂ R̄S

+ of complexes of the network;
3. a set R ⊂ C × C of reactions, with the following properties:

(a) (y, y) /∈ R for any y ∈ C ;
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.
Following the usual notation in chemistry we write y → y′ to indicate the reaction

whereby complex y reacts to complex y′. With each reaction y → y′ we associate the
reaction vector y′ − y ∈ R

S . In the context of our example, the reaction vector
corresponding to A2B + C → A2BC is A2BC − A2B − C. For reasons that will
become apparent, the span of a network’s reaction vectors has special significance.
This serves as motivation for the following definition.

Definition 2.2. The stoichiometric subspace of a reaction network {S ,C ,R}
is the set S ⊂ RS defined by

S = span
{
y′ − y ∈ R

S : y → y′ ∈ R
}
.

When a particular network is under discussion, it will be understood that the
symbol S is reserved to denote its stoichiometric subspace. We denote by S⊥ ⊂ RS

the orthogonal complement of S relative to the standard scalar product in RS . We
reserve the symbol p (= #(S ) − dim S) for the dimension of S⊥.

Note that if M ∈ RS
+ is the vector of molecular weights of the species in a network

and if y → y′ is a reaction, then y ·M is the total mass of molecules on the reactant
side of the reaction, while y′ ·M is the total mass of molecules on the product side.
If the reaction respects conservation of mass, then we expect that y ·M = y′ ·M ,
or equivalently, that (y′ − y) · M = 0. If all the reactions in the network respect
conservation of mass, then M should be orthogonal to each of the reaction vectors,
which is to say that M should be a member of S⊥. Following Horn and Jackson [16],
we say that a reaction network is conservative if there exists for it at least one positive
member of S⊥ that might play the role of a vector of molecular weights, relative to
which all reactions are mass conserving.

Definition 2.3. A chemical reaction network {S ,C ,R} is conservative if
S⊥ ∩ RS

+ �= ∅.
In order to write the differential equations governing the species concentrations

in a reaction network, it is first necessary to specify, at each mixture composition, the
rate at which the various reactions occur. For each reaction network {S ,C ,R} we
generally denote by c ∈ R̄S

+ the vector of molar concentrations of the species. That
is, for each s ∈ S , cs is the molar concentration of species s. By a rate function for
the reaction y → y′ we mean a function Ky→y′(·) : R̄S

+ → R̄+ that gives information
about the dependence of occurrence rate on mixture composition. In particular,
Ky→y′(c) is the molar occurrence rate per unit volume at composition c. It is natural
to expect that, at a particular mixture composition c, Ky→y′(c) will be positive if and
only if all species appearing with nonzero stoichiometric coefficients in the reactant
complex y are present at composition c—that is, if and only if supp(y) ⊂ supp(c).
Very often, rate functions are taken to be of mass-action type—monomials in the
species concentrations reflecting the probability of an encounter between molecules
appearing in the reactant complex.
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Definition 2.4. A kinetics K for a reaction network {S ,C ,R} is an assign-
ment to each reaction y → y′ ∈ R of a continuous rate function Ky→y′(·) : R̄S

+ → R̄+

such that Ky→y′(c) > 0 if and only if supp(y) ⊂ supp(c). A mass-action kinetics for
the network is a kinetics of the following kind: For each reaction y → y′ ∈ R there is
a positive rate constant ky→y′ such that

(2.1) Ky→y′(c) ≡ ky→y′
∏
s∈S

(cs)ys .

A kinetic system is a reaction network endowed with a kinetics. A mass-action system
is a reaction network endowed with a mass-action kinetics.

Definition 2.5. The species-formation-rate function for a kinetic system {S ,
C ,R,K } is the function r(·) : R̄S

+ → RS defined by

(2.2) r(c) =
∑

y→y′∈R

Ky→y′(c)(y′ − y),

and the associated differential equation is

(2.3) ċ = r(c).

We say that c ∈ R̄
S
+ is an equilibrium composition if r(c) = 0. By the positive

equilibrium set for the kinetic system we mean the set

(2.4) E =
{
c ∈ R

S
+ : r(c) = 0

}
.

Example 2.6. Network (1.1), taken with mass action kinetics, gives rise to the
species-formation-rate function (2.5), which is constructed according to (2.1) and
(2.2):

rA(c) = 2kA2→2A(cA2) − 2k2A→A2(cA)2,(2.5)
rB(c) = kA2B→A2+B(cA2B) − kA2+B→A2B(cA2)(cB),
rC(c) = kA2BC→A2B+C(cA2BC) − kA2B+C→A2BC(cA2B)(cC),

rA2(c) = k2A→A2(cA)2 − kA2→2A(cA2)
+ kA2B→A2+B(cA2B) − kA2+B→A2B(cA2)(cB),

rA2B(c) = kA2+B→A2B(cA2)(cB) − kA2B→A2+B(cA2B)
+ kA2BC→A2B+C(cA2BC) − kA2B+C→A2BC(cA2B)(cC),

rA2BC(c) = kA2B+C→A2BC(cA2B)(cC) − kA2BC→A2B+C(cA2BC).

Remark 2.7. Note that the species-formation-rate function takes values in the
stoichiometric subspace S, which, for a conservative system, will be a proper linear
subspace of RS . Because in (2.3) the “velocity vector” ċ is restricted to point along
S, it is not difficult to see that a composition trajectory that begins at composition
c′ can pass through composition c′′ only if c′′ − c′ lies in S.

With this in mind we say that two compositions are stoichiometrically compat-
ible if c′′ − c′ lies in S. Stoichiometric compatibility is an equivalence relation that
serves to partition the set R̄S

+ of all compositions into stoichiometric compatibil-
ity classes (and partition the set RS

+ of strictly positive compositions into positive
stoichiometric compatibility classes). Stoichiometric compatibility classes are those
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subsets of parallels of S that lie in R̄S
+ . In particular, the stoichiometric compati-

bility class containing a composition c0 is the intersection of R̄S
+ with the parallel

c0 + S =
{
c0 + σ ∈ RS : σ ∈ S

}
.

Because two compositions along a trajectory governed by (2.3) must be stoichio-
metrically compatible, it is evident that each composition trajectory must lie entirely
within a stoichiometric compatibility class.

2.3. Quasi-thermostatic kinetic systems. It is remarkable that a wide va-
riety of mass-action systems fall into a class called by Horn and Jackson [16] quasi-
thermostatic. Quasi-thermostatic systems are characterized by a simply described
positive equilibrium set.

Definition 2.8. A kinetic system {S ,C ,R,K } is called quasi-thermostatic if
it admits a positive equilibrium c∗ ∈ RS

+ and if its positive equilibrium set is given by

(2.6) E =
{
c ∈ R

S
+ : ln c− ln c∗ ∈ S⊥} .

Remark 2.9. Given the stoichiometric subspace for a quasi-thermostatic system,
specification of its entire positive equilibrium set amounts to the specification of a
single member, c∗. In fact, if c∗∗ is any other member, then the positive equilibrium
set has the alternative characterization

E =
{
c ∈ R

S
+ : ln c− ln c∗∗ ∈ S⊥} .

Remark 2.10. Not all mass-action systems are quasi thermostatic [16, 9, 2, 3, 4],
but very important categories of them are. In particular, detailed balanced mass-
action systems are quasi thermostatic [16]. In the terminology of chemistry, a kinetic
system {S ,C ,R,K } is detailed balanced if all of its reactions are reversible (i.e.,
y → y′ implies y′ → y) and if for each y → y′ ∈ R and at each equilibrium c∗ ∈ RS

+ ,

Ky→y′(c∗) = Ky′→y(c∗).

Not all reversible mass-action systems are detailed balanced: In some instances,
reaction network structure alone will suffice to ensure detailed balancing, regardless of
rate-constant values, but in other instances detailed balancing obtains only if the rate
constants are suitably orchestrated [10]. It is a commonly held belief among chemists
that closed mass-action systems occurring in nature should be detailed balanced (and,
therefore, quasi thermostatic). This belief seems to go back to Wegscheider [26] and
Lewis [20].

Horn and Jackson [16] showed that mass-action systems satisfying the far weaker
condition of complex balancing are also quasi thermostatic. (Detailed balancing im-
plies complex balancing, but the converse is not true.) In turn, Feinberg [5] and
Horn [17] showed that for a large class of mass-action systems (those that derive
from weakly reversible deficiency zero networks), complex balancing, and therefore
quasi-thermostatic behavior, is a consequence of reaction network structure alone,
independent of rate-constant values. Subsequently, Feinberg [7, 8, 11] showed that,
regardless of rate-constant values, quasi-thermostatic behavior (but not necessarily
complex balancing) is a property of mass-action systems that derive from a still wider
class of networks, those satisfying the requirements of the deficiency one theorem.
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The following proposition tells us that, for a quasi-thermostatic kinetic system,
each positive stoichiometric compatibility class (Remark 2.7) contains exactly one
member of the positive equilibrium set. A proof can be found in [16], and a somewhat
different proof is given in Appendix B of [11].

Proposition 2.11. Let {S ,C ,R} be a reaction network with stoichiometric
subspace S, and let c∗, c0 be elements of RS

+ . Then the sets

c0 + S =
{
c0 + σ ∈ R

S : σ ∈ S
}

and

E =
{
c ∈ R

S
+ : ln c− ln c∗ ∈ S⊥}

meet at exactly one point.
Remark 2.12. If, for a quasi-thermostatic system, we write the equilibrium set

in the form

(2.7) E =
{
c ∈ R

S
+ : c = c∗ ◦ exp(γ), γ ∈ S⊥} ,

it becomes clear that E is a p-dimensional smooth manifold (p = dim S⊥) parametrized
globally by the map c̃(·) : S⊥ → RS , where c̃(γ) ≡ c∗ ◦exp(γ). (After choosing a basis
for S⊥, one can of course identify S⊥ with Rp.) Clearly, c̃(0) = c∗. For future reference
we note that the derivative of c̃(·), evaluated at 0, and denoted d c̃[0] : S⊥ → RS ,
acts on each γ ∈ S⊥ in the following way: d c̃[0]γ = c∗ ◦ γ. From this it is apparent
that the linear subspace tangent to E at c∗ is

(2.8) c∗ ◦ S⊥ =
{
c∗ ◦ γ : γ ∈ S⊥} .

3. Elemented reaction networks. By an elemented reaction network we mean
a reaction network taken together with a distinguished choice of nonnegative basis for
S⊥. As will be readily apparent, each basis vector gives rise to a linear combination
of the species concentrations that is conserved along solutions of the differential equa-
tions associated with any kinetic system deriving from the network. Loosely speaking,
then, each basis vector can be associated with an “indestructible element” whose to-
tal concentration is conserved by the reactions. In some instances, as in the case of
network (1.1), these conserved elements (A, B, and C in our example) have natural
interpretations and correspond to a natural choice of basis for S⊥. For a different
network, the choice of elements might be more arbitrary and may, in fact, vary from
one application to another.

As we shall see later, whatever the choice of elements, specification of their total
(time-invariant) concentrations will serve to specify, bijectively, a particular stoichio-
metric compatibility class (Remark 2.7). For a quasi-thermostatic kinetic system, each
positive stoichiometric compatibility class contains precisely one equilibrium (Propo-
sition 2.11). In effect, then, the positive equilibrium set E can be parametrized by the
total concentrations of the elements. As suggested in the introduction, our interest is
in how the equilibria change in response to a change in the element concentrations,
which, in fact, corresponds to a change in stoichiometric compatibility class.

Definition 3.1. An elemented reaction network consists of the following:
1. A reaction network {S ,C ,R};
2. a set E of p (= dim S⊥) distinct members called the elements of the network;
3. a basis M = {Me}e∈E ⊂ R̄S

+ for S⊥.
For each e ∈ E and s ∈ S , the component M s

e is called the e-content of species s.
Remark 3.2. Although we have not built such a requirement into the definition,

we shall, in this article, suppose that all networks under consideration are conservative
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in the sense of Definition 2.3. (There are instances, not considered here, in which
one might want to study the more general situation.) It is easy to see that, for a
conservative network, it is always possible to choose a basis for S⊥ that lies in R̄S

+ .
Moreover, it is not difficult to see that, for an elemented conservative network, there
exists for each species s at least one element e such that the e-content of s is not zero.

Example 3.3. One elemented network derived from (1.1) results from the choice
E = {A,B,C} and the basis for S⊥ given by

MA = A+ 2A2 + 2A2B + 2A2BC,(3.1)
MB = B +A2B +A2BC,

MC = C +A2BC.

In this case all of the elements are associated with certain species that appear explicitly
in the network.

Example 3.4. It is instructive to consider a simple network of the general form

(3.2) W +X � Y + Z,

for which dim S⊥ = 3. The network might be “elemented” in different ways, depending
on the context. If, for example, W = AQ2, Y = AQ, and Z = XQ, then (3.2)
represents a transfer of a molecular component Q from species AQ2 to species X . In
this case, it is natural to take E = {A,Q,X} and

MA = AQ2 +AQ = W + Y,

MQ = 2AQ2 +AQ+XQ = 2W + Y + Z,

MX = X +XQ = X + Z.

Note that the element X is an overt species, whereas the elements A and Q are not.
If, on the other hand, W = AB, X = CD, Y = AC, and Z = BD, then (3.2)

represents a component exchange. One natural choice of elements is E = {A,B,C}
and the basis for S⊥ given by

MA = AB +AC = W + Y,

MB = AB +BD = W + Z,

MC = CD +AC = X + Y.

Still another choice is E = {A,B,D} and

MA = AB +AC = W + Y,

MB = AB +BD = W + Z,

MD = CD +BD = X + Z.

With neither choice does any element appear explicitly as a species.

Recall that for the network discussed in the introduction we considered the total
concentrations of the three elements. For each element e, the total concentration was
calculated from the current mixture composition c by a sum of the following kind:

∑
s∈S

M s
e cs,
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where M s
e is the e-content of species s. We now extend this idea using the following

definition.
Definition 3.5. Let {S ,C ,R,E ,M } be an elemented reaction network. The

element concentration functions T̄e(·) : RS → R are defined for each e ∈ E by

(3.3) T̄e(x) := Me · x.

For use later, we define the function T̄ (·) : RS → RE by

(3.4) T̄ (x) :=
∑
e∈E

T̄e(x)e.

It is not difficult to see that the kernel of T̄ (·) is the stoichiometric subspace S.
Remark 3.6. Two compositions c′ and c′′ are associated with precisely the same

element concentrations (i.e., T̄ (c′) = T̄ (c′′)) if and only if c′ − c′′ is a member of the
stoichiometric subspace, which is to say that c′ and c′′ reside in the same stoichiometric
compatibility class. In this way each specification of positive element concentrations
(i.e., each member of T̄ (RS

+ ) ⊂ RE
+) can be identified bijectively with a positive

stoichiometric compatibility class.
Definition 3.7. An elemented kinetic system is an elemented reaction network

endowed with kinetics.
Remark 3.8. It is apparent from Remark 3.6 that the element concentrations

remain invariant along solutions of the differential equations associated with an ele-
mented kinetic system: Composition trajectories reside entirely within stoichiomet-
ric compatibility classes (Remark 2.7), and, within each stoichiometric compatibility
class, all compositions give rise to the same element concentrations. The constancy of
the element concentrations can, of course, be seen more directly: If c(·) is a solution
of the differential equation for a particular elemented kinetic system, and if e is an
element, then, at each t,

(3.5)
d

dt
T̄e(c(t)) = Me ·

dc(t)
dt

= Me · r(c(t)) = 0.

Here, of course, Me ∈ S⊥ is the basis vector associated with element e, and r(·) is
the species-formation-rate function for the kinetic system. The last equality in (3.5)
follows from the fact that r(·) takes values in S.

4. Elemented quasi-thermostatic systems. We asserted in Remark 3.6 that,
for an elemented network, there is a bijective correspondence between positive
stoichiometric compatibility classes and distinct positive specifications of element
concentrations. On the other hand, for a quasi-thermostatic system, each positive stoi-
chiometric compatibility class contains precisely one equilibrium (Proposition 2.11).
Thus, for a quasi-thermostatic elemented system, there is a bijective correspondence
between the positive equilibrium set E and T̄ (RS

+ ), the set of all (realizable) positive
specifications of the element concentrations. Our goal in this section is to show that
this correspondence is, in fact, a diffeomorphism. Then we will be able to speak of
the smooth dependence of equilibrium species concentrations on the element concen-
trations, and the way will be paved for discussion and analysis of sensitivities, which
were described only informally in the introduction.

We consider, therefore, a quasi-thermostatic elemented kinetic system {S ,C ,R,
K ,E ,M } with positive equilibrium set E ∈ RS

+ . We denote by T̄E(·) : E → T̄ (RS
+ )

the restriction of T̄ (·) to E, taken with the indicated choice of codomain. (It is
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the function T̄E(·) that we want to show is a diffeomorphism.) Note that T̄E(·)
is a map from the p-dimensional smooth manifold E to the p-dimensional smooth
manifold T̄ (RS

+ ) (an open set in RE by the open mapping theorem [1]). Recall from
Remark 2.12 that if c∗ is a member of E, then at c∗ the space tangent to E is

c∗ ◦ S⊥ =
{
c∗ ◦ γ : γ ∈ S⊥} .

Notation 4.1. Occasionally we will focus on a fixed but arbitrary positive equi-
librium c∗ ∈ E. It will be useful to have available a scalar product “ ∗” in RS defined
by

x ∗ y = x · (c∗ ◦ y) ≡
∑
s∈S

xsc
∗
sys.

Lemma 4.2. The derivative of T̄E(·) at an equilibrium c∗ ∈ E is the nonsingular
map d T̄E [c∗] (·) : c∗ ◦ S⊥ → RE given for each γ ∈ S⊥ by

(4.1) d T̄E [c∗] (c∗ ◦ γ) =
∑
e∈E

(Me ∗ γ)e.

Proof. Equation (4.1) derives from straightforward calculation. To see that the
map d T̄E [c∗] (·) is nonsingular, suppose that γ# ∈ S⊥ is such that d T̄E [c∗] (c∗◦γ#) =
0. This requires that Me ∗ γ# = 0 for each e ∈ E . Thus, γ# ∈ S⊥ is orthogonal, with
respect to the “∗” scalar product, to each member of a basis for S⊥. Hence, γ# and
therefore c∗ ◦ γ# are each the zero vector in RS .

Proposition 4.3. T̄E(·) : E → T̄ (RS
+ ) is a diffeomorphism.

Proof. To show that T̄E(·) is bijective, suppose that T 0 is some fixed but arbitrary
member of T̄ (RS

+ ). We will argue that there is precisely one member of E mapped to
the point T 0 by T̄E(·). Because T 0 is a member of T̄ (RS

+ ), there is a c0 ∈ RS
+ such

that T̄ (c0) = T 0. That is,

T̄ (c0) =
∑
e∈E

(Me · c0)e = T 0.

In fact, the full set of vectors in RS mapped by T̄ (·) to T 0 is c0 + ker T̄ (·) = c0 + S.
Our interest, then, is in the members of c0 + S that are also members of E. If c∗ is
a member of E, then, for the quasi-thermostatic system under study, the equilibrium
set is given by

E =
{
c ∈ R

S
+ : ln c− ln c∗ ∈ S⊥} .

From Proposition 2.11, however, E meets c0 + S in exactly one point. Thus, T̄E(·) is
bijective.

Because from Lemma 4.2 we have that d T̄E [c∗] (·) is nonsingular for each c∗ ∈ E,
the inverse function theorem [12] ensures that, at each point in T̄ (RS

+ ), there is a local
inverse of the smooth function T̄E(·) that is also smooth. Since any such local inverse
must be a restriction of the (unique) global inverse whose existence was established
above, it follows that the inverse of T̄ (·) is smooth.

5. Sensitivities. Hereafter we consider an elemented quasi-thermostatic kinetic
system {S ,C ,R,K ,E ,M }, and we denote by c∗ a fixed but arbitrary member of
its positive equilibrium set E. We denote by T ∗ ∈ RE the value T̄ (c∗). That is, T ∗ is
the vector of element concentrations associated with the equilibrium composition c∗.
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Proposition 4.3 tells us that the map T̄E(·) : E → T̄ (RS
+ ) gives a global coor-

dinate system on E. That is, each equilibrium in E is characterized uniquely by a
specification of the concentrations of the elements. We will choose to introduce a
change in coordinates so that we can work instead with logarithms of the element
concentrations. For this purpose we introduce the map ln T̄E(·) : E → ln T̄ (RS

+ ) de-
fined in the obvious way: For each c ∈ E, ln T̄E(c) = ln(T̄E(c)). As a variant of (4.1),
it is not difficult to see that d ln T̄E [c∗](·) : c∗ ◦ S⊥ → RE is given by

(5.1) d ln T̄E [c∗](c∗ ◦ γ) =
∑
e∈E

1
T ∗
e

(Me · c∗ ◦ γ)e =
∑
e∈E

1
T ∗
e

(Me ∗ γ)e

for all γ ∈ S⊥.
Because ln T̄E(·) amounts to the composition of the diffeomorphisms T̄E(·) and

ln(·) : T̄ (RS
+ ) → ln T̄ (RS

+ ), it too is a diffeomorphism. Hereafter, we denote by
c̄(·) : ln T̄ (RS

+ ) → E the inverse of ln T̄E(·). Thus, if lnT is a member of ln T̄ (RS
+ ) it

makes sense to speak of “the equilibrium composition c̄(ln T ).” Note that ln T̄E(c∗) =
ln T̄ (c∗) = lnT ∗ and c̄(ln T ∗) = c∗. Note too that d c̄[lnT ∗](·) : RE → c∗ ◦ S⊥ is just
the inverse of d ln T̄E[c∗], which is given by (5.1). Thus we have

(5.2) d c̄[lnT ∗]

(∑
e∈E

1
T ∗
e

(Me ∗ γ)e

)
= c∗ ◦ γ

for all γ ∈ S⊥.
We will also be interested in the map ln c̄(·) : ln T̄ (RS

+ ) → lnE (= ln c∗ + S⊥)
defined in the obvious way. (Note that the tangent spaces of the manifolds ln T̄ (RS

+ )
and ln c∗ + S⊥ are, respectively, everywhere RE and S⊥.) Because d ln c̄[lnT ∗](·) :
RE → S⊥ is given by 1

c∗ ◦ d c̄[lnT ∗], it follows from (5.2) that

(5.3) d ln c̄[ln T ∗]

(∑
e∈E

1
T ∗
e

(Me ∗ γ)e

)
= γ

for all γ ∈ S⊥.
We are now in position to make precise definitions of the sensitivities discussed

informally in the introduction.
Definition 5.1. By the sensitivity vector for element e at equilibrium composi-

tion c∗ we mean the vector in c∗ ◦ S⊥ ⊂ RS given by

(5.4)
∂ ln c̄
∂ lnTe

(c∗) := d ln c̄ [lnT ∗] e.

By the sensitivity matrix at c∗ we mean the array whose elements are given by

(5.5)
(
∂ ln c̄s
∂ lnTe

(c∗)
)
s∈S , e∈E

.

6. Means to calculate the sensitivity matrix. Here we provide means to
calculate the sensitivity matrix at the equilibrium c∗ ∈ E.1 For the specified equi-
librium c∗, we denote by {M e}e∈E ⊂ S⊥ the basis for S⊥ that is reciprocal, relative

1We note that these calculations have points of contact with issues raised some years ago in
two Ph.D. theses, by K. Israel [18] and J. Nailor [21], supervised by Michael Reed. Stated in very
rough and somewhat inaccurate terms, their interest was in signs of entries in what we call the
sensitivity matrix—signs that might be determined by experiment. The motivation was that such
experimentally determined signs might provide clues about the underlying reaction network when
the network is unknown.
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to the “∗” scalar product in RS , to the basis M = {Me}e∈E . (Recall Notation 4.1.)
That is, M e′ ∗Me = 1 if e′ = e and is 0 otherwise. Because the “∗” scalar product
depends upon c∗, so will the reciprocal basis it induces. It is not difficult to determine
such reciprocal bases computationally within the context of readily available symbolic
mathematics programs.

Theorem 6.1. Let {S ,C ,R,K ,E ,M } be an elemented quasi-thermostatic
kinetic system, let c∗ ∈ E be a positive equilibrium (corresponding to an element
specification T ∗ ∈ RE ), and let {M e}e∈E be the basis for S⊥ reciprocal to M relative
to the “ ∗” scalar product in RS . Then for each e ∈ E , the sensitivity vector is given
by

(6.1)
∂ ln c̄
∂ lnTe

(c∗) = T ∗
eM

e.

Entries of the sensitivity matrix are given by

(6.2)
∂ ln c̄s
∂ lnTe

(c∗) = T ∗
eM

es

for each s ∈ S and e ∈ E .
Proof. Equation (6.1) results from a simple substitution in (5.3): To obtain the

sensitivity vector for a particular element e′ ∈ E , set γ = T ∗
e′M

e′ . Equation (6.2) is
just the component form of (6.1).

Example 6.2. Consider network (6.3), which can serve to model a process whereby
an active biomolecule A2B2 is assembled from elements A and B:

(6.3) A+B � AB, 2AB � A2B2.

One elemented network derived from (6.3) is afforded by the choices E = {A,B} and
M = {MA,MB}, where

MA = A+AB + 2A2B2,(6.4)
MB = B +AB + 2A2B2.

If the kinetics for the network is mass action, then, for any choice of rate constants,
detailed balance will obtain [10] and the system will be quasi thermostatic. Thus,
Theorem 6.1 can be used to calculate all entries in the sensitivity matrix, evaluated
at an arbitrary equilibrium c∗. In particular, the entries corresponding to the “active”
species A2B2 are

∂ ln c̄A2B2

∂ lnTA
(c∗) =

2(c∗A + c∗AB + 2c∗A2B2
)c∗B

c∗Ac
∗
B + (c∗A + c∗B)(c∗AB + 4c∗A2B2

)
,(6.5)

∂ ln c̄A2B2

∂ lnTB
(c∗) =

2(c∗B + c∗AB + 2c∗A2B2
)c∗A

c∗Ac
∗
B + (c∗A + c∗B)(c∗AB + 4c∗A2B2

)
.

7. Degree, connectivity, and network-imposed sensitivity bounds. As
before, we consider an elemented quasi-thermostatic kinetic system {S ,C ,R,K ,E ,
M }, and we let c∗ be a positive equilibrium, corresponding to an element concentra-
tion specification T ∗ ∈ RE . Motivated by considerations discussed in the introduction,
we have interest in understanding the extent to which the equilibrium concentration
of a particular species s ∈ S might be robust against variations in the supply of
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elements. Our interest, then, is in the “worst case”—that is, in the most sensitive
response in the concentration of s, taken against variation in each of the element
concentrations.

Definition 7.1. The sensitivity of species s ∈ S at c∗, denoted Λs(c∗), is
defined by

(7.1) Λs(c∗) = max
e∈E

{∣∣∣∣ ∂ ln c̄s
∂ lnTe

(c∗)
∣∣∣∣
}
.

By the system sensitivity at c∗, denoted Λ(c∗), we mean the least of the species sen-
sitivities. That is,

(7.2) Λ(c∗) = min
s∈S

Λs(c∗).

Remark 7.2. In general, the species sensitivities and the system sensitivity will
depend on the choice of basis M for S⊥.

If the system sensitivity is high at c∗, then all species sensitivities at c∗ are high, so
it makes sense to say that the system itself is highly sensitive to element concentration
variations.

Our goal in this section is to provide lower bounds on the species sensitivities
and on the system sensitivity, bounds that derive from network properties alone, in-
dependent of kinetic parameters and even of the equilibrium at which the sensitivities
are calculated. By way of preparation, we posit formally some ideas that were dis-
cussed informally in the introduction. All the following are attributes of the elemented
network underlying the kinetic system we have been studying:

For each e ∈ E we let

(7.3) Mmax
e = max

s∈S
{M s

e } .

That is, Mmax
e is the largest number of copies of element e that can be found in any

species. It is a measure of the extent to which element e combines in a multiplicitous
way.

For each e, e′ ∈ E we let

(7.4) Mmax
e (e′) = max

s∈suppMe′
{M s

e } .

That is, Mmax
e (e′) is the largest number of copies of element e that can be found in

any species that also contains e′. Clearly we have

(7.5) Mmax
e (e′) ≤Mmax

e

for each e, e′ ∈ E .
By the degree of element e we mean

(7.6) deg(e) =
∑
e′∈E

Mmax
e (e′).

As we indicated in the introduction, an element will have high degree if it combines
gregariously with many different elements or if it combines in high multiplicity with
at least one of the elements.
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Theorem 7.3. Let {S ,C ,R,K ,E ,M } be an elemented quasi-thermostatic
kinetic system with positive equilibrium set E. For each c∗ ∈ E and each s ∈ S ,

(7.7) Λs(c∗) ≥ max
e∈E

{
M s
e

deg(e)

}
.

Moreover,

(7.8) Λ(c∗) ≥ min
s∈S

max
e∈E

{
M s
e

deg(e)

}
.

Proof. We begin with the equation

(7.9) Me = d ln c̄ [lnT ∗]

(∑
e′∈E

1
T ∗
e′

(Me′ ∗Me)e′
)
,

which is an immediate consequence of (5.3). Written in terms of components, (7.9)
gives for each e ∈ E and s ∈ S ,

(7.10) M s
e =

∑
e′∈E

∂ ln c̄s
∂ lnTe′

(c∗)
1
T ∗
e′

(Me′ ∗Me).

From this we can write the inequality

(7.11) M s
e ≤

∑
e′∈E

∣∣∣∣ ∂ ln c̄s
∂ lnTe′

(c∗)
∣∣∣∣ 1
T ∗
e′

(Me′ ∗Me).

Note that for each e′, e ∈ E we have

Me′ ∗Me =
∑
s∈S

M s
e′c

∗
sM

s
e =

∑
s∈suppMe′

M s
e′c

∗
sM

s
e(7.12)

≤Mmax
e (e′)

∑
s∈suppMe′

M s
e′c

∗
s = Mmax

e (e′)T ∗
e′ .

Thus, from inequalities (7.11) and (7.12) and equations (7.1) and (7.6) we obtain for
every e ∈ E and s ∈ S the inequality

(7.13) M s
e ≤ Λs(c∗)

∑
e′∈E

Mmax
e (e′) = Λs(c∗) deg(e),

or equivalently,

(7.14) Λs(c∗) ≥ M s
e

deg(e)
.

Since (7.14) holds for every element e ∈ E , we in fact have, for each s ∈ S , the bound
given in (7.7). The bound (7.8) is then just a consequence of the definition of system
sensitivity.

Example 7.4. In the case of the elemented kinetic system of Example 6.2, we
have from (6.4), (7.4), and (7.6) that

(7.15) deg(A) = 4, deg(B) = 4.
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From (6.4), (7.7), and (7.15) we obtain

ΛA(c∗) ≥ 1
4
, ΛB(c∗) ≥ 1

4
,(7.16)

ΛAB(c∗) ≥ 1
4
, ΛA2B2(c∗) ≥ 1

2
.

Note that the lower bound on the “active” species A2B2 is sharp: If, for example,
c∗ = εA + εB + εAB + A2B2, then, from (6.5) and (7.1), we have that ΛA2B2(c∗) =
1
2 (1+ ε)+o(ε2). Thus, as ε tends to zero, ΛA2B2 tends to the lower bound 1

2 in (7.16).
We note that for any choice of c∗ there is an assignment of rate constants for network
(6.2) consistent with the existence of the equilibrium c∗ and at which detailed balance
obtains. Thus, there are quasi-thermostatic systems for which, at certain equilibria,
the sensitivity of A2B2 approaches the stipulated lower bound arbitrarily closely.

Remark 7.5. In a conservative elemented network, for each species s ∈ S there
exists an element e ∈ E such that the e-content of s is positive (Remark 3.2). Thus,
inequality (7.7) implies that a species (or system) sensitivity of zero is impossible in
conservative quasi-thermostatic systems. It should be noted, however, that kinetic
systems exist that do allow for zero sensitivity. One such system, proposed in the
context of bacterial signaling, is treated in [24]. In this system the quasi-thermostatic
condition is not satisfied.

Remark 7.6. Because the sensitivities themselves will depend on the choice of
elements, so will the bounds given by Theorem 7.3. Consider, for example, the very
simple network

(7.17) 2A+B � A2B.

This network can be elemented in various ways: One choice is given by

MA = A+ 2A2B,(7.18)
MB = B +A2B;

another equally valid choice is given by

MQ = A+ εB + (2 + ε)A2B,(7.19)
MR = A+ 2εB + (2 + 2ε)A2B,

where ε is a positive number much smaller than 1. From Theorem 7.3 we have that,
for choice (7.18), the species sensitivities are bounded from below according to the
inequalities ΛA(c∗) ≥ 1

4 , ΛB(c∗) ≥ 1
2 , and ΛA2B(c∗) ≥ 1

2 . For the system sensitivity
we have that Λ(c∗) ≥ 1

4 . On the other hand, for choice (7.19) the same theorem gives
the bounds ΛA(c∗) ≥ 1

4 +o(ε), ΛB(c∗) ≥ o(ε), ΛA2B(c∗) ≥ 1
2 , and Λ(c∗) ≥ o(ε). Thus,

different choices of basis for S⊥ can lead to markedly different lower bounds. Note
that while choice (7.18) carries a natural interpretation for the elements A and B as
building blocks that appear either overtly as species or latently in the compound A2B,
choice (7.19) offers no immediate physical interpretation for the elements Q and R.

Note also, that in the general case, if each vector in the basis for S⊥ is multiplied
by a (potentially different) scalar, then the lower bounds corresponding to the new
basis remain unchanged.
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The bounds given in Theorem 7.3 give rise to different (weaker) bounds that are
stated not in terms of the degrees of the elements, but, rather, in terms of what we
call the element connectivities. For each e ∈ E we denote by Γ(e) the set of elements
that appear together with e in at least one species. More precisely,

(7.20) Γ(e) = {e′ ∈ E : suppMe′ ∩ suppMe �= ∅} .

By the connectivity of e we mean the number of such elements:

(7.21) conn(e) := #(Γ(e)).

From (7.5) and (7.6) it is not difficult to see that

(7.22) deg(e) ≤ conn(e)Mmax
e .

Thus from Theorem 7.3 we have the following.
Corollary 7.7. Let {S ,C ,R,K ,E ,M } be an elemented quasi-thermostatic

system with positive equilibrium set E. For each c∗ ∈ E and each s ∈ S ,

(7.23) Λs(c∗) ≥ max
e∈E

{
M s
e

conn(e)Mmax
e

}

and

(7.24) Λ(c∗) ≥ min
s∈S

max
e∈E

{
M s
e

conn(e)Mmax
e

}
.

8. Constructive reaction networks. By a constructive reaction network we
mean an elemented network with special properties: Its elements can be identified
with certain building blocks that appear explicitly as species of the network and
from which all other species are constructed by means of the network’s reactions.
Example 3.3, which is based on network (1.1) in the introduction, is an example of a
constructive reaction network.

Definition 8.1. A constructive reaction network is an elemented reaction net-
work {S ,C ,R,E ,M } such that E ⊂ S and such that, for each e ∈ E ,

(8.1) Me = e+
∑
q∈Q

M q
e q,

where Q = S \ E , and where the M q
e take nonnegative integer values. The members

of Q are called the compounds of the network.
For constructive networks the following proposition indicates the sense in which

the compounds are built from the elements in terms of reactions appearing in the
network.

Proposition 8.2. Let {S ,C ,R,E ,M } be a constructive reaction network.
Then the set

(8.2)

{
q −

∑
e∈E

M q
e e : q ∈ Q

}

is a basis for the stoichiometric subspace S.
Proof. Clearly, the vectors of (8.2) are linearly independent and their number is

equal to dim S. To see that they are in fact members of S, it is enough to show that
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each of the vectors in (8.2) is orthogonal to all the vectors of (8.1). Toward this end,
note that for each q′ ∈ Q and each e′ ∈ E ,

(
q′ −

∑
e∈E

M q′

e e

)
·

⎛
⎝e′ + ∑

q∈Q

M q
e′q

⎞
⎠ = M q′

e′ −M q′

e′ = 0.

Remark 8.3. The vectors of (8.2) can be viewed as “reaction vectors” that derive
from the “reactions”

(8.3)

{∑
e∈E

M q
e e→ q : q ∈ Q

}
.

Each of these “reactions” can be regarded as representing the production of a partic-
ular compound solely from the elements. Of course, these “construction” reactions
need not all be “true” reactions of the original network, but, at least in terms of
stoichiometry, each of the “true” reactions can be regarded as a linear combination
of the “construction” reactions. Similarly, each member of (8.3) can be viewed as
an overall reaction—one for each compound—that derives from a linear combination
of the “true” reactions. Hence, the “true” reactions can be viewed as machinery for
constructing the compounds from the elements.

Remark 8.4. Proposition 8.2 provides a way to distinguish a reaction network
that might be constructive (for a suitable choice of elements) from one that cannot
be constructive. For example, network (3.2) has a one-dimensional stoichiometric
subspace spanned by Y + Z −X −W . Thus, there is no partition of the species set
into elements and compounds that is consistent with a basis for the stoichiometric
subspace of the form (8.2).

We note that for a constructive kinetic system the elements themselves are species,
and so it makes sense to speak of their sensitivities. Recall that for a constructive
system we have, for each pair e, e′ ∈ E , that M e′

e is 0 if e′ �= e and is 1 otherwise.
This observation gives rise to the following corollary to Theorem 7.3.

Corollary 8.5. Let {S ,C ,R,K ,E ,M } be a constructive quasi-thermostatic
system with positive equilibrium set E. For each c∗ ∈ E and each e ∈ E ,

(8.4) Λe(c∗) ≥ 1
deg(e)

≥ 1
conn(e)Mmax

e

.

Moreover,

(8.5) Λ(c∗) ≥ min
e∈E

{
1

deg(e)

}
≥ min

e∈E

{
1

conn(e)Mmax
e

}
.

Remark 8.6. For any elemented network, it is apparent that, for each element
e ∈ E , conn(e) ≤ #(E ). If we let

(8.6) Mmax := max
e∈E

{Mmax
e } ,

then we have

(8.7) deg(e) ≤ conn(e)Mmax
e ≤ #(E )Mmax.
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For a constructive kinetic system in particular we get a crude bound on the system
sensitivity:

(8.8) Λ(c∗) ≥ 1
#(E )Mmax

.

Although this bound is far less nuanced than (8.5), it already tells us that high system
robustness (low sensitivity) requires that the system have a large number of elements
or that it contain at least one species having high element content (or a combination
of both).

9. Concluding remarks.
Remark 9.1. We emphasized both in the introduction and in section 7 that the

species sensitivity bounds given in Theorem 7.3 depend on network structure alone,
independent of kinetics or even of the equilibrium state at which they are evaluated.
In fact, even the fine details of the reaction network are of limited consequence:

For a quasi-thermostatic kinetic system the entire equilibrium set is determined
by specification of just one equilibrium state and the stoichiometric subspace for the
underlying network of chemical reactions. This is to say that two elemented quasi-
thermostatic systems that share a common equilibrium state and the same stoichio-
metric subspace have precisely the same positive equilibrium sets and, therefore, the
same species sensitivities (relative to the same choice of elements). To the extent
that the network influences the equilibrium set, then, that influence is felt through
the stoichiometric subspace. In turn, the stoichiometric subspace is merely the span
of the network’s reaction vectors, but the same span might derive from two rather
different reaction networks.

Certainly, though, there is some network information carried by the stoichio-
metric subspace S, and therefore, by its orthogonal complement S⊥. Indeed, the
sensitivity formulas given by Theorem 7.3 derive squarely from the nature of S⊥ and
the particular elemental basis chosen for it.

Remark 9.2. As we indicated earlier, the sensitivity bounds derived for elemented
systems suggest that strong robustness (i.e., very low sensitivity) against fluctuations
in the element concentrations requires that the elements manifest themselves within
the species in high multiplicity or that the species combine with each other gregari-
ously. There is a certain intuitive sense to these requirements, for when they are met,
the effect of changes in an element’s total concentration can be attenuated through
propagation across many species or buffered within species containing multiple in-
stances of that element. It is striking that the requirements for high robustness are
highly suggestive of biochemistry, in which large molecules are often built from mul-
tiple copies of many distinct elements that readily combine with each other by means
of relatively large reaction networks.
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ANALYSIS OF HEPATITIS C VIRUS INFECTION MODELS WITH
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Abstract. Recently, we developed a model for hepatitis C virus (HCV) infection that explicitly
includes proliferation of infected and uninfected hepatocytes. The model predictions agree with a
large body of experimental observations on the kinetics of HCV RNA change during acute infection,
under antiviral therapy, and after the cessation of therapy. Here we mathematically analyze and
characterize both the steady state and dynamical behavior of this model. The analyses presented here
not only are important for HCV infection but also should be relevant for modeling other infections
with hepatotropic viruses, such as hepatitis B virus.
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1. Introduction. Approximately 200 million people worldwide [38] are persis-
tently infected with the hepatitis C virus (HCV) and are at risk of developing chronic
liver disease, cirrhosis, and hepatocellular carcinoma. HCV infection therefore repre-
sents a significant global public health problem. HCV establishes chronic hepatitis in
60%–80% of infected adults [46]. A vaccine against infection with HCV does not exist,
and standard treatment with interferon-α and ribavirin has produced sustained viro-
logical response rates of approximately 50%, with no effective alternative treatment
for nonresponders to this treatment protocol [13, 30].

A model of human immunodeficiency virus infection [40, 52] was adapted by
Neumann et al. [37] to study the kinetics of chronic HCV infection during treatment.
Since then viral kinetics modeling has played an important role in the analysis of
HCV RNA decay during antiviral therapy (see Perelson [41], Perelson et al. [42]).
The original Neumann et al. model for HCV infection [37] included three differential
equations representing the populations of target cells, productively infected cells, and
virus (Figure 1). A simplified version of the model, which assumes a constant popula-
tion of target cells, was used to estimate the rates of viral clearance and infected cell
loss by fitting to the model the decline of HCV RNA observed in patients during the
first 14 days of therapy [37]. However, this simplified version of the model is not able
to explain some observed HCV RNA kinetic profiles under treatment [4]. To model
complex HCV kinetics, the assumption of a constant level of target cells needs to be
relaxed, requiring one to model as correctly as possible the dynamics of the target
cell population. Since it has been suggested that hepatocytes, the major cell type in
the liver, are also the major producers of HCV [10, 3, 43], we assume here that the
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( 1 )

( 1 )

Fig. 1. Schematic representation of HCV infection models. T and I represent target and
infected cells, respectively, and V represents free virus. The parameters shown in the figure are
defined in the text. The original model of Neumann et al. [37] assumed that there is no proliferation
of target and infected cells (i.e., rT = rI = 0) and no spontaneous cure (i.e., q = 0). The extended
model of Dahari, Ribeiro, and Perelson [6], which was used for predicting complex HCV kinetics
under therapy, includes target and infected cell proliferation without cure (rT , rI > 0 and q = 0).
A model including both proliferation and the spontaneous cure of infected cells (dashed line; q > 0)
was used to explain the kinetics of HCV in primary infection in chimpanzees [5].

target cells of the model are hepatocytes.
The liver is an organ that regenerates, and due to homeostatic mechanisms, any

loss of hepatocytes would be compensated for by the proliferation of existing hepato-
cytes [12, 32]. However, besides replication of existing hepatocytes, another mecha-
nism of liver cell generation is present (termed here immigration), i.e., differentiation
of liver progenitor cells or bone marrow cells [12].

In prior work, we have shown that including proliferation of both target cells and
infected cells increases the ability of the model to explain experimental data [4, 6].
Because HCV infection is generally thought to be noncytopathic, i.e., infection per se
does not kill a cell [31], proliferation of infected cells has been included in the model.
Studying the effects of varying the rate of infected cell proliferation from zero (no
proliferation) to rates in excess of the rate proliferation of uninfected cells [34], as
might occur by an oncogenic effect, is one of the goals of this work.

HCV is an RNA virus that replicates in the cytoplasm of an infected cell [25]. Due
to the action of endogenous nucleases or microRNAs, it is in principle possible for a
cell to clear viral RNA [2, 39]. Some of our prior modeling of acute HCV infection in
chimpanzees required the inclusion of this type of “cure” of infected cells in order to
explain the kinetics of HCV clearance without a massive loss of liver cells that would
have led to the animals’ death [5]. Thus, the effects of cure of infected cells is also
studied in the analysis provided below.

During antiviral therapy for HCV infection, patients may exhibit a flat partial
response or a biphasic decline in HCV RNA (Figure 2(left) and (middle)). In addition,
a triphasic pattern of HCV RNA decline (Figure 2(right)) has been observed in some
treated patients [19]. In these patients, HCV RNA initially falls very rapidly, by 1–2
orders of magnitude during the first day or two of therapy. Then HCV RNA decline
ceases, and a “shoulder phase” that can last from days to many weeks is observed.
This shoulder phase can persist, in which case it has been called a flat second phase,
or it can be followed by a renewed phase of HCV RNA decline; in this case the pattern
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Fig. 2. Three example plots of observed changes in viral load (X) following the start of treat-
ment, together with numerical solutions to system (2.1) (solid line). The initial condition of each
numerical solution is the chronic-infection steady state. In some cases, there is a flat partial re-
sponse to treatment (left), where viral load shows an immediate drop but then remains unchanged
over time. In some cases, there is a biphasic response (middle), with a rapid initial drop and a
slower asymptotic clearance. In some cases, there is a triphasic response, with a rapid initial drop,
an intermediate shoulder phase during which there is little change, and then an asymptotic clearance
phase. The initial rapid decline in virus load is the synchronization to the new quasi-steady state,
following the start of treatment. Afterward, virus load closely tracks the number of infected cells
(right). Treatment efficacies are ε = 0.98, η = 0 (left), ε = 0.9, η = 0 (middle), and ε = 0.996, η = 0
(right). Other parameter values are shown in Table 2.1.

has been called triphasic [4, 6]. Another of the goals of this paper is to understand
the origin of the triphasic response and to compute from the model the length of
the shoulder phase as a function of model parameters. As the length of the shoulder
phase approaches zero, a triphasic response transforms into a biphasic response, and
thus studying triphasic responses provides a general framework for understanding
treatment response kinetics.

In order to accomplish our various goals, we first describe the model and its
parameters. Then we study the model’s steady states and their stability. Using a
perturbation analysis approach, we show how the shoulder phase arises and provide
an approximate formula from which one can calculate its length.

2. Model. The model proposed by Dahari and coworkers [6, 4] expands on the
standard HCV viral-dynamic model [37] of infection and clearance by incorporating
density-dependent proliferation and death (Figure 1). Uninfected hepatocytes, T , are
infected at a rate β per free virus per hepatocyte. Infected cells, I, produce free virus
at rate p per cell but also die with rate dI . Free virus is cleared at rate c by immune
and other degradation processes. Besides infection processes, hepatocyte numbers
are influenced by homeostatic processes. Uninfected hepatocytes die at rate dT . Both
infected and uninfected hepatocytes proliferate logistically with maximum rates rI and
rT , respectively, as long as the total number of hepatocytes is less than Tmax. Besides
proliferation, uninfected hepatocytes may increase in number through immigration or
differentiation of hepatocyte precursors that develop into hepatocytes at constitutive
rate ŝ, or by spontaneous cure of infected hepatocytes through a noncytolytic process
at rate q̂. Treatment with antiviral drugs reduces the infection rate by a fraction η
and the viral production rate by a fraction ε. The corresponding system of differential
equations is

dT
dt̂

= ŝ+ rTT

(
1 − T + I

Tmax

)
− dTT − (1 − η)βV T + q̂I,(2.1a)

dI
dt̂

= rII

(
1 − T + I

Tmax

)
+ (1 − η)βV T − dII − q̂I,(2.1b)

dV
dt̂

= (1 − ε)pI − cV,(2.1c)



1002 T. C. RELUGA, H. DAHARI, AND A. S. PERELSON

Table 2.1

Estimated parameter ranges for hepatitis C when modeled with system (2.1). The columns
labelled left, middle, and right give the parameter values for fitting system (2.1) to the data for the
respective plots in Figure 2. The rT , Tmax, and dT parameters are not independently identifiable,
so common practice is to fix dT prior to fitting.

Symbol Minimum Maximum Units Left Middle Right Ref.

β 10−8 10−6 virus−1 ml day−1 1.4 × 10−6 9.0 × 10−8 2.8 × 10−8 [5]

Tmax 4 × 106 1.3 × 107 cells ml−1 5 × 106 5 × 106 1.2 × 107 [27, 49]
p 0.1 44 virus cell−1 day−1 28.7 10.9 13.2 [5]

ŝ 1 1.8 × 105 cells ml−1 day−1 1 1 1 [50]

q̂ 0 1 day−1 0 0 0 [5]
c 0.8 22 day−1 6.0 5.8 5.4 [45]

dT 10−3 1.4 × 10−2 day−1 1.2 × 10−2 1.2 × 10−2 1.2 × 10−2 [26, 28]
dI 10−3 0.5 day−1 0.36 0.48 0.13 [45]

rT 2 × 10−3 3.4 day−1 3.0 0.70 1.1 [5]

rI Unknown Unknown day−1 .97 0.112 0.26

where the time t̂ is measured in days. Table 2.1 shows estimated ranges for the
parameters.

System (2.1) has a three-dimensional phase-space and a twelve-dimensional pa-
rameter space, so despite the relative simplicity, the full dynamics are difficult to
classify. Fortunately, there are some natural simplifications. The range of rates of
viral clearance shown in Table 2.1 is significantly faster than the other time-scale
parameters. In numerical simulations (Figure 2), after an initial transient the viral
dynamics closely track the dynamics of infected cells. This suggests that viral dy-
namics can be decomposed into two time scales: a fast time scale starting at t̂0 where
the number of infected hepatocytes, I, is relatively constant and

V (t̂) ≈ (1 − ε)p
c

I(t̂0) +
[
V (t̂0) −

(1 − ε)p
c

I(t̂0)
]
e−c(t̂−t̂0),(2.2)

and a slow time scale where

V (t̂) ≈ (1 − ε)p
c

I(t̂).(2.3)

For patients in steady state before treatment, as is typically the case, I(t̂0) = cV (t̂0)/p,
allowing one to simplify (2.2) to

V (t̂) = (1 − ε)V (t̂0) + εV (t̂0)e−c(t̂−t̂0).(2.4)

On time scales longer than 1/c, then, the dynamics of system (2.1) can be ap-
proximated by a system of two equations. If we now introduce the dimensionless time
t = (rT − dT )t̂, the dimensionless state variables

x =
T

Tmax
, y =

I

Tmax
,(2.5)

and the dimensionless parameters

s =
ŝrT

(rT − dT )2Tmax
, b =

pβTmax

crT
, q =

q̂

rT − dT
,

r =
rI
rT
, d =

dIrT − dT rI
rT (rT − dT )

, 1 − θ = (1 − ε)(1 − η),
(2.6)



HCV AND HEPATOCYTE HOMEOSTASIS 1003

then under the quasi-steady state approximation, system (2.1) is equivalent to the
dimensionless system

ẋ = x (1 − x− y) − (1 − θ)byx+ qy + s,(2.7a)
ẏ = ry (1 − x− y) + (1 − θ)byx− dy − qy.(2.7b)

Note that a fundamental assumption in the transformation to system (2.7) is that
rT > dT , which we expect because of the hepatocyte population’s ability to support
itself and to regenerate itself after injury.

Immigration of new hepatocytes is believed to be slow (< 1% per day; Table 2.1)
relative to the total number of hepatocytes (i.e., s � 1). Spontaneous cure from
HCV has not yet been directly observed. It has been suggested to occur based on the
kinetics of HCV clearance and liver damage in humans [51] and in chimpanzees [5].
Therefore, in a first analysis, we assume that s = q = 0. Later, we reintroduce these
parameters and examine their effects via a perturbation analysis. Dropping the s and
q terms, system (2.7) simplifies to

ẋ = x (1 − x− y) − (1 − θ)byx,(2.8a)
ẏ = ry (1 − x− y) + (1 − θ)byx− dy.(2.8b)

Most of the parameter ranges from Table 2.1 are captured by allowing b ∈ [10−2, 103]
and d ∈ [10−3, 102]. rI has not yet been studied experimentally, and thus we cannot
bound r beyond the trivial statement that r ≥ 0.

Gómez-Acevedo and Li [14] have previously studied some of the properties of
system (2.8) in the context of human T-cell lymphotropic virus type I. It is a simple
model with only three independent parameters and dynamics that can be completely
analyzed using phase-plane analysis and algebraic methods while still encapsulating
the fundamental concepts of system (2.1). system (2.8) diverges from common viral
dynamics models in the homeostasis parameter r. When r = 0, system (2.8) is
naturally interpreted as an epidemic model, a viral infection model, or a predator-
prey model. When the epidemic model is extended to include logistic homeostasis with
r > 0, the infected cells can also proliferate independent of x but experience additional
density-dependent mortality as a function of the total population size x+y. This paper
explores the consequences of this homeostasis. We will first study systems (2.7) and
(2.8) during acute infection. We will then study the response of these systems to
treatment.

3. Dynamics without treatment (θ = 0). When HCV first infects a person,
the ensuing dynamics depend on the relative parameter values. Since newly infected
individuals do not know that they are infected, we assume that there is initially
no treatment (θ = 0). At first glance, we might expect several different scenarios
to ensue following exposure: infection may fade out without becoming established,
infection may spread with limited success and infect only part of the liver, or infection
may spread rapidly and infect the whole liver. To understand when the dynamics of
system (2.7) under acute infection correspond to each of these situations, it is helpful
to walk through the bifurcation structure of system (2.8).

3.1. Without immigration or spontaneous cure. When there is no im-
migration (s = 0) or spontaneous cure (q = 0), the dynamics are described by sys-
tem (2.8). system (2.8) is a variant of the Lotka–Volterra equations studied extensively
in ecology [21]. The ẋ-nullclines are x = 0 and y = (1 − x)/(1 + b). The ẏ-nullclines
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1-d/r

1/(1+b)
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(d-r)/(b-r) 1
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x
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b=0.1
d=0.4
r=0.8

Fig. 3. Example nullclines for system (2.8) when the disease-free equilibrium is globally attract-
ing. The liver-free (x = y = 0), disease-free (x = 1, y = 0), and total-infection (x = 0, y = 1 − d/r)
stationary solutions are marked with dots. The solid lines are the ẏ-nullclines, and the dotted lines
are the ẋ-nullclines. The partial-infection stationary solution is not present for these parameter
values.

Table 3.1

Stationary solutions for system (2.8) and their characteristics.

Stationary point Location Bifurcation conditions Local stability condition
Liver-free (0, 0) r = d Never stable
Disease-free (1, 0) b = d b < d
Total-infection (0, 1 − d/r) r = d+ d/b, r = d r > d+ d/b

Partial-infection

(
db+ d− br

b(1 + b− r)
,

b− d

b(1 + b− r)

)
r = d+ d/b, b = d rb/(1 + b) < d < b

are y = 0 and y = 1− d/r− (1− b/r)x (see Figure 3). Up to four stationary solutions
to system (2.8) can be found at the intersections of the ẋ and ẏ nullclines. They are

(0, 0) , (1, 0) ,
(

0, 1 − d

r

)
, and

(
db+ d− br

b(1 + b− r)
,

b − d

b(1 + b− r)

)
,(3.1)

respectively the liver-free solution, the disease-free solution, the total-infection solu-
tion, and the partial-infection solution. The locations and stability conditions for the
stationary solutions are summarized in Table 3.1.

The bifurcations and stability of these four stationary solutions depend on the
parameter values in ways summarized in Table 3.1. system (2.8)’s Jacobian is

J =
[
1 − 2x− y − by −x(1 + b)

−ry + by r (1 − x− 2y) − d+ bx

]
.(3.2)

The classification of the parameter space is summarized in Figure 4, with examples of
each region’s nullclines given in Figure 5. Before treatment, the reproductive number
of infection

R =
b

d
(3.3)

at the disease-free equilibrium (1, 0). In order for HCV to infect the liver, R must be
greater than 1, indicating that on average an infected hepatocyte causes more than
one uninfected cell to become infected. The eigenvalues at the disease-free equilibrium
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Fig. 5. Example phase planes of system (2.8) for distinct parameter regions. The dashed lines
are the ẋ-nullclines, and the solid lines are the ẏ-nullclines. The dots represent stationary solutions.

are λ = −1, corresponding to the eigenvector [1, 0], and λ = b − d, corresponding to
the eigenvector [−1 − b, 1 + b− d]. If R < 1, the disease-free solution (1, 0) is locally
attracting. If R > 1, HCV infects new cells faster than infected cells die, and the
asymptotic dynamics may correspond to either partial or total infection of the liver.

The liver-free stationary solution (0, 0) is always unstable, switching between a
saddle point when infected cells die quickly (r < d) and an unstable node when
infected cells die slowly (d < r). If the proliferation rate is slower than the death
rate (r < d), then HCV can never totally infect the liver. There is a transcritical
bifurcation at d = r, and the total-infection stationary solution (0, 1− d/r) is feasible
only when the proliferation rate of infected cells is greater than the excess death rate
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of infected cells (Figure 4). From the Jacobian, we see that if d+d/b < r (equivalently,
d < rb/(1+ b)), total infection is locally stable, and from the general theory of Lotka–
Volterra systems, it is globally stable, provided d < min{b, rb

1+b}. This includes all
cases where d < 0.

The partial-infection stationary solution is present whenever d lies between b and
rb

1+b . The local stability of the partially infected stationary solution can be determined
from the characteristic polynomial

λ2 +
d

b
λ+

(d− b)(br − bd− d)
b(1 + b− r)

= 0,(3.4)

where λ is an eigenvalue. If b < d < rb
1+b , the constant term of the characteristic poly-

nomial at the partial-infection stationary solution is negative, implying (by Decartes’
rule of sign) that there is a single positive root and that the partial-infection steady
state is a saddle point. In this situation, we can show that both the disease-free and
the total-infection stationary solutions are locally stable. As first shown in Gómez-
Acevedo and Li [14], the system is bistable, and the asymptotic dynamics will depend
on the initial conditions. The constraint r < 1 is sufficient to preclude bistability.

When b > d > rb
1+b , the coefficients d/b and

(d− b)(br − bd− d)
b(1 + b− r)

(3.5)

of the characteristic polynomial are both positive. From the Routh–Hurwitz con-
ditions [35], it follows immediately that the partial-infection stationary solution is
locally stable. From prior work on Lotka–Volterra equations [20], we know that it is
also globally stable.

Convergence to the partial-infection stationary solution can be oscillatory if the
eigenvalues are complex, or monotone if the eigenvalues are real (Figure 6). Calcula-
tion of the discriminant shows that the convergence is oscillatory whenever

d2

4b2
− (b− d)(rb − db− d)

b(r − 1 − b)
< 0.(3.6)

This inequality is not easy to interpret by inspection, but it is quadratic in d, and
so it is easy to handle numerically. The boundaries of the subset of parameter space
where convergence is oscillatory asymptotically converge to d(b) = r and d(b) = b as
b diverges to ∞. When convergence is oscillatory, the period of oscillations around
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Fig. 7. Example nullclines for system (2.7) when the disease-free equilibrium is globally attract-
ing for immigration and spontaneous clearance rates s = q = 0.001(left) or s = q = 0.02 (right).
The liver-free, disease-free, and total-infection stationary solutions are marked with dots. The liver-
free and total-infection stationary solutions have negative x coordinates when the immigration and
spontaneous clearance rates are positive. The solid lines are the ẏ-nullclines, and the dotted lines are
the ẋ-nullclines. The partial-infection stationary solution is not present for these parameter values.

the stationary solution is

2π√
d2

4b2 − (b−d)(rb−db−d)
b(r−1−b)

.(3.7)

A sufficient condition for monotone convergence to the partial-infection stationary
solution instead of oscillations is b < r, in which case the convergence rate is governed
by the slowest eigenvalue,

− d

2b
+

√
d2

4b2
+

(b− d) (b r − d− b d)
b (b+ 1 − r)

.(3.8)

3.2. With immigration and spontaneous cure. Including immigration (s >
0) and spontaneous clearance (q > 0) in system (2.7) changes the dynamics of sys-
tem (2.8) in small but important ways (Figure 7). The two ẏ-nullclines are y = 0
and

y =
(
b

r
− 1
)
x+ 1 − d+ q

r
.(3.9)

Spontaneous clearance moves the nullcline given by (3.9) slightly to the left, but
the ẏ-nullclines are basically the same as those of system (2.8). The change in the
ẋ-nullclines is more pronounced. The only ẋ-nullcline in system (2.7) is

y =
s+ x(1 − x)
x+ bx− q

.(3.10)

The ẋ-nullclines have changed from a pair of intersecting lines in system (2.8) to a
hyperbola in system (2.7). The shape of the hyperbola is still the same as those of
system (2.8) except near the intersection point (0, 1 − d/r). The hyperbola is also
shifted slightly down and to the right compared to system (2.8) (Figure 7). For large
positive and negative x, the nullcline is approximately equal to (1−x)/(1+ b). There
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Fig. 8. Plot representing the parameter regions for asymptotic dynamics of system (2.7) with
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line represents the boundary of the parameter region where convergence to the steady state exhibits
damped oscillations. The dotted line represents the bifurcation boundary between partial and total
infection when s = q = 0. However, there is no formal bifurcation between partial and total infection
if s or q is positive because of the structural instability of the transcritical bifurcation in system (2.8).

is a vertical asymptote at x = q/(1 + b). The nullcline is positive just to the right
of this asymptote and negative just to its left. The ẋ-nullcline’s unique y-intercept is
y = −s/q. This implies that there can be no biologically feasible stationary solutions
with x ≤ q/(1 + b); i.e., total hepatocyte loss is no longer a stationary solution
because the model now includes a perpetual source of new hepatocytes. This change
also means that there is no longer a bifurcation between partial and total infection
(see Figure 8).

Two stationary solutions to system (2.7) solve

x2 − x− s = 0 with y = 0.(3.11)

The exact solutions are
(

1 ±
√

1 + 4s
2

, 0
)
.(3.12)

When s is very small, the solutions of (3.11) are approximately

(−s+ o(s), 0) and (1 + s+ o(s), 0).(3.13)

The solution with the negative square root can never appear biologically because it
predicts a negative number of uninfected hepatocytes.

The other two stationary solutions of system (2.7) solve

b (1 + b− r) x2 + [(rb − db− d) + q (r − 1 − 2 b)]x− sr − (r − d− q) q = 0,(3.14a)

with y =
(
b

r
− 1
)
x+ 1 − d+ q

r
.(3.14b)

The solutions can be expressed in terms of radicals, but greater intuition of the ef-
fects of s and q relative to the stationary solutions of system (2.8) can be gained
through perturbation analysis (see Appendix A). When d < min{b, rb/(1 + b)}, the



HCV AND HEPATOCYTE HOMEOSTASIS 1009

one biologically meaningful solution to (3.14) is

(x, y) =

(
q(r − d) + sr

rb − bd− d
+ o(s, q), 1 − d

r
+

(r − b) s
d+ bd− br

−
(
r2 − rd− d

)
q

r (−d− bd+ br)
+ o(s, q)

)
,

(3.15)

corresponding to the total-infection stationary solution of system (2.8) but with a
small number of uninfected cells sustained by the sources s and q. The o(s, q) terms
in (3.16) hide higher order effects in s and q that vanish quadratically or faster as s
and q approach zero. When rb/(1 + b) < d < b,

x =
d+ db − rb

b (1 + b− r)
− rs

rb − d− db
+

(
rb2 + rd − d− 2db− db2

)
b (1 + b− r) (rb − d− db)

q + o(s, q),(3.16a)

y =
b− d

b (1 + b− r)
− s (b − r)
rb − d− db

−
(
b2 − 2 db+ rd− d

)
q

b (1 + b− r) (rb − d− db)
+ o(s, q)(3.16b)

is an approximate solution corresponding to the partial-infection stationary solution
of system (2.8). The other solution of (3.14) is negative.

When b < d < rb/(1 + b), both solutions to (3.14) are positive. Again, this can
occur only when r > 1, i.e., when infected cells proliferate faster than uninfected ones.
Approximate locations are given by (3.15) and (3.16). The bifurcation between zero
and two roots is a saddle-node bifurcation where the root with smaller x value is a
stable node and the root with larger x value is a saddle. The calculation of the exact
condition for bistability when s or q is positive is algebraically opaque, requiring the
solution of a pair of polynomials that are quadratic in d and a test to distinguish
bistability outside the positive quadrant from bistability inside the positive quadrant.
The net effect in system (2.7) of this complexity is a minor perturbation of that found
for system (2.8) (compare Figures 4 and 8). Immigration and spontaneous clearance
shrink the bistable region of parameter space slightly and shift it so that it occurs for
slightly smaller values of d.

The local stability of the stationary solutions to system (2.7) is predicted by the
Jacobian matrix

J =
[
1 − 2x− y − by −x(1 + b) + q

−ry + by r (1 − x− 2y) − d+ bx− q

]
.(3.17)

The disease-free stationary solution loses stability through a transcritical bifurcation
that occurs at detJ = 0. Substituting y = 0 into J, detJ = 0 if x = 1/2 or
(b− r)x = d+ q− r. Using the approximation x = 1 + s+ o(s), we can show that the
disease-free stationary solution is stable when

(1 + s)b < d+ q + rs+ o(s).(3.18)

Local stability of the other stationary solutions to system (2.7) can also be approxi-
mated analytically, but resulting formulas are difficult to interpret.

4. Treatment effects. Treatment effects appear in systems (2.7) and (2.8) only
through a multiplicative factor (1 − θ) reducing the transmission rate b, where θ
is the dimensionless treatment efficacy. Thus, the stationary solution structure of
systems (2.7) and (2.8) under treatment is summarized by replacing the x-axis labels
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Table 4.1

Classification of the dynamics of system (2.7) for b > d, 0 < s � 1, 0 < q � 1. These
classifications are only approximate. Parameter values that fall near the boundaries of any of these
regions may have dynamics that fit multiple classifications. See Figures 9 and 10 for graphical
depictions and example time series.

Pretreatment Pretreatment state Treatment Treatment dynamics

r < d Partial infection
θ < θc Reduced infection
θ > θc Clearance, no treatment delay

d < r < d+
d

b
Partial infection

θ < θc Reduced infection
θ > θc Clearance, weak treatment delay

d+
d

b
< r < d+ 1 Near total infection

θ < θp No effect
θp < θ < θc Reduced infection
θc < θ Clearance, strong treatment delay

d+ 1 < r Near total infection
θ < θp No effect
θp < θ < θc Bistable, no effect
θc < θ Clearance, strong treatment delay
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Fig. 9. The treatment efficacy θ leading to specific dynamics for various transmission rates b,
given d = 0.5, r = 0.9, s = 0, and q = 0. Treatment efficacies below θp have little or no effect on
the number of infected hepatocytes. Treatment efficacies between θc and θp reduce the number of
infected hepatocytes but are not sufficient for complete clearance. Treatment efficacies greater than
θc lead to complete clearance of infection.

in Figures 4 and 8 by (1−θ)b. Taking b to be constant, the outcome of drug treatment
depends on the drug efficacy θ (see Table 4.1 and Figure 9). There is a critical efficacy

θc ≈
{

1 − d+q+rs
(1+s)b if r < d+ 1,

1 − d
(r−d)b if r > d+ 1

(4.1)

such that θ > θc implies that treatment will clear the infection. When r < d + 1,
the critical efficacy θc corresponds to reducing the reproductive number to 1. When
r > d+ 1, the treatment efficacy must be large enough not only to reduce the repro-
ductive number below 1, but also to overcome the local stability of the total-infection
stationary solution in the region of bistability.
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Below the critical efficacy θc, there is also a fuzzy partial-efficacy threshold

θp ≈

⎧⎪⎨
⎪⎩

1 − d+q+rs
(1+s)b if r > d+ 1,

1 − d
(r−d)b if d+ d/b < r < d+ 1,

0 if r < d+ d/b.

(4.2)

The partial-efficacy threshold was derived using the approximate disease-free stability
condition (1 − θ)b(1 + s) < d + q + rs and the approximate bifurcation condition
d = r(1 − θ)b/(1 + (1 − θ)b) between partial and total infection. These conditions
were chosen to correspond approximately to those of system (2.8).

A fuzzy threshold is a weaker form of the standard threshold conditions used
in bifurcation analysis. Thresholds like the critical efficacy threshold θc indicate the
location of a bifurcation or discontinuity of some form. On a given side of the thresh-
old, changes in parameters can be interpreted as continuous smooth changes in the
system. On opposite sides of the threshold, dynamics are qualitatively distinct, and
parameter changes that cross the threshold typically cause nonsmooth and discontin-
uous changes in the system. But in many systems, important differences in dynamics
are not separated by a discontinuity; the system can change in a continuous, smooth
manner between qualitatively different extremes. Since there is no discontinuity in
the system, we cannot define an exact threshold. As a next best recourse, we define a
fuzzy threshold that in some sense separates regions of parameter space with different
dynamics. Unlike standard thresholds, which are uniquely defined by their discon-
tinuity, fuzzy thresholds are not uniquely defined; there are infinitely many fuzzy
thresholds that distinguish well-separated points in parameter space, and points in
the neighborhood of one fuzzy threshold may be classified in any variety of ways by
other fuzzy thresholds. Still, fuzzy thresholds can serve as useful rules of thumb. θp is
a fuzzy threshold because the transition between total infection and partial infection
in system (2.7) does not generally coincide with a bifurcation.

Treatment efficacies between θp and θc can significantly reduce the fraction of hep-
atocytes that are infected but will not clear infection completely. Treatment efficacies
θ < θp do not significantly reduce the fraction of hepatocytes infected (Figure 9).

An important aspect of treatment response is the dynamics of the transition from
the pretreatment state to the posttreatment stationary solution. When treatment
is only partially effective (θp < θ < θc), the dynamics converge to a new partial-
infection stationary solution, and this convergence can be monotone, can overshoot,
and can show damped oscillations, depending on the parameter values. When treat-
ment is above the critical efficacy (θc < θ), infection asymptotically decays at rate
(1− θ)b− d. However, in situations with near-total infection, (r > d+ d/b), there can
be a significant delay before the number of infected hepatocytes begins to decay (see
Figure 10). This delay may be a “strong” delay, where the number of infected hep-
atocytes does not change for an extended period of time after the start of treatment
before decaying exponentially, or a “weak” delay, where the number of infected hepa-
tocytes decays slowly at the start of treatment but then accelerates (Figure 10). The
role of the relative proliferation rate r in treatment response is shown in Figure 11.
These strong and weak delays are important because they may correspond to the
“shoulder phase” observed in HCV viral load time series after the start of treatment
[6].

Why does this delay occur? Suppose that treatment is highly effective (θ > θc).
Biologically, treatment shifts the competitive advantage away from infected to unin-
fected hepatocytes, but there are initially too few uninfected hepatocytes to displace a
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Fig. 10. Time series for system (2.7) with treatment starting at t = 0 for r = 0 (top left), r =
0.3 (top right), and r = 0.6 (bottom). The initial condition is the pretreatment stationary solution.
When the proliferation rate r is small (top left), there is no delay; the number of infected cells (y)
decays at a constant rate from the start of treatment. For intermediate proliferation rates (top right),
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Fig. 11. Classification of treatment-response as a function of θ and r when b > d; q = 0,
s = 0.001, b = 0.9, d = 0.5. Regions are labeled according to the dynamics observed under treatment,
assuming that the dynamics were at equilibrium prior to treatment. In the bistable region, both
the disease-free and total-infection stationary solutions are locally stable under treatment. The
boundaries between the regions of strong delay, weak delay, and no delay are fuzzy in the case of
θ = 1, and the boundaries are even fuzzier for θ < 1. In the sliver between the dotted line and
the solid line defining the bistable region our approximation to td in (4.8) fails because there is no
nearby stationary solution to use for u∗ (see Figure 12). In this sliver, the approximation method
described in Appendix C can be used.

significant portion of the infected hepatocytes. Infected hepatocytes begin to decline
only when the number of uninfected hepatocytes reaches the same order of magnitude.

The rate of recovery depends on some details of the phase-plane geometry. Let’s
consider how the phase plane changes as we increase the efficacy θ when r > d + 1.
While θ < θp the total-infection stationary solution is attracting and the disease-
free stationary solution is a saddle point. As θ increases to between θp and θc, the



HCV AND HEPATOCYTE HOMEOSTASIS 1013

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

u*
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with before treatment, θ = 0 (left) and at the start of treatment, θ = 14/15 (right). The solid dots
represent stationary solutions. The open dot in the right-hand plot corresponds to the attracting
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approximate the treatment delay.

disease-free stationary solution becomes locally stable, but the total-infection station-
ary solution is still stable and attracts orbits from the pretreatment initial condition.
As θ is increased just beyond θ + c, the total-infection stationary solution collides
in a saddle-node bifurcation with the unstable partial-infection stationary solution,
and both solutions disappear. Now, infection will be cleared by treatment. The rate
of clearance is controlled by a bottleneck left in the region of the phase-plane where
the saddle-node bifurcation occurred (see Appendix C). As the efficacy θ increases
further, the bottleneck weakens, but another saddle-node bifurcation occurs in the
second quadrant of the phase-plane. The saddle-node bifurcation introduces a new
saddle-point stationary solution close to the pretreatment initial condition. As the
bottleneck from the first saddle-node bifurcation is relaxed, the unstable manifold
of the new saddle point becomes the primary factor controlling the recovery rate of
uninfected hepatocytes.

The distinctions between a strong delay, a weak delay, and no delay (Figures 10
and 11) are empirically determined ones. When treatment completely prevents new
infections (θ = 1), we observe in numerical solutions strong delays when r > d+ d/b,
weak delays when d+d/b > r > d, but no delays when r < d. However, these are only
observational distinctions, and the classification of delays is less clear for less efficient
treatments.

The existence of a treatment delay is most clean-cut in cases like that of Figure 12,
where almost all hepatocytes are infected before treatment and treatment is highly
effective. We will now describe a method for approximating the dynamics at the start
of treatment and determining the delay, td, before the number of infected hepatocytes
begins to decline in these cases. We can use the linearization of system (2.7) near the
new unstable stationary solution u∗ = (x∗, y∗) (Figure 12) given by the solutions of

0 = (1 − θ)b (1 + (1 − θ)b − r) (x∗)2

+ [(r(1 − θ)b − d(1 − θ)b − d) + q (r − 1 − 2 (1 − θ)b)]x∗ − sr − (r − d− q) q

(4.3a)

with y∗ =
(

(1 − θ)b
r

− 1
)
x∗ + 1 − d+ q

r
(4.3b)

that is nearest to the positive quadrant. In the neighborhood of u∗, the solution of
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system (2.7) is approximately given by

u(t) = u∗ + eJ(u∗)t (u(0) − u∗) ,(4.4)

where u(0) is the pretreatment equilibrium and J(u∗) is the Jacobian matrix at u∗.
The matrix exponential can be conveniently expressed in terms of the Lagrange in-
terpolation formula [33]:

(4.5) eJt =
N∑
n=1

eznt
∏
i�=n

(
J − ziI
zn − zi

)
,

where zn is the nth eigenvalue and I is the identity matrix. When s and q are small,
u∗ = (x∗, y∗) ≈ (0, 1 − d/r) (see Appendix A), so the Jacobian

J(u∗) ≈
[
d
r (1 + (1 − θ)b) − (1 − θ)b 0

((1 − θ)b − r)
(
1 − d

r

)
d− r

]
.(4.6)

The eigenvalues are approximately
d

r
(1 + (1 − θ)b) − (1 − θ)b and d− r.(4.7)

Exact formulas can be obtained using the radical expressions for u∗ = (x∗, y∗).
As the final part of the process of determining the treatment delay td, we have

to identify a condition that marks the end of a treatment delay and agrees with our
intuitive observations. There are many possible choices (see Appendix B for a discus-
sion). We found that the condition x(td) = y(td), corresponding to the point where
the number of uninfected cells equals the number of infected cells, was simple, con-
venient, and robust for calculating td over the strong-delay parameter range. Solving
for td, we find

td =
r

d+ (1 − θ)b(d− r)
log
{

[(r − (1 − θ)b)(r − d) + d](y∗ − x∗)
[2(r − (1 − θ)b)(r − d) + d](x(0) − x∗)

}
.(4.8)

The dimensional delay time is t̂d = td
rT −dT

days. A side-by-side comparison of (4.8) to
the actual value calculated by numerical solution of system (2.7) is shown in Figure 13.
The figure shows that our approximation gives results that are very similar to the
numerical solutions.

If the relative proliferation rate of infected cells r is fixed at a sufficiently large
value (r − d ≥ 1, for example), then the treatment delay increases as the excess
death rate d decreases and the transmission rate b increases (see Figure 14). We see
from Figures 15 and 16 that the treatment delay increases as r increases, until r is
sufficiently large to introduce bistability, corresponding to td → ∞. In the strong-
delay region of Figure 11, the larger the immigration rate s of uninfected hepatocytes,
the shorter the treatment delay because there are more uninfected hepatocytes at the
start of treatment (compare Figures 15 and 16). The effect of spontaneous cure (q)
is similar to that of immigration (s); more spontaneous cure shortens the treatment
delay (Figure 17). The sensitivity to immigration and spontaneous cure decreases as
the relative proliferation rate r of infected hepatocytes decreases.

There is a small range of values of r for which (3.14) has no solutions. For this
region, u∗ does not exist, and our approximation to td fails despite the presence of
a positive but finite delay. The perturbation approximation to td continues to work
for some of this region but also eventually fails for r just below the exact bistability
threshold. Approximation of td in this region can be performed using dynamical
systems theory, as described in Appendix C.
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Fig. 13. Side-by-side comparison of contour plots of the treatment delay td using numerical
solution of system (2.7) (left) and the formula (4.8) derived from the linear approximation (right).
The approximate bound on bistability, r = d+ d

(1−θ)b
, labeled ∞, is the same in both plots. Contour

heights are 10, 20, 100, and ∞. Parameter values d = 0.5, b = 1, s = 10−3, q = 0. θc = 0.5 when
r = 0 in both plots.
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is an upper bound on the region of strong-delay effect.

5. Discussion. Only about 20%–30% of HCV-infected individuals spontaneously
clear the virus during the early phase of infection [44]. According to our model, when
an individual is initially exposed to a small amount of virus, infection cannot be
established unless the disease-free reproductive number is greater than 1. If the re-
productive number is greater than 1, virus will spread among hepatocytes, eventually
infecting some or all of the cells it targets. In addition, viral dynamics during this
phase may be monotone or oscillatory but are expected to converge to a stationary
equilibrium. Homeostatic proliferation of infected cells has only a small effect on the
reproductive number, but diminishes oscillations [4] and increases the proportion of
target hepatocytes infected at steady state. However, the dynamics may be bistable
if the proliferation rate of infected hepatocytes is faster than that of uninfected hep-
atocytes. The HCV kinetics during primary infection, before the adaptive immune
response against HCV is induced, both in humans [18] and chimpanzees [29], has
been observed to be monotone; i.e., after a fast viral increase the virus stabilizes
without observed oscillations in a high viral load steady state. This lack of observed
oscillations supports our hypothesis that homeostatic proliferation of infected cells
exists.
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Fig. 15. Four contour plots of treatment delay td in the strong-delay region of Figure 11,
calculated from (4.8) when hepatocyte immigration is slow. In the parameter region above the ∞-
contour, treatment is not sufficiently effective to overcome the local stability of the infected-cell
population. Below the ∞-contour, treatment successfully clears infection, with the length of the
delay given by the contour values. Parameter values are given at the top of each plot. The left-hand
boundary in each plot corresponds to θ = θc when r = 0.

The typical HCV RNA decay observed during therapy with standard or pegylated
interferon-α alone or in combination with ribavirin is biphasic—characterized by an
initial rapid viral decline (first phase) followed by a slower decay (second phase) [37].
In about 30%–40% of treated patients triphasic viral declines have also been observed
[19, 48, 1, 23]. In some patients (nonresponders) viral loads may not decline. In others,
viral load initially declines (first phase) followed by maintenance of a steady level lower
than baseline (flat partial responders). Here we have mathematically characterized
a model of HCV dynamics [6] that encompasses the observed viral kinetic profiles
under therapy. We speculate that in nonresponders the drug effectiveness, θ, may not
exceed θp (Figure 9), and therefore viral load does not decline under therapy. Flat
partial responders may be explained as a consequence of drug efficacy higher than θp
but lower than the critical drug efficacy θc (Figure 9). Viral clearance occurs when
θ > θc via biphasic or triphasic viral decline when the hepatocyte proliferation rate,
r, is lower or higher than the hepatocyte death rate, d, respectively (system (2.7)
without “cure”; Figure 9).

Using perturbation theory, we showed that a delay can occur between the start
of treatment and the first measurable decline in the number of infected hepatocytes
under efficient therapy (θ > θc) because of the influence of a nearby saddle-node bi-
furcation in the system (Figure 12). Equation (4.8) can be used to approximate the
duration of this delay. In terms of viral dynamics, this delay appears as a shoulder
phase separating the initial decay in viral load at the start of treatment from the
asymptotic clearance phase. One of the conditions for the existence of this delay
between the initial decrease and asymptotic clearance is that the number of infected
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Fig. 16. Four contour plots of treatment delay td in the strong-delay region of Figure 11,
calculated from formula (4.8). Parameter values are stated at the top of each plot. In the parameter
region above the ∞-contour, treatment is not sufficiently effective to overcome the local stability of
the infected-cell population. Below the ∞-contour, treatment successfully clears infection, with the
length of the delay given by the contour values. In these plots, immigration is fast (s = 10−2) and
significantly reduces the delay before treatment reduces the number of infected cells, compared to
Figure 15. The left-hand boundary in each plot corresponds to θ = θc when r = 0.
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Fig. 17. Time series plot of changes in the number of infected cells under treatment with
s = 0.001 (left) and q = 0.001 (right). As the curing of infected cells q is increased from 0 to
1, the treatment delay decreases from 15 to 0 (left). Similarly, treatment delay decreases as the
immigration rate s increases (right). Note that only very large values of s and q significantly affect
the pretreatment state. Parameter values d = 0.3, b = 3, θ = 1, r = 1.

cells is much larger than the number of uninfected cells at the start of therapy. During
therapy the number of uninfected cells increases. Because of density-dependent home-
ostatic processes, the proliferation of infected cells slows as the number of uninfected
cells increases. When this proliferation slows to the point at which it no longer keeps
up with the rate of infected cell loss, the number of infected cells start to decline. The
shoulder persists until the ratio between uninfected cells and infected cells is approx-
imately one. We found that the stopping condition, T/I ≈ 1, for calculating when
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the shoulder phase ends, is simple and robust for calculating td over a large-shoulder
parameter range. Other topping conditions T/I ≈ 1 are discussed in Appendix B.

When using td in the context of the full model (system (2.1)), i.e., calculating
the viral shoulder phase and hence a triphasic viral decay, our formula (4.8) has to
be adjusted. Since interferon-α mainly inhibits viral production, and we assume that
initially the infected cell number remains close to its level before therapy, then the
model (system (2.1)) predicts that viral load will decline from its baseline value, V0,
according to the equation V (t) = V0 (1 − ε+ εe−ct) [37]. This equation for the first
phase of viral decline predicts that at times long compared with 1/c, the average
free virion lifetime in serum, the viral load will decline to (1 − ε)V0 over an interval
of length ln(1 − ε)/c (Figure 2). Therefore, our formula (4.8), which estimates the
length of time since the start of therapy and the beginning of the third phase of decline
(Figure 2(right)) can be adjusted to the actual viral shoulder duration by subtracting
the relaxation time ln(1 − ε)/c from the dimensional form of td.

We have previously predicted, using system (2.1), that the spontaneous curing
(q) of infected cells by a noncytolytic immune response is necessary to prevent a
significant loss of liver cells during acute HCV infection in chimpanzees [5]. Direct
evidence for noncytolytic clearance of HCV from infected cells has not yet been found,
but interferon-α has cured replicon cells [2], and clearance of hepatitis-B-virus-infected
hepatocytes has been shown to occur through noncytolytic mechanisms [16]. In the
context of treatment in chronic-HCV patients, our theory predicts that any shoulder
phase will be shortened by a strong noncytolytic response.

HCV is the only known RNA virus with an exclusively cytoplasmic life cycle
that is associated with cancer [47]. The mechanisms by which it causes cancer are
unclear. It may be that the path to hepatocellular carcinoma in chronic hepatitis
C shares some important features with human papillomavirus-induced carcinogenesis
[17]. Interactions of HCV proteins with key regulators of the cell cycle, e.g., the
retinoblastoma protein [34] and p53 [22], may lead to enhanced cellular proliferation
over uninfected cells and may also compromise multiple cell cycle checkpoints that
act to maintain genomic integrity [11], thus setting the stage for carcinogenesis. In
light of these speculations, the proliferation of HCV-infected cells, rI , may be higher
than proliferation of uninfected cells, rT . Therefore, in this study we also analyzed
this assumption (i.e., rI > rT ). We found that when rI > rT , bistability arises (under
certain parameter values), and imposing rI < rT is sufficient to preclude bistability.
However, more experimental work is needed to test the consistency of this view of
homeostatic proliferation with the behavior of hepatocytes in vivo. Our model makes
some predictions regarding changes in the total hepatocyte numbers over the course of
infection and treatment. Since liver function is correlated with hepatocyte numbers,
the total number of hepatocytes may be an important medical indicator and may
further inform our understanding of HCV.

On a mathematical note, there is as yet no global stability analysis of system (2.1).
Of particular importance, a closer analysis of the quasi-steady-state approximation
is needed. This is emphasized by numerical observations that a Hopf bifurcation of
the partial-infection stationary solution can occur if the viral clearance rate c is not
sufficiently large. Applications and extension of methods from De Leenheer and Smith
[9], De Leenheer and Pilyugin [8], and Korobeinikov [24] may prove useful in further
work.

The analyses presented here not only are important for HCV infection but also
should be relevant for modeling other infections with hepatotropic viruses, such as



HCV AND HEPATOCYTE HOMEOSTASIS 1019

hepatitis B virus. Many mathematical models for the study of hepatitis B virus DNA
kinetics under therapy ignore the proliferation of virus-infected cells [36]. Interest-
ingly, besides the typical biphasic decay in viral load, other kinetic profiles have been
observed, such as triphasic. As our model allows one to predict more complex viral
decay profiles, we hope that it will be useful for understanding complex HCV and
HBV kinetics under therapy [7].

Appendix A. Perturbation approximations. Regular perturbation methods
can be used to approximate the stationary solutions of system (2.7) in the limits of
small s and q, based on the polynomials in (3.11) and (3.14a). Equation (3.11) is
independent of q, so let x = x0 + sxs + o(s). Substituting into (3.11), (x0 + sxs)2 −
(x0 + sxs) = s. Collecting like terms,

x0(x0 − 1) − (1 − 2x0xs + xs)s+ o(s) = 0.(A.1)

From the zeroth-order term in s, x0 ∈ {0, 1}, and to first order, xs = 1
2x0−1 . Thus,

the two corresponding stationary solutions for small s and q are

(−s+ o(s), 0) and (1 + s+ o(s), 0).(A.2)

Equation (3.14a) depends on both s and q, so let x = x0 + sxs + qxq + o(s, q).
Substituting into (3.14a) and collecting like terms,

(A.3) 0 = b(1 + b− r)x2
0 + (rb − db− d)x0

− (−xsrb + xsdb+ xsd− 2bx0xs − 2b2x0xs + 2bx0xsr + r)s
− (−bxqr + xqdb+ xqd− x0r + x0 + 2x0b− 2(1 + b+ r)bx0xq + r − d)q.

To highest order,

x0 ∈
{

0,
d+ db− rb

b(1 + b− r)

}
.(A.4)

The first-order corrections in s and q are

xs =
r

2x0b+ 2b2x0 − 2bx0r − d− bd+ br
,(A.5a)

xq =
r − x0r + x0 + 2x0b− d

2x0b+ 2b2x0 − 2bx0r − d− bd+ br
.(A.5b)

Equation (3.14b) can then be used to determine y. In the special case of x0 = 0,
the stationary solution is given by (3.15). This can be used to approximate both
the pretreatment and posttreatment (substituting (1− θ)b for b) stationary solutions
when applying (4.8).

Appendix B. Choosing a treatment delay threshold. Using (4.4), we
can approximate the delay, td, before the number of infected hepatocytes begins to
decline. But to do this, we have to find a quantitative rule for determining the end of
the treatment delay. One way to do this is to choose a line, represented by a vector
k and a constant k0, such that the shoulder ends when the approximate solution
intersects this line. Thus, td is defined such that

kTu(td) = k0.(B.1)
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Table B.1

Possible stopping condition choices for calculation of td.

Description k k0 Comment
Upper bound [1, 1] 1 u(t) may not intersect
x(t) = y(t) [1,−1] 0 u(t) may not intersect
90% threshold [0, 1] .9 (1 − d/r) u(t) may not intersect

Uninfected cells only [1, 0]
d

r
td → 0 as d→ 0, although the delay may not

Uninfected cells only [1, 0] .1 May not correspond to the full delay

Since we are concerned only with the divergence from steady state, we can ignore the
stable mode of (4.4), and then (B.1) leads to the formula

td =
r

d+ (1 − θ)b(d− r)
log
{

[(r − (1 − θ)b)(r − d) + d](k1u∗
1 + k2u∗

2 − k0)
[(k1 − k2)(r − (1 − θ)b)(r − d) + k1d](u∗

1 − u1(0))

}
.

(B.2)

Several choices for k and k0 are summarized in Table B.1, along with their draw-
backs. The unstable manifold of u∗ has the initial direction

[
d− (r − d)((1 − θ)b− r), (r − d)((1 − θ)b − r)

]
.(B.3)

If we constrain the application of (B.2) to the region of Figure 11 where θ > θc and
r > d, we can show that the choice of k = [1,−1], k0 = 0 always gives a solution for
td. This is because the first component of the eigenvector is positive and the second
is negative, ensuring that the orbit approximated by a line in the direction of the
eigenvector will always intersect the line y = x. Numerical evidence indicates that
this choice is reasonably consistent with the qualitative character of delays, and we
will use it throughout this paper. However, it underestimates the delay time in cases
where r−d is small. In such situations, k = [1, 1], k0 = 1 gives better approximations
to td.

Appendix C. Bottle neck calculations. When the growth rate r is slightly
smaller than the critical value r∗ that introduces bistability (Figure 11), (4.4) cannot
be used to estimate the treatment delay td because there is no nearby equilibrium
around which we can linearize. However, we can still approximate the treatment delay
by transforming the system near the bifurcation point into normal form [15]. The
normal form of a generic saddle-node bifurcation satisfies the first-order differential
equation

u̇ = a0(r∗ − r) + a2u
2,(C.1)

where r is the bifurcation parameter and r = r∗ is the bifurcation point with a0 > 0
and a2 
= 0. Using elementary integration methods, we can show that for r ≈ r∗ the
time it takes for a solution to pass from a negative initial position to a positive final
position, both far from the origin, is approximately given by

td ≈
√
π2/[a0a2(r∗ − r)].(C.2)

As r is increased toward r∗, the time becomes longer. If r > r∗, the time is infinite
because solutions are trapped by an intermediate attracting state. For this HCV
model, our task to calculate r∗, a0, and a2 by transforming system (2.7) into normal-
form near the saddle-node bifurcation that introduces bistability.



HCV AND HEPATOCYTE HOMEOSTASIS 1021

We can determine the bifurcation point r∗ by setting the discriminant of x in
(3.14a) (with transmission rate (1 − θ)b instead of b) equal to zero. The result is
a quadratic polynomial for r∗, where the smaller solution corresponds to a saddle-
node bifurcation for nonbiological values of x, and the larger solution corresponds to
bifurcation which is biologically important.

Once r∗ is known, we calculate the feasible nonhyperbolic equilibrium solution
(x∗(r∗), y∗(r∗)) using (3.14) and transform system (2.7) using a change of variables
of the form

x = x∗ +Mxuu+Mxvv +Mxr(r − r∗),(C.3a)
y = y∗ +Myuu+Myvv +Myr(r − r∗)(C.3b)

such that locally the system has the form

u̇ = a0(r∗ − r) + a2u
2 + o(r∗ − r, u2) +O(v),(C.4a)

v̇ = −a3v + o(v),(C.4b)

where a0 and a2 satisfy the conditions given above and a3 > 0. This transformation
can be performed using the eigenvalue decomposition of the Jacobian at the equilib-
rium point and then choosing Mxr and Myr to eliminate extra terms in u̇ and v̇. The
O(v) terms are neglected because v converges to 0 exponentially near the bifurcation.
The procedure is easily implemented numerically, but we have not produced a simple
analytic formula for the result.

Acknowledgments. T. Reluga thanks A. Zilman for helpful discussion concern-
ing the calculations in Appendix C.
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Abstract. We consider the inverse scattering problem of determining the shape and the material
properties of a thin dielectric infinite cylinder having an open arc as cross section from knowledge of
the TM-polarized scattered electromagnetic field at a fixed frequency. We investigate two reconstruc-
tion approaches, namely the linear sampling method and the reciprocity gap functional method, using
far field or near field data, respectively. Numerical examples are given showing the efficaciousness of
our algorithms.
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1. Introduction. Important problems in nondestructive evaluation include the
detection of flaws in materials in specific (typically thin) areas, as well as the deter-
mination of the integrity of thin coatings. We refer the reader to the special issue of
Inverse Problems [22] for a detailed account on different approaches to these problems
using electromagnetic waves. In particular, considerable work has been done on inver-
sion schemes using eddy-current approximation measurements to detect the presence
of thin anomalies [3], [13], [29]. In related work [4], [24], the authors use electrostatic
and electromagnetic measurements, respectively, to detect the shape of a thin target.
In addition to the shape, it is of course desirable to obtain information on the material
properties of the target. In this paper we show the applicability of qualitative methods
in inverse scattering [7] to these problems. In particular, we investigate the inverse
problem of using far field or near field time harmonic electromagnetic measurements
to determine the shape and information about the thickness and physical properties
of a thin dielectric film embedded in a known inhomogeneous background. Such prob-
lems arise in the study of optical devices in communication networks [27] (typical
structures of this type can be found in [14]) or in the detection of thin air pockets in-
side structures [29]. In this work we assume that the obstacle is a thin dielectric right
cylinder whose properties depend only on the cross section of the cylinder and that
the incident electromagnetic field is E-polarized. After factoring out the term e−iωt,
where ω is the fixed frequency, the only nonzero component u of the total electric field
satisfies the Helmholtz equation

Δu+ k2n(x)u = 0

in the exterior of the cylinder, where the complex valued function n(x) is the index
of refraction of the background medium which satisfies Ren > 0 and Imn ≥ 0.
Difficulties arise in computing the total field inside the thin dielectric obstacle due to
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the fact that the index of refraction and the thickness of the obstacle are of different
scales. The direct scattering problem for a thin dielectric structure was studied in
[1] and [27] where a perturbation approach was used to approximate the solution by
solving a sequence of integral equations. Alternatively, based on asymptotic analysis
with respect to the thickness of the obstacle (see [16]), a first approximate model
of the wave propagation inside the obstacle is to replace the obstacle by an infinite
cylinder having an open arc in R2 as its cross section and the interior field by an
appropriate boundary condition on the arc. Both the perturbation method and the
arc approximation model are based on asymptotic analysis of the exact model with
respect to the thickness, and they therefore compute an approximation to the total
field. The error analysis of the forward problem for the perturbation technique can be
found in [1] and [27], and for the arc approximation model in [16].

Our analysis of the inverse problem uses the arc approximation model. Note that
the physical properties and the thickness of the thin dielectric obstacle appear now as
a boundary coefficient. We remark that this model is well suited to our inversion algo-
rithm, especially since the noniterative inversion methods such as the linear sampling
method and the reciprocity gap functional method are able to reconstruct boundary
coefficients in addition to the support. More specifically, let h be the thickness and
Γ the cross section of the mean surface of the dielectric medium. Assuming that the
interior magnetic field is approximated up to O(h) error, whereas the interior electric
field is approximated up to O(h2) error, the following boundary conditions on the
open arc Γ are obtained for the component u of the total electric field [15]:

[
∂u

∂ν

]
= 0 and [u] − iλ

∂u+

∂ν
= 0 on Γ,

where u±(x) = limh→0+ u(x ± hν) and ∂u±

∂ν (x) = limh→0+ ν · ∇u(x ± hν) for x ∈ Γ,
[u] := u+ − u− and

[
∂u
∂ν

]
:= ∂u+

∂ν − ∂u−

∂ν are the respective jumps across Γ, and the
dimensionless positive valued function λ > λ0 > 0 involves electric permittivity and
magnetic permeability of the dielectric medium and the background as well as the
thickness h and frequency ω. Note that the above condition can fail at the tips of
the crack. Here we assume that Γ ⊂ R2 is a simple piecewise smooth arc, i.e., Γ =
{ρ(s) : s ∈ [s0, s1]}, where the mapping ρ : [s0, s1] → R2 is one-to-one, continuous,
and piecewise smooth. The normal vector ν pointing to the right side of Γ is defined
everywhere except at a finite number of points on Γ.

Hence we arrive at the following boundary value problem for the scattered field
us due to an incident field ui scattered by the crack Γ:

Δus + k2n(x)us = 0 in R
2 \ Γ,(1.1) [

∂(us + ui)
∂ν

]
= 0 on Γ,(1.2)

[
(us + ui)

]
− iλ

∂(us + ui)+

∂ν
= 0 on Γ,(1.3)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,(1.4)

where the Sommerfeld radiation condition (1.4) is satisfied uniformly in x̂ = x/|x| with
r = |x|. Here we assume that, in general, the positive index of refraction n(x) > 0 for
the background medium satisfies n(x) = 1 outside a large ball containing the crack
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and k is the wave number in the air. In this study the incident field can be a plane
wave or the field generated by a point source, and this will become precise later.

The main concern of this paper is to solve the inverse problem of determining the
shape Γ and some information on λ from measured far field or near field scattered
data. In order to develop the mathematical tools to study the inverse problem, in the
next section we investigate the well-posedness of the direct scattering problem (1.1)–
(1.4). We apply a boundary integral equation method to obtain a Fredholm first kind
integral equation on Γ for the scattered field. In section 3 we formulate and solve
the inverse scattering problem using far field scattering data due to plane waves as
incident fields. For simplicity in this section we assume that the crack is embedded
in a homogeneous background; i.e., n = 1 everywhere. We apply the linear sampling
method, which was first introduced in [6] for the case of an obstacle with empty interior,
to determine the shape of the crack. After the reconstruction of Γ (without making
a priori use of the boundary condition) we use the solution of the far field equation
to reconstruct λ as well. For information on other solution methods for the inverse
scattering problem for Dirichlet or Neumann cracks from far field data, we refer the
reader to [2], [17], [18], and [21]. In section 4 we consider the case when the crack is
embedded in a known inhomogeneous background and the data is the scattered field
measured on a closed curve surrounding the crack due to a point source as incident
field. We modify the reciprocity gap functional method which up to now has been
developed only for obstacles with nonempty interior [8], [12]. The last section of this
paper is dedicated to numerical implementation with examples of both algorithms for
solving the inverse problem. We note that the solution of the inverse problem in both
cases is based on solving an ill-posed linear equation whose right-hand side involves
normal derivatives with respect to the unknown crack. We propose a new approach
to deal with this difficulty which was left as an open question in [6].

2. The solution of the direct scattering problem. In order to formulate the
above scattering problems more precisely we need to properly define the trace spaces
on Γ. To this end we extend the arc Γ to an arbitrary piecewise smooth, simply
connected, closed curve ∂D enclosing a bounded domain D such that the normal
vector ν on Γ coincides with the outward normal vector on ∂D, which we again
denote by ν. The classical reference for the trace spaces is [23], and the notation
there is different from those in [25]. However, in this work we use the notation in [25],
because this is our main reference for the potential theory needed here. If H1

loc(R
2),

L2(∂D), H
1
2 (∂D), and H− 1

2 (∂D) denote the usual Sobolev spaces, we define the
following spaces:

L2(Γ) := {u|Γ : u ∈ L2(∂D)},
H

1
2 (Γ) := {u|Γ : u ∈ H

1
2 (∂D)},

H̃
1
2 (Γ) := {u ∈ H

1
2 (Γ) : suppu ⊆ Γ}.

In other words, H̃
1
2 (Γ) contains functions u ∈ H

1
2 (Γ) such that their extension by

zero to the whole boundary ∂D is in H
1
2 (∂D) (Theorem 3.33 in [25]). (For the reader’s

convenience we remark that H̃
1
2 (Γ) coincides with the space H

1
2
00(Γ) introduced by

Lions and Magenes (see [23, p. 66]).) Now we denote by H− 1
2 (Γ) the dual space of

H̃
1
2 (Γ) and by H̃− 1

2 (Γ) the dual space of H
1
2 (Γ). Hence we have the chain

D(Γ) ⊂ H̃
1
2 (Γ) ⊂ H

1
2 (Γ) ⊂ L2(Γ) ⊂ H̃− 1

2 (Γ) ⊂ H− 1
2 (Γ) ⊂ D′(Γ),
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where D(Γ) := C∞
0 (Γ). We note that H̃− 1

2 (Γ) can also be identified with H− 1
2

Γ
(∂D) :=

{u ∈ H− 1
2 (∂D) : suppu ⊂ Γ} (see Theorem 3.29 in [25]).

The scattering problem (1.1)–(1.4) is a particular case of the following boundary
value problem: Let n(x) be a piecewise smooth complex valued function with piecewise
continuous jump discontinuities such that Ren > 0, Imn ≥ 0, and n(x) = 1 outside
a large enough ball, whereas λ is a piecewise smooth function on Γ such that λ(x) >
λ0 > 0. Given f ∈ H− 1

2 (Γ) and h ∈ H− 1
2 (Γ), find v ∈ H1

loc(R
2 \ Γ) satisfying

Δv + k2n(x)v = 0 in R
2 \ Γ,(2.1) [

∂v

∂ν

]
= f on Γ,(2.2)

[v] − iλ
∂v+

∂ν
= h on Γ,(2.3)

lim
r→∞

√
r

(
∂v

∂r
− ikv

)
= 0.(2.4)

Theorem 2.1. The problem (2.1)–(2.4) has at most one solution.
Proof. Denote by BR a sufficiently large ball with radius R containing D and

by ∂BR its boundary. Let v be a solution of (2.1)–(2.4) with f = h = 0. Obviously
v ∈ H1(BR \D) ∪H1(D) satisfies the Helmholtz equation in BR \D and D and the
following transmission conditions on the complementary part ∂D \ Γ of ∂D:

(2.5) v+ = v− and
∂v+

∂ν
=
∂v−

∂ν
on ∂D \ Γ,

where the + denotes the limit approaching ∂D from inside D and − the limit ap-
proaching ∂D from outside of D. An application of Green’s formula for u and u in D
and BR \D and using the transmission conditions (2.5) yields

∫
∂BR

v
∂v̄

∂ν
dx =

∫
BR\D̄

|∇v|2 dx+
∫
D

|∇v|2 dx− k2

∫
BR\D̄

n |v|2 dx

− k2

∫
D

n |v|2 dx+
∫

Γ

[v]
∂v̄

∂ν
dx.

Using the boundary conditions (2.2)–(2.3), we now obtain∫
∂BR

v
∂v̄

∂ν
dx =

∫
BR\D̄

|∇v|2 dx+
∫
D

|∇v|2 dx− k2

∫
BR\D̄

n |v|2 dx

− k2

∫
D

n |v|2 dx+ i

∫
Γ

λ

∣∣∣∣∂v∂ν
∣∣∣∣
2

dx.(2.6)

Since λ > 0 and Imn ≤ 0, we conclude that

Im
(∫

∂BR

v
∂v̄

∂ν
dx

)
≥ 0,

whence from [10, Theorem 2.12] and a unique continuation argument we obtain that
v = 0 in R2 \ Γ.

Theorem 2.2. The problem (2.1)–(2.4) has a unique solution v which satisfies

(2.7) ‖v‖H1(BR\Γ) ≤ C
(
‖f‖

H− 1
2 (Γ)

+ ‖h‖
H− 1

2 (Γ)

)
, x ∈ R

2 \ Γ,
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where the positive constant C depends on R but not on f and h.
Proof. First we note that if v ∈ H1

loc(R
2 \ Γ) is a solution to (2.1)–(2.4), then

[v] ∈ H
1
2 (∂D) and

[
∂v
∂ν

]
∈ H− 1

2 (∂D). Now by local regularity for solutions of the
Helmholtz equation we have that v ∈ C∞ away from Γ, whence [v] =

[
∂v
∂ν

]
= 0 on

∂D \ Γ. Therefore [v] ∈ H̃
1
2 (Γ) and

[
∂v
∂ν

]
∈ H̃− 1

2 (Γ). Let G(x, y) be the radiating
Green function of the background medium that satisfies

(2.8) ΔG(x, y) + k2n(x)G(x, y) = δ(x− y).

From the Green representation formula (see [25]) we have
(2.9)

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
∂D

∂v+(y)
∂νy

G(x, y)dsy −
∫
∂D

v+(y)
∂

∂νy
G(x, y)dsy , x ∈ D,

−
∫
∂D

∂v−(y)
∂νy

G(x, y)dsy +
∫
∂D

v−(y)
∂

∂νy
G(x, y)dsy , x ∈ R2 \D,

where D is the region bounded by the extension ∂D of Γ, and the + sign denotes
the limit approaching ∂D from inside D whereas − denotes the limit approaching ∂D
from outside of D. Using the jump relations of the single- and double-layer potentials
across the boundary ∂D [25], eliminating the integrals over ∂D \ Γ, and using the
boundary conditions (2.2)–(2.3), we obtain that the jump [v] satisfies

(2.10)
(
i

λ
I + TΓ

)
[v] =

i

λ
h+

(
K ′

Γ − I

2

)
f,

where the operators K
′

Γ : H̃−1/2 (Γ) → H−1/2 (Γ) and TΓ : H̃1/2 (Γ) → H−1/2 (Γ) are
defined by

(K ′
Γψ) (x) :=

∫
Γ

ψ (y)
∂

∂νx
G (x, y) dsy for x ∈ Γ,

(TΓψ) (x) :=
∂

∂νx

∫
Γ

ψ (y)
∂

∂νy
G (x, y) dsy for x ∈ Γ,

respectively. If (2.10) can be solved for [v], then from the boundary conditions we
know ∂v+/∂ν and ∂v−/∂ν. Furthermore, it is easy to see that

(2.11)
1
2
(v+ + v−) = −SΓ

[
∂u

∂ν

]
+KΓ [u] on Γ,

where now SΓ : H̃−1/2 (Γ) → H1/2 (Γ) is defined by

(SΓψ) (x) :=
∫

Γ

ψ (y) G (x, y) dsy for x ∈ Γ.

Hence the knowledge of [v] = v+ − v− and (2.11) determines v+ and v− on Γ and
therefore the solution v from the Green representation formula (2.9). To solve (2.10)
we observe that I : H̃1/2 (Γ) → H−1/2 (Γ) is a compact operator due to Rellich’s
embedding theorem and that T can be written as a sum of a coercive operator and
a compact operator (see Theorems 7.8 and 7.10 in [25]). Hence, since λ(x) > λ0 > 0,
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we conclude that ( iλI + TΓ) : H̃1/2 (Γ) → H−1/2 (Γ) is a Fredholm operator of index
zero. Therefore, it suffices to prove only the injectivity of i

λI + TΓ. To this end let
ξ ∈ H̃1/2(Γ) satisfy

(
i

λ
I + TΓ

)
ξ = 0,

and define the following potential:

(2.12) w(x) =
∫

Γ

ξ(y)
∂

∂νy
G(x, y)dsy for x ∈ R

2 \ Γ.

Approaching Γ and using the jump relations for the double layer potential, we obtain

∂w+

∂ν
=

∂

∂νx

∫
Γ

ξ(y)
∂

∂νy
G(x, y)dsy = TΓ(ξ),

[w] = ξ and
[
∂w

∂ν

]
= 0.

Hence we have

[w] − iλ
∂w+

∂ν
= ξ − iλTΓξ = −iλ

(
i

λ
I + TΓ

)
ξ = 0.

Therefore w defined by (2.12) satisfies (2.1)–(2.4) with f = h = 0, and from Theorem
2.1, w = 0 in R2 \ Γ, which finally implies [w] = ξ = 0. This ends the proof.

3. Reconstruction of the crack from far field data. In this section we
assume that the thin dielectric film is embedded in a homogeneous background and
the measurements are made from far away. In addition, we assume that the incident
field is a time harmonic plane wave given by ui := eikx·d for x ∈ R2, where the
unit vector d ∈ S := {x ∈ R2 : |x| = 1} is the incident direction. In this setting
the scattered field us satisfies (2.1)–(2.4) with n(x) = 1, f := −

[
∂eikx·d

∂ν

]
= 0, and

h := −
[
eikx·d

]
+ iλ∂e

ikx·d

∂ν = iλ∂e
ikx·d

∂ν . Note that G(x, y) is now the fundamental
solution of the Helmholtz equation Φ(x, y) := i

4H
(1)
0 (k|x − y|) with H

(1)
0 being the

Hankel function of the first kind of order zero. It is shown in [10] that the scattered
field, which now depends also on d, has the asymptotic behavior

(3.1) us(x) =
eikr√
r
u∞(x̂, d) +O(r−3/2),

where u∞ is the far field pattern of the scattered wave us, x̂ = x/|x|, and r = |x|.
The inverse scattering problem that we will consider in this section of our paper

is to determine Γ and λ from a knowledge of u∞(x̂, d) for x̂ and d on the unit circle
S. Using [5], one can easily generalize the following analysis for the case of limited
aperture data, i.e., for x̂, d ∈ S0 ⊂ S. For the unique determination of Γ and λ
from the above data, see [28] (see also [7], [10]). We will use the linear sampling
method to solve this inverse problem [6]. To this end, we define the far field operator
F : L2(S) → L2(S) by

(3.2) (Fg)(x̂) :=
∫
S

u∞(x̂, d)g(d) ds(d)
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and consider the far field equation

(3.3) Fg = Φe∞,

where Φe∞ is the far field pattern of a suitable solution (to be defined later) to the
scattering problem. The aim is to characterize the crack Γ by the behavior of an
approximate solution g of the far field equation (3.3). We recall that a Herglotz wave
function is a solution of the Helmholtz equation in R2 of the form

(3.4) vg(x) :=
∫
S

g(d)eikx·dds(d),

where g ∈ L2(S) is the kernel of vg. By superposition we have the following relation:

(Fg) = B(iλHg),

where H : L2(S) → H− 1
2 (Γ) is defined by

(3.5) Hg :=
∂vg
∂ν

and B : H− 1
2 (Γ) → L2(S) takes h ∈ H− 1

2 (Γ) to the far field pattern u∞ of the solution
to (2.1)–(2.4) with n(x) = 1, f := 0, and h. For β ∈ H̃

1
2 (Γ) we construct the double

layer potential

D(β)(x) :=
∫

Γ

β(y)
∂

∂νy
Φ(x, y)ds(y),

which has as far field pattern γFβ, where

Fβ :=
∫

Γ

β(y)
∂e−ikx̂·y

∂νy
ds(y)

and γ = eiπ/4
√

8πk
. The calculation

∫
S

g(ŷ)
∫

Γ

β(x)
∂

∂ν
e−ikx·ŷds(x)d(ŷ) =

∫
Γ

β(x)
∫
S

g(ŷ)
∂

∂ν
e−ikx·ŷds(ŷ)ds(x)

shows that Hg(−ŷ) is the transpose of Fβ in the duality pairing between H̃
1
2 (Γ),

H− 1
2 (Γ) and L2(S), L2(S), respectively, where H : L2(S) → H− 1

2 (Γ) and F :
H̃

1
2 (Γ) → L2(S).

Lemma 3.1. The compact operators F : H̃
1
2 (Γ) → L2(S) and H : L2(S) →

H− 1
2 (Γ) are injective and have dense range, provided that there does not exist a

nontrivial Herglotz wave function such that its normal derivative vanishes on Γ.
Proof. From the above and Lemma 2.10 in [25] it suffices to show that both F

and H are injective operators. To this end, if F(β) = 0, then Dβ = 0 in R2 \Γ, which
implies β := −[Dβ] = 0 from the jump relation. Next, the assumption of the theorem
guarantees that H is also injective. Note that injectivity of F and consequently the
denseness of the range of H do not require the assumption stated in the lemma.

We remark that, from the above, the far field operator fails to be injective and
have dense range if Γ is such that there exists a nontrivial Herglotz wave function
with vanishing normal derivative on Γ. An instance of this situation is if Γ is part
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of a circle of radius r such that kr is a zero of J1 Bessel function. It is interesting
to notice that in the case of the exact model (namely, the obstacle D is a region with
nonempty interior), the far field operator fails to be injective and have dense range
if the wave number k is a transmission eigenvalue for D with eigenfunction being
a Herglotz function (for details on transmission eigenvalues, see [7]). (Note that the
injectivity and the denseness of the range of the far field operator are typically needed
in most of the inversion schemes in order to use Tikhonov regularization technique.)

From the above analysis and the jump relations applied to the double layer po-
tential D we see that

Fβ = γ−1B (I − iλTΓ)β,

which implies the following factorization of the far field operator:

(3.6) Fg = γF (I − iλTΓ)−1 (iλHg) , g ∈ L2(S).

Lemma 3.2. For any simple piecewise smooth arc L and βL ∈ H̃
1
2 (L) we define

ΦL∞ ∈ L2(S) by

(3.7) ΦL∞(x̂) :=
∫
L

βL(y)
∂

∂νy
e−ikx̂·ydsy.

Then ΦL∞(x̂) ∈ Range(F) if and only if L ⊂ Γ.
Proof. First assume that L ⊂ Γ. Then since H̃

1
2 (L) ⊂ H̃

1
2 (Γ) it follows directly

from the definition of F that ΦL∞(x̂) ∈ Range(F).
Now let L �⊂Γ and assume, on the contrary, that ΦL∞(x̂) ∈ Range(F); i.e., there

exists β ∈ H̃
1
2 (Γ) such that

ΦL∞(x̂) =
∫

Γ

β(y)
∂

∂νy
e−ikx̂·ydsy.

Hence by Rellich’s lemma and the unique continuation principle we have that the
potentials

ΦL(x) =
∫
L

βL(y)
∂

∂νy
Φ(x, y)dsy and D(x) =

∫
Γ

β(y)
∂

∂νy
Φ(x, y)dsy

coincide in R
2 \ (Γ ∪ L). Now let x0 ∈ L, x0 /∈ Γ, and let Bε(x0) be a small ball with

center at x0 such that Bε(x0)∩ Γ = ∅. Hence D is analytic in Bε(x0), while ΦL has a
singularity at x0, which is a contradiction. This proves the lemma.

Now using Lemma 3.2, the regularization theory for Fβ = ΦL∞, and the fact that
(iλTΓ − I)β can be approximated by iλHg in H− 1

2 (Γ), we have the following result
for the solution of the far field equation:

(3.8) (Fg)(x̂) = γΦL∞(x̂), x̂ ∈ S,

which is the basis of the linear sampling method for reconstructing Γ (cf. Theorem
8.45 of [6]).

Theorem 3.3. Assume that Γ is a simple piecewise smooth arc and that there does
not exist any nontrivial Herglotz wave function having vanishing normal derivative on
Γ. Then if F is the far field operator corresponding to (2.1)–(2.4) with n(x) = 1,
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f := 0, and h := iλ∂e
ikx·d

∂ν , the following are true:
1. If L ⊂ Γ, then for every ε > 0 there exists a solution gLε ∈ L2(S) of the

inequality

‖FgLε − γΦL∞‖L2(S) < ε

such that HgL
ε

converges to a well-defined function in H− 1
2 (Γ).

2. If L �⊂Γ, then for every ε > 0 all gLε ∈ L2(S) satisfying

‖FgLε − γΦL∞‖L2(S) < ε

are such that

lim
ε→0

‖gLε ‖L2(S) = ∞ and lim
ε→0

‖HgL
ε
‖
H− 1

2 (Γ)
= ∞,

where HgL
ε

is defined by (3.5) with vgL
ε

being the Herglotz wave function with
kernel gLε .

Remark 3.1. From the above analysis we notice that, for L ⊂ Γ, iλHgL
ε

approx-
imates (I − iλTΓ)βL, where gLε is the approximate solution of (3.8). In particular, in
the H− 1

2 (Γ)-norm we have

(3.9)
∂vgL

ε

∂ν
≈ iβL

λ
− TΓβL, L ⊂ Γ and βL ∈ C∞

0 (L),

which can be used to recover λ, provided that (a reconstruction of) Γ is now known
(e.g., by using the linear sampling method based on Theorem 3.3).

4. Reconstruction of the crack from near field data. We now assume that
the dielectric thin film is embedded in a known inhomogeneous medium with index of
refraction n(x) that satisfies the assumptions stated in section 2. The incident field is
a point source given by Φ(x, x0, ks) := i

4H
(1)
0 (ks|x−x0|) located at a point x0 outside

a bounded region Ω surrounding the crack and k2
s = k2n(x0) (see Figure 4.1). In this

case the scattered field us satisfies (2.1)–(2.4) with f := −
[∂Φ(·,x0,ks)

∂ν

]
= 0 and h :=

− [Φ(·, x0, ks)] + iλ∂Φ(·,x0,ks)
∂ν = iλ∂Φ(·,x0,ks)

∂ν . Note that us is the sum of the scattered
field due to the crack and the scattered field due to the medium. Let u(·, x0) =
us(·, x0) + Φ(·, x0, ks) denote the total field, let Λ be a closed curve containing Ω,
and suppose that in a neighborhood of Λ the index of refraction n(x) is constant and
k2n = k2

s . Note that Λ can be part of a closed analytic curve, and by an analycity
argument the following analysis holds true as well. For technical reasons we write
u(·, x0) = usc(·, x0) + G(·, x0), where usc(·, x0) is the scattered field due to the crack
and G(·, x0) is the total field due to the medium or the background Green’s function
satisfying (2.8).

Ω

Γ

Point source

z
Λ��

��
��

��
��
��

n(x)

Fig. 4.1. Geometry for the reciprocity gap functional method.
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The inverse scattering problem we are interested in now is to determine the crack
Γ from a knowledge of u(·, x0) and ∂u(·,x0)

∂ν on the boundary ∂Ω for all point sources
located at any x0 ∈ Λ. These measurements in the case of Maxwell’s equations corre-
spond to measuring the tangential components of the electric and magnetic fields. To
solve this inverse scattering problem we adapt the reciprocity gap functional method
first introduced [12] for obstacles with nonempty interior. To this end, let

H(Ω) :=
{
w ∈ H1(Ω) : Δw + k2n(x)w = 0 in Ω

}
.

In a similar way as in Lemma 3.1 (see also the proof of Lemma 4.4 in [8]) it can be
shown that the set

(4.1)
{

(Sϕ)(y) :=
∫

Σ

ϕ(x)Φ(x, y) dsx for ϕ ∈ L2(Σ)
}

is dense in H(Ω), where Σ is a open curve outside Ω and Φ(x, y) is the radiating
fundamental solution of Δu+k2ñ(x)u = 0, where ñ(x) = n(x) for x ∈ Ω and ñ(x) = 1
for x ∈ R2 \ Ω (or any other convenient extension). In particular, if n(x) = n0 is
constant in Ω, then Φ(x, y) is simply i

4H
(1)
0 (k

√
n0|x− x0|).

We define the reciprocity gap operator R : H(Ω) → L2(Λ) by

(4.2) R(w)(x0) =
∫
∂Ω

(
u(·, x0)

∂w

∂ν
− w

∂u(·, x0)
∂ν

)
ds, x0 ∈ Λ, w ∈ H(Ω).

Theorem 4.1. The compact operator R : H(Ω) → L2(Λ) is injective and has
dense range, provided that there does not exist any w ∈ H(Ω) such that ∂w/∂ν = 0
on Γ.

Proof. If R(w) = 0, applying Green’s second identity and using the zero boundary
condition for u(·, x0), it is easy to see that

0 = R(w)(x0) = −i
∫

Γ

λ
∂u(·, x0)
∂ν

∂w

∂ν
ds.

Noting that from the boundary condition λ∂u(·, x0)/∂ν ∈ H̃
1
2 (Γ) it suffices to show

that λ∂u(·, x0)/∂ν for x0 ∈ Λ are dense in H̃
1
2 (Γ). Indeed, this fact implies that

∂w/∂ν = 0, which contradicts the assumption of the theorem. To prove the denseness
property let ψ ∈ H− 1

2 (Γ) such that

0 =
∫

Γ

λ(x)ψ(x)
∂u(x, x0)

∂ν
dsx for all x0 ∈ Λ,

where the integral is understood in the sense of duality pairing, and let w ∈ H1(R2\Γ)
be the solution of (2.1)–(2.4) with f := 0 and h := λψ. Applying Green’s second
identity to w and usc (note that both satisfy Δu + k2nu = 0 outside Γ) and the
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boundary condition for u(·, x0), we obtain that

0 =
∫

Γ

λ(x)ψ(x)
∂u(x, x0)

∂ν
dsx =

∫
Γ

(
[w] − iλ

∂w

∂ν

)
∂ (usc + G(·, x0))

∂ν
ds

=
∫

Γ

(
[usc] − iλ

∂usc
∂ν

)
∂w

∂ν
ds+

∫
Γ

(
[w] − iλ

∂w

∂ν

)
∂G(·, x0)

∂ν
ds

= −
∫

Γ

(
[G(·, x0)] + iλ

∂G(·, x0)
∂ν

)
∂w

∂ν
ds+

∫
Γ

(
[w] − iλ

∂w

∂ν

)
∂G(·, x0)

∂ν
ds

=
∫

Γ

[w]
∂G(·, x0)

∂ν
ds for all x0 ∈ Λ.

Hence P (x0) =
∫
Γ[w(x)]∂G(x,x0)

∂ν dsx is a radiating solution as a function of x0 which
vanishes on Λ, which implies that P (x0) = 0 outside the domain bounded by Λ and
consequently in R2 \ Γ by unique continuation. Hence, using the jump relations, we
have that [w] = 0 on Γ, which together with [∂w/∂ν] = 0 on Γ implies w = 0 and
consequently ψ = 0.

Next we show that R has dense range. Let α ∈ L2(Λ) be such that (Rw,α)L2(Λ) =
0 for all w ∈ H(Ω). The bilinearity of R implies that

(4.3) (Rw,α)L2(Λ) =
∫
∂Ω

(
Q
∂w

∂ν
− w

∂Q

∂ν

)
ds = −i

∫
Γ

λ
∂Q

∂ν

∂w

∂ν
ds = 0

for all w ∈ H(Ω), where

Q(x) =
∫

Λ

α(x0)u(x, x0) ds(x0) =
∫

Λ

α(x0)usc(x, x0) ds(x0)+
∫

Λ

α(x0)G(x, x0) ds(x0).

Hence (4.3) implies that ∂Q/∂ν = 0 on Γ since obviously the set {∂w/∂ν : w ∈ H(Ω)}
is dense in H− 1

2 (Γ) and Q is smooth near Γ. Since Q ∈ H(Ω), from the assumption
we can conclude that Q = 0 in Ω and therefore by unique continuation in the domain
bounded by Λ. Since Q is continuous across Λ we conclude that Q is a radiating
solution and is zero on Λ which implies that Q = 0. Finally by the jump relation of
the normal derivative of single layer potential we finally have that α = 0, which ends
the proof.

Now we have all the ingredients to describe a sampling algorithm to determine Γ
without knowing λ. Let L be an open arc in Ω and consider

ΦL(x) =
∫
L

βL(y)
∂

∂νy
Φ(x, y)dsy, βL ∈ H̃

1
2 (L),

where Φ(x, y) satisfies

ΔΦ(x, y) + k2ñ(x)Φ(x, y) = δ(x, y)

and again ñ(x) = n(x) for x ∈ Ω and ñ(x) = 1 for x ∈ R2 \ Ω (or any other
convenient extension). Note that we need to know only the index of refraction of the
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background medium inside Ω, and this is the strength of this method compared to
the linear sampling method. Again if n(x) = n0 is constant in Ω, one can choose
Φ(x, y) := i

4H
(1)
0 (k

√
n0|x− x0|). The proposed algorithm consists of seeking for each

open arc L ⊂ Ω a solution ϕ ∈ L2(Σ) to the first kind ill-posed linear equation

(4.4) R(Sϕ)(x0) = R(ΦL)(x0), x0 ∈ Λ.

Note that in order to guarantee that RS is injective and has dense range from the
proof of Theorem 4.1 it suffices to assume that there does not exist any potential in
(4.1) with vanishing normal derivative on Γ. This condition is similar to the condition
we imposed on the Herglotz functions in section 3, and it excludes some special types
of cracks.

Note also that in (4.4), Sϕ can be replaced with any one parameter dense family of
functions in H(Ω). We refer the reader to [26] for a variational approach to constructing
such a family. In particular, if n(x) is constant in Ω, one could use the corresponding
Herglotz wave functions using the result of [11].

Now, if L ⊂ Γ, from the proof of the first part of Theorem 4.1 we see that
(4.4) has a unique solution if and only if ∂Sϕ

∂ν = ∂ΦL

∂ν on Γ. This can only be satisfied
approximately for some ϕ ∈ L2(Σ) since the set

{
∂Sϕ/∂ν : ϕ ∈ L2(Σ)

}
is dense in

H− 1
2 (Γ).
Next, if L �⊂Γ, we can find ϕε such that

‖R(Sϕε) −R(ΦL)‖L2(Λ) < ε

and ‖∂Sϕε/∂ν‖
H− 1

2 (Γ)
< C. Since u(·, x0) = usc(·, x0)+G(·, x0), using Green’s formula

we obtain

R(ΦL)(x0) =
∫
∂Ω

(
usc(x, x0)

∂ΦL(x)
∂ν

− ΦL(x)
∂usc(x, x0)

∂ν

)
dsx

+
∫
∂Ω

(
G(x, x0)

∂ΦL(x)
∂ν

− ΦL(x)
∂G(x, x0)

∂ν

)
dsx

= w(x0) +
∫
L

βL(y)
∂

∂νy

∫
∂Ω

(
G(x, x0)

∂Φ(x, y)
∂ν

− Φ(x, y)
∂G(x, x0)

∂ν

)
dsx dsy

= w(x0) +
∫
L

βL(y)
∂

∂νy
G(x0, y)dsy,

where w(x0) is a solution to Δx0w + k2n(x0)w = 0. On the other hand,

R(Sϕε)(x0) = −i
∫

Γ

λ
∂u(x, x0)

∂ν

∂Sϕε
∂ν

ds.

Since ‖∂Sϕε/∂ν‖
H− 1

2 (Γ)
< C, we can assume that there exists a sequence such that

limε→0 ∂Sϕε/∂ν = θ ∈ H− 1
2 (Γ) weakly, whence

lim
ε→0

R(Sϕε)(x0) = −i
∫

Γ

λ
∂u(x, x0)

∂ν
θ(x)dsx.
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Hence

−i
∫

Γ

λ
∂usc(x, x0)

∂ν
θ(x)dsx − i

∫
Γ

λ
∂G(x, x0)

∂ν
θ(x)dsx

= w(x0) +
∫
L

βL(x)
∂

∂νx
G(x0, x)dsx.(4.5)

Since the first term on both sides can be extended as solution to Δx0w+k2n(x0)w = 0
outside the domain bounded by Λ, we deduce by uniqueness and the unique continu-
ation principle that (4.5) holds in R2 \ Γ ∪ L. Now we arrive at a contradiction since
for x0 ∈ L, x0 /∈ Γ, and Bε(x0) a small ball with center at x0 such that Bε(x0)∩Γ = ∅
the left-hand side is analytic whereas the right-hand side has a singularity at x0.

The above analysis has proven the following main theorem of this section, which
is the basis of the linear sampling method based on the reciprocity gap functional for
determining Γ.

Theorem 4.2. Assume that Γ is simple piecewise smooth arc and that there does
not exist any potential in (4.1) having zero normal derivative on Γ. Then if u(·, x0)
is the total field corresponding to (2.1)–(2.4) with f := 0 and h := iλ∂Φ(·,x0,ks)

∂ν , the
following are true:

1. If L ⊂ Γ, then for every ε > 0 there exists a ϕLε ∈ L2(Σ) satisfying

‖R(SϕLε ) −R(ΦL)‖L2(Λ) < ε

such that ∂SϕL
ε

∂ν converges to ∂ΦL

∂ν in H− 1
2 (Γ).

2. If L �⊂Γ, then for every ε > 0 any ϕLε ∈ L2(Σ) satisfying

‖R(SϕLε ) −R(ΦL)‖L2(Λ) < ε

is such that

lim
ε→0

‖ϕLε ‖L2(Σ) = ∞ and lim
ε→0

∥∥∥∥∂Sϕ
L
ε

∂ν

∥∥∥∥
H− 1

2 (Γ)

= ∞,

where SϕLε is defined by (4.1).

5. Numerical examples.

5.1. The linear sampling method. In this section we will give some results
of numerical experiments for identifying cracks based on the theory developed in
section 3. The far field data we use are synthetic, but corrupted by random noise
added pointwise to the measurements. The forward problem is numerically solved
using a quadrature method for the first kind hypersingular integral equation (2.10)
as developed by Kress and co-authors in [9], [19], and [20]. This method seems well
suited to our problem since we need to invert a hypersingular integral operator. This
claim is validated by our numerical results which show a convergence rate similar
to that in [9]. However, the exact order of singularity of the solution of the forward
problem at the tips of the crack still remains to be studied. The computed far field
data is obtained as a trigonometric series u∞ =

∑N
n=−N u∞,nexp(inθ). We then add

random noise to the Fourier coefficients of u∞ to obtain the approximate far field
pattern u∞,a =

∑N
n=−N u∞,a,nexp(inθ), where u∞,a,n = u∞,n(1 + εχn) with χn a

random variable in [−1, 1] (ε = 0.05 in our examples). We remark that this random
noise is rather “special,” since the far field data polluted in this way remains the far
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field of some radiating solution to the Helmholtz equation, as the decay rate of the
Fourier coefficients is not modified. This may not be the case for the noise in measured
data. Also, it would be interesting to test our inversion method using simulated data
computed from the exact model of the forward problem. Unfortunately, we do not
have available a forward code to do so. Notice that we do not commit any inverse
crime since the method for solving the direct problem and the method for solving the
inverse problem are completely different.

The inversion scheme is based on solving the following ill-posed first kind equation:

(5.1)
∫
S

u∞(x̂, d)g(d) ds(d) = γ

∫
L

βL(y)
∂

∂νy
e−ikx̂·ydsy

for an arbitrary open arc L and βL ∈ H̃
1
2 (L). Then the crack can be reconstructed by

using the fact that if L ⊂ Γ, we can find a bounded g ∈ L2(S) that satisfies (5.1) with
discrepancy ε, whereas if L �⊂Γ, all approximate solutions to (5.1) are unbounded. In
this study we search for the crack by taking L to be a small segment centered at a
sampling point z with unit normal vector nz and βL a sequence that converges to
δ(z). Thus, in the limiting case, (5.1) is replaced by

(5.2)
∫ π

−π
u∞(x̂, θ)gz,nz (θ) dθ = −ikγ nz · x̂ e−ikx̂·z, x̂ ∈ S, z ∈ R

2, nz ∈ S.

Now, if z ∈ Γ and nz coincides with the normal vector to Γ at z, then we can
find a bounded gz,nz ∈ L2(S) that approximately solves (5.2). Otherwise all such
gz,nz ∈ L2(S) are unbounded.

In order to solve (5.2) we use Tikhonov regularization and the Morozov discrep-
ancy principle to deal with the severe ill-posedness of this equation. In particular,
using the above expression for u∞,a, (5.2) is rewritten as an ill-conditioned matrix
equation for the Fourier coefficients of g, which we write in the form

(5.3) Agz,θz = fz,θz , where θz = nz · x̂ ∈ [−π, π].

As already noted, this equation needs to be regularized. To do this, we begin by
computing the singular value decomposition of A, i.e., A = UΛV ∗, where U and V
are unitary and Λ is real diagonal with Λl,l = σl, 1 ≤ l ≤ n, where σl are the singular
values of A. The solution of (5.3) is then equivalent to solving ΛV ∗gz,θz = U∗fz,θz .
Now letting ρz,θz = (ρ1, ρ2, . . . , ρn)� = U∗fz,θz , the Tikhonov regularization of (5.3)
leads to the problem of solving

min
gz,θz∈Rn

‖ΛV ∗gz,θz − ρz,θz‖2
l2 + α‖gz,θz‖2

l2 ,

where α > 0 is the regularization parameter [6]. The numerical procedure for locating
the crack is the following: we consider a uniform grid of sampling points {zi}i=1,...,N

in the probing area, and for each sampling point zi we choose a finite number of angles
θjzi

, j = 1, . . . ,M , and compute

G(zi, θjzi
) = ‖fzi,θ

j
zi
‖
2/‖gz,θj

zi
‖
2 .
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Fig. 5.1. Here we show the reconstruction of different values of λ for the curved crack shown in
Figure 5.3(a). The reconstructed values are shown by the little stars. The true reconstruction would
be on the solid line.

It is expected that G(zi, θjzi
) becomes relatively large if zi is a point of Γ and θjzi

is
(near) the angle corresponding to the tangent line to Γ at zi. In all our reconstruction
examples we plot the indicator function

G(zi) =
M∑
j=1

G(zi, θjzi
) for all sampling points zi on the grid.

We found out that one obtains similar plots when taking the maximum over all θjzi

for every fixed zi instead of the summation. However, further investigation is needed
to construct an indicator function that better captures the effect of the angles θz.

Having reconstructed Γ, it is possible to use (3.9) to reconstruct λ. In this work
we have not investigated the best numerical strategy to implement (3.9) in the case
when λ is a function. Here we present some preliminary results in the simplest case
when λ is a constant. To this end it is natural to consider the imaginary part of (3.9).
Hence the reconstruction formula is based on

Im
∂vgL

ε

∂ν
(x) =

1
λ
βL(x) − Im(TΓβL)(x), x ∈ Γ,

where βL ∈ C∞
0 (L). (Note that the imaginary part of the potential TΓ is an operator

with a smooth kernel.) Now if λ is constant, we fix a point in z ∈ Γ and the normal
vector nz to the crack at z and let gz,nz be the corresponding solution of the discrete
far field equation. Then Im∂vgz,nz

(z)

∂nz
is approximately 1/λAz+Bz, whereAz andBz do

not depend on λ. Hence, it is possible to avoid unstable computation of Az and Bz, by
computing the Herglotz wave function for two values of λ. Our preliminary examples
show that the determination of Az and Bz is robust. An example of reconstruction of λ
based on this approach is shown in Figure 5.1. However, we note that more numerical
study is needed to make the reconstruction formula for λ more practical especially for
nonconstant λ. The information on λ is useful since it contains knowledge about the
thickness of the dielectric object as well as its physical properties.

The numerical examples presented here consist of using the linear sampling method
to reconstruct the shape of the dielectric crack, as explained above, for the following
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formula f(t)=[−2+t,2t]
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Fig. 5.2. Panel (a) shows the exact crack and panel (b) the reconstruction using the linear
sampling method. The wave number is k = 3.

formula f(t)=[2sin((t+4/3)*6pi/4)+2, sin((t+4/3)*3pi/4)]
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Fig. 5.3. Panel (a) shows the exact crack and panel (b) the reconstruction using the linear
sampling method. The wave number is k = 3.

open arcs:

Γ := {−2 + s, 2s : −1 ≤ s ≤ 1} ,

shown in Figure 5.2(a);

Γ :=
{

2 sin
(

3π
2
s

)
+ 2, sin

(
3π
2
s+ π

)
: −1 ≤ s ≤ 1

}
,

shown in Figure 5.3(a); and

Γ :=
{
s, 0.5 cos

πs

2
+ 0.2 sin

πs

2
− 0.1 cos

3πs
2

: −1 ≤ s ≤ 1
}
,

shown in Figure 5.4(a). The respective reconstructions are shown in Figures 5.2(b),
5.3(b), and 5.4(b). In all reconstructions we keep k = 3 and the noise level 5%.
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formula f(t)=[t, .5*cos(t*pi/2)+.2*sin(t*pi/2)−0.1cos(3*t*pi/2)]

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5  

 

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5 0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a) (b)

Fig. 5.4. Panel (a) shows the exact crack and panel (b) the reconstruction using the linear
sampling method. The wave number is k = 3.

5.2. The reciprocity gap functional method. Here we assume that n(x) =
n0 for x ∈ Ω, where n0 is a complex constant and n(x) = 1 outside Ω. Similarly to
the case of the linear sampling method, we take L to be a small segment centered at
a sampling point z with unit normal vector nz and βL a sequence converging to δ(z).
Hence, in the same manner as for the linear sampling method, we can write (4.4) as

(5.4) Aϕz,nz (x0) = fz,nz(x0), x0 ∈ Λ,

where A : L2(Σ) → L2(Λ) is the integral operator with kernel

K(x, x0) := R(H(1)
0 (k

√
n0|x− (·)|))(x0)

and fz,nz(x0) = R(iknz · ∇H(1)
0 (k

√
n0|z − (·)|))(x0). Equation (5.4) is an ill-posed

linear integral equation and is solved in the same way as explained in section 5.1.
Similarly, the approximate solution ϕz,nz is then used to identify the crack.

We end by showing an example of reconstruction for a linear crack embedded in
a homogeneous medium surrounded by a circle with n0 = 1.5. The data are measured
on the upper half of a bigger circle. We are limited here to small contrast for the host
medium, due only to the lack of forward data; it is not a limitation of the reciprocity
gap functional method. We computed the data by adding the scattered field due to a
crack embedded in a homogeneous media with n = 1 in R2 and the scattered field due
to the disk with n = 1.9; i.e., we are ignoring multiple scattering effects. The example
presented in Figure 5.5 indicates reliable performance of the RGF (reciprocity gap
functionals) method based on sampling. Certainly, more numerical experiments are
needed to validate it, including the case of absorbing background and limited aperture
measurements.
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Fig. 5.5. Panel (a) shows the configuration of the example. The crack is the black solid line
embedded inside the red solid circle ∂Ω corresponding to n0 = 1.9. The sources are paced on the
upper half of the blue dashed circle denoted by Σ. The measurements are made on the red circle ∂Ω.
Panel (b) shows the reconstructed crack using the reciprocity gap functional method. A zoom of the
area inside the red circle containing the crack is shown. The wave number is k = 5.
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MODELING, SIMULATION, AND DESIGN FOR A CUSTOMIZABLE
ELECTRODEPOSITION PROCESS∗

PRADEEP THIYANARATNAM†, RUSSEL CAFLISCH‡ , PAULO S. MOTTA§ , AND

JACK W. JUDY¶

Abstract. Judy and Motta developed a customizable electrodeposition process for fabrication
of very small metal structures on a substrate. In this process, layers of metal of various shapes are
placed on the substrate, then the substrate is inserted in an electroplating solution. Some of the
metal layers have power applied to them, while the rest of the metal layers are not connected to the
power initially. Metal ions in the plating solution start depositing on the powered layers and a surface
grows from the powered layers. As the surface grows, it will touch metal layers that were initially
unpowered, causing them to become powered and to start growing with the rest of the surface. The
metal layers on the substrate are known as seed layer patterns, and different seed layer patterns can
produce different shapes. This paper presents a mathematical model, a forward simulation method,
and an inverse problem solution for the growth of a surface from a seed layer pattern. The model
describes the surface evolution as uniform growth in the direction normal to the surface. This growth
is simulated in two and three dimensions using the level set method. The inverse problem is to design
a seed layer pattern that produces a desired surface shape. Some surface shapes are not attainable
by any seed layer pattern. For smooth attainable shapes, we present a computational method that
solves this inverse problem.

Key words. electrodeposition, design, simulation, level set method

AMS subject classifications. 34A65, 35R35
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1. Electrodeposition. Judy and Motta [7] developed a customizable electrode-
position process for fabrication of small metal structures on a substrate. As pictured
schematically in Figure 1.1, two plates of metal (nickel) are placed in an electroplat-
ing solution, and voltage is applied across the two plates. This causes Ni ions to
separate from the anode and deposit on the cathode. By insulating areas of metal on
the cathode, they can control where the metal gets deposited. Altering the exposed
metal allows them to produce different shapes. The patterns of exposed metal are
called seed layer patterns. For complicated seed layer patterns, it may be difficult
to predict the final shape of the object. Thus the experimental procedure may re-
quire some trial and error to determine the seed pattern that attains a desired shape.
One application of this process is the fabrication of neural probes used to stimulate
the brain in Parkinson’s disease research [6]. When used in preclinical experiments
involving small animal models (e.g., rat or mouse), the probes should be very small
(e.g., a few 100 μm) so they can be inserted into the brain with precision and minimal
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Fig. 1.1. Experimental apparatus for plating a metal surface.

Fig. 1.2. Experimentally formed micromachined probe shaft using a customizable electroplating
process [7].

damage [7]. Figure 1.2 shows an example of a needle-shaped object produced in [7].
A mathematical model of electrodeposition may simplify and accelerate the de-

sign of seed layer patterns and reduce the number of experimental trials needed to
attain a desired shape. Our model will employ the simplifying assumption that the
surface grows uniformly in the normal direction. We will not consider nonuniform
growth or possible diffusion of the growing surface. Experimental parameters, such as
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Fig. 1.3. Stages of growth of the seed layer pattern. The segment with squares on the ends is
powered and the segments with circles on ends are unpowered.

temperature, will be also be ignored. These simplifications allow for a solution which
is computationally fast and enable us to solve the inverse problem of determining a
seed layer pattern that will produce a given shape.

Figure 1.3 shows a two-dimensional (2D) cross section of an object at various
times as it grows uniformly in the normal direction, and indicates how the seed layer
pattern controls the final shape. Initially, the segment with squares on the ends is a
powered metal layer and the segments with circles on the ends are metal layers that
are isolated from the power source. Although the object grows from the powered
segment, it eventually touches an unpowered segment, which then becomes powered
and starts to grow with the surface. As each unpowered segment is contacted by the
growing object, it becomes powered and starts to grow.

The remainder of this paper is organized as follows: Section 2 describes the level
set method that is the principal computational technique of our simulation method.
Sections 3 and 4 describe the simulation method in two and three dimensions, respec-
tively. The inverse design method in two and three dimensions is presented in sections
5 and 6, respectively. The methods for two and three dimensions are presented sepa-
rately, since the 2D method is considerably simpler than the three-dimensional (3D)
method. Conclusions and further work are discussed in section 7.

2. Level set method. The level set method is a way to represent complex geo-
metric interfaces or shapes that evolve in time, with several nice properties, including
the capability to easily merge shapes. The idea behind the level set method is to repre-
sent the interface (boundary) Γ(t) of the object Ω(t) implicitly as the zero level set of a
function φ, usually referred to as a level set function [8] (i.e., Γ(t) = {x : φ(x, t) = 0}).
We also set φ(x, t) < 0 inside Ω(t), and φ(x, t) > 0 outside Ω(t). This representation of
Γ(t) allows complicated topological changes, provides information about the interface,
and makes computation of the evolving interface straightforward. For velocity v of
the boundary Γ(t), the level set function φ describes the evolution of Γ(t) if φ satisfies

φt + v · ∇φ = 0,(2.1)
{x : φ(x, 0) = 0} = Γ(0),(2.2)

with the additional condition that φ is negative inside Ω(0) and positive outside Ω(0).



1046 THIYANARATNAM, CAFLISCH, MOTTA, AND JUDY

In the case of electrodeposition, the object Ω(t) grows normal to itself at a con-
stant speed (i.e., the velocity is v = νn, in which ν is a constant and n is the outward
unit normal vector to Γ). By rescaling time, we may take ν = 1. Since the gradient
∇φ of φ is in the outward normal direction n, then v · ∇φ = |∇φ| and the PDE for φ
becomes

(2.3) φt + |∇φ| = 0.

A solution of (2.3) satisfying (2.2) is the function

(2.4) φ(�x, t) = d(�x) − t,

where d(�x) is the signed distance function for the initial object Ω0 = Ω(0) with
boundary Γ0. The function d(�x) is defined as

(2.5) d(�x) =

⎧⎨
⎩

−min�s∈Γ0 |�x− �s| , x ∈ Ω0,
0, x ∈ Γ0,
min�s∈Γ0 |�x− �s| , x /∈ Ω0,

and satisfies |∇d| = 1. It follows that |∇φ| = 1 and φt = −1 and that the level set
φ = 0 is the boundary Γ0, so that φ solves (2.3).

For this model, it will be necessary to take the union of two objects and merge
their boundaries. This can be done as follows: Let φ1 and φ2 be level set functions rep-
resenting the interfaces Γ1 = ∂Ω1 and Γ2 = ∂Ω2, respectively. Then φ = min(φ1, φ2)
is a level set function representing the merged interface Γ = ∂Ω of the combined ob-
ject Ω = Ω1 ∪Ω2. It is important to note that merging two signed distance functions
d1 and d2 will produce a level set function that is not necessarily a signed distance
function (i.e., if φ = min(d1, d2)); then it is possible that |∇φ| �= 1 at some points
inside the merged object. However, |∇φ(�x)| = 1 for �x in the exterior of the interface
(i.e., where φ(�x) > 0). Since the interface is moving in the outer normal direction,
the interface motion is still correctly described by the equation φt + 1 = 0.

Previous applications of the level set method are found in [5, 9] for electrodepo-
sition and in [1, 2, 3, 4] for more general deposition and materials processing.

3. Forward problem in 2D.

3.1. General idea of the solution for the forward 2D problem. In the 2D
case, the domain is [a1, a2] × [0, b2]. The seed layer is composed of powered and un-
powered line segments placed on the x-axis, as illustrated in Figure 1.3. Suppose that
there is only one powered line segment, given as [p, q], and the unpowered line seg-
ments are given as [Li, Ri] for 1 ≤ i ≤ N . Construct a level set function φ0(x, y) that
represents the powered line segment [p, q] and solve (2.3) for φ(x, y, t), as described
in section 2. The interface will grow from the powered line segment in the normal
direction. After a time interval t, the interface comes in contact with (or has passed
over) one of the unpowered line segments [Lj , Rj ] if φ(Lj , 0) ≤ 0 or φ(Rj , 0) ≤ 0.
When this occurs, the jth unpowered segment becomes powered and starts to grow
with the rest of the interface, which is simulated as follows:

1. Construct a level set function ψ(x, y) representing the line segment [Lj , Rj ].
2. Merge the two interfaces by setting φ(x, y) = min(φ, ψ).

Now continue with the evolution starting from with the updated φ until another un-
powered segment is contacted by the growing interface, then repeat the two steps
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above. For the case of multiple powered segments, steps similar to connecting an un-
powered segment to the rest of the interface are performed. Suppose there areM pow-
ered segments, given by [pi, qi]

M
i=1 with corresponding level set functions φi(x, y). Then

the level set function for all of the powered segments is φ0(x, y) = min1≤i≤M{φi(x, y)},
which provides the initial condition for the level set PDE (2.3).

3.2. Implementation of the solution for the forward 2D problem. In
order to solve this problem computationally, space and time are discretized, with a
uniform grid in space. If [L,R] is a line segment, then a distance function representing
it is

(3.1) d[L,R](x, y) =

⎧⎨
⎩
√

(x − L)2 + y2, x < L,
y, L ≤ x ≤ R,√

(x −R)2 + y2, x > R.

As described in section 2, the solution at discrete times tn = ndt is φn+1 = φn − dt.
The time step is chosen to be dt = 0.1dx, which ensures that the unpowered segments
get turned on at accurate times. The initial data φ0 is the distance function to the
powered line segments. Contact with unpowered line segments is performed by the
method of section 3.1.

Summarizing the above, if the powered segments are [pi, qi]
M
i=1 and the unpowered

segments are [Li, Ri]
N
i=1, the algorithm for forward growth is as follows:

1. Compute φ0(x, y) = min1≤i≤M
(
d[pi,qi](x, y)

)
.

2. Set n = 0. Repeat the following until the final growth time Tg is reached
(i.e., when n ∗ dt = Tg).

• Set φn+1 = φn − dt.
• Find all unpowered segments that become powered during this time

interval and merge them into the interface. For each unpowered segment
[Lk, Rk] do the following:

– If φn+1(Lk, 0) ≤ 0 or φn+1(Rk, 0) ≤ 0, then compute d[Lk,Rk](x, y)
and set φn+1(x, y) = min

(
φn+1(x, y), d[Lk,Rk](x, y)

)
.

• Set n = n+ 1.

4. Forward problem in 3D.

4.1. General idea of the solution for the forward 3D problem. In the 3D
case, the domain is [a1, a2]×[b1, b2]×[0, c2]. The seed layers are on the z = 0 plane and
can now take on any 2D shape, as illustrated in Figure 4.1. For an arbitrary shaped
seed layer, initial construction of a level set function is a key step and is discussed in
the section 4.3.

0 4
−0.5

0

0.5

x

y

Fig. 4.1. Seed layer used to grow the 3D needle-shaped object in Figure 1.2. The rectangle is
powered and the trapezoids are the unpowered layers.
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Subsequent evolution of the level set function is essentially the same as in the
2D case: Suppose a level set function, φ0(x, y, z), representing the powered layers is
given. Using φ0(x, y, z) as the initial condition, φ is evolved in time as specified by the
level set PDE. The interface grows from the powered layer(s) in the normal direction.
When the interface comes in contact with unpowered layers, they become powered
and start to grow with the interface. In 3D, the boundaries of the layers consist of
curves rather than points and some unpowered layers may have multiple boundaries,
such as a ring shaped layer. Let γ be the boundary of one of the unpowered layers P .
If minγ φ ≤ 0, then that unpowered layer has been contacted by the growing interface,
it becomes powered, and it starts to grow with the interface. Merger of the layer P
with the interface is performed through the following steps:

1. Construct a level set function ψ(x, y, z) representing the layer P .
2. Merge the layer into the interface by setting φ = min(φ, ψ).

Continue with the evolution of φ until the growing interface contacts another unpow-
ered layer, then repeat the two steps above.

4.2. Implementation of forward 3D method. In order to solve this problem
computationally, discretize the space and time domains using a uniform grid in space.
Since the seed layers lie in the plane z = 0, the 3D distance function d3D(x, y, z) is
related to the 2D distance function d2D(x, y) within the plane z = 0 by

(4.1) d3D(x, y, z) =
√

[max(0, d2D(x, y))]2 + z2.

For an arbitrarily shaped seed layer U , we construct an approximate distance function
d2D(x, y) by approximating P by an N -sided polygon with vertices {(xi, yi)}Ni=1. A
method to construct distance functions for polygons is discussed in section 4.3. De-
tecting contact requires evaluation of the level set function φ at the boundaries of the
unpowered layer. In the numerical method, this is checked at a discrete set of points
along the polygonal boundary. If φ ≤ 0 on any of the discrete points on the boundary,
the unpowered polygonal layer has been contacted by the interface, becomes powered,
and starts to grow with the interface. This is done by performing the following two
steps:

1. Construct a distance function d(x, y, z) representing the layer.
2. Take the union of the two interfaces by setting φ = min(φ, d).

As described in section 2 and the 2D case, the iteration to evolve the interface is
φn+1 = φn − dt, where φ0 is the distance function representing the powered layer(s).
The boundary points of each unpowered layer are checked for contact each time step.

Summarizing the above, let {P pi }
M
i=1 be the set of powered polygonal layers and

{Pui }
N
i=1 the set of unpowered polygonal layers of a given seed layer pattern. The

following steps detail forward growth in three dimensions:
1. Set φ0(x, y, z) = min1≤i≤M (di(x, y, z)) in which di(x, y, z) is the distance

function (see section 4.3) for the ith powered polygonal layer P pi .
2. Set n = 0. Repeat the following until the final growth time Tg is reached

(i.e., when n ∗ dt = Tg).
• Set φn+1 = φn − dt.
• Check all of the unpowered polygonal layers that have not already been

merged into the growing shape for contact by the interface. If φn+1 ≤ 0
at one of the discretized boundary points of an unpowered polygonal
layer, it has been contacted by the interface.

– Suppose the kth unpowered polygonal layer Puk has been contacted
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by the interface. Compute dk(x, y, z), and set

φn+1(x, y, z) = min
(
φn+1(x, y, z), dk(x, y, z)

)
.

– Repeat the above step for any other newly contacted unpowered
layer(s).

• Set n = n+ 1.

4.3. Constructing signed distance functions for polygons. Suppose that
{(xk, yk)}Nk=1, (xk, yk) ∈ [a1, a2] × [b1, b2], are the vertices of a polygon traversed in
either a clockwise or counterclockwise direction, with (xN , yN ) = (x1, y1). The goal is
to create a signed distance function d(x, y) whose zero level set is the polygon bound-
ary. Since the level set computations are performed on a grid, it is only necessary
to compute the distance function on the discrete set of grid points. The first step is
to create a distance function dk,k+1(x, y) for each line segment [(xk, yk), (xk+1, yk+1)]
(see the appendix for the formula). Note that dk,k+1(x, y) ≥ 0, since the line segment
has no interior. Set d0(x, y) = mink {dk,k+1(x, y)} to get a distance function d0(x, y)
for the polygon defined on the grid. However, d0(x, y) is not a signed distance function
since it takes positive values inside the polygon. The remaining step is to identify
which grid points are inside the polygon, and negate the value of d0 at those points.

The Jordan curve theorem states that a point is in the interior of a bounded
region if the half line from that point to infinity intersects the boundary of the region
an odd number of times. Conversely, the point is in the exterior of the region if
the half line intersects the boundary an even number of times. The half line from
the point in question to infinity can be taken in any direction. For the grid point
(u, v), a natural choice is the horizontal half line ((−∞, v), (u, v)]. Since the polygon
should be completely contained in the domain [a1, a2] × [b1, b2], only the horizontal
line segment [(a1, v), (u, v)] needs to be checked for intersections with the polygon
boundary. Since the boundary of the polygon is composed of line segments, it suffices
to check for intersections between the horizontal line segment [(a1, v), (u, v)] and the
polygon boundary segments.

In summary, the steps to form a signed distance function for a polygon on a grid
are as follows:

1. Set d0(x, y) = min1≤k<N (dk,k+1(x, y)) in which dk,k+1(x, y) is the distance
function from the line segment between vertices k and k + 1.

2. For each grid point (u, v), do the following:
• Count the number of intersections of the line segment [(a1, v), (u, v)]

with the polygon sides.
• If the number of intersections is odd, set d0(xi, yj) = −d0(xi, yj).

Once the 2D distance function d0(x, y) has been computed; the 3D distance function
for the polygonal layer is d0(x, y, z) =

√
[max(d0(x, y), 0)]2 + z2.

4.4. Results for forward 3D method. Figure 4.1 shows the seed layers that
were used to grow the 3D needle shaped object pictured in Figure 1.2. The leftmost
(rectangular) layer was powered and the others were unpowered initially. Figure 4.2
shows the results from simulation, using the method described in section 4.2, applied
to the seed layer pattern given in Figure 4.1. The simulated object (Figure 4.2) is in
excellent agreement with the object that was grown in the laboratory (Figure 1.2).
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Fig. 4.2. Simulated growth of the needle seed layer pattern of Figure 4.1, using the algorithm
described in section 4.2.

5. Inverse problem in two dimensions.

5.1. Problem description and solution. For the inverse problem, a shape is
given, and the goal is to determine the seed layer pattern that would approximate
that shape. In addition, we find that some shapes are not attainable.

Let the desired final shape Γ be given by y = F (x), contained in the domain
[a1, a2] × [0, b2]. The results of section 3 show that the ends of a line segment grow
as quarter circles. The first step in solving the inverse problem is to approximate the
curve Γ by an envelope of circles that are tangent to Γ and that have centers on the
x-axis. Assume that F ∈ C1([a1, a2]). For s ∈ [a1, a2], the circle tangent to F at the
point (s, F (s)) has center (cs, 0) and radius Rs given by the formulas

cs = F ′(s)F (s) + s,(5.1)

Rs = F (s)
√

[F ′(s)]2 + 1.(5.2)

A discrete representation of the curve Γ is given by points {(xi, F (xi))}Ni=1 for a given
set of points xi ∈ [a1, a2]. Equations (5.1)–(5.2) then determine centers {(ci, 0)}Ni=1

and radii {Ri}Ni=1 for a set of circles {Ci}Ni=1 that are tangent to F at the points
(xi, F (xi)). Remove any circle Ci whose center is not in the domain (i.e., ci /∈ [a1, a2]))
to get a possibly smaller sets of centers {(cj , 0)}Mj=1 and radii {Rj}Mj=1, with M ≤ N .
See Figure 5.1 for an example of an envelope of circles tangent to the function F (x) =
1
2

√
1 − x.
For simplicity, we assume that initially there is only a single powered point. It

starts growing as a half circle whose radius is equal to the time that point has been
powered (since the normal velocity is 1). More generally, the radius of a circle in the
envelope is equal to the total time over which the circle should be powered. It follows
that the total growth time t = TG should equal the maximal radius of the circles (i.e.,
TG = maxj {Rj}). Furthermore, since the jth circle should grow for time Rj , then
its start time should be Tj = TG − Rj . The circle Cj gets powered at time Tj if its
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Fig. 5.1. An envelope of 4 circles are used to form an approximation of y = F (x).
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Fig. 5.2. Shows the first circle at time T2 and the unpowered segment that would power the
second circle at time T2.

center is the endpoint of a segment that is contacted at time Tj by the circle that is
growing from the center (cj′ , 0) to its left or right that was powered before Tj .

This is illustrated in Figures 5.1–5.3. In the example shown in Figure 5.1, R1 is
the maximum radius, so TG = R1, T1 = 0 and the point (c1, 0) should be powered
initially. The point (c2, 0) should be powered at time T2. Figure 5.2 shows the first
circle at time T2 turning on the point (c2, 0) by contacting the left edge of the segment
[�, c2] at time T2 with � = c1 + T2 − T1. Figure 5.3 shows the interface at time T3,
including the growth of the unpowered segment calculated to turn on the second circle.

To summarize the procedure in general for finding the unpowered segment for the
kth circle centered at (ck, 0), with start time Tk, it is necessary to find the closest
circle to the kth circle with an earlier start time. Denote the closest circle as the pth
circle with center (cp, 0) and start time Tp. If cp < ck, then the unpowered segment
is on the left side of ck and is given by [�, ck], where � = cp + Tk − Tp. If cp > ck,
then the unpowered segment is on the right side of ck and is given by [ck, r], where
r = cp − (Tk − Tp).

Three sufficient conditions on the curve Γ = {y = F (x)} must be satisfied to
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Fig. 5.3. Shows the interface at time T3, and the unpowered segment that powers the third
circle at time T3.

enable a solution to the inverse problem:
1. F ∈ C1([a1, a2]).
2. Γ is the envelope of circles with centers on the x-axis. Each circle intersects

Γ at tangent points from below (i.e., the circle lies below Γ).
3. F can have only one local maxima, or if it has multiple local maxima, they

must all have the same value.
Although there may exist a seed layer pattern for a given shape that is only in

C([a1, a2]) (but still satisfies the other two conditions), the given algorithm requires
that the derivative be continuous as well. The second condition is a necessary one. If
that condition is violated, then the shape given by F (x) will not be attainable. Fig-
ure 5.4 shows the function F (x) = 1

4 sin(πx2), and a circle tangent to it at (0.8, F (0.8))
that also crosses F at another point, making that shape unattainable. The present
model allows for powered points to be powered by an external source only at the same
time. For example, there cannot be one point x1 powered at time t = 0 and another
point x2 independently powered (meaning not powered by contact of the growing sur-
face) at some later time. The third condition is therefore necessary since it ensures
that an approximation of the given shape can be attained without needing powered
points that start at different times.

5.2. Justification for the construction of the unpowered segments. In
constructing the unpowered segments, it was assumed that the point � = cp+Tk−Tp
was in between the two circle centers cp and ck (this assumes that the contact point is
to the left of ck, but the proof is similar if it were to the right). Here it will be shown
that this is always the case if the attainability conditions of section 5.1 are satisfied.
Showing that � ∈ [cp, ck] is the same as showing that � = cp + Tk − Tp ≤ ck, or

Tk − Tp ≤ ck − cp.

Suppose this were not true, so that Tk − Tp > ck − cp. Using the relationships
Tk = Tg −Rk and Tp = Tg − Rp gives Tk − Tp = Rp −Rk. Then Rp −Rk > ck − cp,
or

Rp > d+Rk,
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Fig. 5.4. Example of a shape that is not attainable. The circle is tangent to F at (0.8, F (0.8)),
but it crosses F at another point. This function is not attainable using the given procedure for
calculating the seed layer pattern.
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Fig. 5.5. The figure shows that the circle centered at cp completely encloses the circle centered
at ck if Tk − Tp ≥ ck − cp.

where d = ck − cp is the distance between the two circle centers. This means that
the circle centered at cp has a radius so large that it completely encloses the circle
centered at ck (see Figure 5.5). This is impossible, since both circles are tangent to
F from below by the second attainability condition in section 5.1. This contradiction
shows that � = cp + Tk − Tp ≤ ck.

5.3. Results of inverse 2D problem method. Figure 5.6 shows the solution
of the inverse problem for the function F (x) = x(x − 1)2. For solution of the inverse
problem, a single powered point and eight unpowered segments are allowed. The
figure shows the desired function (dashed line), the calculated seed layer pattern, and
the resulting growth from the seed layer pattern. The result is in good agreement with
the target curve. Better agreement could be achieved by allowing more segments in
the seed layer pattern.
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Fig. 5.6. The desired shape is the dotted curve. The seed layer was calculated using the inverse
procedure, and the growth of the seed layer is shown by the solid curve. The star is the powered point,
and the line segments are the unpowered segments. Nine circles were used for the approximation.

6. Inverse problem in three dimensions.

6.1. A continuous approach. The desired shape Γ is defined by the function
z = F (x, y) for (x, y) in the substrate domain [a1, a2] × [b1, b2]. The goal is to find a
seed layer pattern of polygonal layers that will grow to form an approximation of Γ.
Instead of a discrete seed layer, consider a continuous seed layer, in which each point
in the substrate can be powered at any time. Suppose that this continuous seed layer
can grow a shape that exactly matches the given shape Γ at time Tg. This continuous
seed layer can then be described by a function T (x, y), which is defined to be the time
at which power should be applied to the point (x, y). Although a continuous seed
layer may be impractical, it is a useful theoretical construct.

Let tj ∈ (0, Tg) for j = 1, . . . , n be an increasing set of times such that 0 = t0,
and define the contour curves

(6.1) γi = {(x, y) ∈ [a1, a2] × [b1, b2] : T (x, y) = ti} .

Also, define βi to be the curve that results from growing γi in the outward normal
direction (i.e., the direction of increasing T ) for time (ti+1 − ti).

The initial powered “layer” S0 is defined to be the curve (or point) γ0. For m > 0,
the seed layer Sm is then defined to be the region in between the two curves γm and
βm−1. With this definition, we find that Sm is contacted by the growing surface and
turns on at time tm as desired. By its definition, S0 is powered at time t0. The rest
follows by iteration: Since the curve γm−1 becomes powered at time tm−1 it grows
outward at normal speed 1, and at time tm it hits the curve βm−1 which turns on Sm,
which is the region in between βm−1 and γm. This is illustrated in Figure 6.1, which
shows two contours γm and γm−1 of some function T (x, y). Also shown is βm−1, which
is the resulting curve of growing γm−1 in the normal direction for time tm − tm−1.

All of the unpowered layers are constructed in the same way. When the above
method is discretized, the powered curve γ0 will usually not be a curve, but individual
points. From a fabrication viewpoint, both individual points and curves as powered
layers are not desirable, and it is better to have an actual polygonal powered layer.
One simple approach to do this will be discussed later.

6.2. Discretizing and implementing the continuous approach. There are
several tasks involved in solving the inverse problem computationally. Each of the
following sections describes a task and a method to complete the task. Then, in
section 6.2.7, the methods are brought together to give the solution to the inverse
problem.
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Fig. 6.1. Two contours γm−1 and γm of T (x, y) are shown as solid curves. βm−1 is shown as
the dashed curve. The unpowered layer is the region in between βm−1 and γm.

6.2.1. Relationship between T (x, y) and F (x, y). A key component of the
previous section was knowing T (x, y) for a given shape Γ defined by z = F (x, y). An
equivalent condition will be stated and used here. Consider a seed layer that is only
a single powered point. Since the growth is uniform in the normal direction with
speed 1, the powered point will grow as a hemisphere, with a radius equal to the time
the point has been powered. Let the given shape z = F (x, y) satisfy the following
conditions:

1. F ∈ C1([a1, a2] × [b1, b2]).
2. Γ can be formed as an envelope of hemispheres (with centers on the z = 0

plane) that are tangent to Γ from below (i.e., the sphere lies below the surface
z = F (x, y)).

3. F has only one local maximum, or if it has multiple local maxima, F has the
same value at all local maxima.

Under the above conditions, there should exist a functionR(x, y), (x, y) ∈ [a1, a2]×
[b1, b2], that gives the radius of the sphere with center (x, y) that is tangent to the
given shape F . A continuous seed layer can be defined by R(x, y), since R(x, y) is the
length of time that a point (x, y) should be powered. Define Tg = max(x,y) {R(x, y)},
which is the length of time that power should be applied to the seed layer. Then
T (x, y) = Tg − R(x, y) is the time at which the point (x, y) should become powered.
Therefore, finding T (x, y) is equivalent to finding R(x, y). By considering the equa-
tion of a sphere with center (x, y) on the z = 0 plane, the relationship between R(x, y)
and F is given by the following three equations:

x = Fx(xs, ys)F (xs, ys) + xs,(6.2)
y = Fy(xs, ys)F (xs, ys) + ys,(6.3)

R(x, y) =
√

(x− xs)
2 + (y − ys)

2 + [F (xs, ys)]2.(6.4)
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The point (xs, ys, F (xs, ys) is the point of tangency of the sphere to the surface z =
F (x, y).

6.2.2. Computing T (x, y). The first step in numerically solving the inverse
problem is to discretize the domain of the substrate [a1, a2]× [b1, b2]. A uniform grid
is used. Let Nx + 1 be the number of grid points in x and Ny + 1 the number of
grid points in y. Then the grid sizes are dx = (a2 − a1)/Nx and dy = (b2 − b1)/Ny,
and the grid points are {(xi, yj) = (a1 + i ∗ dx, b1 + j ∗ dy)} for 0 ≤ i ≤ Nx and
0 ≤ j ≤ Ny. The radius value R(xi, yj) on the grid point (xi, yj) is found by solving
the nonlinear equations (6.2)–(6.3). Numerical experiments indicate that the following
simple functional iteration converges fairly quickly:

xn+1
s = xi − Fx(xns , y

n
s )F (xns , y

n
s ),(6.5)

yn+1
s = yj − Fy(xns , y

n
s )F (xns , y

n
s ).(6.6)

A good initial guess is x0
s = xi and y0

s = yj : Once (xs, ys) is found, (6.4) is
used to compute R(xi, yj). This process is repeated to compute R for each grid
point in the discretized domain. Then the growth time is determined by Tg =
max[0≤i≤Nx,0≤j≤Ny ] {R(xi, yj)} and the function T is given by T (xi, yj) = Tg −
R(xi, yj) on the discretized domain.

6.2.3. Calculating contour curves. Although any conventional methods can
be employed to calculate the contour curves of T (x, y), a simple method is presented
here. Let T (x, y) be given on the grid points defined in section 6.2.2. Linear inter-
polation is used to find the points of a contour curve γ = {(x, y) : T (x, y) = α} on a
triangulated grid. Consider the lower triangular cell with corners (xi, yj), (xi+1, yj),
and (xi+1, yj+1). If γ passes through that lower triangular grid cell, then γ can be
approximated by a line segment L�i,j inside the lower triangular grid cell. Linear
interpolation can determine the endpoints of the line segment L�i,j, which could be
on the horizontal grid cell boundary [(xi, yj), (xi+1, yj)], the vertical grid cell bound-
ary [(xi+1, yj), (xi+1, yj+1)], or the diagonal grid cell boundary [(xi, yj), (xi+1, yj+1)].
Every lower triangular grid cell is checked to see if γ passes through it, and if so a
line segment L�i,j is computed. Similarly, the upper triangular grid cells with corners
(xi, yj), (xi, yj+1), and (xi+1, yj+1) are also checked to see if they contain part of γ,
and if so, a line segment Lui,j is computed. The collection of all line segments L�i,j
and Lui,j is then a representation of the contour curve γ. Connectivity of this curve
is guaranteed, since the end of one line segment corresponds to the beginning of an-
other line segment. Figure 6.2 illustrates the triangulated grid and the points in the
triangular grid cell boundaries that define the ends of the line segments.

6.2.4. Evolving a curve in the normal direction. One step in section 6.1
for finding an unpowered layer requires growing a contour curve of T (x, y) in the
outward normal direction, which is performed using the level set method. Let γ be
the contour T (x, y) = α that is to be moved in the outward normal direction for
time τ . Using the method discussed in section 6.2.3, compute a set of line segments
{Lk} that represents the contour curve γ. Following steps similar to those outlined
the section 4.3, a distance function representing the polygonal approximation of γ
is computed as ψ(x, y) = mink {dk(x, y)}, where dk(x, y) is the distance function for
the line segment Lk (a formula is given in the appendix). Note that ψ will not be a
signed distance function, since dk(x, y) ≥ 0. In general, γ will segment the domain
into two parts: the interior region (where T (x, y) < α) and the exterior region (where
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Fig. 6.2. The circles are the endpoints of the line segments used for the discretization of the
curve γ.

T (x, y) > α). To make a signed distance function, the value of ψ in the interior region
must be negated. Therefore, a signed distance function φ for the curve γ is defined as

φ(x, y) =
{

−ψ(x, y) if T (x, y) < α,
ψ(x, y) otherwise.

Then the curve from growing γ in the normal direction for time τ is the zero level set
of φ(x, y, 0)− τ . Again, the methods in section 6.2.3 can be used to form a polygonal
approximation of the new curve.

6.2.5. Forming an unpowered layer from β and γ. The final step in the
construction of a layer Sm is to connect the two curves, βm−1 and γm, that define it
in the z = 0 plane. Let {Lβk} and {Lγk} be the set of line segments representing the
curves βm−1 and γm, respectively. The unpowered layer is the region between these
two curves consisting of points (x, y) with tm−1 < T (x, y) < tm. In the simplest case,
βm−1 and γm are each single connected curves. If they are closed curves, then Sm is
the region between them. If they are not closed, then each of them has two endpoints
that should lie on the boundary of the domain. In this case, one can easily identify
the matching endpoints (by the condition tm−1 < T (x, y) < tm) and form a curve
connecting them along the domain boundary. In general, γ and β may have multiple
disjoint pieces that define multiple layers (in such a case, these layers would all have
the same start time). A more sophisticated approach to forming layers may have to
be used to connect complicated curves, but this has not proved to be necessary in the
numerous examples we have simulated.

6.2.6. The powered “layer.” In the presentation above, the initially powered
layer consists of a single point or curve that is discretized to a set of points. The
powered points should have start time t = 0, so they are the points on the grid
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{
(xPk , y

P
k )
}NP

k=1
that satisfy T (xPk , y

P
k ) = 0. In order to calculate the first unpowered

layer, the powered points will have to be grown for time t1. The signed distance
function for a point is (u, v) is d(u,v)(x, y) =

√
(x − u)2 + (y − v)2. To grow the

powered points for time t1, the distance function for the powered points must first be
computed as

(6.7) d(x, y) = min
k=1,...,NP

{d(xP
k ,y

P
k )(x, y)}.

Then, the zero level set of d(x, y)− t1 is the curve resulting from growing the powered
points for time t1.

6.2.7. Constructing the seed layer pattern. This section brings together all
of the methods in the previous sections to formulate in detail a solution to the inverse
problem. Let the substrate domain be [a1, a2] × [b1, b2], and assume that the surface
z = F (x, y) satisfies conditions (1)–(3) in section 6.2.1.

• Discretize the domain using a uniform grid, where Nx + 1 is the number of
grid points in x and Ny + 1 is the number of grid points in y.

• Compute R(x, y) on the grid using the method described in section 6.2.2.
Define Tg = max[0≤i≤Nx,0≤j≤Ny ] {R(xi, yj)}.

• Set T (x, y) = Tg −R(x, y) on the grid.
• Define a positive integer n, and choose a set of times {ti}ni=1 such that 0 =
t0 < t1 < t2 < · · · < tn < Tg.

• Find the powered points of the seed layer
{
(xPk , y

P
k )
}NP

k=1
that satisfy T (xPk , y

P
k )

= 0.
• Using the technique given in section 6.2.6, compute the distance function
d(x, y) for the powered points.

• Compute the parameterization of β0 ={(x, y) : d(x, y) = t1} using the method
in section 6.2.3.

• Compute the parameterization of γ1 ={(x, y) : T (x, y) = t1} using the method
in section 6.2.3.

• Use the method in section 6.2.5 to form the first unpowered layer that is in
between β0 and γ1.

• For m = 2, . . . , n, repeat the following:
– Grow γm−1 in the outward normal direction for time (tm − tm−1) using

the method in section 6.2.4 and label the resulting curve βm−1.
– Compute the parameterization of γm = {(x, y) : T (x, y) = tm} using the

method in section 6.2.3.
– Use the method in section 6.2.5 to construct the mth unpowered layer

that is in between βm−1 and γm.

6.2.8. Justification for the construction of the unpowered layers. In the
construction of the unpowered layers, it was assumed that the curve βm−1 is between
γm−1 and γm (i.e., that when γm−1 moves in the normal direction for time tm− tm−1,
it does not cross γm). We now prove this, assuming that the shape z = F (x, y)
satisfies the attainable conditions in section 6.2.1.

From any point (xm−1, ym−1) on γm−1, consider the line segment extending in the
outer normal direction to a point (xm, ym) on the curve γm, and define the distance
d = |(xm−1, ym−1), (xm, ym)|. The map from (xm−1, ym−1) to (xm, ym) is one-to-one
if the curves are smooth and the distance between them is sufficiently small. Since
the curve βm−1 is defined by moving γm−1 a distance tm − tm−1, it suffices to show
that tm − tm−1 ≤ d.
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Fig. 6.3. The desired shape is given by F (x, y) = 0.1 cos(πx) + 0.25 sin(πy) + 0.1. The color
map is a function of height and is used only to aid visualization of the surface.

Suppose that the opposite is true, so that tm − tm−1 > d. By condition 2 in
section 6.2.1, the sphere Sm−1 centered at (xm−1, ym−1) with radius Rm−1 = Tg −
tm−1 and the sphere Sm at (xm, ym) with radius Rm = Tg − tm are both tangent to
the surface z = F (x, y). It follows that Rm−1 ≥ Rm+d, which says that Sm−1 strictly
contains Sm, which is not possible if both are tangent from below by condition 2 in
section 6.2.1. This contradiction shows that tm − tm−1 ≤ d, so that the curve βm−1

is between γm−1 and γm.

6.2.9. A powered polygonal layer. The algorithm outlined in section 6.2.7
constructs the powered layer as points rather than the preferred polygonal shape. A
simple way to construct a powered polygonal layer is to set the first unpowered layer
as powered. The final growth time would then have to be reduced by t1, the start
time of the first unpowered layer. Doing this will increase the error of the final shape,
but this error can be reduced by choosing t1 to be small.

6.2.10. Results. Figures 6.3–6.5 show a prescribed shape F (x, y) = 0.1 cos(πx)+
0.25 sin(πy) + 0.1, the seed layer pattern calculated using the steps in section 6.2.7,
and the result of the forward growth of the calculated seed layer pattern, respectively.
Figures 6.6–6.8 show similar results for the prescribed shape F (x, y) = −(x− 0.5)2 −
(y − 0.5)2 + 0.25. Both examples were computed on the domain [0, 1] × [0, 1] with
Nx = Ny = 100 and n = 12. The computational time to construct the seed layer
patterns for the above examples was about 5 seconds.

6.3. Error analysis. In this section, a computational analysis of the accuracy
of the inverse algorithm of section 6.2 is presented using the two test problems in
section 6.2.10 for various values of the number of grid points (Nx and Ny) and the
parameter n, which determines the number of unpowered layers (≥ n). In order to
resolve the seed layers, the number of grid points should be larger than the number
of layers.

The accuracy of the inverse solution is measured by the error in the subsequent
forward growth. The forward problem is performed on the computational domain
[0, 1] × [0, 1] × [0, 0.5], with a fixed number of grid points NF

x = 100, NF
y = 100, and

NF
z = 50, with grid sizes dxF = 1

NF
x +1 , dyF = 1

NF
y +1 , and dzF = 0.5

NF
z +1 . Most of

the error in the forward growth itself is removed, since the start times of the layers
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Fig. 6.4. The calculated polygonal seed layer pattern for the shape given by F (x, y) =
0.1 cos(πx) + 0.25 sin(πy) + 0.1, shown in Figure 6.3. The dot is the powered point.

Fig. 6.5. The forward growth of the calculated polygonal seed layer pattern in Figure 6.4. It
compares well to the desired shape in Figure 6.3.

are all known. The resulting level set function φ(x, y, z) is converted to a function
z = Fφ(x, y) defined on the fixed forward grid using linear interpolation. A numerical
L2 error between Fφ and F is computed as

(6.8)
∥∥F − Fφ

∥∥ =

√√√√√
NF

x ,N
F
y∑

i=0,j=0

|F (xi, yj) − Fφ(xi, yj)|2 dxFdyF .
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Fig. 6.6. The desired shape is given by F (x, y) = −(x − 0.5)2 − (y − 0.5)2 + 0.25. The color
map is a function of height and is used only to aid visualization of the surface.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 6.7. The calculated polygonal seed layer pattern for the shape given by F (x, y) = −(x −
0.5)2 − (y − 0.5)2 + 0.25, shown in Figure 6.6. The dot in the center is the powered point.

Three values of the number of grid points (Nx = Ny = 50, 100, 200) and three
values for the number of start times (n = 10, 20, 40) are used for the inverse algo-
rithm. More grid points make the boundaries of the layers smoother, and more start
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Fig. 6.8. The forward growth of the calculated polygonal seed layer pattern in Figure 6.7. It
compares well to the desired shape in Figure 6.6.

Table 6.1

The L2 errors for different values of Nx = Ny and n for the function F (x, y) = 0.1 cos(πx) +
0.25 sin(πy) + 0.1.

n
∥∥F − Fφ

∥∥ , Nx = 50
∥∥F − Fφ

∥∥ , Nx = 100
∥∥F − Fφ

∥∥ , Nx = 200
10 0.00425832 0.00423406 0.00422753
20 0.00201249 0.00198800 0.00198200
40 0.00076916 0.00074762 0.00074282

Table 6.2

The L2 errors for different values of Nx = Ny and n for the function F (x, y) = −(x− 0.5)2 −
(y − 0.5)2 + 0.25.

n
∥∥F − Fφ

∥∥ , Nx = 50
∥∥F − Fφ

∥∥ , Nx = 100
∥∥F − Fφ

∥∥ , Nx = 200
10 0.00234398 0.00231595 0.00230947
20 0.00092564 0.00089596 0.00088921
40 0.00036701 0.00034218 0.00034155

Table 6.3

Runtimes for different values of Nx = Ny and n for the function F (x, y) = 0.1 cos(πx) +
0.25 sin(πy) + 0.1.

n Runtime, Nx = 50 Runtime, Nx = 100 Runtime, Nx = 200
10 0.421 2.714 20.159
20 0.762 5.188 38.746
40 1.462 10.195 76.701

times produce more unpowered layers in the seed layer. Tables 6.1 and 6.2 show
the computed errors for the functions F (x, y) = 0.1 cos(πx) + 0.25 sin(πy) + 0.1 and
F (x, y) = −(x− 0.5)2 − (y− 0.5)2 +0.25, respectively. As the data indicate, the error
has very little dependence on Nx = Ny but has nearly linear dependence on n−1. Ta-
ble 6.3 shows the run times for the function F (x, y) = 0.1 cos(πx) + 0.25 sin(πy) + 0.1
with different numbers of grid points and different values of n. All computations
were performed on a PC with an Intel M1.6GHz processor with 1.25GB of RAM.
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Examining Tables 6.1 and 6.3 shows there is no benefit to using more grid points
than needed for resolution of the layers. Using a larger n, however, does improve the
accuracy of the seed layer, with only a linear increase in computational time.

7. Conclusions and future work. The method presented here may face ma-
terial limitations. An accurate fit to a desired shape can result in seed layer elements
that are thin strips. The limit on the minimum geometry of the seed layer elements
is governed by the photolithographic technology used to pattern them. Typically
this ranges from about 1 μm, with readily available optical lithographic systems, to
substantially less than 100 nm with electron-beam lithography and industry-leading
optical photolithography systems.

Surface roughness could also limit the seed layer geometry. The process used to
define the seed layer typically consists of a combination of photolithography, physical
vapor deposition (PVD) (e.g., evaporation or sputtering), and chemical etching. The
metal films deposited by PVD can be very thin (< 100 nm) and are very smooth.
The roughness of electrodeposited films can be highly variable and are subject to the
specific process and recipe used. To obtain smoother electrodeposition, one can add
chemicals (i.e., brighteners) and perform periodic current reversal.

The solution of the forward problem using the level set method depends on con-
struction of a global distance function from the powered and (initially) unpowered
segments. There are several ways to construct this distance function. Our method
uses a time discretization that directly mimics the physical evolution of the front. It
has some advantages in that additional physics could be easily included. An alterna-
tive method in both two and three dimensions would directly construct the distance
function from the geometry of the segments.

One additional feature that can be introduced into seed layer patterns is solid
boundaries. These solid boundaries are made of an insulated material and prevent
growth of the metal shapes beyond the boundaries. This allows even more shape pos-
sibilities. Future work would include these solid boundaries in the model for forward
growth and would attempt to incorporate them into the inverse procedure. Also,
the current model is quite simple, and future work would add more physics into the
model, such as nonuniform growth or perhaps some diffusion of the growing surface.

Appendix. The distance function for a line segment. Let the line segment
be given as [(x1, y1), (x2, y2)]. Without loss of generality, we shall assume that x1 < x2.
There are 4 cases, depending on the slope of the line segment, which we denote as
m = y2−y1

x2−x1
.

1. m = ±∞.

d(x, y) =

⎧⎨
⎩
√

(x− x1)2 + (y − yb)2 if y < yb,
|x− x1| if yb ≤ y ≤ yt,√

(x− x1)2 + (y − yt)2 if y > yt,

where yb = min(y1, y2) and yt = max(y1, y2).
2. m = 0.

d(x, y) =

⎧⎨
⎩
√

(x− x1)2 + (y − y1)2 if x < x1,
|y − y1| if x1 ≤ x ≤ x2,√

(x− x2)2 + (y − y1)2 if x > x2.
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3. 0 < m <∞.

d(x, y) =

⎧⎨
⎩
√

(x − x2)2 + (y − y2)2 if y ≥ (− 1
m (x− x2) + y2),√

(x − x1)2 + (y − y1)2 if y ≤ (− 1
m (x− x1) + y1),√

(x − xm)2 + (y − ym)2 otherwise,

where xm =
(

1
m+ 1

m

)
∗
(
mx1 + x

m + y − y1
)

and ym = m ∗ (xm − x1) + y1.
4. −∞ < m < 0.

d(x, y) =

⎧⎨
⎩
√

(x − x2)2 + (y − y2)2 if y ≤ (− 1
m (x− x2) + y2),√

(x − x1)2 + (y − y1)2 if y ≥ (− 1
m (x− x1) + y1),√

(x − xm)2 + (y − ym)2 otherwise,

where xm =
(

1
m+ 1

m

)
∗
(
mx1 + x

m + y − y1
)

and ym = m ∗ (xm − x1) + y1.
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ACOUSTIC WAVES IN LONG RANGE RANDOM MEDIA∗
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Abstract. We consider waves propagating through multiscale media. Much is known about waves
propagating through a medium that satisfies a scale separation assumption with random fluctuations
on a microscale. Here we go beyond this situation and consider waves propagating through a medium
defined in terms of a long range process. Such a medium can, for instance, be modeled in terms of a
one-dimensional fractional Brownian motion with variations on a continuum of scales. Fractal medium
models are used to model, for example, the heterogeneous earth and the turbulent atmosphere. We
set forth a framework using the theory of rough paths in which propagation problems of this nature
can be analyzed in the case with anticipative medium fluctuations with a Hurst exponent H > 1/2.
We show how the wave interacts with the medium fluctuations in this case and that the interaction is
qualitatively different from the situation where the medium satisfies a separation of scales assumption.
In the long range case considered here the travel time depends strongly on the particular medium
realization, but in fact the pulse shape does not.

Key words. wave propagation, random media, long range processes, fractional Brownian motion
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1. Introduction. Modeling in terms of a multiscale medium is important for
propagation problems in, for instance, the earth’s crust, the turbulent atmosphere,
turbulent boundary layers, sea ice, and outer space [9, 15, 19, 20, 34, 42, 44]. Com-
munication, remote sensing, and laser beam propagation schemes are affected by bad
weather and multiscale medium variations. Large scale research projects (the ABLE
ACE program Kirtland AFB, for instance [43]) have focused on gathering atmospheric
turbulence data and numerically simulating propagation of wave fields through syn-
thetic turbulence models that derive from these. Above a boundary layer atmospheric
turbulence may occur within a stratified environment, and the turbulent temperature
variations may be highly anisotropic; see [16, 36]. Rough and long range medium fluc-
tuations associated with multiscale modeling are also important in medical imaging,
device modeling, and nuclear technology, to name a few. The zone in between dif-
ferent tissue types (or in between different dielectrica) may in particular be strongly
heterogeneous with variation on a continuum of scales. In general, the detailed point-
wise variation of a multiscale medium, the refractive index, say, cannot be identified.
However, the statistics of this variation can be characterized. Optimal design of, for
instance, imaging and communication algorithms requires insight about how the wave
is affected by the rough medium fluctuations, that is, the nonlinear coupling between
medium and wave field statistics. This is particularly the case with modern high res-
olution sampling and imaging technology. Insight about the wave medium interaction
is also important in a range of other applications like design of sound-absorbing ma-
terials and nondestructive evaluation of fractured materials. A good understanding

∗Received by the editors March 22, 2007; accepted for publication (in revised form) September 12,
2008; published electronically January 28, 2009.

http://www.siam.org/journals/siap/69-4/68610.html
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of how the wave interacts with variations on a continuum of small length scales is
therefore important.

Propagation of high frequency waves in smooth media is well understood. A lot is
also known about propagation in heterogeneous media that vary on a well-defined mi-
croscale. However, propagation in rough or multiscale media is not so well understood.
We will look at how propagating pulses interact with rough variations in the medium.
In [10, 11, 12] we considered propagation in rough media when the wave phenomenon
was modeled in terms of the paraxial or forward approximation. In [37] we considered
the full wave equation and a discrete multiscale medium. Here, we continue this line
of research by analyzing the full wave equation in the context of a one-dimensional
continuous multiscale medium modeled in terms of a long range process with slowly
decaying correlations, and we consider in particular fractional Brownian motion–based
media.

In the homogenization or effective medium regime, with the width of the propa-
gating pulse being large compared to the scale of the medium fluctuations and propa-
gation distances on the scale of the wavelength, the rapidly varying properties of the
medium can be replaced by their homogenized or averaged values. However, over long
propagation distances the accumulated effect of the scattering, associated with the
medium microstructure, gradually changes the pulse beyond the geometrical effects of
the high frequency analysis in the smooth homogenized medium. These modifications
depend in general on the particular medium realization. Thus, to describe the propa-
gation phenomenon it is not enough to consider only the mean wave field; one should
also aim at describing the character of the fluctuations in the wave field. A math-
ematical theory for pulse propagation has been developed in [1, 6, 14, 25]. It deals
with pulses in a particular realization of the random medium, and it explains why in
many cases the evolution of the pulse shape is to leading order deterministic. We refer
to this phenomenon as pulse stabilization. So far, two salient features of this “pulse
shaping” theory have been that it assumes a one-dimensional medium and a separa-
tion of scales for the medium heterogeneities, that is, that the medium has features
on microscales which are well separated from the macroscale. However, as explained
above, many empirical studies suggest that, for instance, the earth’s crust should be
modeled as containing fluctuations on a continuum of length scales. Stabilization and
pulse shaping in a two scale medium with slow lateral variations in the medium has
been analyzed in [38]. Here, we generalize the pulse shaping theory for a two scale
medium to the long range multiscale case.

We analyze acoustic waves propagating in a one-dimensional medium, modeled
in terms of a long range process. As a particular example we consider media defined
in terms of fractional Brownian motion. Fractional Brownian motion is a Gaussian
(self-similar) stochastic process and is often used as a model for processes containing
fluctuations on a continuum of length scales, for instance for modeling of turbulent
environments. The Hurst exponent H characterizes the roughness of the fractional
Brownian motion, and the value H = 1/2 gives standard Brownian motion. In the
simplest case with H = 1/2 the medium model that we consider satisfies a separation
of scales assumption. For H �= 1/2 the medium contains long range interactions and
variations on many scales. In this case the correlations in the medium have only poly-
nomial decay, and our objective is to analyze the effects such long range correlations
have on the propagating wave. Here, we shall analyze the case with H > 1/2 corre-
sponding to persistent fluctuations so that consecutive increments of the process are
positively correlated [13]. In fact, we shall show that the pulse shape is not affected
by the random medium fluctuations to leading order. However, the travel time of the
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pulse depends on the particular medium realization, and the travel time fluctuations
are large relative to the period of the pulse.

A number of studies of wave interaction with a fractal or multiscale object deal
with scattering caused by fractal interfaces. However, some authors have explored
wave-interaction with deterministic fractal media using numerical simulations [5, 21,
39]. Here, we present a mathematical analysis of acoustic pulse transmission through
a random fractal and illustrate our theoretical results with numerical simulations. In
section 2 we introduce the problem and review the basic wave decomposition approach
and the classical scale separation result. Next, in section 3 we introduce the multiscale
medium and summarize how the pulse shaping theory generalizes to these media. In
section 4, we illustrate our theoretical results with numerical simulations. Finally,
section 5 is devoted to the derivation of the main result.

2. Wave decomposition. The governing equations are the Euler equations giv-
ing conservation of moments and mass:

ρ(z)
∂u

∂t
(z, t) +

∂p

∂z
(z, t) = 0 ,(2.1)

1
K(z)

∂p

∂t
(z, t) +

∂u

∂z
(z, t) = 0 ,(2.2)

where t is the time, z is the depth into the medium, p is the pressure, and u the
particle velocity. The medium parameters are the density ρ and the bulk-modulus K
(reciprocal of the compressibility). We assume that ρ is a constant identically equal
to one in our nondimensionalized units and that 1/K is modeled as follows:

(2.3)
1

K(z)
=

{
1 + εκν

(
z

ε2

)
for z ∈ [0, Z] ,

1 for z ∈ R − [0, Z] ,

where κ ≥ 0. We introduce the right- and left-going waves

(2.4) A = p+ u and B = u− p ,

where the boundary conditions are of the form

(2.5) A(z = 0, t) = f(t/ετ) and B(z = Z, t) = 0 ,

for a positive real number τ > 0 and a source function f . In order to deduce a
description of the transmitted pulse, we open a window of size ετ in the neighborhood
of the travel time of the homogenized medium and define the processes

(2.6) aε(z, s) = A(z, z + ετs) and bε(z, s) = B(z,−z + ετs) .

Observe that the background or homogenized medium in our scaling has a constant
speed of sound equal to unity and that the medium is matched so that in the frame
introduced in (2.6) the pulse-shapes of the right- and left-going waves are constant in
the slab if ν ≡ 0 or if we consider the homogenized medium [14]. We introduce next
the Fourier transforms âε and b̂ε of aε and bε, respectively,

âε(z, ω) =
∫
eiωsaε(z, s)ds and b̂ε(z, ω) =

∫
eiωsbε(z, s)ds ,
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that satisfy

dâε

dz
=

iω

2ετ−κ
ν
( z
ε2

)(
âε − e−2iωz/ετ

b̂ε
)
, âε(0, ω) = f̂(ω) ,(2.7)

db̂ε

dz
=

iω

2ετ−κ
ν
( z
ε2

)(
e2iωz/ε

τ

âε − b̂ε
)
, b̂ε(Z, ω) = 0 .(2.8)

Following [6, 14], we express the previous system of equations in term of propagator
P εω(z), which can be written as

(2.9) P εω(z) =

(
αεω(z) βεω(z)
βεω(z) αεω(z)

)
,

and which satisfies

(2.10)
dP εω
dz

(z) =
1
εγ
Hω

( z
ετ
,
z

ε2

)
P εω(z) , P εω(z = 0) =

(
1 0
0 1

)
,

with γ = τ − κ and

Hω(z1, z2) =
iω

2
ν(z2)

(
1 −e−2iωz1

e2iωz1 −1

)
.

Defining next the transmission coefficient T εω and the reflection coefficient Rεω by

(2.11) T εω(z) =
1

αεω(z)
and Rεω(z) =

βεω(z)
αεω(z)

,

we can write

(2.12) aε(Z, s) =
1
2π

∫
e−isωT εω(Z)f̂(ω) dω

and

(2.13) bε(0, s) =
1
2π

∫
e−isωRεω(Z)f̂(ω) dω .

Henceforth, we shall study the asymptotics of the propagator P εω in order to charac-
terize aε and bε as ε goes to 0.

We recall now what happens in a “short range” model when τ = 1 and κ = 0.
We assume that ν is a centered Markov process with an invariant probability measure
whose generator satisfies the Fredholm alternative. It is well known [6, 14] that under
these assumptions, in order to characterize the transmitted pulse, the propagator
equations P εω can be replaced by an effective system of stochastic differential equations
from which we can deduce that, as ε goes to 0,

(2.14) aε(Z, s) −→ ã(Z, s) ,

with

(2.15) ã(Z, s) = (f ∗G)(s−B) ,
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where G is a centered Gaussian density and B a Gaussian random variable. Proving
this result involves using the diffusion approximation theorem [14] to get asymptotic
expressions for specific propagator moments from which we can deduce the expression
for the limit ã(Z, s). Therefore, when we capture the pulse at its random arrival time
we will see a pulse whose shape does not depend on the realization of the random
medium. This shape is the original pulse shape convolved with a Gaussian pulse
shaping kernel. Thus, the effects of the random medium fluctuations can be described
in terms of a random travel time correction and an anomalous diffusion effect. By the
same approach we can also prove that

(2.16) bε(0, s) −→ 0 .

This result shows that in the case with a constant homogenized medium the reflected
wave will be negligible in the small ε limit. While the mathematical derivation of this
“medium pulse shaping” result was first obtained in [6] and [26], it was first derived
in the geophysical literature in [32] via a heuristic derivation. The approximation has
since come to be known as the O’Doherty–Anstey (ODA) theory after the authors of
the pioneering paper, which lead to a string of papers both in the mathematical and
geophysical literature, reflecting its relevance. However, so far the problem has only
been analyzed in short range media. Here we generalize to the situation with long
range media and show that then we get a qualitatively different result. We explain
in section 3.2 that in this case we have a strong travel time perturbation, as in the
classic theory; however, in the case with long range media the pulse shape itself is
stable.

3. Medium model and main result. In this section we investigate the prop-
agation in a long range medium. We first describe the model in detail, and then we
establish the main result of the paper.

3.1. Long range model. We assume γ ∈ (0, 1) and that ν can be written as
ν(z) = T (m(z)) for every z where the following hold:

• T is a continuous function which is strictly bounded by 1 in absolute value,
odd, and increasing. Note that our analysis remains valid in the case with T
not being bounded; the boundedness by 1 is introduced to make the model
physically pertinent: we recall that 1 + εκν is the compressibility with κ ≥ 0.

• m is a Gaussian process, centered, stationary and has a correlation function
rm which has the following asymptotic property as z goes to ∞:

(3.1) rm(z) = E[m(0)m(z)] ∼ cmz
−γ .

Note that therefore the medium fluctuations ν themselves are not Gaussian in general;
their distribution is controlled via the choice of T .

The property (3.1) is the so-called long range property. Its main consequence is
that the covariance function rm of m is not absolutely integrable:

∫ ∞

0

|rm(z)| dz = ∞ .

Hence, this situation is in dramatic contrast with the classical mixing (or short range)
case. Indeed, a mixing process has an integrable covariance function [22]. Another
important consequence of (3.1) regards the choice of scales. We are given the corre-
lation length of the medium (1/ε2), the amplitude (εκ), and the rate of decorrelation
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(rm(z) ∼ cm/z
γ) of the random perturbations. Then, because our goal is to capture

the behavior of the transmitted wave pulse and its interaction with the medium, we
have to choose an appropriate size of the window to capture the critical wavelength
interaction scale by taking τ = γ + κ. We next explain this scaling choice. The prop-
agator equation is essentially driven by the process εκ−τm

(
z/ε2

)
, and, we shall see

that indeed its analysis involves the study of the convergence of the antiderivative wε

of this process:

wε(z) =
∫ z

0

1
ετ−κ

m

(
z′

ε2

)
dz′ .

However, it is known [35], as recalled in Lemma 1 just below, that the appropriate
scale then is γ = τ − κ. This gives convergence to a fractional Brownian motion.
Let H ∈ (0, 1); then fractional (one-dimensional) Brownian motion (fBm) with Hurst
parameter H is the centered Gaussian process (BH(z))z∈R with covariance function

E[BH(z1)BH(z2)] =
1
2
{|z1|2H + |z2|2H − |z1 − z2|2H} .

We refer the reader to Samorodnitsky and Taqqu’s book [35] for a good reference. For
the process wε we have the convergence given next.

Lemma 1. Let H = (2 − γ)/2. As ε goes to 0, the finite-dimensional distri-
butions of wε converge to those of the fractional Brownian motion c′HBH , where
c′H

2 = cmH
−1(2H − 1)−1.

Now we give two examples of processes m:
• Fractional white noise with Hurst parameter H = (2 − γ)/2 ∈ (1/2, 1) that

can be defined as

(3.2) m(z) = BH(z + 1) −BH(z) ,

where BH is the fBm with Hurst parameter H .
• The (stationary) fractional Ornstein–Uhlenbeck process with index H = (2−
γ)/2 defined by

(3.3) m(z) = BH(z) − e−z
∫ z

−∞
ez

′
BH(z′) dz′ ,

where BH is the fBm with Hurst parameter H . As in the case with frac-
tional white noise with index H , the fractional Ornstein–Uhlenbeck process
is continuous, Gaussian, stationary, and centered and satisfies (3.1).

Notice that here we presented two examples for m in terms of an fBm, but all results
in this paper are true and proved under the general assumptions on m presented
above, in particular Gaussianity and slow correlation decay. Notice also that we shall
consider here

(3.4) H ∈ (1/2, 1) so that γ ∈ (0, 1) .

We next introduce some notation. We denote by X a Gaussian, centered, and
reduced random variable: X ∼ N (0, 1). Letting σ0 =

√
E[m(0)2], we will need the

Hermite development of the function T (σ0 × ·). We denote by Hk the kth Hermite
polynomial and by J(k) the kth Hermite coefficient of the function T (σ0 × ·), that is
to say, J(k) = E[T (σ0X)Hk(X)]. Thanks to the assumptions on T , we have J(0) = 0
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and J(1) �= 0, so that the Hermite coefficient of T is 1. Therefore, we can write (see
the appendix for more details about Hermite polynomials)

(3.5) T (σ0 ×X) =
∞∑
k=1

J(k)
k!

Hk(X) .

We conclude this subsection by establishing the long range behavior of ν.
Lemma 2. For z → ∞ we have

rν(z) := E[ν(0)ν(z)] ∼ cν
zγ

,

where cν = cmJ(1)2/σ2
0 = cmE[XT (σ0X)]2/σ2

0.
Proof. In view of (3.5) we can write (using (A.1))

(3.6) ν(z) =
∞∑
k=1

J(k)
k!

Hk

(
m(z)
σ0

)
,

so that (using (A.3))

E[ν(0)ν(z)] =
∞∑
k=1

J(k)2

(k!)2
E

[
Hk

(
m(0)
σ0

)
Hk

(
m(z)
σ0

)]

=
∞∑
k=1

J(k)2

k!σ2k
0

rm(z)k .

Therefore, we need to study the limit of

zγE[ν(0)ν(z)] =
∞∑
k=1

J(k)2

k!σ2k
0

zγrm(z)k .

Observe that for k = 1 we have zγrm(z) ∼ cm as z → ∞, and for k > 1 we have
zγrm(z)k → 0. Moreover, we have the uniform upper bound for z sufficiently large:

J(k)2

k!σ2k
0

zγ |rm(z)|k ≤ J(k)2

k!
.

Using the fact that (by (A.2))

(3.7)
∞∑
k=1

J(k)2

k!
<∞ ,

the result now follows from the uniform convergence theorem.

3.2. Main result. Now we establish the main result of this paper. We shall see
that the asymptotic behavior of the transmission coefficient is quite different in the
long range case than in the short range case. Recall that we let τ = γ + κ > 0.

Theorem 1. Under the above assumptions, as ε goes to 0, {aε(Z, s)}s converges
in distribution in the space of continuous functions endowed with the uniform topology
to the random process {ã(Z, s)}s that can be written as

(3.8) ã(Z, s) = f
(
s− cH

2
BH(Z)

)
,
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where BH is a fractional Brownian motion with Hurst parameter H = (2 − γ)/2 and
c2H = cνH

−1(2H − 1)−1 with cν as introduced in Lemma 2. Moreover, the process
{bε(0, s)}s converges to 0.

Therefore, we see that the pulse is stable and does not undergo a deterministic
evolution in time as in the short range case. In the short range case the evolution of
the pulse shape and the randomization of the pulse travel-distance takes place on the
same time scale. In the long range case with persistent medium fluctuations and slow
decorrelation the evolution of the pulse shape takes place on a relatively slow time
scale, and in Theorem 1 we observe only the randomization of the travel distance
while the pulse shape is stable. In the long range case with H > 1/2 the medium
fluctuations are persistent and “smoother” than in the classic case, so that the trav-
eltime perturbation corresponding to an accumulation of fluctuations effect becomes
relatively stronger than the pulse transformation effect which is due to scattering and
enhanced by the roughness of the medium. Note that the traveltime perturbation is
in the long range case described by a fractional Brownian motion with a Hurst index
that corresponds to the effective Hurst index for the medium perturbations, while in
the classic case it is described by a standard Brownian motion.

From the point of view of modern applications of the theory of waves in ran-
dom media the above result is relevant. Recently there has been a lot of interest in
imaging schemes in the context of cluttered layered media [3, 14] exploiting the ODA
approximation, for instance, as well as in nonlayered media [4]. This reflects the fact
that classic imaging schemes deteriorates when the “background” medium becomes
fluctuating. The above results show how this body of results applies to the long range
situation, in which case the modeling of the travel time perturbation becomes the im-
portant aspect. We remark also that currently there is a lot of interest in the design
of robust wireless communication schemes when the signalling takes place through
clutter, through the turbulent atmosphere, for instance, which is relevant also in the
context of remote sensing. Design of robust schemes requires a forward model that
captures the interaction of the pulse with the medium, which in the long range persis-
tent and layered case is described by Theorem 1. The derivation of this result, which
is presented in section 5, sets forth a framework which we expect will be useful also
in a more general context to describe other physical scaling scenarios, analogous to
the case with short range medium fluctuations [17, 18].

4. Numerical illustration. We illustrate the results with some numerical sim-
ulations. In the numerical simulations we use a Gaussian initial pulse shape. In the
normalized coordinates the support of the initial pulse is 10−3 and the total propa-
gation distance is 1. The medium is defined as in (3.2) with κ = 2H and, moreover,
with ε = 10−2 and with a cutoff function that is the identity in the neighborhood of
the origin with a smooth cutoff. We use a discretization corresponding to equal travel
time sections and the method described in [33] to simulate the realizations of the
medium fluctuations. In Figure 4.1 we show the result of three simulations when the
propagated pulse is plotted relative to its random arrival time when H = .6 and on
the fine scale ετ . Observe that indeed the pulse shape is to leading order not affected
by random fluctuations in the medium, as predicted by Theorem 1. In Figure 4.2 we
show the corresponding picture when H = 1/2. Note that in this case the pulse shape
is modified via a convolution with a Gaussian kernel as described by the classical
pulse shaping or ODA theory in the case of strong mixing.

5. Proof of Theorem 1. We first give an outline of the proof. As recalled in
section 2 the process {aε(Z, s)}s can be written in terms of the propagator P εω , and
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Fig. 4.1. The transmitted wave shown at a fixed depth for several medium realizations and with
H = .6. The dashed line is the original pulse shape.

0 20 40 60 80

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
CENTERED TRANSMITTED PULSES

RELATIVE TIME

Fig. 4.2. The transmitted wave shown at a fixed depth for several medium realizations and with
H = 1/2. The dashed line is the original pulse shape.

thus the study of the convergence of {aε(Z, s)}s can be analyzed via asymptotic prop-
erties of P εω. This convergence analysis will follow the lines of [30, 31]. The propagator
P εω satisfies the equation

dP εω
dz

(z) =
1
εγ
Hω

( z
ετ
,
z

ε2

)
P εω(z) ,
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which we can write in the form

(5.1) dP εω(z) =
iω

2

3∑
j=1

FjP
ε
ω dv

ε
j (z) ,

where

F1 =

(
1 0
0 −1

)
, F2 =

(
0 −1
1 0

)
, and F3 =

(
0 i
i 0

)
,

and vε1, v
ε
2, and vε3 are three processes of bounded variation that we can write as

vε1(z) =
∫ z

0

1
εγ
ν

(
z′

ε2

)
dz′ ,

vε2(z) =
∫ z

0

1
εγ
ν

(
z′

ε2

)
cos

(
2ω

z′

ετ

)
dz′ ,

vε3(z) =
∫ z

0

1
εγ
ν

(
z′

ε2

)
sin

(
2ω

z′

ετ

)
dz′ .

Thanks to Lyons’s rough paths theory for which we recall some tools in section 5.1,
we shall see that the convergence of P εω can be reduced for a convenient topology to
the convergence of the process vε defined as

vε := (vε1, v
ε
2, v

ε
3) .

Hence, we first prove the convergence of vε, then by Theorem 2 below we deduce the
convergence of P εω, and thanks to (2.12) we finally conclude by the convergence of
{aε(Z, s)}s.

5.1. Rough paths. In this section we fix p ∈ [1, 2) and consider a closed interval
I = [0, Z]. We define the p-variation of a continuous function w : I → Rn by

Vp(w) :=

⎛
⎝sup

D

k−1∑
j=0

‖w(zj+1) − w(zj)‖p
⎞
⎠

1/p

,

where supD runs over all finite partitions {0 = z0, . . . , zk = Z} of I and where here
and below ‖ · ‖ refers to the Euclidean norm. The space of all continuous functions of
bounded variation (1-variation) is endowed with the p-variation distance

‖w‖p = Vp(w) + sup
z∈[0,1]

|w(z)|

and is denoted by Ω∞
p . The closure of this metric space is called the space of all

geometric rough paths and is denoted by Ωp. One of the most important theorems of
rough paths theory is the following.

Theorem 2 (Lyons’s continuity theorem [27]). Let1 G : R×R
d → L(R,Rd) and

F : R × Rd → L(Rn,Rd) be two smooth functions. Let y be the unique solution of the
differential equation

dy(z) = G(z, y(z)) dz + F (z, y(z)) dw(z), y(z = 0) = y0 ,

1Here L(R, R
d) (resp., L(Rn, R

d)) denotes the space of all linear maps from R (resp., R
n) to R

d.
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where w is a bounded variation function. Then the Itô map I : w �→ y is continuous
with respect to the p-variation distance from Ω∞

p (Rn) to Ω∞
p (Rd). Therefore there

exists a unique extension of this map (that we still denote by I) to the space Ωp(Rn).
This theorem has been proved by Lyons and extensively studied and applied (see

[8, 23, 24, 27, 28, 29]).
The proof of Theorem 1 is based on analysis of the tightness in the space of

geometric rough paths. In the context of this we need to compute the p-variation for
p > 1. To this effect we will need the following lemmas, of which the first can be
found, for instance, in [24] and the second in [23, 24].

Lemma 3. Let q ∈ [1, 2) and (vε)ε>0 be a family of continuous random processes
of finite q-variation which is tight in the space of continuous functions on I and
satisfies

(5.2) lim
A→+∞

sup
ε>0

P[Vq(vε) > A] = 0 .

Then (vε)ε>0 is tight in Ωp for every p > q.
Lemma 4. For every n ∈ N and every k = 0, 1, . . . , 2n, we let znk := Zk/2n.

Let q ∈ [1, 2) and v be a function of finite q-variation. Then there exist two positive
constants C1, C2 which do not depend on v such that

Vq(v)q ≤ C1

+∞∑
n=1

nC2

2n∑
k=1

‖v(znk ) − v(znk−1)‖q .

We conclude this subsection by mentioning an application of this theory to frac-
tional Brownian motion introduced in section 3.1. From the definition of fBm BH
with index H we remark that if H = 1/2, the process BH is the classical Brownian
motion (cBm). However, if H �= 1/2, WH is neither a semimartingale nor a Markov
process. As a consequence, the construction for the fBm of a stochastic calculus turns
out to be more involved than for the cBm. This can be done by several way [7], and
here we use the rough paths approach as in [8].

5.2. Convergence of the propagator. Using Theorem 2 and the expression
(5.1), the asymptotic study of the propagator is reduced to finding the limit in a rough
path space of vε := (vε1, v

ε
2, v

ε
3) . This is the subject of the following lemma.

Lemma 5. Let p > 2/(2−γ) ≡ 1/H. As ε goes to 0, the increments of vε converge
in Ωp to those of WH , which can be written as

WH = (cHBH , 0, 0),

where BH is a fractional Brownian motion with Hurst parameter H = (2 − γ)/2.
The proof of Lemma 5 is based on establishing several technical lemmas that we

derive next. Below we will repeatedly use the notation

wε(z) =
∫ z

0

1
εγ
m

(
z′

ε2

)
dz′ .

We consider first vε1.
Lemma 6. As ε goes to 0, the finite-dimensional distributions of vε1 converge to

those of the fractional Brownian motion cHBH with cH2 = cνH
−1(2H − 1)−1.

Lemma 6 is a continuous version of [40]. Moreover, a stronger version of this result
was established in [41]. Nevertheless, we present here a (simple) proof of Lemma 6 for
the sake of completeness.
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Proof. In view of Lemma 1 it is enough to show that

(5.3) lim
ε→0

E

[∣∣∣∣vε1(z) −
√
cν
cm

wε(z)
∣∣∣∣
2
]

= 0 .

Consider the development of T (σ0×·) in the base of Hermite polynomials {Hj}j=0,1,...,

T (m) =
∞∑
j=1

J(j)
j!

Hj

(
m

σ0

)
,

and observe that J(1)/σ0 =
√
cν/cm; by (A.3) we then have

E

[∣∣∣∣vε1(z) −
√
cν
cm

wε(z)
∣∣∣∣
2
]

= E

[∣∣∣∣∣ε2H
∫ z/ε2

0

∞∑
j=2

J(j)
j!

Hj

(
m(x)
σ0

)
dx

∣∣∣∣∣
2]

= ε4H
∫ z/ε2

0

dx

∫ z/ε2

0

dy

∞∑
j=2

(
J(j)
j!

)2

E

[
Hj

(
m(x)
σ0

)
Hj

(
m(y)
σ0

)]

= ε4H
∫ z/ε2

0

dx

∫ z/ε2

0

dy

∞∑
j=2

J(j)2

j!

(
r(x − y)
σ2

0

)j

≤ ε4H
∫ z/ε2

0

dx

∫ z/ε2

0

dy
∞∑
j=2

J(j)2

j!

(
r(x − y)
σ2

0

)2

≤ ε4HC′
∫ z/ε2

0

dx

∫ z/ε2

0

dy r(x − y)2 ,

with

C′ =
∞∑
j=2

J(j)2

j!σ4
0

<∞ .

As u→ ∞, we have r(u) ∼ cu−γ ; therefore for every η > 0 there exist zη, Cη, and C̃η
such that

ε4H
∫ z/ε2

0

dx

∫ z/ε2

0

dy r(x − y)2 ≤ ε4Hσ4
0

∫ z/ε2

0

dx

∫ z/ε2

0

dy1|x−y|≤zη

+ ε4Hη

∫ z/ε2

0

dx

∫ z/ε2

0

dy|r(x− y)|

≤ ε4H−2Cη + η|z|2−γC̃η .

Then

lim sup
ε→0

E

[∣∣∣∣vε1(z) −
√
cν
cm

wε(z)
∣∣∣∣
2
]
≤ η|z|2−γC̃η

for every η > 0, which concludes the proof.
We consider next vε2 and vε3.
Lemma 7. For every z ∈ [0, Z], as ε goes to 0, the finite-dimensional distributions

of vε2(z) and vε3(z) converge to those of the 0 process.
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Proof. Without loss of generality we present the proof only for vε2(z) and with
2ω = 1. We have

E[vε2(z)
2] =

1
ε2γ

∫ z

0

dx

∫ z

0

dy cos
( x
ετ

)
cos

( y
ετ

)
rν

(
x− y

ε2

)

= Iε1 (z) + Iε2 (z) ,

with

Iε1 (z) =
cν
ε2γ

∫ z

0

dx

∫ z

0

dy cos
( x
ετ

)
cos

( y
ετ

) ∣∣∣∣x− y

ε2

∣∣∣∣
−γ

,

Iε2 (z) =
1
ε2γ

∫ z

0

dx

∫ z

0

dy cos
( x
ετ

)
cos

( y
ετ

)(
rν

(
x− y

ε2

)
− cν

∣∣∣∣x− y

ε2

∣∣∣∣
−γ
)
.

Let δ > 0; because rν(u) ∼ cνu
−γ as u → ∞, we have that for u > zδ (with zδ

sufficiently large) |rν(u) − cνu
−γ | ≤ δu−γ . We then obtain

|Iε2(z)| ≤ δ

ε2γ

∫ z

0

dx

∫ z

0

dy cos
( x
ετ

)
cos

( y
ετ

) ∣∣∣∣x− y

ε2

∣∣∣∣
−γ

+C

∫ z

0

dx

∫ z

0

dy|x− y|−γ1|x−y|≤ε2zδ

≤ δ

∫ z

0

dx

∫ z

0

dy|x− y|−γ + C

∫ z

0

dx

∫ z

0

dy|x− y|−γ1|x−y|≤ε2zδ
,

so that

lim sup
ε→0

|Iε2(z)| ≤ δ

∫ z

0

dx

∫ z

0

dy|x− y|−γ .

The inequality above is valid for every δ > 0, and we conclude

lim
ε→0

Iε2(z) = 0 .

To complete the study of vε2 it remains to deal with Iε1 (z). We have

Iε1(z) = cνε
4−2γ

∫ z/ε2

0

dx

∫ z/ε2

0

dy cos(ε2−τx) cos(ε2−τy)|x− y|−γ

=
cν
2

(
Iε1,1(z) + Iε1,2(z)

)
,

where

Iε1,1(z) = ε4−2γ

∫ z/ε2

0

dx

∫ z/ε2

0

dy cos(ε2−τ (x− y))|x − y|−γ ,

Iε1,2(z) = ε4−2γ

∫ z/ε2

0

dx

∫ z/ε2

0

dy cos(ε2−τ (x+ y))|x − y|−γ .

Using integration by parts, we get

Iε1,1(z) = 2

(
ε4−2γ

∫ z/ε2

0

dx

(∫ (z−x)/ε2

0

dy cos(ε2−τy)|y|−γ
))

= 2(Jε1 (z) − Jε2 (z)) ,
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where

Jε1 (z) = ε2−2γz

∫ z/ε2

0

dy cos(ε2−τy)y−γ ,

Jε2 (z) = ε4−2γ

∫ z/ε2

0

dy cos(ε2−τy)y1−γ .

We make the substitution y → y/ε2−τ in Jε1 (z) to obtain

Jε1 (z) = ετ(1−γ)z

∫ z/ετ

0

dy cos(y)y−γ

and so Jε1 (z) = O(ετ(1−γ)). We also make the substitution y → y/ε2−τ in Jε2 (z) to
obtain

Jε2 (z) = ετ(2−γ)

∫ z/ετ

0

dy cos(y)y1−γ .

Using integration by parts, we obtain

Jε2 (z) = ετ(2−γ) sin
( z
ετ

)( z
ετ

)1−γ

− ετ(2−γ)(1 − γ)
∫ z/ετ

0

dy sin(y)y−γ ,

and so Jε2 (z) = O(ετ ). Therefore, we conclude

lim
ε→0

Iε1,1(z) = 0 .

Consider finally Iε1,2(z). Letting x− y → x and x+ y → y, we get

Iε1,2(s, t) = ε4−2γ

∫∫
Dε

1∪Dε
2∪Dε

3∪Dε
4

dx dy |x|−γ cos(ε2−τy)
2

,

where

Dε
1 = {(x, y) ∈ [0, z/ε2] × [0, z/ε2] : x ≤ y} ,

Dε
2 = {(x, y) ∈ [0, z/ε2] × [z/ε2, 2z/ε2] : y ≤ −x+ 2z/ε2} ,

Dε
3 = {(x, y) ∈ [−z/ε2, 0] × [z/ε2, 2z/ε2] : y ≤ x+ 2z/ε2} ,

Dε
4 = {(x, y) ∈ [−z/ε2, 0] × [0, z/ε2] : −y ≤ x} .

Let us deal with the integral on Dε
1:

ε4−2γ

∫∫
Dε

1

dx dy |x|−γ cos(ε2−τy)
2

= (2(1 − γ))−1Jε2 (z) = O(ετ ) .

The integrals onDε
2,D

ε
3, andDε

4 can be analyzed in a similar way; therefore, Iε1,2(s, t) →
0. This finally shows

lim
ε→0

Iε1(z) = 0 ,
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and then

lim
ε→0

E[vε2(z)
2] = 0,

which concludes the proof.
Now we deal with a technical lemma regarding increments of vε.
Lemma 8. There exists a constant C > 0 such that for every z, ζ, and ε > 0 we

have

E[‖vε(z) − vε(ζ)‖2] ≤ C|z − ζ|2H .

Proof. For every j = 1, 2, 3, using (3.6), (3.7), and (A.3), we have (taking z > ζ)

E[|vεj (z) − vεj (ζ)|2] ≤
1
ε2γ

∫ z

ζ

dx

∫ z

ζ

dy
∣∣∣E [ν ( x

ε2

)
ν
( y
ε2

)]∣∣∣

≤ C

ε2γ

∫ z

ζ

dx

∫ z

ζ

dy

∞∑
j=1

(
J(j)
j!

)2 ∣∣∣∣E
[
Hj

(
m

σ0

( x
ε2

))
Hj

(
m

σ0

( y
ε2

))]∣∣∣∣

≤ C

ε2γ

∫ z

ζ

dx

∫ z

ζ

dy

∞∑
j=1

J(j)2

j!σ2j
0

∣∣∣∣rm
(
x− y

ε2

)∣∣∣∣
j

≤ C

ε2γ

∫ z

ζ

dx

∫ z

ζ

dy

∞∑
j=1

J(j)2

j!σ2
0

∣∣∣∣rm
(
x− y

ε2

)∣∣∣∣

≤ C′

ε2γ

∫ z

ζ

dx

∫ z

ζ

dy

∣∣∣∣x− y

ε2

∣∣∣∣
−γ

≤ 2C′

(1 − γ)(2 − γ)
|z − ζ|2−γ ,

which concludes the proof.
Using the above lemmas, we can deduce the following lemma, which deals with

identification of the limit.
Lemma 9. As ε goes to 0, vε converges to WH defined in Lemma 5 in the space

of continuous functions endowed with the uniform norm.
Proof. Lemmas 6 and 7 give the convergence of finite-dimensional distributions

of vε to those of WH . Using then the Kolmogorov criterion [2], Lemma 8, and the
fact that 2H > 1, we get the tightness of (vε)ε in the space of continuous functions
endowed with the uniform norm, which establishes the proof.

Thanks to Lemma 9 we conclude the proof of Lemma 5 by establishing the tight-
ness in a rough paths sense.

Lemma 10. The sequence (vε)ε is tight in Ωp for p > 1/H.
Proof of Lemmas 5 and 10. Let q ∈ (1/H, p). In view of Lemmas 3 and 9 it is

enough to prove

(5.4) lim
A→+∞

sup
ε>0

P[Vq(vε) > A] = 0.



1080 RENAUD MARTY AND KNUT SOLNA

Using Chebyshev’s inequality, the fact that q < 2, Lemma 4, the Hölder inequality,
and Lemma 9, we find

P[Vq(vε) > A] ≤ 1
Aq

E[Vq(vε)q]

≤ C

Aq

+∞∑
n=1

nC
2n∑
k=1

E[‖vε(znk ) − vε(znk−1)‖q]

≤ C

Aq

+∞∑
n=1

nC
2n∑
k=1

E[‖vε(znk ) − vε(znk−1)‖2]q/2

≤ C′

Aq

+∞∑
n=1

nC
2n∑
k=1

(
1
2n

)qH

≤ C′

Aq

+∞∑
n=1

nC
(

1
2n

)qH−1

,

and since qH > 1 we deduce (5.4).
Finally, we can now derive the following lemma, which deals with the convergence

of the propagator.
Lemma 11. Let {ω1, . . . , ωn} be a collection of frequencies. Then, as ε goes to 0,

the propagator vector (P εω1
, . . . , P εωn

) converges to (Pω1 , . . . , Pωn), which is the asymp-
totic propagator Pω that we can write as

Pω(z) =
(

exp (iωcH/2BH(z)) 0
0 exp (−iωcH/2BH(z))

)
.

Proof. By combining Theorem 2, (5.1), and Lemma 5, we get that, as ε goes to 0,
P εω converges in distribution in the space of continuous functions (endowed with the
uniform topology) to the solution Pω of the following system of equations in the sense
of rough paths:

dPω(z) =
iωcH

2

(
1 0
0 −1

)
Pω(z) dBH(z) .

This concludes the proof.

5.3. Conclusion of the proof. The remaining part of the proof of Theorem 1
follows the lines of [6, 14]; however, we present it here for completeness. Recall that,
thanks to the formula (2.12), we can write aε(Z, s) in a Fourier-type formula using
the transmission coefficient,

(5.5) aε(Z, s) =
1
2π

∫
e−isωT εω(Z)f̂(ω) dω ,

with the transmission coefficient being a functional of the propagator P εω . We shall
use Lemma 11 to deduce the convergence of the transmitted wave.

Let n ∈ N, s1 ≤ · · · ≤ sn ∈ [0,∞). We can write

E[aε(Z, s1) · · · aε(Z, sn)] = E

⎡
⎣ 1

(2π)n

n∏
j=1

∫
e−isjωT εω(Z)f̂(ω) dω

⎤
⎦

=
1

(2π)n

∫
· · ·

∫
e−i

∑n
j=1 sjωj f̂(ω1) · · · f̂(ωn)E[T εω1

(Z) · · ·T εωn
(Z)] dω1 · · ·dωn.
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Thanks to Lemma 11 we have that as ε→ 0,

E[T εω1
(Z) · · ·T εωn

(Z)] → E

⎡
⎣exp

⎛
⎝ icHBH(Z)

2

n∑
j=1

ωj

⎞
⎠
⎤
⎦ ,

and then

E[aε(Z, s1) · · · aε(Z, sn)] →
1

(2π)n

∫
· · ·
∫
e−i

∑n
j=1 sjωj f̂(ω1) · · · f̂(ωn)

×E

⎡
⎣exp

⎛
⎝ icHBH(Z)

2

n∑
j=1

ωj

⎞
⎠
⎤
⎦ dω1 · · · dωn

= E

⎡
⎣ 1

(2π)n

n∏
j=1

∫
e−i(sj−cHBH(Z)/2)ω f̂(ω) dω

⎤
⎦

= E

⎡
⎣ n∏
j=1

f

(
sj −

cHBH(Z)
2

)⎤
⎦ .

The tightness proof is similar to the proof of Lemma 3.2 in [6], and the convergence
of aε(Z, s) follows. To conclude the proof of Theorem 1 it remains to prove the con-
vergence of bε(0, s). It is similar to the convergence of aε(Z, s), up to substituting the
application of (2.12) by that of (2.13).

Appendix A. Hermite polynomials. In this appendix we recall some results
regarding Hermite polynomials that we use in this paper. We denote the Gaussian
probability density of a random variable X ∼ N (0, 1) by

g(x) =
e−x

2/2

√
2π

,

and we define for every k ∈ N the kth Hermite polynomial by

Hk(x) = (−1)k
g(k)(x)
g(x)

.

The set of all Hermite polynomials {Hk, k = 0, 1, 2, . . .} is an orthonormal base for
the space L2(g(x) dx) = {h : E[|h(X)|2] <∞}. We denote by Jh(k) (or J(k) if there is
no ambiguity) the projection coefficient of a function h ∈ L2(g(x) dx) on the subspace
spanned by Hk, that is,

Jh(k) = E[Hk(X)h(X)] .

Then, we have the series representation

(A.1) h(x) =
∞∑
k=0

Jh(k)
k!

Hk(x) ,

the convergence being in L2(g(x) dx). We can explicitly compute the second moments
by

(A.2) E[|h(X)|2] =
∞∑
k=0

|Jh(k)|2
k!

.
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This formula is a direct consequence of the following relation that we use in this paper:
for a centered two-dimensional Gaussian vector (X1, X2) such that E[X2

1 ] = E[X2
2 ] = 1

we have

(A.3) E[Hj(X1)Hk(X2)] =

{
k!E[X1X2]k if k = l,

0 if k �= l.
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THE UNSTEADY FLOW OF A WEAKLY COMPRESSIBLE FLUID
IN A THIN POROUS LAYER

I: TWO-DIMENSIONAL THEORY∗

D. J. NEEDHAM† , S. LANGDON‡ , G. S. BUSSWELL§ , AND J. P. GILCHRIST§

Abstract. We consider the problem of determining the pressure and velocity fields for a weakly
compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous
medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical
wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly
in the case that the depth scale of the layer h is small compared to the horizontal length scale
l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under
the assumption that ε = h/l � 1, we show that the pressure field varies only in the horizontal
direction away from the wells (the outer region). We construct two-term asymptotic expansions in
ε in both the inner (near the wells) and outer regions and use the asymptotic matching principle
to derive analytical expressions for all significant process quantities. This approach, via the method
of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, ε, at
precisely the stage where full numerical computations become stiff, and also reveals the detailed
structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.

Key words. oil recovery, thin porous layer, matched asymptotics

AMS subject classifications. 35K15, 35K20, 76M45, 76S05, 86A99

DOI. 10.1137/070703405

1. Introduction. It is standard practice in the oil and gas industry to use reser-
voir simulators based on numerical methods such as the finite difference or finite
element techniques. This kind of approach has been shown to be enormously suc-
cessful over the years in modeling a wide variety of physical processes in the reservoir
e.g., faults, rock layering effects, complex fluid phase behavior, etc. While reservoir
simulators of this type will continue to play a crucial role in the industry, it is well
known that to use them takes considerable expertise and time. Because of the numer-
ical nature of the modeling process, gridding, time-stepping, and convergence issues
require care and attention. Long execution times are often necessary for certain types
of problems, e.g., hydraulically fractured wells.

Analytic techniques, for the reasons outlined, can therefore play a valuable role in
the industry. Such techniques, although they may have some simplifying assumptions,
allow a reservoir or production engineer to perform a quick study of their reservoir in
order to obtain a broad understanding of the dynamical processes and make approxi-
mate costing forecasts. Analytic solutions are extremely fast and provide none of the
timestepping and convergence issues seen with a numerically based simulator. Also,
a necessary step in many reservoir studies involves the history matching of observed
data by optimizing model parameters. The history matched model is then used for
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performance prediction. Given the speed and reliability of analytic results, there is a
clear opportunity to exploit their use in history matching studies.

There has been much work in the literature regarding analytic approaches, par-
ticularly for well testing applications [10, 5, 15, 1, 9] but also from a full field reservoir
standpoint, where multiple wells and reservoir boundaries must be accounted for to
forecast production over the required timescales. Algorithms for full field simula-
tion problems based on analytic approaches have been presented in the literature for
porous media with homogeneous and anisotropic permeability in a variety of sources
[4, 19, 13]. A more complex problem involves the application of analytic approaches to
full field scenarios where the reservoir has inhomogeneous permeability and variable
geometry [12, 14, 8, 18].

In this paper we introduce a new approach to solving full field reservoir problems
with inhomogeneous and anisotropic permeability and variable reservoir geometry
using the method of matched asymptotic expansions. Specifically, our problem in-
volves determining analytical expressions for the pressure and velocity fields for a
weakly compressible fluid flowing in a horizontal reservoir with variable upper and
lower boundaries. Vertical wells injecting or extracting fluid from the reservoir can be
considered as line sources and sinks, respectively. Numerical solution of the full equa-
tions of motion throughout the reservoir can be prohibitively expensive. However,
under the condition that the depth scale of the reservoir h is small compared to the
length scale of the reservoir l, as is often the case in geophysical applications, it can be
shown (allowing further that the porous medium has inhomogeneous and anisotropic
permeability) that the dimension of the problem can be reduced away from the wells,
with solution of the full equations of motion being required only in a small domain
around the wells where the geometry is radically simplified. Moreover, as the ratio
h/l decreases, efficient application of numerical schemes becomes harder, while the
problem becomes more amenable to solution via matched asymptotic theory.

Here, we restrict attention to the case of two-dimensional flow. The full three-
dimensional problem will be dealt with in subsequent work [11]. We introduce the
parameter ε = h/l and consider asymptotic solutions to the equations of motion of
the fluid in increasing powers of ε, with 0 < ε � 1. In the vicinity of a well (the
inner region) the pressure field is two-dimensional, but away from the wells (the
outer region) the pressure field is only one-dimensional. This immediately leads to
a reduction in complexity. Here, however, rather than solving the full equations of
motion numerically in the inner and outer regions, we construct two-term expansions
in both the inner and outer regions. These expansions in the inner and outer regions
can then be matched, via the Van Dyke asymptotic matching principle [20], enabling
us to derive amenable analytical expressions for all significant process quantities.

We begin in section 2 by deriving the equations of motion in the porous medium.
Conservation of mass and momentum lead to a strongly parabolic linear initial bound-
ary value problem for the dynamic fluid pressure (from which the fluid velocity field
can be deduced), with Neumann boundary conditions, under the assumption that the
walls are impenetrable to the fluid in the porous medium. This initial boundary value
problem has a unique solution, but its direct computation would be expensive, pri-
marily due to stiffness when 0 < ε� 1. We thus consider the associated steady state
problem [SSP], a linear strongly elliptic Neumann problem, which also has a unique
solution (up to a constant) under the further constraint that the sum of the total
volume fluxes at the wells (the line sources and sinks) is zero. Solution of the steady
state problem is considered in section 3. Subtracting the solution of the steady state
problem from the solution of the initial value problem leads to a strongly parabolic
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homogeneous problem with no discontinuities across the sources and sinks. The so-
lution of this problem leads to a regular self-adjoint eigenvalue problem [EVP] whose
solution is considered in section 4.

Rather than solving [SSP] and [EVP] directly, the solution to each problem is
considered in the asymptotic limit ε → 0, via the method of matched asymptotic
expansions. For the two-dimensional problem these asymptotic solutions can be con-
structed analytically. To solve [SSP], we proceed first with the situation when the
wells are well spaced and are away from the reservoir boundaries, after which the case
of wells close to a boundary, or close together, is considered in sections 3.1 and 3.2.
The asymptotic solution can be constructed directly in the outer region, up to O(ε2).
In the inner region, determination of the leading order terms reduces to the solution of
a strongly elliptic problem whose solution can be written analytically in terms of the
eigenvalues and corresponding eigenfunctions of a regular Sturm–Liouville eigenvalue
problem. The asymptotic solution of [EVP] in section 4 also reduces to a regular
Sturm–Liouville eigenvalue problem identical in structure to that discussed in sec-
tion 3, and a consideration of this allows us to demonstrate that the solution to the
full initial boundary value problem approaches the solution to the steady state prob-
lem through terms exponentially small with respect to time t as t → ∞. With Dz

being the permeability scale in the vertical direction and Dx being the permeability
scale in the horizontal direction, the further generalization that Dz = o(Dx) rather
than O(Dx) is considered in section 5, where it is shown that the structure of the
solution is identical to that found for the case that Dz = O(Dx), after a suitable
redefinition of the parameter ε. The constraint on the sum of the total volume fluxes
at the wells being zero is removed in section 6, and in section 7 we apply the theory
to a simple model example. Finally in section 8 we draw some conclusions.

2. Equations of motion. We consider the flow of a weakly compressible fluid
in the presence of sources and sinks in a reservoir of porous medium with variable up-
per and lower boundary. The reservoir has permeability which is inhomogeneous and
anisotropic. We restrict attention to the situation when the flow is two-dimensional.
We denote the interior of the porous medium by M ⊂ R2 and its impermeable bound-
ary by ∂M ⊂ R2, with M̄ = M∪∂M . We introduce rectangular Cartesian coordinates
(x, z), with z pointing vertically upwards and x pointing horizontally. The vertical
side walls of the reservoir are taken to be at x = ±l, with l > 0. The upper and lower
surface of the reservoir are described by z = hz+(x/l) and z = hz−(x/l), respectively,
for x ∈ [−l, l], with h (> 0) being the reservoir depth scale and z+, z− : [−1, 1] �→ R

being such that z+, z− ∈ C1([−1, 1]) and z+(x) > z−(x) for all x ∈ [−1, 1]. Normal
fields on the upper and lower surfaces are then given by n+(x) = (−h

l z
′
+(x), 1) and

n−(x) = (hl z
′
−(x),−1), respectively, for x ∈ [−1, 1], with the normals directed out of

M̄ . The situation is illustrated in Figure 2.1.
Embedded within M̄ are N(∈ N) vertical line sources/sinks at locations xi ∈

(−l, l), i = 1, . . . , N . Each line source/sink extends from the upper surface to the
lower surface of M̄ and represents a model of a vertical bore hole in the reservoir
extending from the upper to the lower surface of the reservoir and extracting or in-
jecting fluid along its whole length. This model is standard in the oil industry [3, 10].
The prescribed strength of each line source/sink then represents the details of the
controlled volumetric extraction mechanism in the bore hole along its length. The
two components of permeability, in the x- and z-directions, respectively, are given by

(2.1) D0Dx

(x
l
,
z

h

)
≥ Dm > 0, D0Dz

(x
l
,
z

h

)
≥ Dm > 0, (x, z) ∈ M̄,
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x

z

M

x = −l x = xi z = hz−(x/l)

n−(x)

x = l

∂M

n+(x)

z = hz+(x/l)

Fig. 2.1. Porous layer M ⊂ R
2, with impermeable boundary ∂M .

with Dx, Dz : M̄ �→ R+ such that

(2.2) Dx, Dz ∈ C1(M̄).

Here D0 > 0 is a permeability scale for the layer and Dm > 0 is a lower bound on
permeability in the layer. To avoid confusion, we emphasise here that subscripts x
and z attached to the functions Dx and Dz do not indicate partial differentiation but
merely denote the permeability direction.

We represent the fluid velocity field and pressure field at each point within the
layer by q = q(r, t) = (u(r, t), w(r, t)) and p = p(r, t), respectively, for each (r, t) ∈
M̄ × [0,∞). Here t ≥ 0 represents time. The equation of conservation of fluid mass
within the layer is then

(2.3) ρt + (ρu)x + (ρw)z =
N∑
i=1

ρsi

( z
h

) 1
l
δ

(
x− xi
l

)
, (x, z) ∈M, t ∈ (0,∞).

Here δ : R �→ R is the usual Dirac delta function, ρ = ρ(r, t) is the fluid density field
for (r, t) ∈ M̄ × [0,∞), and the line source/sink volumetric strengths are represented
by si :

[
z−
(
xi

l

)
, z+
(
xi

l

)]
�→ R, i = 1, . . . , N . From practical considerations of the

employed volumetric extraction mechanisms in bore holes, it is reasonable to take

(2.4) si ∈ C
([
z−
(xi
l

)
, z+

(xi
l

)])
, i = 1, . . . , N.

The total volume flux per unit width from the ith line source/sink is then

(2.5) Qi =
∫ hz+(xi/l)

hz−(xi/l)

si

(
λ

h

)
dλ, i = 1, . . . , N.

Conservation of momentum in the fluid is accounted for through the D’Arcy equation
for flow in a porous media, giving

(2.6) u = −D0Dx

(x
l
,
z

h

)
px, w = −D0Dz

(x
l
,
z

h

)
(pz + ρg)

for all (x, z) ∈M , t ∈ (0,∞), where g is the acceleration due to gravity. The effect of
weak compressibility is accounted for through the equation of state,

(2.7) ρ(p) = ρ0(1 + ct(p− p0)),
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with ct > 0 being a constant isothermal expansion coefficient and ρ0 and p0 being
positive reference density and pressure, respectively. Now, for a weakly compressible
fluid, 0 < ctp0 � 1, and the weakly compressible model is obtained by replacing ρ(p)
by its dominant contribution from (2.7) in both of the equations of motion (2.3) and
(2.6). We obtain as our final model for the flow in the reservoir

ctpt + ux + wz =
N∑
i=1

si

( z
h

) 1
l
δ

(
x− xi
l

)
,(2.8)

u = −D0Dx

(x
l
,
z

h

)
px,(2.9)

w = −D0Dz

(x
l
,
z

h

)
(pz + ρ0g)(2.10)

for all (x, z) ∈ M , t ∈ (0,∞). The equations of motion (2.8)–(2.10) form the basis
for established models for weakly compressible flows in porous reservoirs [2], and we
will take (2.8)–(2.10) as the model for the flow in the porous reservoir throughout the
rest of the paper. We now set

(2.11) Q =
N∑
i=1

|Qi| (> 0).

The natural scales are then x ∼ l and z ∼ h, from the geometry of the porous layer,
while si ∼ Q/h, via (2.5). The continuity equation (2.8) then requires u ∼ Q/h and
w ∼ Q/l, while the momentum equation (2.9) requires p ∼ (lQ)/(hD0). We therefore
introduce the dimensionless variables,

(2.12) x = lx′, z = hz′, si =
Q

h
s′i, u =

Q

h
u′, w =

Q

l
w′, p =

(
lQ

hD0

)
p′, t =

ctl
2

D0
t′.

On substitution from (2.12) into (2.8)–(2.10) (and dropping primes for convenience)
we obtain the dimensionless equations of motion as

p̄t + ux + wz =
N∑
i=1

si(z)δ(x− xi),(2.13)

u = −Dx(x, z)p̄x,(2.14)

ε2w = −Dz(x, z)p̄z(2.15)

for all (x, z) ∈ M ′, t ∈ (0,∞). Here, p(x, z, t) = −σ̂z + p̄(x, z, t), with p̄ being the
dynamic fluid pressure, and the dimensionless parameters ε and σ̂ are given by ε = h/l
and σ̂ = h2ρ0gD0/(lQ). The values of the model parameters will vary depending
upon the details of the reservoir under consideration. However, for a typical field
scenario the values h ∼ 200 m, l ∼ 20,000 m, Q ∼ 2 m3/s, ct ∼ 1.45 × 10−9 m2/N,
p0 ∼ 2.76 × 107 N/m2, and D0 ∼ 10−10 m4/Ns may be considered as representative.
This gives a value for ctp0 ∼ 0.04, which is entirely consistent with the adoption of the
weakly compressible model proposed earlier. More significantly, the aspect ratio of a
typical reservoir gives ε ∼ 0.01 (and this may be as small as 10−3 for large reservoirs).
The dimensionless domain is now

M ′ = {(x, z) ∈ R
2 : x ∈ (−1, 1), z ∈ (z−(x), z+(x))},
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with closure M̄ ′ and boundary ∂M ′. The line source/sink locations are at xi ∈ (−1, 1),
i = 1, . . . , N . The volume flux condition (2.5) becomes

αi =
∫ z+(xi)

z−(xi)

si(μ) dμ, i = 1, . . . , N,

with αi = Qi/Q, and hence |αi| = |Qi|/Q ≤ 1, i = 1, . . . , N , and
∑N
i=1 |αi| =∑N

i=1 |Qi|/Q = 1, via (2.11). We next consider the boundary conditions. On the
boundary ∂M ′ the walls are impenetrable to the fluid in the porous layer. Thus

u(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),(2.16)
u(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),(2.17)

w(x, z+(x), t) − z′+(x)u(x, z+(x), t) = 0 for all x ∈ (−1, 1), t ∈ (0,∞),(2.18)
w(x, z−(x), t) − z′−(x)u(x, z−(x), t) = 0 for all x ∈ (−1, 1), t ∈ (0,∞).(2.19)

Finally we have the initial condition

(2.20) p̄(x, z, 0) = p̄0(x, z) for all (x, z) ∈ M̄ ′,

with p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), where PC1(M̄ ′) represents the class of piecewise con-
tinuously differentiable functions on M̄ ′. The full problem for consideration is given
by (2.13)–(2.15), (2.16)–(2.20), which we will refer to as [IBVP]. To proceed it is
convenient to introduce di = {(x, z) ∈ M̄ ′ : x = xi, z ∈ (z−(xi), z+(xi))} ⊂ M̄ ′, for
each i = 1, . . . , N , and d =

⋃N
i=1 di. We require that a solution to [IBVP] has the

following regularity, which is classical in the framework of the Dirac delta function
formalism:

(i) p̄ ∈ C(M̄ ′ × [0,∞)) ∩C1((M̄ ′\d̄) × (0,∞)) ∩C2((M ′\d) × (0,∞)),
u ∈ C((M̄ ′\d̄) × (0,∞)) ∩ C1((M ′\d) × (0,∞)),
w ∈ C(M̄ ′ × (0,∞)) ∩ C1((M ′\d) × (0,∞));

(ii) limx→x±
i
p̄x and limx→x±

i
p̄z both exist uniformly for z ∈ [z−(xi), z+(xi)] at

each t ∈ (0,∞), i = 1, . . . , N ;

(iii) [p̄z]
x+

i

x−
i

= 0, [p̄x]
x+

i

x−
i

= −si(z)/Dx(xi, z) for all z ∈ [z−(xi), z+(xi)] at each

t ∈ (0,∞), i = 1, . . . , N .
We observe that (ii) requires, via (2.14), (2.15), that limx→x±

i
u and limx→x±

i
w both

exist uniformly for z ∈ [z−(xi), z+(xi)], and (iii) requires that

[u]x
+
i

x−
i

= si(z), [w]x
+
i

x−
i

= 0

for all z ∈ [z−(xi), z+(xi)] at each t ∈ (0,∞), i = 1, . . . , N . We now have the following
preliminary result concerning [IBVP].

Theorem 2.1. For each ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ ×
[0,∞) �→ R. Moreover,

(2.21)
(∫∫

M̄ ′
p̄(x, z, t) dxdz

)
t

=
N∑
i=1

αi

for all t ∈ (0,∞).
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Proof. Existence and uniqueness follow via regularity (2.2) and (2.4), with (2.1),
on noting from (2.13)–(2.15) that [IBVP] is equivalent to the scalar initial boundary
value problem

p̄t −
{
(Dx(x, z)p̄x)x +

(
ε−2Dz(x, z)p̄z

)
z

}
=

N∑
i=1

si(z)δ(x− xi),(2.22)

(x, z) ∈M ′, t ∈ (0,∞),
p̄x(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),
p̄x(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),

Dz(x, z+(x))p̄z(x, z+(x), t) − ε2z′+(x)Dx(x, z+(x))p̄x(x, z+(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),

Dz(x, z−(x))p̄z(x, z−(x), t) − ε2z′−(x)Dx(x, z−(x))p̄x(x, z−(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),

p̄(x, z, 0) = p̄0(x, z) for all (x, z) ∈ M̄ ′.

The partial differential equation (2.22) is linear and strongly parabolic, with boundary
conditions of nondegenerate (via (2.1)) weighted Neumann type, after which existence
and uniqueness follow from the classical theory in [7, Chapter 3]. Equation (2.21)
follows from an application of Green’s theorem on the plane to (2.22) in M̄ ′ on using
the associated boundary conditions and regularity in (i)–(iii).

The steady state problem associated with [IBVP] is

ûx + ŵz =
N∑
i=1

si(z)δ(x− xi), (x, z) ∈M ′,(2.23)

û = −Dx(x, z)p̂x, (x, z) ∈M ′,(2.24)

ε2ŵ = −Dz(x, z)p̂z, (x, z) ∈M ′,(2.25)
û(−1, z) = 0 for all z ∈ [z−(−1), z+(−1)],(2.26)
û(1, z) = 0 for all z ∈ [z−(1), z+(1)],(2.27)

ŵ(x, z+(x)) − z′+(x)û(x, z+(x)) = 0 for all x ∈ (−1, 1),(2.28)
ŵ(x, z−(x)) − z′−(x)û(x, z−(x)) = 0 for all x ∈ (−1, 1),(2.29)

which we will refer to as [SSP]. Corresponding to (i)–(iii), a solution to [SSP] has the
following regularity:

(si) p̂ ∈ C(M̄ ′) ∩ C1(M̄ ′\d̄) ∩ C2(M ′\d), û ∈ C(M̄ ′\d̄) ∩C1(M ′\d),
ŵ ∈ C(M̄ ′) ∩ C1(M ′\d);

(sii) limx→x±
i
p̂x and limx→x±

i
p̂z both exist uniformly for z ∈ [z−(xi), z+(xi)] for

each i = 1, . . . , N ;

(siii) [p̂z]
x+

i

x−
i

= 0, [p̂x]
x+

i

x−
i

= −si(z)/Dx(xi, z) for all z ∈ [z−(xi), z+(xi)] and each
i = 1, . . . , N .

As before, limx→x±
i
û and limx→x±

i
ŵ exist uniformly for z ∈ [z−(xi), z+(xi)], and

(2.30) [û]x
+
i

x−
i

= si(z), [ŵ]x
+
i

x−
i

= 0

for all z ∈ [z−(xi), z+(xi)] and for each i = 1, . . . , N . Again, following standard theory
for linear strongly elliptic weighted Neumann problems (see, for example, [7] or [17,
Chapters 8, 9]), we have the following result.
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Theorem 2.2. For each ε > 0, [SSP] has a unique (up to addition of a constant
in p̂) solution û, ŵ, p̂ : M̄ ′ �→ R if and only if

(2.31)
N∑
i=1

αi = 0.

In what follows we will assume that the specified flux constants αi, i = 1, . . . , N ,
satisfy condition (2.31). Now let ũ, w̃, p̃ : M̄ ′ × [0,∞) �→ R be defined by ũ = u − û,
w̃ = w − ŵ, p̃ = p̄− p̂. It then follows that ũ, w̃, and p̃ are solutions to the problem

p̃t −
{
(Dx(x, z)p̃x)x +

(
ε−2Dz(x, z)p̃z

)
z

}
= 0, (x, z) ∈M ′, t ∈ (0,∞),(2.32)

p̃x(−1, z, t) = 0 for all z ∈ [z−(−1), z+(−1)], t ∈ (0,∞),(2.33)
p̃x(1, z, t) = 0 for all z ∈ [z−(1), z+(1)], t ∈ (0,∞),(2.34)

Dz(x, z+(x))p̃z(x, z+(x), t) − ε2z′+(x)Dx(x, z+(x))p̃x(x, z+(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),(2.35)

Dz(x, z−(x))p̃z(x, z−(x), t) − ε2z′−(x)Dx(x, z−(x))p̃x(x, z−(x), t) = 0
for all x ∈ (−1, 1), t ∈ (0,∞),(2.36)

p̃(x, z, 0) = p̄0(x, z) − p̂(x, z) = p̃0(x, z) for all (x, z) ∈ M̄ ′,(2.37)

with regularity

(2.38) p̃ ∈ C(M̄ ′ × [0,∞)) ∩ C1(M̄ ′ × (0,∞)) ∩C2(M ′ × (0,∞)),

after which

(2.39) ũ = −Dx(x, z)p̃x, w̃ = −ε−2Dz(x, z)p̃z , (x, z) ∈ M̄ ′ × (0,∞).

To fix the indeterminate constant in Theorem 2.2, we will take p̂ : M̄ ′ �→ R to be that
steady state which satisfies

(2.40)
∫∫

M̄ ′
p̂(x, z) dxdz =

∫∫
M̄ ′

p̄0(x, z) dxdz =: I0,

so that, via (2.37),

(2.41)
∫∫

M̄ ′
p̃0(x, z) dxdz = 0.

Now it follows from Theorem 2.1 that the strongly parabolic problem (2.32)–(2.39)
has a unique solution in M̄ ′ × [0,∞). We will now construct this solution. To this
end we first consider the following self-adjoint eigenvalue problem in M̄ ′:

(Dx(x, z)φx)x +
(
ε−2Dz(x, z)φz

)
z

+ λφ = 0, (x, z) ∈M ′,

φx(−1, z) = 0 for all z ∈ [z−(−1), z+(−1)],
φx(1, z) = 0 for all z ∈ [z−(1), z+(1)],

Dz(x, z+(x))φz(x, z+(x)) − ε2z′+(x)Dx(x, z+(x))φx(x, z+(x)) = 0 for all x ∈ (−1, 1),

Dz(x, z−(x))φz(x, z−(x)) − ε2z′−(x)Dx(x, z−(x))φx(x, z−(x)) = 0 for all x ∈ (−1, 1).

We will denote this eigenvalue problem by [EVP], with λ ∈ C being the eigenvalue
parameter. It follows from (2.1) that this is a regular, self-adjoint eigenvalue problem.
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It then follows from standard theory that the eigenvalues of [EVP] are all real and
given by λ = λj(ε), j = 0, 1, 2, . . . , with

(2.42) 0 = λ0(ε) < λ1(ε) < λ2(ε) < · · ·

and λj(ε) → +∞ as j → ∞. Each corresponding eigenspace is spanned by a single
eigenfunction φj : M̄ ′ �→ R, j = 0, 1, 2, . . . , with

(2.43) φ0(x, z, ε) = (meas(M̄ ′))−1/2 for all (x, z) ∈ M̄ ′,

and meas(M̄ ′) being the measure (area) of M̄ ′ ⊂ R2. Moreover,

〈φi, φj〉 =
∫∫

M̄ ′
φi(x, z, ε)φj(x, z, ε) dxdz = δij ,

for i, j = 0, 1, 2, . . . , and δij being the Kronecker delta symbol. Moreover, any function
ψ : M̄ ′ �→ R such that ψ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and satisfies the same boundary
conditions on ∂M ′ as the set of eigenfunctions has the representation

(2.44) ψ(x, z) =
∞∑
r=0

ψr(ε)φr(x, z, ε), (x, z) ∈ M̄ ′,

with the convergence of the sum being uniform and absolute for (x, z) ∈ M̄ ′, where

(2.45) ψj(ε) = 〈ψ, φj〉 =
∫∫

M̄ ′
ψ(x, z)φj(x, z, ε) dxdz,

for j = 0, 1, 2, . . . (see, for example, [17, Chapters 8, 9]). It is now straightforward to
establish that the (unique) solution to (2.32)–(2.37) is given by

(2.46) p̃(x, z, t) =
∞∑
n=1

an(ε)e−λn(ε)tφn(x, z, ε), (x, z) ∈ M̄ ′, t ∈ [0,∞),

with a0(ε) = 0, via (2.37), (2.41), (2.43), (2.44), and (2.45), and

(2.47) an(ε) =
∫∫

M̄ ′
p̃0(u, v)φn(u, v, ε) du dv

for n = 1, 2, . . . . We observe immediately from (2.46), with (2.42), that p̃(x, z, t) → 0
as t → ∞, uniformly for all (x, z) ∈ M̄ ′, and also that p̃x(x, z, t), p̃z(x, z, t) → 0 as
t→ ∞, uniformly for all (x, z) ∈ M̄ ′. Thus, we have established the following result.

Theorem 2.3. Let αi, i = 1, . . . , N , be such that
∑N
i=1 αi = 0. Then for each

ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ × [0,∞) �→ R given by

p̄(x, z, t) = p̂(x, z) + p̃(x, z, t),
u(x, z, t) = û(x, z) −Dx(x, z)p̃x(x, z, t),

w(x, z, t) = ŵ(x, z) − ε−2Dz(x, z)p̃z(x, z, t),

for all (x, z) ∈ M̄ ′ and t ∈ [0,∞). Here p̃ : M̄ ′× [0,∞) �→ R is given by (2.46), (2.47)
and û, ŵ, p̂ : M̄ ′ �→ R is that solution to [SSP] which satisfies (2.40). Moreover,

p̄(x, z, t) → p̂(x, z), u(x, z, t) → û(x, z), w(x, z, t) → ŵ(x, z) as t→ ∞
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uniformly for (x, z) ∈ M̄ ′.
We remark that since p̂ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and the initial data for [IBVP]

p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), then Theorem 2.3 implies global asymptotic stability (up to
the addition of a constant to p̂) for [SSP] with respect to perturbations in C(M̄ ′) ∩
PC1(M̄ ′).

To complete the solution to the problem we are required to determine λn(ε) (> 0)
and its corresponding eigenfunction φn : M̄ ′ �→ R for each n = 1, 2, 3, . . . , together
with the steady state p̂, û, ŵ : M̄ ′ �→ R which satisfies the constraint (2.40). In the
next sections we focus attention on the study of [SSP] and [EVP] in turn.

In particular for a thin porous layer the parameter ε, which measures the aspect
ratio of the layer, is small, so that 0 < ε� 1. In the next two sections we will consider
the structure of the solutions to [SSP] and [EVP] in the asymptotic limit ε → 0, via
the method of matched asymptotic expansions.

3. Asymptotic solution to the steady state problem [SSP] as ε → 0. In
this section we develop the uniform asymptotic structure of the solution to the steady
state problem [SSP] (given by (2.23)–(2.29)) in the limit ε → 0, via the method
of matched asymptotic expansions. We recall that existence and uniqueness, for
each ε > 0, follows from Theorem 2.2, and following Theorem 2.3, we require the
solution of [SSP] that satisfies the constraint (2.40). Due to the initial scalings in the
nondimensionalization (2.12), we anticipate that û, ŵ, p̂ : M̄ ′ �→ R are such that

(3.1) û, ŵ, p̂ = O(1)

as ε→ 0, uniformly for (x, z) ∈ M̄ ′\
⋃N
i=1 δ

ε
i = N̄ ′

ε, where δεi is an O(ε) neighborhood
of d̄i, for each i = 1, . . . , N . Therefore, following (3.1), we introduce the outer region
(this being N̄ ′

ε) asymptotic expansions

(3.2)

û(x, z; ε) = û0(x, z) + εû1(x, z) +O(ε2),

ŵ(x, z; ε) = ŵ0(x, z) + εŵ1(x, z) +O(ε2),

p̂(x, z; ε) = p̂0(x, z) + εp̂1(x, z) +O(ε2),

as ε→ 0, uniformly for (x, z) ∈ N̄ ′
ε. We substitute from (3.2) into [SSP] and condition

(2.40). At leading order we obtain the following problem for û0, ŵ0, p̂0 : M̄ ′ �→ R:

û0x + ŵ0z =
N∑
i=1

si(z)δ(x− xi), (x, z) ∈M ′,(3.3)

û0 = −Dx(x, z)p̂0x, (x, z) ∈M ′,(3.4)
0 = −Dz(x, z)p̂0z, (x, z) ∈M ′,(3.5)

û0(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(3.6)
û0(1, z) = 0, z ∈ [z−(1), z+(1)],(3.7)

ŵ0(x, z+(x)) − z′+(x)û0(x, z+(x)) = 0, x ∈ (−1, 1),(3.8)
ŵ0(x, z−(x)) − z′−(x)û0(x, z−(x)) = 0, x ∈ (−1, 1),(3.9) ∫∫

M̄ ′
p̂0(x, z) dxdz = I0.(3.10)

We now construct the solution of (3.3)–(3.10). As a consequence of (2.1), equation
(3.5) requires

(3.11) p̂0(x, z) = A(x), (x, z) ∈ M̄ ′,
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with A : [−1, 1] �→ R to be determined. Equation (3.4) then gives

(3.12) û0(x, z) = −Dx(x, z)A′(x), (x, z) ∈ M̄ ′,

and the boundary conditions (3.6) and (3.7) then require A′(−1) = A′(1) = 0. We
next substitute from (3.12) into (3.3), which becomes

(3.13) ŵ0z =
N∑
i=1

si(z)δ(x− xi) + [Dx(x, z)A′(x)]x, (x, z) ∈M ′.

A direct integration of (3.13), together with an application of (3.9), leads to

ŵ0(x, z) =
N∑
i=1

Fi(z)δ(x− xi)(3.14)

+
∫ z

z−(x)

[Dx(x, λ)A′(x)]x dλ− z′−(x)Dx(x, z−(x))A′(x), (x, z) ∈ M̄ ′,

where

(3.15) Fi(z) =
∫ z

z−(xi)

si(λ) dλ, z ∈ [z−(xi), z+(xi)],

for each i = 1, . . . , N . (Note that Fi : [z−(xi), z+(xi)] �→ R is such that Fi ∈
C1([z−(xi), z+(xi)]), for each i = 1, . . . , N .) It remains to apply the boundary condi-
tion (3.8). The application of (3.8) using (3.12) and (3.15) finally requires that

∫ z+(x)

z−(x)

[Dx(x, λ)A′(x)]x dλ+ {z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))}A′(x)

+
N∑
i=1

αiδ(x− xi) = 0, x ∈ (−1, 1).(3.16)

We now rewrite the first term on the left-hand side of (3.16) as
∫ z+(x)

z−(x)

[Dx(x, λ)A′(x)]x dλ

=

(∫ z+(x)

z−(x)

Dx(x, λ)A′(x) dλ

)′

−
{
z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))

}
A′(x)

= (D̄x(x)A′(x))′ −
{
z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))

}
A′(x), x ∈ (−1, 1).

(3.17)

On substitution from (3.17) into (3.16) we obtain

(D̄x(x)A′(x))′ = −
N∑
i=1

αiδ(x− xi), x ∈ (−1, 1),

with

(3.18) D̄x(x) =
∫ z+(x)

z−(x)

Dx(x, λ) dλ, x ∈ [−1, 1],
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which represents the depth integrated permeability of the layer in the x-direction at
each location x ∈ [−1, 1]. We observe that D̄x : [−1, 1] �→ R is such that D̄x ∈
C1([−1, 1]) and D̄x(x) ≥ D̄0 > 0 for all x ∈ [−1, 1], via (2.1) and (2.2), for some
positive constant D̄0. Thus A : [−1, 1] �→ R is determined as the solution to the
linear, inhomogeneous, boundary value problem (hereafter referred to as [BVP]),

[D̄x(x)A′(x)]′ = −
N∑
i=1

αiδ(x − xi), x ∈ (−1, 1),

A′(−1) = A′(1) = 0,∫ 1

−1

(z+(x) − z−(x))A(x) dx = I0,

with the final constraint arising via (3.10) on using (3.11). We observe the following.
Remark 3.1. [BVP] has a unique solution if and only if

∑N
i=1 αi = 0.

This is in accord with condition (2.31) of Theorem 2.2. We now construct the
solution to [BVP] (under condition (2.31)). It is straightforward to establish that the
solution to [BVP] (with the usual Dirac delta function formalism) is given by

(3.19) A(x) =
∫ x

−1

S(λ)
D̄x(λ)

dλ+A0, x ∈ [−1, 1],

where here the function S : [−1, 1] �→ R is the step function, given by

(3.20) S(λ) = −
k∑
i=0

αi for all λ ∈ [xk, xk+1),

and for each k = 0, . . . , N , where we have defined α0 = 0, x0 = −1, xN+1 = 1. The
constant A0 ∈ R is given by

(3.21) A0 =
I0

meas(M̄ ′)
− 1

meas(M̄ ′)

∫ 1

−1

S(λ)meas(M̄ ′(λ))
D̄x(λ)

dλ,

where

meas(M̄ ′(λ)) =
∫ 1

λ

(z+(μ) − z−(μ)) dμ for all λ ∈ [−1, 1],

so that meas(M̄ ′(−1)) = meas(M̄ ′). We observe that A ∈ C([−1, 1]) ∩ PC2([−1, 1]),
and that A′(x+

j ) − A′(x−j ) = −αj/D̄x(xj) for each j = 1, . . . , N . We can now recon-
struct the solution to the leading order problem as

p̂0(x, z) = A(x), (x, z) ∈ M̄ ′,(3.22)

û0(x, z) =
−Dx(x, z)
D̄x(x)

S(x), (x, z) ∈ M̄ ′,(3.23)

ŵ0(x, z) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ−
z′−(x)Dx(x, z−(x))S(x)

D̄x(x)
, (x, z) ∈ N̄ ′

ε,

(3.24)
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from (3.11), (3.12), (3.14), and (3.19). It follows from (3.22)–(3.24) that p̂0 ∈ C(M̄ ′)∩
C1(M̄ ′\d̄) ∩ C2(M ′\d), û0 ∈ C(M̄ ′\d̄) ∩C1(M ′\d), ŵ0 ∈ C(M̄ ′\d̄) ∩ C1(M ′\d), and

[p̂0z]
x+

i

x−
i

= 0,(3.25)

[p̂0x]
x+

i

x−
i

=
−αi
D̄x(xi)

,(3.26)

[û0]
x+

i

x−
i

=
Dx(xi, z)αi
D̄x(xi)

,(3.27)

[ŵ0]
x+

i

x−
i

=

{
z′−(xi)Dx(xi, z−(xi))

D̄x(xi)
−
∫ z

z−(xi)

[{
Dx(x, λ)
D̄x(x)

}
x

]
x=xi

dλ

}
αi(3.28)

for z ∈ [z−(xi), z+(xi)] and for each i = 1, . . . , N . We now proceed to O(ε). The
problem for û1, ŵ1, p̂1 : M̄ ′ �→ R is similar to the leading order problem and is not
repeated here. We obtain

p̂1(x, z) = B(x), (x, z) ∈ M̄ ′,(3.29)
û1(x, z) = −Dx(x, z)B′(x), (x, z) ∈ M̄ ′,

ŵ1(x, z) =
∫ z

z−(x)

[Dx(x, λ)B′(x)]x dλ− z′−(x)Dx(x, z−(x))B′(x), (x, z) ∈ M̄ ′,

where B : [−1, 1] �→ R is the solution to the boundary value problem

[D̄x(x)B′(x)]′ = 0, x ∈ (−1, 1),
B′(−1) = B′(1) = 0,∫ 1

−1

(z+(x) − z−(x))B(x) dx = 0.

The unique solution B ∈ C1([−1, 1]) ∩ C2((−1, 1)) is given by B(x) = 0 for all
x ∈ [−1, 1], and so p̂1(x, z) = û1(x, z) = ŵ1(x, z) = 0 for (x, z) ∈ M̄ ′, via (3.29). The
outer region asymptotic expansions are thus

û(x, z; ε) =
−Dx(x, z)
D̄x(x)

S(x) +O(ε2),(3.30)

ŵ(x, z; ε) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ−
z′−(x)Dx(x, z−(x))S(x)

D̄x(x)
+O(ε2),(3.31)

p̂(x, z; ε) = A(x) +O(ε2),(3.32)

as ε→ 0, uniformly for (x, z) ∈ N̄ ′
ε, with A,S : [−1, 1] �→ R given by (3.19)–(3.21).

We now observe from (3.30)–(3.32), via (3.25)–(3.28), that all of the regularity
requirements in (si), together with the limit conditions (sii), (siii), and (2.30), are
not satisfied at x = xi for each z ∈ [z−(xi), z+(xi)], with i = 1, . . . , N (although the
integrated forms are satisfied). We conclude (as was anticipated earlier) that the outer
region asymptotic expansions (3.30)–(3.32) become nonuniform when (x, z) ∈ δεi as
ε → 0, i = 1, . . . , N . To obtain a uniform asymptotic representation to the solution
to [SSP] when (x, z) ∈ δεi as ε → 0, we must therefore introduce an inner region at
each line source/sink location x = xi, i = 1, . . . , N . We now consider the inner region
in the neighborhood of x = xi in detail. In the inner region, x = xi +O(ε), z = O(1),
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as ε → 0, with, from (3.30)–(3.32), û = O(1), ŵ = O(ε−1), p̂ = Ai + O(ε), as ε → 0,
with Ai = A(xi), i = 1, . . . , N . Thus, in the inner region we write

(3.33) x = xi + εX,

with X ∈ (−∞,∞) such that X = O(1) as ε→ 0, together with

(3.34) û = U, ŵ = ε−1W, p̂ = Ai + εP,

where U,W,P : (−∞,∞) × [z−(xi), z+(xi)] �→ R are such that U,W,P = O(1) as
ε → 0. We now substitute from (3.33), (3.34) into the full problem [SSP] ((2.23),
(2.24), (2.25), (2.28), (2.29), excluding conditions (2.26), (2.27) which lie outside the
inner region in the limit ε→ 0). The full problem in the inner region then becomes

UX +Wz = si(z)δ(X), (X, z) ∈ D(ε),(3.35)
U = −Dx(xi + εX, z)PX , (X, z) ∈ D(ε),(3.36)
W = −Dz(xi + εX, z)Pz, (X, z) ∈ D(ε),(3.37)

W − εz′+(xi + εX)U = 0, X ∈ (−∞,∞), z = z+(xi + εX),(3.38)
W − εz′−(xi + εX)U = 0, X ∈ (−∞,∞), z = z−(xi + εX),(3.39)

together with matching conditions to the outer region as |X | → ∞. Here

(3.40) D(ε) = {(X, z) ∈ R
2 : X ∈ (−∞,∞) and z ∈ (z−(xi + εX), z+(xi + εX))}.

We now introduce the inner region asymptotic expansions as

(3.41)
U(X, z; ε) = U0(X, z) +O(ε),
W (X, z; ε) = W0(X, z) +O(ε),
P (X, z; ε) = P0(X, z) +O(ε),

as ε→ 0, with (X, z) ∈ D̄(ε). On substitution from (3.41) into (3.35)–(3.40) we obtain
the leading order problem as

U0X +W0z = si(z)δ(X), (X, z) ∈ D(0),(3.42)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.43)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.44)

W0(X, zi+) = 0, X ∈ (−∞,∞),(3.45)

W0(X, zi−) = 0, X ∈ (−∞,∞).(3.46)

Here,

(3.47) D̃x(z) = Dx(xi, z), D̃z(z) = Dz(xi, z),

for all z ∈ [zi−, z
i
+], with zi− = z−(xi) and zi+ = z+(xi). Also, D̄(0), via (3.40), is

now the unbounded region in the (X, z) plane contained between the coordinate lines
z = zi− and z = zi+; that is,

(3.48) D̄(0) = (−∞,∞) × [zi−, z
i
+].

The leading order problem (3.42)–(3.46) is completed by applying the asymptotic
matching principle of Van Dyke [20]. It is straightforward to establish that matching
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of p̂ is sufficient, after which matching of û and ŵ follows automatically. We must
apply Van Dyke’s matching principle to the outer region asymptotic expansion for p̂
taken to O(ε), (3.32), with the inner region asymptotic expansion for p̂ taken to O(ε),
(3.34) and (3.41). The appropriate matching condition is readily determined as

(3.49) P0(X, z) = A±
i

′
X + o(1) as X → ±∞, uniformly for z ∈ [zi−, z

i
+],

with

(3.50) A+
i

′
= A′(x+

i ) = −
∑i
j=0 αj

D̄x(xi)
, A−

i

′
= A′(x−i ) = −

∑i−1
j=0 αj

D̄x(xi)
, for i = 1, . . . , N,

via (3.19) and (3.20). Finally the regularity conditions (si)–(siii) with (2.30) require
the following:

(Ii) P0 ∈ C(D̄(0)) ∩ C1(D̄(0)\Ī) ∩ C2(D(0)\I), U0 ∈ C(D̄(0)\Ī) ∩ C1(D(0)\I),
W0 ∈ C(D̄(0)) ∩C1(D(0)\I), where I = {0} × (zi−, zi+);

(Iii) limX→0± P0X and limX→0± P0z both exist uniformly for z ∈ [zi−, z
i
+];

(Iiii) [P0z]0
+

0− = 0, [P0X ]0
+

0− = −si(z)/D̃x(z), [U0]0
+

0− = si(z), and [W0]0
+

0− = 0 for all
z ∈ [zi−, z

i
+].

We can now eliminate U0 and W0, via (3.43) and (3.44), and obtain the following
strongly elliptic problem for P0, namely,

(D̃x(z)P0X)X + (D̃z(z)P0z)z = −si(z)δ(X), (X, z) ∈ D(0),(3.51)

P0z(X, z
i
+) = 0, X ∈ (−∞,∞),(3.52)

P0z(X, z
i
−) = 0, X ∈ (−∞,∞),(3.53)

P0(X, z) = A±
i

′
X + o(1), X → ±∞, uniformly for z ∈ [zi−, z

i
+],(3.54)

together with (Ii)–(Iiii). The first step in obtaining the solution to (3.51)–(3.54) is to
consider the regular Sturm–Liouville eigenvalue problem,

(D̃z(z)ψz)z + λ̄D̃x(z)ψ = 0, z ∈ (zi−, z
i
+),

ψz(zi−) = ψz(zi+) = 0,

which we refer to as [SL]. Here λ̄ ∈ C is the eigenvalue parameter. Classical Sturm–
Liouville theory (see, for example, [6, Chapters 7, 8]) determines that the set of
eigenvalues of [SL] is given by λ̄ = λ̄r ∈ R, r = 0, 1, 2, . . . , with 0 = λ̄0 < λ̄1 < λ̄2 <
λ̄3 < · · · , where λ̄r → +∞ as r → ∞. The corresponding normalized eigenfunctions
ψr : [zi−, zi+] �→ R form an orthonormal set, so that

(3.55) 〈ψr, ψs〉 =
∫ zi

+

zi
−

D̃x(z)ψr(z)ψs(z) dz = δrs for r, s = 0, 1, 2, . . . .

The set of eigenfunctions of [SL] are complete on the interval [zi−, zi+]. Completeness
allows us to write the solution to (3.51) with conditions (3.52), (3.53) as

(3.56) P0(X, z) =
{ ∑∞

n=0 χ
+
n (X)ψn(z), X > 0,∑∞

n=0 χ
−
n (X)ψn(z), X < 0,

with z ∈ [zi−, z
i
+]. Substitution of (3.56) into (3.51) establishes that

(3.57)
χ+
n (X) = Aneλ̄

1/2
n X +Bne−λ̄

1/2
n X , X > 0,

χ−
n (X) = Dneλ̄

1/2
n X + Cne−λ̄

1/2
n X , X < 0,



UNSTEADY FLUID FLOW IN A THIN POROUS LAYER 1099

with An, Bn, Cn, Dn ∈ R constants, for n = 1, 2, . . . . With n = 0, we have

(3.58)
χ+

0 (X) = A0 +B0X, X > 0,
χ−

0 (X) = C0 +D0X, X < 0,

with A0, B0, C0, D0 ∈ R constants. At this stage we observe that

(3.59) ψ0(z) =

{∫ zi
+

zi
−

D̃x(s) ds

}−1/2

= Ψ0, z ∈ [zi−, z
i
+],

with Ψ0 > 0. It then follows, via (3.56)–(3.59), that the boundary conditions (3.49)
are satisfied if and only if

(3.60)
An = 0, n = 0, 1, 2, . . . , B0 = A+

i

′
Ψ−1

0 ,

Cn = 0, n = 0, 1, 2, . . . , D0 = A−
i

′
Ψ−1

0 .

Next, across X = 0, continuity of P0, together with the condition [P0z]0
+

0− = 0 of (Iiii),
is satisfied if and only if, via (3.56)–(3.60),

(3.61) Bn = Dn, n = 1, 2, . . . .

Finally, it remains to satisfy the condition [P0X ]0
+

0− = −si(z)/D̃x(z) of (Iiii), which
requires, via (3.56)–(3.61), that

(3.62) (A+
i

′ −A−
i

′
) −

∞∑
n=1

2λ̄1/2
n Bnψn(z) =

−si(z)
D̃x(z)

, z ∈ [zi−, z
i
+].

The completeness of the eigenfunctions ψn(z) (n = 0, 1, 2, . . .) on the interval [zi−, z
i
+]

allows (3.62) to be satisfied uniquely, with, using (3.55),

A+
i

′ −A−
i

′
= −

∫ zi
+

zi
−
si(s) ds

∫ zi
+

zi
−
D̃x(s) ds

= − αi
D̄x(xi)

via (3.47) and (3.18), and which is automatically satisfied using (3.50), and

(3.63) Bk =
1

2λ̄1/2
k

∫ zi
+

zi
−

si(s)ψk(s) ds, k = 1, 2, . . . .

Thus, the solution to (3.51)–(3.54), with regularity (Ii)–(Iiii), is given by

(3.64) P0(X, z) =

{
A+
i

′
X +

∑∞
n=1Bne

−λ̄1/2
n Xψn(z), X > 0,

A−
i

′
X +

∑∞
n=1Bne

λ̄1/2
n Xψn(z), X < 0,

with z ∈ [zi−, z
i
+], and the coefficients Bn, n = 1, 2, . . . , given by (3.63). U0(X, z) and

W0(X, z) are now obtained directly from (3.43) and (3.44) as

U0(X, z) =

⎧⎨
⎩

−D̃x(z)
{
A+
i

′ −
∑∞

n=1 λ̄
1/2
n Bne−λ̄

1/2
n Xψn(z)

}
, X > 0,

−D̃x(z)
{
A−
i

′
+
∑∞

n=1 λ̄
1/2
n Bneλ̄

1/2
n Xψn(z)

}
, X < 0,

(3.65)

W0(X, z) =

{
−D̃z(z)

∑∞
n=1Bne

−λ̄1/2
n Xψ′

n(z), X > 0,
−D̃z(z)

∑∞
n=1Bne

λ̄1/2
n Xψ′

n(z), X < 0,
(3.66)
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with z ∈ [zi−, z
i
+]. The only remaining question is how to actually compute the

eigenvalues and corresponding eigenfunctions of [SL]. If D̃x, D̃z, are constant with
respect to z, then analytical solution of [SL] is trivial. More generally, since [SL] is
a regular Sturm–Liouville problem, numerical methods are straightforward and very
efficient and will not be discussed further here. The solution of the leading order
problem is now complete.

It is of interest to obtain the expression for the pressure at the location of the ith
line source/sink. From (3.34) and (3.41), this is given by p̂(xi, z) = Ai + εP0(0, z) +
O(ε2), for z ∈ [zi−, z

i
+]. On using (3.64), this becomes

(3.67) p̂(xi, z) = Ai + ε

( ∞∑
n=1

Bnψn(z)

)
+O(ε2) for z ∈ [zi−, z

i
+].

The pressure difference between the ith and jth line source/sinks is then

Δp̂ij(z) = p̂(xi, z) − p̂(xj , z)(3.68)

= (Ai −Aj) + ε

( ∞∑
n=1

[Binψ
i
n(z) −Bjnψ

j
n(z)]

)
+O(ε2)

for z ∈ [zi−, z
i
+], with superscripts i and j distinguishing evaluation at the ith and jth

line source/sink, respectively. In (3.68), we recall that, via (3.19),

Ai −Aj = A(xi) −A(xj) =
∫ xi

xj

S(λ)
D̄x(λ)

dλ.

The asymptotic structure to the solution of [SSP] as ε → 0 is now complete.
Two minor extensions are worthy of consideration at this stage and are given in the
subsections that follow.

3.1. A line source/sink close to the boundary. In the above, the locations
of the line source/sinks xi ∈ (−1, 1), i = 1, . . . , N , are such that (x1 + 1), (1 − xN ),
and xi+1 − xi (i = 1, . . . , N − 1) remain positive and finite (O(1)) as ε → 0. In
this extension we consider the situation when x1 + 1 = O(ε) as ε → 0, so that the
line source/sink at x = x1 lies within O(ε) of the layer boundary at x = −1. The
structure of the outer region to [SSP] is unchanged. However, the inner region to
[SSP] at x = x1 now encompasses the boundary at x = −1, and so the leading order
problem in this inner region, when i = 1, is modified. To formalize this we write

(3.69) x1 = −1 + εσ̄,

with the constant σ̄ > 0. In terms of the inner coordinate X ,

(3.70) x = x1 + εX,

via (3.33). Thus, via (3.69) and (3.70), in the inner region, the line source/sink is
located at X = 0, while the layer boundary is located at X = −σ̄. Without repeating
details, the leading order problem in the inner region is now

U0X +W0z = s1(z)δ(X), (X, z) ∈ D(0),(3.71)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.72)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.73)

W0(X, z1
+) = 0, X ∈ (−σ̄,∞),(3.74)

W0(X, z1
−) = 0, X ∈ (−σ̄,∞),(3.75)
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where now D̄(0) is the unbounded region in the (X, z) plane contained inside the
coordinate lines z = z1

+, z = z1
−, and X = −σ̄, so that

(3.76) D̄(0) = [−σ̄,∞) × [z1
−, z

1
+].

The leading order problem (3.71)–(3.75) is completed with the condition

U0(−σ̄, z) = 0, z ∈ [z1
−, z

1
+],(3.77)

P0(X, z) = A+
1

′
X + o(1), as X → +∞, uniformly for z ∈ [z1

−, z
1
+],(3.78)

with the latter being the matching condition to the outer region. The solution to
(3.71)–(3.78) can be constructed as before, to obtain

P0(X, z) =

⎧⎨
⎩
A+

1

′
X +

∑∞
n=1 B̄ne

−λ̄1/2
n Xψn(z), X > 0,

∑∞
n=1

B̄n

cosh[λ̄
1/2
n (X+σ̄)]

cosh λ̄1/2
n (X + σ̄)ψn(z), −σ̄ ≤ X < 0,

for z ∈ [z1
−, z

1
+], and with

(3.79) B̄n =
1

λ̄
1/2
n (1 + tanh(λ̄1/2

n σ̄))

∫ z1+

z1−

s1(s)ψn(s) ds, n = 1, 2, . . . .

Equations (3.72)–(3.73) then give the corresponding expressions for U0(X, z) and
W0(X, z). The pressure at the location of this first line source/sink is then given by

(3.80) p̂(x1, z) = A1 + ε

( ∞∑
n=1

B̄nψn(z)

)
+O(ε2)

for z ∈ [z1
−, z

1
+], with B̄n, n = 1, 2, . . . , as given in (3.79). The difference in the

expression for pressure at the wall close line source/sink (3.80), and at the interior
line source/sink (3.67), occurs in the expressions for the sequence of constants Bn,
(3.63), and B̄n, (3.79), n = 1, 2, . . . .

3.2. Two closely located line source/sinks. In this extension, we consider
the situation when the kth and (k+1)th line source/sinks are within O(ε) separation
of each other. With xk, xk+1 ∈ (−1, 1), we write xk+1 = xk + σ̃ε, with the constant
σ̃ > 0. In terms of the inner coordinate X , x = xk + εX , via (3.33). Thus both line
source/sinks at x = xk and x = xk+1 are located in the inner region at x = xk, with
their respective locations in this inner region being at X = 0 and X = σ̃. Without
repeating details, the leading order problem in the inner region is now

U0X +W0z = sk(z)δ(X) + sk+1(z)δ(X − σ̃), (X, z) ∈ D(0),(3.81)

U0 = −D̃x(z)P0X , (X, z) ∈ D(0),(3.82)

W0 = −D̃z(z)P0z, (X, z) ∈ D(0),(3.83)

W0(X, zk+) = 0, X ∈ (−∞,∞),(3.84)

W0(X, zk−) = 0, X ∈ (−∞,∞),(3.85)

P0(X, z) =

{
A+
k+1

′
(X − σ̃) + σ̃A−

k+1

′
+ o(1), X → +∞,

A−
k

′
X + o(1), X → −∞,

(3.86)

uniformly for z ∈ [zk−, z
k
+],
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with D̄(0) as in (3.48) when i = k, and condition (3.86) being the appropriate match-
ing condition to the outer region. The solution to (3.81)–(3.86) can be constructed
as before, to obtain

P0(X, z) =

⎧⎪⎨
⎪⎩
A−
k

′
X +

∑∞
n=1 B̂ne

λ̄1/2
n Xψn(z), X < 0,

A−
k+1

′
X +

∑∞
n=1(B̂n cosh(λ̄1/2

n X) + D̂n sinh(λ̄1/2
n X))ψn(z), 0 < X < σ̃,

{σ̃A−
k+1

′
+A+

k+1

′
(X − σ̃)} +

∑∞
n=1 Ĉne−λ̄

1/2
n (X−σ̃)ψn(z), X > σ̃,

(3.87)

with z ∈ [zk−, z
k
+], and the coefficients

B̂n =
1

2λ̄1/2
n

{
1

[cosh(λ̄1/2
n σ̃) + sinh(λ̄1/2

n σ̃)]

∫ zk
+

zk
−

sk+1(s)ψn(s) ds+
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
,

(3.88)

D̂n =
1

2λ̄1/2
n

{
1

[cosh(λ̄1/2
n σ̃) + sinh(λ̄1/2

n σ̃)]

∫ zk
+

zk
−

sk+1(s)ψn(s) ds−
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
,

Ĉn =
1

2λ̄1/2
n

{∫ zk
+

zk
−

sk+1(s)ψn(s) ds+ [cosh(λ̄1/2
n σ̃) − sinh(λ̄1/2

n σ̃)]
∫ zk

+

zk
−

sk(s)ψn(s) ds

}
.

(3.89)

Equations (3.82)–(3.83) then give the corresponding expressions for W0(X, z) and
U0(X, z). (Note that D̃x(z) and D̃z(z) in (3.82), (3.83) are evaluated at x = xk.) The
pressures at the line source/sinks at x = xk and x = xk+1 are given by, via (3.87),

p̂(xk, z) = Ak + ε

( ∞∑
n=1

B̂nψn(z)

)
+O(ε2),

p̂(xk+1, z) = Ak + ε

(
σ̃A−

k+1

′
+

∞∑
n=1

Ĉnψn(z)

)
+O(ε2),

with B̂n and Ĉn, n = 1, 2, . . . , as given in (3.88) and (3.89). (Note in the above that
Ak + εσ̃A−

k+1

′ = Ak + εσ̃A+
k

′ +O(ε2) = Ak+1 +O(ε2).)
The asymptotic solution to [SSP] as ε → 0, uniformly for (x, z) ∈ M̄ ′, is now

complete. We now turn our attention to the eigenvalue problem [EVP].

4. Asymptotic solution to the eigenvalue problem [EVP] as ε → 0. In
this section we develop the asymptotic solution to the eigenvalue problem [EVP] as
ε → 0. We first employ the theory developed by Ramm [16] to establish that the set
of eigenvalues to [EVP], (2.42), with ε > 0, splits into two disjoint subsets as ε→ 0+,
denoted by S− =

{
λ−0 (ε), λ−1 (ε), λ−2 (ε), . . .

}
and S+ =

{
λ+

1 (ε), λ+
2 (ε), λ+

3 (ε), . . .
}
, with

0 = λ−0 (ε) < λ−1 (ε) < · · · and 0 < λ+
1 (ε) < λ+

2 (ε) < · · · . In particular,

(4.1) λ−n (ε) = O(n2), λ+
n (ε) = O(n2ε−2)

as ε→ 0+, uniformly for n = 1, 2, . . . . We will focus attention on the eigenvalues and
corresponding eigenfunctions in the set S−, so that in [EVP] we have λ(ε) = O(1) as
ε→ 0+, via (4.1). Thus we expand φ : M̄ ′ �→ R in the form

(4.2) φ(x, z; ε) = φ̃(x, z) + ε2φ̂(x, z) + o(ε2) as ε→ 0+,
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uniformly for (x, z) ∈ M̄ ′, while we expand

(4.3) λ(ε) = λ̃+ ε2λ̂+ o(ε2) as ε→ 0+.

On substitution from (4.2) and (4.3) into [EVP], we obtain the leading order problem
(
Dz(x, z)φ̃z

)
z

= 0, (x, z) ∈M ′,(4.4)

φ̃x(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(4.5)

φ̃x(1, z) = 0, z ∈ [z−(1), z+(1)],(4.6)

φ̃z(x, z+(x)) = 0, x ∈ (−1, 1),(4.7)

φ̃z(x, z−(x)) = 0, x ∈ (−1, 1).(4.8)

A direct integration of (4.4) gives

(4.9) φ̃z(x, z) =
B̃(x)

Dz(x, z)
, (x, z) ∈ M̄ ′,

while (4.7) and (4.8) require B̃(x) = 0 for all x ∈ [−1, 1]. Hence, from (4.9),

(4.10) φ̃(x, z) = Ã(x), (x, z) ∈ M̄ ′,

with Ã : [−1, 1] �→ R such that Ã ∈ C1([−1, 1]) ∩ C2((−1, 1)). Conditions (4.5) and
(4.6) then require Ã′(−1) = Ã′(1) = 0. At O(ε2) we obtain the problem

(
Dz(x, z)φ̂z

)
z

= −λ̃Ã(x) −
(
Dx(x, z)Ã′(x)

)
x
, (x, z) ∈M ′,(4.11)

φ̂x(−1, z) = 0, z ∈ [z−(−1), z+(−1)],(4.12)

φ̂x(1, z) = 0, z ∈ [z−(1), z+(1)],(4.13)

Dz(x, z+(x))φ̂z(x, z+(x)) = z′+(x)Dx(x, z+(x))Ã′(x), x ∈ (−1, 1),(4.14)

Dz(x, z−(x))φ̂z(x, z−(x)) = z′−(x)Dx(x, z−(x))Ã′(x), x ∈ (−1, 1).(4.15)

The solvability requirement on the inhomogeneous boundary value problem (4.11)–
(4.15) will provide the ordinary differential equation which must be satisfied by Ã(x),
x ∈ (−1, 1). On integrating (4.11) with respect to z (with x ∈ (−1, 1) fixed) between
z = z−(x) and z = z+(x), we obtain

Dz(x, z+(x))φ̂z(x, z+(x)) −Dz(x, z−(x))φ̂z(x, z−(x)) = −λ̃Ã(x)(z+(x) − z−(x))

− (D̄x(x)Ã′(x))′ + [z′+(x)Dx(x, z+(x)) − z′−(x)Dx(x, z−(x))]Ã′(x)(4.16)

for all x ∈ (−1, 1). We next substitute into the left-hand side of (4.16) from (4.14)
and (4.15), which, after cancellation, results in the ordinary differential equation

(4.17) (D̄x(x)Ã′(x))′ + λ̃(z+(x) − z−(x))Ã(x) = 0, x ∈ (−1, 1).

Thus Ã : [−1, 1] �→ R and λ̃ ∈ R satisfy the regular Sturm–Liouville eigenvalue
problem (which we denote hereafter by [SLP]),

(D̄x(x)Ã′(x))′ + λ̃h(x)Ã(x) = 0, x ∈ (−1, 1),

Ã′(−1) = Ã′(1) = 0,
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with D̄x(x) as defined in (3.18) and h(x) = z+(x) − z−(x), x ∈ [−1, 1]. Now, the
classical Sturm–Liouville theory (see, for example, [6, Chapters 7, 8]) determines that
the set of eigenvalues of [SLP] is given by λ̃ = λ̃r, r = 0, 1, 2, . . . , with

(4.18) 0 = λ̃0 < λ̃1 < λ̃2 < · · · and λ̃r = O(r2) as r → ∞.

We remark also that [SLP] is identical in structure to the eigenvalue problem [SL]
considered in section 3. Corresponding to each eigenvalue λ̃r (r = 0, 1, 2, . . .), there
is a unique normalized eigenfunction Ãr : [−1, 1] �→ R such that

(4.19)
∫ 1

−1

h(x)Ãi(x)Ãj(x) dx = δij for i, j = 0, 1, 2, . . . .

We note that Ã0(x) = {
∫ 1

−1 h(s) ds}−1/2 = (meas(M̄ ′))−1/2 for all x ∈ [−1, 1]. Thus,
we have established for [EVP], via (4.2), (4.3), (4.10), that λ−r (ε) = λ̃r + O(ε2)
as ε → 0, uniformly for r = 1, 2, . . . , with corresponding normalized eigenfunction
φ−r (x, z; ε) = Ãr(x) + O(ε2) as ε→ 0, uniformly for (x, z) ∈ M̄ ′.

We can now use the above theory to obtain the following expression for p̃ :
M̄ ′ × [0,∞) �→ R, via (2.46) and (2.47):

(4.20) p̃(x, z, t) =
∞∑
r=1

cre−λ̃rtÃr(x) + O(ε2e−λ̃1t, e−t/ε
2
) as ε→ 0,

uniformly for (x, z, t) ∈ M̄ ′ × [δ,∞), for any δ > 0. Here cr, r = 1, 2, . . . , are given by

(4.21) cr =
∫∫

M̄ ′
p̃0(u, v)Ãr(u) du dv, r = 1, 2, . . . .

We observe from (4.20) that

(4.22) p̃(x, z, t) ∼ (c1Ã1(x) +O(ε2))e−λ̃1t

as t → ∞, uniformly for (x, z) ∈ M̄ ′. Thus, the solution to [IBVP] approaches
the solution to [SSP] as t → ∞ through terms exponentially small in t as t → ∞.
The timescale for relaxation to the steady state is then ts ∼ (λ̃1)−1 in dimensionless
variables, giving the dimensional relaxation timescale as tds ∼ ctl

2/(D0λ̃1), via (2.12).

5. The case of disparate permeabilities. In the previous sections, the theory
has been developed for the situation when the permeability scale is comparable in both
the x-direction and the z-direction. In some applications, this is not always the case,
when the permeability in the z-direction is much weaker than that in the x-direction.
In this case (2.1) should be replaced by

Dx
0Dx

(x
l
,
z

h

)
≥ Dm > 0, Dz

0Dz

(x
l
,
z

h

)
≥ Dm > 0,

for (x, z) ∈ M̄ , with Dx
0 > 0 being the permeability scale in the x-direction and

Dz
0 > 0 being the permeability scale in the z-direction, and now

(5.1) 0 < δ =
Dz

0

Dx
0

� 1.

For such reservoirs δ is typically of O(10−1). We now follow the same nondimension-
alization as before, via (2.12), with Dx

0 replacing D0. The resulting full dimensionless
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problem is identical to [IBVP], except with ε replaced by ε̃, where ε̃ = εδ−1/2. Thus
all of the previous theory carries over to this situation, on simply replacing ε by ε̃. In
particular, the asymptotic theory as ε→ 0 is now replaced by ε̃→ 0, and so requires

(5.2) 0 < ε̃� 1,

which, with (5.1), is equivalent to 0 < ε� δ1/2 � 1, and with typically ε2 ∼ O(10−4)
and δ ∼ O(10−1), then this ordering is satisfied. It is worth noting here that for
porous layers in which ε = O(1) and δ � 1, then ε̃ = εδ−1/2 � 1, so (5.2) is again
satisfied, and the asymptotic theory developed before is again applicable.

6. The pseudosteady state. In this section we consider the situation when
the specified flux constants αi, i = 1, . . . , N , do not satisfy the condition (2.31); that
is, when

∑N
i=1 αi = αT �= 0. In this case we introduce an associated pseudosteady

state problem to [IBVP]. This corresponds to the steady state problem [SSP] ((2.23)–
(2.30)), except that now (2.23) is modified to

ûx + ŵz =
N∑
i=1

si(z)δ(x− xi) − α̃T , (x, z) ∈M ′,

with the constant α̃T given by α̃T = αT /meas(M̄ ′). The result corresponding to
Theorem 2.2 is now, with the pseudosteady state problem referred to as [PSSP], the
following.

Theorem 6.1. For each ε > 0, [PSSP] has a unique (up to addition of a constant
in p̂) solution û, ŵ, p̂ : M̄ ′ �→ R.

Again, we fix the indeterminate constant in [PSSP] to be that pseudosteady state
which satisfies the condition (2.40). The result corresponding to Theorem 2.3 is now
as follows.

Theorem 6.2. For each ε > 0, [IBVP] has a unique solution u,w, p̄ : M̄ ′ ×
[0,∞) �→ R given by

p̄(x, z, t) = α̃T t+ p̂(x, z) + p̃(x, z, t),
u(x, z, t) = û(x, z) −Dx(x, z)p̃x(x, z, t),

w(x, z, t) = ŵ(x, z) − ε−2Dz(x, z)p̃z(x, z, t),

for all (x, z) ∈ M̄ ′ and t ∈ [0,∞). Here p̃ : M̄ ′× [0,∞) �→ R is given by (2.46), (2.47),
and û, ŵ, p̂ : M̄ ′ �→ R is that solution to [PSSP] which satisfies (2.40). Moreover,

p̄(x, z, t) = α̃T t+ p̂(x, z) +O(e−λ1(ε)t),

u(x, z, t) = û(x, z) +O(e−λ1(ε)t),

w(x, z, t) = ŵ(x, z) +O(e−λ1(ε)t),

as t→ ∞, uniformly for (x, z) ∈ M̄ ′.
We remark that since p̂ ∈ C(M̄ ′) ∩ PC1(M̄ ′) and the initial data for [IBVP]

p̄0 ∈ C(M̄ ′) ∩ PC1(M̄ ′), then Theorem 6.2 implies global asymptotic stability (up to
the addition of a constant to p̂) for the pseudosteady state to [IBVP] with respect to
perturbations in C(M̄ ′) ∩ PC1(M̄ ′).

We now explore the structure of the solution to [PSSP] as ε → 0. This involves
only minor adjustments to the structure developed in section 3 for the solution to
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[SSP]. Again the outer region asymptotic expansions are given by

û(x, z; ε) =
−Dx(x, z)
D̄x(x)

{S(x) + α̃TH(x)} +O(ε2),

ŵ(x, z; ε) = S(x)
∫ z

z−(x)

{
Dx(x, λ)
D̄x(x)

}
x

dλ

−
z′−(x)Dx(x, z−(x))S(x)

D̄x(x)
− α̃T (z − z−(x)) +O(ε2),

p̂(x, z; ε) = A(x) +O(ε2),(6.1)

as ε → 0, uniformly for (x, z) ∈ N̄ ′
ε. Here, as before, S : [−1, 1] �→ R is as given by

(3.20), but now A : [−1, 1] �→ R is the unique solution to the linear inhomogeneous
boundary value problem,

[D̄x(x)A′(x)]′ = −
N∑
i=1

αiδ(x− xi) + α̃T (z+(x) − z−(x)), x ∈ (−1, 1),(6.2)

A′(−1) = A′(1) = 0,(6.3) ∫ 1

−1

(z+(x) − z−(x))A(x) dx = I0,(6.4)

with H : [−1, 1] �→ R defined by

(6.5) H(x) =
∫ x

−1

(z+(λ) − z−(λ)) dλ, x ∈ [−1, 1].

The solution to (6.2)–(6.4) is readily obtained as

(6.6) A(x) =
∫ x

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

dλ+A0, x ∈ [−1, 1],

with the constant A0 given by

(6.7) A0 =
I0

meas(M̄ ′)
− 1

meas(M̄ ′)

∫ 1

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

meas(M̄ ′(λ)) dλ.

Thus we now have

Ai = A(xi) =
∫ xi

−1

[S(λ) + α̃TH(λ)]
D̄x(λ)

dλ+A0,(6.8)

A+
i

′
= A′(x+

i ) = −
∑i
j=0 αj

D̄x(xi)
+
α̃TH(xi)
D̄x(xi)

,(6.9)

A−
i

′
= A′(x−i ) = −

∑i−1
j=0 αj

D̄x(xi)
+
α̃TH(xi)
D̄x(xi)

,(6.10)

each for i = 1, . . . , N . The details of the inner regions are precisely as before in
section 3, but now Ai and A±

i

′
are given by (6.8)–(6.10). The modifications are now

complete.
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7. An example. We finally apply the theory developed in the previous sections
to a simple situation. We consider a rectangular porous layer, with z±(x) = ±1/2,
x ∈ [−1, 1], with the permeability of the layer in the x-direction independent of x, so
that Dx(x, z) = Dx(z), (x, z) ∈ M̄ ′. Thus,

D̄x(x) =
∫ 1/2

−1/2

Dx(z) dz = D̄x (> 0), x ∈ [−1, 1],

with D̄x a constant. We include a single source/sink at x = x1 = xs ∈ (−1, 1), with
normalized flux constant α = α1 = αs = ±1, with −1 for extraction and +1 for
injection. We take the initial pressure field to be uniform, so that

(7.1) p̄0(x, z) = p̄0, (x, z) ∈ M̄ ′,

with p̄0 a constant. The pressure field in the porous layer is then given by

(7.2) p̄(x, z, t; ε) =
1
2
αst+A(x) + c1Ã1(x)e−λ̃1t +O(ε, e−λ̃2t, ε2e−λ̃1t, e−t/ε

2
),

as ε → 0, uniformly for (x, z, t) ∈ M̄ ′ × [δ,∞) (for any δ > 0), via Theorem 6.2,
together with (6.1), (3.34), (3.41), and (4.20)–(4.22). From (4.17)–(4.19),

(7.3) λ̃1 =
1
4
D̄xπ

2, λ̃2 = D̄xπ
2, Ã1(x) = cos

1
2
π(x + 1), x ∈ [−1, 1],

with, via (4.21), (7.1), and (6.1),

(7.4) c1 = −
∫ 1

−1

A(λ) cos
1
2
π(λ + 1) dλ.

It also follows from (6.2)–(6.7) that

(7.5) A(x) =
{ αs

4D̄x
(x+ 1)2 +A0, x ∈ [−1, xs),

αs

4D̄x
(x+ 1)2 − αs

D̄x
(x− xs) +A0, x ∈ [xs, 1],

with A0 = p̄0 − αs

12D̄x
(1 + 6xs − 3x2

s). The pressure at the line source/sink is thus

p̄(xs, z, t; ε) =
1
2
αst+A(xs) + c1Ã1(xs)e−λ̃1t +O(ε, e−λ̃2t, ε2e−λ̃1t, e−t/ε

2
),

from which it follows, via (7.3)–(7.5), that

p̄(xs, z, t; ε) =
1
2
αst+ p̄0 +

αs
6D̄x

(1 + 3x2
s) + c1e−

D̄xπ2

4 t cos
1
2
π(xs + 1)(7.6)

+O

(
ε, e−D̄xπ

2t, ε2e−
D̄xπ2

4 t, e−t/ε
2
)

as ε→ 0, uniformly for (z, t) ∈ [−1/2, 1/2]× [δ,∞). To obtain the correction at O(ε)
to (7.2), we note that a composite expansion must first be obtained using the inner
and outer expansions for p̄, but this is not necessary at leading order. As t → ∞,
(7.6) gives

(7.7) p̄(xs, z, t; ε) ∼ p̄0 +
1
2
αs

[
t+

1
3D̄x

(1 + 3x2
s)
]
.
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Finally, denoting the dimensionless atmospheric pressure by p̄a, then with the initial
layer pressure p̄0 � p̄a, we may use (7.7) to obtain the time span during which the
single well is self-producing at the specified extraction rate. With an extraction well,
αs = −1 in (7.7), and the time limit of self-production is t = tc, where

(7.8) p̄(xs, z, tc; ε) = p̄a.

On using (7.7) in (7.8), we obtain

(7.9) tc = 2(p̄0 − p̄a) −
1

3D̄x
(1 + 3x2

s).

It follows from (7.9) that tc is optimized by locating the extraction well at x = xs = 0,
that is, at the center of the porous layer as should be expected due to the symmetry
in this simple example. The point is that, in less symmetrical examples, optimization
can be achieved with little more effort through the corresponding version of (7.9),
which is still readily available. In dimensional terms, (7.9) becomes, via (2.12),

tdc =
act
Q

(pd0 − pa) −
hct
3D̄d

x

(l2 + 3xds
2
),

with tdc the dimensional self-extraction time, a = 2hl the cross-sectional area of the
porous layer, Q the volumetric extraction rate per unit width, pd0 the dimensional
initial layer pressure, pa the dimensional atmospheric pressure, D̄d

x the dimensional
depth integrated permeability in the x-direction, and xds the dimensional location of
the extraction well.

8. Conclusions. In this paper we have considered the unsteady flow of a weakly
compressible fluid in a horizontal layer of an inhomogeneous and anisotropic porous
medium with variable upper and lower boundaries, in the presence of line sources and
sinks. We have derived a strongly parabolic linear initial boundary value problem
for the dynamic fluid pressure and shown that this problem has a unique solution.
We have then constructed the solution to this problem when the layer aspect ratio
0 < ε� 1, via the method of matched asymptotic expansions. First, we have derived
a matched asymptotic solution to the steady state problem, under the constraint that
the sum of the total volume fluxes at the wells is zero. (This constraint is removed in
section 6, leading to a pseudosteady state problem whose solution is almost identical
in structure.) In the outer region this has been constructed directly, with the solution
given by (3.30)–(3.32). In the inner region the solution is given by (3.63)–(3.66),
together with (3.34) and (3.41). This solution is written in terms of the eigenvalues
and eigenvectors of a regular Sturm–Liouville eigenvalue problem [SL], which can
be solved analytically in the case that the permeability at each line source/sink is
constant in the vertical direction, but whose numerical solution is straightforward in
the more general case. The pressure at any line source or sink is then given by (3.67).

By subtracting the solution of the steady state problem from the solution of the
initial value problem, we have then constructed a strongly parabolic homogeneous
problem with no discontinuities across the line sources and sinks, whose solution can
be written in terms of the eigenvalues and eigenfunctions of a regular self-adjoint
eigenvalue problem. Asymptotic solution of this reduces to solution of a regular
Sturm–Liouville eigenvalue problem identical in structure to [SL]. It has further been
shown, via (4.20)–(4.22), that the solution of the initial value problem approaches the
solution of the steady state problem through terms exponentially small with respect
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to time t as t → ∞. Generalizations to cases where a line source or sink is near
a boundary wall, where line sources and sinks are not well spaced, and to the case
of disparate permeabilities have also been considered, in sections 3.1, 3.2, and 5,
respectively. An example demonstrating an application of the theory to a simple
situation is provided in section 7.

We finally remark that since the initial boundary value problem is solved for
a general C1 initial condition, the effect of time dependent transient effects due to
temporal changes in the well discharge rates can easily be accounted for.
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Abstract. We explore an evolutionary network model of pulse-coupled neurons in which the
changes of evolutionary coupling strengths are based on Hebbian synaptic plasticity. We show that
the ongoing changes of the evolutionary network’s nodal-and-coupling dynamics will eventually result
in group synchrony and sync-dependent circuits. We also tackle the problem of the stability of neural
synchrony and the problem of determining the size of synchronously firing neural groups. This leads
to describing a phenomenon underlying synchrony and stability of synchrony that neural synchrony
allows positive feedback from which a monotonically increasing sequence of coupling strengths and
a monotonically increasing region of states for initializing the stability process arise.
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1. Introduction. The brain is considered to be a complex, self-organizing sys-
tem. It consists of enormous numbers of interacting neurons and perpetually weaves
its intricate web [7, 21, 42, 50, 52]. What underlies such activation is plasticity; it
emerges as a source of change altering the structure of the brain. In 1949, Donald
O. Hebb proposed an activity-dependent mechanism for synaptic modification, which
was the first neurophysiological description in what is now called “Hebbian synaptic
plasticity.” It rested on his most famous statement: “When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.” Synapses that exhibit this
coincidence-detection rule are now called “Hebb synapses” [21, 41]. Hebb went further
and suggested that cortical circuits might admit self-sustaining reverberatory activity
to bind association-area neurons into structural interconnectivity if the changes of
synaptic strengths could be based on coincidence detection [21, 41]. The hypothesis
is now called the “Hebbian cell-assembly postulate,” which is one of the most influen-
tial postulates in relation to the behavior and neural interactions in the brain [1, 21].
According to the Hebbian cell-assembly postulate, the circulating neural impulses be-
tween populations of association-area neurons would continue to circulate, forming a
diffuse self-assembling structure called “cell assemblies” [21, 36, 41].

Being on the trail of the growth of cell assemblies always accompanies complicated
integration of neuronal and synaptic activity [20, 34, 38]. It stimulates an intensive
effort to promote the building of computer or network models of the brain [2, 3, 17,
23, 57] and leads to a shift towards explaining cognitive function in terms of large-
scale interactions of neuronal populations [11, 13, 15, 16, 40, 47]. This development
may lead to the current research on self-organization, which probes the interplay
between neural activity and synaptic plasticity. It lends substance to the formation

∗Received by the editors July 17, 2007; accepted for publication (in revised form) July 9, 2008;
published electronically January 30, 2009. This research was supported in part by the National
Science Council of the Republic of China.

http://www.siam.org/journals/siap/69-4/69747.html
†Department of Mathematics, National Taiwan Normal University, 88 Sec. 4, Ting Chou Road,

Taipei 116, Taiwan (mhshih@math.ntnu.edu.tw, fstsai@abel.math.ntnu.edu.tw).

1110



GROWTH DYNAMICS OF CELL ASSEMBLIES 1111

of connectivity structures in cortical development and gives birth to abstract neural
network models incorporated with dynamical and structural complexity [18, 25, 29,
30, 31, 54, 56].

Self-organization may proceed on a layer-by-layer basis, in which the synaptic
strengths are repeatedly modified in response to input patterns and in accordance
with the rules underlying plasticity. Willshaw and Malsburg in 1976 proposed a math-
ematical topography formation model which was capable of forming topographic con-
nections between two layers [56]. Also, Kohonen in 1982 proposed the self-organizing
map (SOM) algorithm, which describes a competitive learning rule to form a topology
preserving mapping [27, 28, 29]. An almost-sure convergence of the SOM algorithm
was given by Forte and Pagés [14]. Additionally, within the next few years, various
extensions to the SOM algorithm were proposed. Examples include the temporal Ko-
honen map [8], which extends the SOM by adding the activity of leaky integrators
to the SOM, and the recursive SOM [19, 53], which extends the SOM by establish-
ing feedback to represent time. More recently, Lücke and Malsburg have discussed a
self-organization process which reflects the hierarchical nature of receptive field for-
mation [30, 31]. They take a minicolumn to consist of excitatory McCulloch–Pitts
neurons and show that if the dynamics is weakly coupled to input by afferent fibers
and subjects to Hebbian synaptic plasticity, then a self-organization of minicolumnar
receptive fields is induced.

Alternatively, self-organization may proceed on a recurrent network. Hopfield in
1982 initiated a recurrent network of nerve cells, whose couplings are established in
response to input patterns and in accordance with Hebbian synaptic plasticity [23].
He used the approach of energy minimization to show that the network’s dynamics
will tend toward a stable equilibrium state when the retrieval operation is performed
asynchronously. The Hopfield network was designed to work as a content-addressable
memory (CAM) on the basis of collective dynamics and computing with attractors.
Meanwhile, Cohen and Grossberg in 1983 initiated a general model of a nonlinear
cooperative-competitive neural network [9, 17]. Cohen and Grossberg constructed a
global Lyapunov function for assessing the stability of network dynamics and described
a general principle for designing CAM networks.

However, the previous models for self-organization are inherently static, with
time taking a secondary role in network architecture [37]. These models require
preprocessors to encode input patterns in synaptic weight matrices, thereby converting
temporal dynamic information into static spatial information outside the network.
Hebbian synaptic plasticity is used in the construction of a synaptic weight matrix
only for the initial input patterns but not for network evolution.

This motivates us to study self-organization by proceeding on a neural network
entwined with nonlinearity and dynamism. What we need is the quest for a deep the-
ory of complex networks, which allows for describing structural complexity, network
evolution, dynamical complexity, and meta-complication [49]. We build a model of an
evolutionary network consisting of enormous numbers of McCulloch–Pitts neurons,
each simple, but myriad interactions between them could be extremely complicated.
The influence of McCulloch–Pitts neurons was very much in the thoughts of von Neu-
mann as he developed his ideas for the modern digital computer [5, 17], and was very
much in the work of Minsky in automata theory and theory of computation [35].

In our model of the evolutionary network, the time- and activity-dependent nodal-
and-coupling changes are based on an algorithmic aspect of Hebbian synaptic plastic-
ity. Each change reflects the interplay and large-scale integration between neuronal
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and synaptic activity. We take the view that Hebb synapses are crucial to the gener-
ation of neural synchrony [46, 48, 52, 58] and to the development of diffuse structure
of cell assemblies [20, 36, 41]. This leads to addressing the mathematical problems of
the tendency of neurons to synchronize underlying Hebbian synaptic plasticity, the
stability of neural synchrony, the effect of neural synchrony, and the determination of
the size of synchronously firing neural groups.

2. Evolutionary network model. According to the all-or-none character of
neural activity, McCulloch and Pitts in 1943 introduced a binary processing unit
which performed simple threshold logic. They pointed out that the brain was po-
tentially a powerful logic and computational device [3, 33]. Here, through the use of
McCulloch–Pitts neurons, we will construct an evolutionary network which straight-
ens out an alternating change in its nodal and coupling dynamics. The model of the
evolutionary network we are concerned with consists of a population of n distinct
integrate-and-fire processing units (McCulloch–Pitts neurons or neurons) [33, 35];
each constantly integrates all incoming signals transferred from synapses on its cell
body and dendrites, and fires action potentials to send signals to other neurons when
the combined effect reaches its threshold. Name those neurons 1, . . . , n and denote
by the ordered pair (i, j) the evolutionary coupling linking neuron j to neuron i. All
the evolutionary couplings are fundamentally dynamic, be they symmetrical [23, 57]
or unsymmetrical, hierarchical, small-world [54], or reverberating-circuit [44], to re-
flect the interconnected neurons in the brain. To each neuron i there is associated
the threshold bi and the active state variable xi = 0 or 1, and to each evolutionary
coupling (i, j) there is associated the coupling strength variable aij . The phase space
of the evolutionary network of n coupled neurons is denoted by {0, 1}n, the binary
code consisting of all 01-strings x1x2 · · ·xn of fixed-length n.

Fix t = 0, 1, . . . for the moment. The corresponding neuronal active state and
evolutionary coupling state are denoted by x(t) = (x1(t), x2(t), . . . , xn(t)) and A(t) =
[aij(t)]n×n, respectively. The function hea is the Heaviside function: hea(u) = 1
for u ≥ 0, otherwise 0, which describes an instantaneous unit pulse. To generate
the neuronal active state x(t + 1) and the evolutionary coupling state A(t + 1), we
have to introduce the function HA(t),s(t) and the plasticity parameter D

x(t)→x(t+1)aij .
We associate to t a nonempty subset s(t) of {1, 2, . . . , n} (denoting the neurons that
adjust their activity at time t) and a function HA(t),s(t) : {0, 1}n −→ {0, 1}n whose
ith component is defined by

[HA(t),s(t)(x)]i = xi if i �∈ s(t),

otherwise

[HA(t),s(t)(x)]i = hea

⎛
⎝ n∑
j=1

aij(t)xj − bi

⎞
⎠ ,

such that

x(t+ 1) = HA(t),s(t)(x(t)).(1)

For every i, j = 1, 2 . . . , n, denote by D
x(t)→x(t+1)aij the parameter which is a represen-

tative for a choice of real numbers, so that the evolutionary coupling state aij(t+ 1)
at (i, j) is given by the parametric equation

aij(t+ 1) = aij(t) + D
x(t)→x(t+1)aij .(2)
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When D
x(t)→x(t+1)aij varies, aij(t + 1) changes. And this is how plasticity is created

in the dynamics of the evolutionary network. The parameter D
x(t)→x(t+1)aij in (2) is

called the plasticity parameter of the evolutionary coupling (i, j), which varies with
respect to the neuronal active state changing from x(t) to x(t + 1). Now let t vary.
The alternating nature of (1) and (2) reveals a dynamical-combinatorial process in
which the neuronal active state and the evolutionary coupling state keep changing,
looping back on one another with extremely fast switches (at the millisecond level)
and giving rise to patterns of indescribable complexity. The neuronal active state
changing from x(t) to x(t+1) by (1) leads to the choices of plasticity parameters and
results in the changes of the evolutionary coupling state from aij(t) to aij(t + 1) by
(2). The changes of the evolutionary coupling state loop back on the changes of the
neuronal active state from x(t+ 1) to x(t+ 2) by (1), and then on the changes of the
evolutionary coupling state from aij(t+1) to aij(t+2) by (2), and continue recursively.
So we have a nonlinear dynamical system of the n coupled neurons modeled by the
following nonlinear parametric equations:

x(t+ 1) = HA(t),s(t)(x(t)), t = 0, 1, . . . ,(3)

A(t+ 1) = A(t) +Dx(t)→x(t+1)A, t = 0, 1, . . . ,(4)

where HA(t),s(t)(x) are the time-and-state varying functions encoding the dynamics,
and each D

x(t)→x(t+1)A is an n-by-n real matrix whose (i, j)-entry is D
x(t)→x(t+1)aij .

The plasticity parameters quantify plasticity of evolutionary couplings that allows the
system as a whole to undergo spontaneous organization.

There are many different ways in which we carry out the updating specified by
the choice of s(t) for t = 0, 1, . . . . Let us call that the discrete flow x(t) generated
by (3) and (4) iterates asynchronously if s(t) is a singleton for all t = 0, 1, . . . and
the union ∪t≥τs(t) equals {1, 2, . . . , n} for any τ ≥ 0. We can begin asynchronous
updating in the way that we select at random a neuron to adjust its activity at each
time step t = 0, 1, . . . , or equivalently, from an autonomous point of view, we can
begin asynchronous updating in the way that each neuron independently chooses to
adjust its activity with some constant probability per unit time [22]. The latter can
generate a random sequence of updating neurons in time because there is vanishingly
small probability of two neurons choosing to adjust themselves at exactly the same
moment. Here we adopt asynchronous updating which allows us to concentrate on
the alternating changes between the nodal and coupling dynamics.

Let us note that based on asynchronous updating, we can generate a specific
evolutionary network whose dynamics obey the Gauss–Seidel iteration. To see this,
consider the case s(t) = (t/n− [t/n])n+1, where [t/n] denotes the greatest integer less
than or equal to t/n for t = 0, 1, . . . , and let x(t) and A(t) denote the corresponding
neuronal activity state and evolutionary coupling state generated by (3) and (4), re-
spectively. Put y(t) = x(tn) and wij(t) = aij(tn+ i−1) for every i, j = 1, 2, . . . , n and
t = 0, 1, . . . . Then we obtain an evolutionary network whose coupling architecture at
time t can be defined by the matrix [wij(t)]n×n, with the sequence of neuronal activ-
ity states {y(t); t = 0, 1, . . .} encoding the network’s dynamics. In this evolutionary
network, the updating of yi fulfills the Gauss–Seidel iteration

yi(t+ 1) = hea

⎛
⎝i−1∑
j=1

wij(t)yj(t+ 1) +
n∑
j=i

wij(t)yj(t) − bi

⎞
⎠ .
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3. Coincidence-detection evolving algorithm and synchronization prob-
lem. In what follows we introduce the coincidence-detection evolving algorithm which
provides a way for the choices of plasticity parameters. This algorithm represents
a generalized learning rule analogous to the coincidence-detection rule of Hebbian
synaptic plasticity. Synaptic modification determined by the coincidence between
pre- and postsynaptic activity is used as the bridging mechanism that guides the
alternating changes of the evolutionary network’s nodal and coupling dynamics.

For every i, j = 1, 2, . . . , n we first define the indicator δij on {0, 1, . . .} as follows:
(i) Put δij(0) = 0.
(ii) Given t = 0, 1, . . . and the neuronal active state changing from x(t) to

x(t+ 1) according to the dynamics (3).
If (xi(t), xj(t)) = (1, 1) and (xi(t+ 1), xj(t+ 1)) = (0, 1), put δij(t+ 1) = 1.
If (xi(t), xj(t)) = (0, 1) and (xi(t+ 1), xj(t+ 1)) = (1, 1), put δij(t+ 1) = 1.
If (xi(t), xj(t)) = (1, 1) and (xi(t+ 1), xj(t+ 1)) = (1, 1), put δij(t+ 1) =
δij(t).
If (xi(t), xj(t)) = (0, 1) and (xi(t+ 1), xj(t+ 1)) = (0, 1), put δij(t+ 1) =
δij(t).

(iii) If the pair of (xi(t), xj(t)) and (xi(t+ 1), xj(t+ 1)) is not in the case of (ii),
put δij(t+ 1) = 0.

The binary value δij(t+ 1) signifies whether the active state of neuron j at time
t has a tendency to change the active state of neuron i at time t+ 1. Armed with the
indicator δij , we define now the coincidence-detection evolving algorithm:

For every t = 0, 1, . . . and 1 ≤ i, j ≤ n,
(I) D

x(t)→x(t+1)aij ≥ 0 if i, j ∈ 1(x(t+ 1)); otherwise D
x(t)→x(t+1)aij ≤ 0;

(II) if δij(t+ 1) > δji(t+ 1), then |D
x(t)→x(t+1)aij | ≥ |D

x(t)→x(t+1)aji|.
Rule (I) suggests that if two neurons are not active synchronously, the coupling

strength between two neurons can be either unchanged or weakened. To be more
specific, if the coupling strength is selectively to be unchanged, then rule (I) reduces
to an algorithmic aspect of Hebbian synaptic plasticity.

The algorithm basically describes the tendency for changing the evolutionary cou-
pling strengths from aij(t) to aij(t+1), which might keep the active (resp., quiescent)
neurons active (resp., quiescent) from time t+1 to t+2. So we obtain, when t varies,
myriad groups of neurons (which allow overlapping communities) that are prone to
be active or quiescent transiently, dedicating to drive themselves into sustained ac-
tivity of synchrony. The evolving time the dynamics involves determines the role the
coincidence-detection rule plays in accumulating vast numbers of time- and activity-
dependent changes in evolutionary couplings, in places forming uncertainty that can
grow in the diversity of network evolution (see Figure 1).

Undergoing the dynamical-combinatorial process of network evolution, the neu-
ronal active state x(t) and the evolutionary coupling state A(t) can be generated by
(3) and (4), respectively, and we say that neurons in a subset V of {1, . . . , n} are syn-
chronized with respect to x(t) if there is a T ≥ 0 such that the condition 1(x(t)) = V
holds true for all t ≥ T , where 1(x(t)) denotes the collection of all active neurons at
time t. In the present paper we wish to explore the synchronization problem: Con-
sider the evolutionary network of n coupled neurons subject to the dynamics (3) and
(4) and obeying the coincidence-detection evolving algorithm. Do there exist a finite
T ≥ 0 and a subset V of {1, . . . , n} such that 1(x(t)) = V for all t ≥ T? To be more
specific, the synchronization problem is the mathematical equivalent of the separation
problem (see Figure 2): Do there exist a finite T ≥ 0 and a subset V of {1, . . . , n}
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Fig. 1. The coupling changes based on the coincidence-detection evolving algorithm. Fix t and
consider the corresponding active neurons (red nodes). It follows from the coincidence-detection
evolving algorithm that the evolutionary couplings will be strengthened (solid red lines) if they are
within the group of active neurons (red nodes); otherwise the evolutionary couplings will be weakened
(dashed red lines). The nodal dynamics lead to myriad groups of active neurons which can bring
about cumulative changes in the shape of interconnectedness. Colors indicate different changes of
evolutionary couplings on time steps t = 0, 1, . . . (solid lines: positive plasticity parameters; dashed
lines: negative plasticity parameters).

Fig. 2. The spatial distributions of the positive and negative plasticity parameters. The positive
plasticity parameters are represented geometrically as yellow grid points on the n-by-n grids (for
clarity we put n = 10), and the negative plasticity parameters as blue ones. As the evolutionary
network evolves, the spatial distributions of the positive and negative plasticity parameters change
from left to right, and the grids at the end of the two rows show the cumulative changes of these
distributions (yellow: positive; blue: negative; green: both positive and negative have occurred).
The grids in the first row display bewildering patterns, in which the yellow and blue grid points
are located in a nearly random way, whereas the grids in the second row exhibit a spontaneously
organized process, in which the yellow and blue grid points are located in two fixed clusters separated
by red circles (the evolutionary couplings relating to a group of synchronized firing neurons). The
separation of the grid points exhibits self-sustaining activity of coupling strengthening when neurons
fire in synchrony.
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such that⋂
t≥T

{(i, j); D
x(t)→x(t+1)aij ≥ 0} ⊃ V × V ⊃

⋃
t≥T

{(i, j); D
x(t)→x(t+1)aij > 0}?

We notice that previous models of network dynamics have focused on a logical
strategy necessary for networked systems to optimize some aspect of their perfor-
mance, such as using a gradient descent method to minimize the mean square error
(the LMS algorithm [55] or the backpropagation algorithm [39]) or using a global Lya-
punov method to provide absolute stability of global pattern formation (see [23] for the
discrete time Lyapunov function, [9] for an explicit construction of a global Lyapunov
function given by Cohen and Grossberg, and [17] for a survey of the Cohen–Grossberg
model and its relations to a number of popular models of content-addressable mem-
ory). By contrast, the coincidence-detection evolving algorithm we describe here offers
predictions in measurable coupling changes merely based on the coincidence-detection
rule of Hebbian synaptic plasticity. It reveals that many intricate, outwardly inde-
cipherable patterns of organization can be determined by small changes of coupling
strengths depending on the nodal dynamics. Plasticity in evolutionary couplings
implies a degree of uncertainty in the dynamics of networked systems, which need
not navigate to arrive at a local minimum or maximum of a performance function.
Related lines of research in switched linear networked systems have also provided a
concise theoretical framework similar to this point [24, 43]. It has shown that in a
switched linear networked system all switching sequences of coupled matrices can be
asymptotically stable [43, 45], but no common quadratic Lyapunov function exists
through the use of a theoretical result of optimal joint spectral radius range for the
simultaneous contractibility of coupled matrices [4]. Finding a common quadratic
Lyapunov function in such a switched linear networked system becomes increasingly
hard as the complexity of coupled matrices and the dimension of the networked sys-
tem go up [4]. The above discussion suggests that the use of a Lyapunov function
might have its own limitations to study the synchronization problem formulated in a
high-dimensional nonlinear evolutionary networked system.

4. Driving forces. To solve the synchronization problem, we introduce two
evolutionary quantities to measure the driving forces of the evolutionary network’s
dynamics. We consider the “driving forces” derived from the evolutionary network’s
nodal and coupling activity, without invoking any Lyapunov function or “physical
energy” to control system dynamics.

For any 01-string x = x1x2 · · ·xn we define

1(x) = {i; xi = 1, 1 ≤ i ≤ n}

and

0(x) = {i; xi = 0, 1 ≤ i ≤ n}.

Denote by 〈·, ·〉 the usual scalar product in R
n. Given any two subsets U and V of

{1, 2, . . . , n} and any t = 0, 1, . . . we define

lt(U, V ) = 〈A(t)u, v〉,

where u, v ∈ {0, 1}n with 1(u) = U and 1(v) = V . For every t = 0, 1, . . . , let

[x(t)]+ = 0(x(t)) ∩ 1(x(t+ 1))
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and

[x(t)]− = 1(x(t)) ∩ 0(x(t+ 1)).

The fired-driven strength evaluated at time t, denoted as FS(t), and the unfired-driven
strength evaluated at time t, denoted as US(t), are defined by

FS(t) = lt(1(x(t)), [x(t)]+)

and

US(t) = lt(1(x(t)), [x(t)]−).

The fired-driven strength FS(t) is not necessarily greater than the unfired-driven
strength US(t) over time, but when the discrete flow x(t) behaves in the way that
x(t∗) = x(t∗) �= x(t̂) with t∗ < t̂ < t∗ (a feedback loop initiated by active neurons
at time t∗), the fired-driven strengths and the unfired-driven strengths in the period
of t∗ and t∗ emerge the orderliness. The order comes from the combined effect of
the structural and dynamical complexity of the evolutionary network, in which the
updating neuron s(t) and the plasticity parameter D

x(t)→x(t+1)aij are arbitrarily chosen
for all t = 0, 1, . . . and i, j = 1, 2, . . . , n (see Figure 3).

Theorem 1. If x(t) iterates with x(t∗) = x(t∗) �= x(t̂) for some t∗ < t̂ < t∗, then
the orderliness

FS(t∗)+FS(t∗ + 1) + · · · + FS(t∗ − 1)
(5)

> US(t∗) + US(t∗ + 1) + · · · + US(t∗ − 1)

emerges.
Proof. Let

Λ+ = {t; [x(t)]+ �= ∅, t∗ ≤ t < t∗}

and

Λ− = {t; [x(t)]− �= ∅, t∗ ≤ t < t∗}.

Then Λ+ �= ∅ and Λ− �= ∅. Indeed, if Λ+ = ∅ or Λ− = ∅, then either

1(x(t∗)) ⊃ 1(x(t∗ + 1)) ⊃ · · · ⊃ 1(x(t∗))(6)

or

1(x(t∗)) ⊂ 1(x(t∗ + 1)) ⊂ · · · ⊂ 1(x(t∗)).(7)

Either (6) or (7) with the condition x(t∗) = x(t∗) gives

x(t∗) = x(t∗ + 1) = · · · = x(t̂) = · · · = x(t∗ − 1) = x(t∗),

contradicting the assumption x(t∗) �= x(t̂). The dynamics (3) ensures that

[x(t)]+, [x(t)]− ⊂ s(t) for each t = 0, 1, . . . ,

FS(t) ≥
∑

j∈[x(t)]+

bj for each t ∈ Λ+,
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Fig. 3. The driving forces underlying the evolutionary network’s dynamics. (a) Each of the
three wiring diagrams starts with a ring lattice of 2n nodes (for clarity n = 5 is shown here); each
node denotes one of the neuronal active states in the phase space {0, 1}n. Links (arrows) in each
diagram wired from one node i to another node j indicate the possibility of the changes of neuronal
active states from node i (at time t) to node j (at time t+1). There are many different links starting
from each node because of the choices of plasticity parameters. The black arrows show a feedback
loop x(t) = 10001, x(t+ 1) = 00111, x(t+ 2) = 11100, and x(t+ 3) = 10001 of one possible discrete
flow in the phase space {0, 1}n. (b) The active neurons at time t, t+1, and t+2, as seen in (a), are
indicated by gray nodes in each diagram (from top to bottom). The gray arrows in the left column
give a specific way of determining the fired-driven strengths that make quiescent neurons fired at the
next time (t: neurons 3 and 4; t+ 1: neurons 1 and 2; t+ 2: neuron 5), and the gray arrows in the
right column illustrate the unfired-driven strengths that make active neurons quiescent at the next
time (t: neuron 1; t+ 1: neurons 4 and 5; t+ 2: neurons 2 and 3). All of the gray arrows exhibit a
fundamental law governing the interactions between nodal and coupling dynamics.

and

US(t) <
∑

j∈[x(t)]−

bj for each t ∈ Λ−.

Therefore

FS(t∗) + FS(t∗ + 1) + · · · + FS(t∗ − 1) ≥
∑
t∈Λ+

∑
j∈[x(t)]+

bj(8)

and

US(t∗) + US(t∗ + 1) + · · · + US(t∗ − 1) <
∑
t∈Λ−

∑
j∈[x(t)]−

bj .(9)
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Since ∑
t∈Λ+

∑
j∈[x(t)]+

bj −
∑
t∈Λ−

∑
j∈[x(t)]−

bj

=
∑
t∈Λ+

∑
j∈1(x(t+1))\1(x(t))

bj −
∑
t∈Λ−

∑
j∈1(x(t))\1(x(t+1))

bj

=
∑

t∗≤t<t∗
〈x(t + 1) − x(t), b〉 = 0,

inequality (5) follows from (8) and (9), and the proof is complete.

5. Synaptic plasticity and neural synchrony. Theorem 1 exhibits a global,
universal feature of the driving forces zeroing in on the order shared in the rise of
diversity of network evolution. By contrast, the coincidence-detection evolving algo-
rithm displays a local, uncertain feature of a generalized learning rule focusing on the
time- and activity-dependent changes in coupling strengths. Combining the two dis-
tinct concepts gives a concise picture of regulation, concentrating on the assembling
coordination of excitability within groups of neurons.

For this, define EU (t∗, t∗) to be
∑

i∈U min({aii(t); t = t∗, . . . , t
∗}), a quantity that

measures the minimal total excitability within the group of neurons U in the period
of time t∗ and t∗ with t∗ ≤ t∗, where the coupling strength variable aii is considered
to be a measure of excitability with respect to neuron i and, according to the working
of neuron i, the increased excitability has a tendency to decrease the threshold for
generating action potentials. Several lines of evidence in neuroscience have shown that
activity-dependent modulation in intrinsic neuronal excitability could have a crucial
role in modifying the integrative properties of neurons and their circuit dynamics
[6, 10, 12, 26, 32, 51, 59]. This motivates us to use all those quantities EU (t∗, t∗)
as an index for determining the existence of excitability coordination between groups
of neurons, and we say that the minimal total excitability in the period of time
t = t∗, t∗ + 1, . . . , t∗ satisfies the assembling coordination if

EU (t∗, t∗) ≥
∑
i,j∈U

max({aij(t) − aji(t); t = t∗, . . . , t
∗} ∪ {0})(10)

for each nonempty subset U of {1, 2, . . . , n}.
Armed with the concept of assembling coordination, a solution to the synchro-

nization problem, mentioned in section 2, may be stated as follows.
Theorem 2. Consider the evolutionary network of n coupled neurons subject to

the dynamics (3) and (4) and obeying the coincidence-detection evolving algorithm.
Given any initial neuronal active state x(0) in the phase space {0, 1}n and letting the
discrete flow x(t) iterate asynchronously, then a finite T ≥ 0 can be determined so
that if the minimal total excitability in the period of time t = 0, 1, . . . , T satisfies the
assembling coordination, then a subset V of {1, 2, . . . , n} can be sorted out such that
1(x(t)) = V for all t ≥ T .

Proof. Let x(0) be any initial neuronal active state in {0, 1}n, and let x(t) it-
erate asynchronously, guided by the dynamics (3), (4) and the coincidence-detection
evolving algorithm.

We shall establish the following.
Assertion. Given any t∗, t

∗ = 0, 1, . . . with t∗ ≤ t∗, if the minimal total ex-
citability in the period of time t = t∗, t∗ +1, . . . , t∗ fulfills the assembling coordination,
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then a feedback loop cannot occur in the fragment x(t∗), x(t∗ + 1), . . . , x(t∗) of the
discrete flow x(t).

We will prove the assertion by arguing indirectly: assume that there exists t̂ with
t∗ < t̂ < t∗ such that x(t∗) = x(t∗) �= x(t̂). The asynchronous updating of x(t) implies
that for every t = t∗, t∗ + 1, . . . , t∗ − 1,

�[x(t)]+ + �[x(t)]− ≤ 1.(11)

Since

∑
t∗≤t<t∗

(xj(t+ 1) − xj(t)) = 0(12)

for every j = 1, 2, . . . , n, we deduce that

⋃
t∗≤t<t∗

[x(t)]+ =
⋃

t∗≤t<t∗
[x(t)]−.(13)

We can write (13) as a set of distinct elements

{m1,m2, . . . ,mq},(14)

and for any j = 1, 2, . . . , q we put

M+
j = {t; [x(t)]+ = {mj}, t∗ ≤ t < t∗},

M−
j = {t; [x(t)]− = {mj}, t∗ ≤ t < t∗}.

Then

�M+
j = �M−

j for j = 1, 2, . . . , q(15)

by (12). Consider the backward shift of the discrete flow x(t) in the period of time t∗
and t∗, and put

y(t) = x(t− 1) for every t = t∗ + 1, . . . , t∗ and y(t∗) = y(t∗).

For any t = t∗, . . . , t
∗ − 1 we introduce two new quantities as follows:

F̃S(t) = lt(1(y(t+ 1)),0(y(t+ 1)) ∩ 1(y(t)))

and

ŨS(t) = lt(1(y(t+ 1)),1(y(t+ 1)) ∩ 0(y(t))).
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A computation shows that∑
t∗≤t<t∗

(FS(t) − US(t)) +
∑

t∗≤t<t∗
(F̃S(t) − ŨS(t))

=
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

+
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) −

∑
t∗≤t<t∗

lt(1(y(t+ 1)),1(y(t+ 1)))

=
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt(1(x(t + 1)), [x(t)]+) +

∑
t∗≤t<t∗

lt(1(x(t + 1)), [x(t)]−)

+
∑

t∗≤t<t∗
lt(1(x(t + 1)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t + 1)), [x(t)]−)(16)

+
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) −

∑
t∗≤t<t∗

lt(1(y(t+ 1)),1(y(t+ 1)))

=
∑

t∗≤t<t∗
lt([x(t)]−, [x(t)]+) +

∑
t∗≤t<t∗

lt([x(t)]+, [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+, [x(t)]+) −

∑
t∗≤t<t∗

lt([x(t)]−, [x(t)]−)

+
∑

t∗≤t<t∗
lt(1(x(t + 1)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t + 1)), [x(t)]−)

+
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) −

∑
t∗≤t<t∗

lt(1(y(t+ 1)),1(y(t+ 1)))

and ∑
t∗≤t<t∗

(FS(t) − US(t)) −
∑

t∗≤t<t∗
(F̃S(t) − ŨS(t))

=
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) +

∑
t∗≤t<t∗

lt(1(y(t+ 1)),1(y(t+ 1)))

=
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) +

∑
t∗≤t<t∗

lt(1(x(t)),1(x(t)))(17)

+
∑

t∗≤t<t∗
lt(1(x(t + 1)),1(x(t))) −

∑
t∗≤t<t∗

lt(1(x(t + 1)),1(x(t)))

=
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t))) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)))

−
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t))) +

∑
t∗≤t<t∗

lt(1(x(t+ 1)),1(x(t))).
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Claim 1.∑
t∗≤t<t∗

lt([x(t)]+, [x(t)]+) +
∑

t∗≤t<t∗
lt([x(t)]−, [x(t)]−)

≥
∑

1≤j,k≤q
2 min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0}).

Proof of Claim 1. We first construct an array of dots as follows:

• • • • • •
• • • • •

• • · · · • •
• • •
• •

•

The array consists of q columns, q being the number of mj’s in (14). For each
j = 1, 2, . . . , q the dots in the jth column are arranged consecutively from the top,
and the number of dots in the jth column is equal to �M−

j , and so to �M+
j by (15).

Let r denote the number of rows in the array and for every i = 1, 2, . . . , r we define

Vi = {j; the (i, j)-entry of the array is equipped with • , j = 1, 2, . . . , q}.

For each i = 1, 2, . . . , r and for each choice of j ∈ Vi, we assign to the dot in the ith
row and jth column of the array, a pair (tij , uij) with

tij ∈M+
j and uij ∈M−

j ,

such that

t1j < t2j < · · · < t(�M+
j )j

and

u1j < u2j < · · · < u(�M−
j )j .

So according to this construction and applying the assembling coordination (10) to
U = Vi, we deduce that

∑
t∗≤t<t∗

lt([x(t)]+, [x(t)]+) +
∑

t∗≤t<t∗
lt([x(t)]−, [x(t)]−)

=
∑

1≤i≤r

∑
j∈Vi

amjmj (tij) +
∑

1≤i≤r

∑
j∈Vi

amjmj (uij)

≥
∑

1≤i≤r

∑
j∈Vi

min({amjmj (t); t = t∗, . . . , t
∗}) +

∑
1≤i≤r

∑
j∈Vi

min({amjmj (t); t = t∗, . . . , t
∗})

≥
∑

1≤i≤r

∑
j,k∈Vi

2 max({amjmk
(t) − amkmj (t); t = t∗, . . . , t

∗} ∪ {0})

=
∑

1≤j,k≤q
2 min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0}),
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establishing Claim 1.
Claim 2.

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]+) −
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t))) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)))

≤
∑

1≤j,k≤q

∑
1≤i≤�M+

j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j,k≤q

∑
1≤i≤�M−

j

(xmk
(uij)(amjmk

(uij) − amkmj (uij))).

Proof of Claim 2. For any k ∈ {1, 2, . . . , n} \ {m1,m2, . . . ,mq}, we have either

1(x(t)) ∩ {k} = ∅ for all t = t∗, t∗ + 1, . . . , t∗ − 1

or

1(x(t)) ∩ {k} = {k} for all t = t∗, t∗ + 1, . . . , t∗ − 1.

Case 1. 1(x(t)) ∩ {k} = ∅ for all t = t∗, t∗ + 1, . . . , t∗ − 1. Then

∑
t∗≤t<t∗

lt(1(x(t)) ∩ {k}, [x(t)]+) −
∑

t∗≤t<t∗
lt(1(x(t)) ∩ {k}, [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t)) ∩ {k}) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)) ∩ {k}) = 0.

Case 2. 1(x(t)) ∩ {k} = {k} for all t = t∗, t∗ + 1, . . . , t∗ − 1. Then
∑

t∗≤t<t∗
lt(1(x(t)) ∩ {k}, [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)) ∩ {k}, [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t)) ∩ {k}) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)) ∩ {k})

=
∑

1≤j≤q

∑
1≤i≤�M−

j

(amjk(tij) − amjk(uij)) −
∑

1≤j≤q

∑
1≤i≤�M−

j

(akmj (tij) − akmj (uij)).

Fix 1 ≤ j ≤ q. Then (12) implies
∑

t∗≤t<t∗
(xmj (t+ 1) − xmj (t)) = 0,

and therefore

t1j < u1j < t2j < u2j < · · · < t(�M+
j )j < u(�M−

j )j(18)

or

u1j < t1j < u2j < t2j < · · · < u(�M−
j )j < t(�M+

j )j .(19)
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Inequality (18) implies that for any i = 1, 2, . . . , �M+
j ,

(xmj (tij), xk(tij)) = (0, 1),

(xmj (tij + 1), xk(tij + 1)) = (1, 1),
...

(xmj (uij − 1), xk(uij − 1)) = (1, 1),

(xmj (uij), xk(uij)) = (1, 1).

Thus for every t = tij , tij + 1, . . . , uij − 1, we have

δmjk(t+ 1) = 1 and δkmj (t+ 1) = 0,

and according to the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjk ≥ D

x(t)→x(t+1)akmj ≥ 0.

Therefore ∑
1≤i≤�M−

j

(amjk(tij) − amjk(uij)) −
∑

1≤i≤�M−
j

(akmj (tij) − akmj (uij))

=
∑

1≤i≤�M−
j

(−D
x(tij )→x(tij+1)amjk − · · · − D

x(uij−1)→x(uij )amjk)(20)

−
∑

1≤i≤�M−
j

(−D
x(tij)→x(tij+1)akmj − · · · − D

x(uij−1)→x(uij )akmj ) ≤ 0.

On the other hand, (19) implies that for any i = 1, 2, . . . , �M−
j ,

(xmj (uij), xk(uij)) = (1, 1),

(xmj (uij + 1), xk(uij + 1)) = (0, 1),
...

(xmj (tij − 1), xk(tij − 1)) = (0, 1),

(xmj (tij), xk(tij)) = (0, 1).

Thus for every t = uij , uij + 1, . . . , tij − 1, we have

δmjk(t+ 1) = 1 and δkmj (t+ 1) = 0,

and by the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjk ≤ D

x(t)→x(t+1)akmj ≤ 0.

Therefore ∑
1≤i≤�M−

j

(amjk(tij) − amjk(uij)) −
∑

1≤i≤�M−
j

(akmj (tij) − akmj (uij))

=
∑

1≤i≤�M−
j

(D
x(uij )→x(uij+1)amjk + · · · + D

x(tij−1)→x(tij )amjk)(21)

−
∑

1≤i≤�M−
j

(D
x(uij )→x(uij+1)akmj + · · · + D

x(tij−1)→x(tij )akmj ) ≤ 0.
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Inequalities (20) and (21) imply

∑
1≤j≤q

∑
1≤i≤�M−

j

(amjk(tij) − amjk(uij)) −
∑

1≤j≤q

∑
1≤i≤�M−

j

(akmj (tij) − akmj (uij)) ≤ 0.

Combining Cases 1 and 2 gives

∑
t∗≤t<t∗

lt(1(x(t)) ∩ {k}, [x(t)]+) −
∑

t∗≤t<t∗
lt(1(x(t)) ∩ {k}, [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t)) ∩ {k}) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)) ∩ {k}) ≤ 0

for every k ∈ {1, 2, . . . , n} \ {m1,m2, . . . ,mq}. Put

M = {m1,m2, . . . ,mq}.

Then
∑

t∗≤t<t∗
lt(1(x(t)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)), [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t))) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)))

≤
∑

t∗≤t<t∗
lt(1(x(t)) ∩M, [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t)) ∩M, [x(t)]−)

−
∑

t∗≤t<t∗
lt([x(t)]+,1(x(t)) ∩M) +

∑
t∗≤t<t∗

lt([x(t)]−,1(x(t)) ∩M)

=
∑

1≤j≤q

∑
1≤i≤�M+

j

∑
1≤k≤q

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j≤q

∑
1≤i≤�M−

j

∑
1≤k≤q

(xmk
(uij)(amjmk

(uij) − amkmj (uij)))

=
∑

1≤j,k≤q

∑
1≤i≤�M+

j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j,k≤q

∑
1≤i≤�M−

j

(xmk
(uij)(amjmk

(uij) − amkmj (uij))).

Claim 3.
∑

t∗≤t<t∗
lt(1(x(t + 1)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t+ 1)), [x(t)]−)

−
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t+ 1))) +

∑
t∗≤t<t∗

lt(1(x(t+ 1)),1(x(t))) ≤ 0.
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Proof of Claim 3. Using y(t) = x(t − 1) for t = t∗ + 1, . . . , t∗, we can derive the
following string of identities:∑

t∗≤t<t∗
lt(1(x(t + 1)), [x(t)]+) −

∑
t∗≤t<t∗

lt(1(x(t+ 1)), [x(t)]−)

−
∑

t∗≤t<t∗
lt(1(y(t+ 1)),1(y(t+ 1))) +

∑
t∗≤t<t∗

lt(1(x(t+ 1)),1(x(t)))

=
∑

t∗≤t<t∗
lt(1(x(t + 1)),1(x(t+ 1))) −

∑
t∗≤t<t∗

lt(1(x(t+ 1)),1(x(t)))

−
∑

t∗≤t<t∗
lt(1(x(t)),1(x(t))) +

∑
t∗≤t<t∗

lt(1(x(t + 1)),1(x(t)))

=
∑

t∗≤t<t∗
lt(1(x(t + 1)),1(x(t+ 1))) −

∑
t∗≤t<t∗

lt(1(x(t)),1(x(t)))

=
∑

t∗≤t<t∗−1

lt(1(x(t+ 1)),1(x(t+ 1))) + lt∗−1(1(x(t∗)),1(x(t∗)))

−lt∗(1(x(t∗)),1(x(t∗))) −
∑

t∗≤t<t∗−1

lt+1(1(x(t + 1)),1(x(t+ 1)))

=
∑

t∗≤t<t∗−1

lt(1(x(t+ 1)),1(x(t+ 1))) −
∑

t∗≤t<t∗−1

lt+1(1(x(t+ 1)),1(x(t + 1)))

+
∑

t∗≤t<t∗−1

lt+1(1(x(t∗)),1(x(t∗))) −
∑

t∗≤t<t∗−1

lt(1(x(t∗)),1(x(t∗))).

Note that for any t = 0, 1, . . . , we have

lt+1(1(x(t + 1)),1(x(t+ 1))) − lt(1(x(t+ 1)),1(x(t+ 1)))

=
∑

i,j∈1(x(t+1))

(aij(t+ 1) − aij(t))(22)

=
∑

i,j∈1(x(t+1))

D
x(t)→x(t+1)aij

and

lt+1(1(x(t∗)),1(x(t∗))) − lt(1(x(t∗)),1(x(t∗)))

=
∑

i,j∈1(x(t∗))

(aij(t+ 1) − aij(t))(23)

=
∑

i,j∈1(x(t∗))

D
x(t)→x(t+1)aij .

The coincidence-detection evolving algorithm implies that for every t = 0, 1, . . . and
i, j = 1, 2, . . . , n,

if D
x(t)→x(t+1)aij > 0, then i, j ∈ 1(x(t+ 1)),

if D
x(t)→x(t+1)aij < 0, then either i �∈ 1(x(t+ 1)) or j �∈ 1(x(t+ 1)),

so that ∑
i,j∈1(x(t+1))

D
x(t)→x(t+1)aij ≥

∑
i,j∈1(x(t∗))

D
x(t)→x(t+1)aij .(24)
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Combining (22), (23), and (24) gives
∑

t∗≤t<t∗−1

lt(1(x(t+ 1)),1(x(t+ 1))) −
∑

t∗≤t<t∗−1

lt+1(1(x(t+ 1)),1(x(t+ 1)))

+
∑

t∗≤t<t∗−1

lt+1(1(x(t∗)),1(x(t∗))) −
∑

t∗≤t<t∗−1

lt(1(x(t∗)),1(x(t∗))) ≤ 0.

Composing the a priori estimates in Claims 1, 2, and 3 with the inequality
∑

1≤j,k≤q

∑
1≤i≤�M+

j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j,k≤q

∑
1≤i≤�M−

j

(xmk
(uij)(amjmk

(uij) − amkmj (uij)))(25)

≤
∑

1≤j,k≤q
2 min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0}),

we conclude from (11), (16), and (17) that

2((FS(t∗) + · · · + FS(t∗ − 1)) − (US(t∗) + · · · + US(t∗ − 1)))

=
∑

t∗≤t<t∗
(FS(t) − US(t)) +

∑
t∗≤t<t∗

(F̃S(t) − ŨS(t))

+
∑

t∗≤t<t∗
(FS(t) − US(t)) −

∑
t∗≤t<t∗

(F̃S(t) − ŨS(t))

≤ −
∑

1≤j,k≤q
2 min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0})

+
∑

1≤j,k≤q

∑
1≤i≤�M+

j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j,k≤q

∑
1≤i≤�M−

j

(xmk
(uij)(amjmk

(uij) − amkmj (uij))) ≤ 0,

in contradiction to Theorem 1. So to complete the proof of the assertion, it remains
to show that (25) holds. To see this, fix 1 ≤ j, k ≤ q with j �= k, and think of the
set M+

k ∪M−
k as the holes in a sieve that filters the set M+

j ∪M−
j . Thus we divide

the sets

M+
j = {t1j, t2j , . . . , t(�M+

j )j},
M−
j = {u1j, u2j , . . . , u(�M−

j )j}

into mutually disjoint ν classes

Ej1 , E
j
2, . . . , E

j
ν

such that
(a) Ej1 ∪Ej2 ∪ · · · ∪ Ejν = M+

j ∪M−
j ,

(b) max(Ejη) < min(Ejη+1) for η = 1, 2, . . . , ν − 1,
(c) there does not exist t in M+

k ∪M−
k such that min(Ejη) ≤ t ≤ max(Ejη) for

η = 1, 2, . . . , ν,
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(d) there exists t in M+
k ∪M−

k such that max(Ejη) < t < min(Ejη+1) for η =
1, 2, . . . , ν − 1.

According to (a) we have
∑

1≤i≤�M+
j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤i≤�M−
j

(xmk
(uij)(amjmk

(uij) − amkmj (uij)))

(26)
=

∑
1≤η≤ν

∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t)))

−
∑

1≤η≤ν

∑
t∈M−

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t))).

Fix 1 ≤ η ≤ ν. Then (c) implies that either

xmk
(t) = 0 for min(Ejη) ≤ t ≤ max(Ejη)(27)

or

xmk
(t) = 1 for min(Ejη) ≤ t ≤ max(Ejη).(28)

Case 1. �Ejη is even. According to (27) and (28) we have to distinguish between
two subcases.

Subcase 1-1. xmk
(t) = 0 for min(Ejη) ≤ t ≤ max(Ejη). Then

∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t)−amkmj (t)))−
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t)−amkmj (t))) = 0.

Subcase 1-2. xmk
(t) = 1 for min(Ejη) ≤ t ≤ max(Ejη). According to (b) we can

write Ejη as

{t1, t2, . . . , t�Ej
η/2
, u1, u2, . . . , u�Ej

η/2
},

where ti ∈M+
j and ui ∈M−

j for i = 1, 2, . . . , �Ejη/2, such that either

t1 < u1 < t2 < u2 < · · · < t�Ej
η/2

< u�Ej
η/2

(29)

or

u1 < t1 < u2 < t2 < · · · < u�Ej
η/2

< t�Ej
η/2
.(30)

Inequality (29) implies that for any i = 1, 2, . . . , �Ejη/2,

(xmj (ti), xmk
(ti)) = (0, 1),

(xmj (ti + 1), xmk
(ti + 1)) = (1, 1),

...

(xmj (ui − 1), xmk
(ui − 1)) = (1, 1),

(xmj (ui), xmk
(ui)) = (1, 1).
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Thus for every t = ti, ti + 1, . . . , ui − 1, we have

δmjmk
(t+ 1) = 1 and δmkmj (t+ 1) = 0,

and according to the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjmk

≥ D
x(t)→x(t+1)amkmj ≥ 0.

Therefore∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t))) −
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

=
∑

1≤i≤�Ej
η/2

(amjmk
(ti) − amjmk

(ui)) −
∑

1≤i≤�Ej
η/2

(amkmj (ti) − amkmj (ui))

=
∑

1≤i≤�Ej
η/2

(−D
x(ti)→x(ti+1)amjmk

− · · · − D
x(ui−1)→x(ui)

amjmk
)

−
∑

1≤i≤�Ej
η/2

(−D
x(ti)→x(ti+1)amkmj − · · · − D

x(ui−1)→x(ui)
amkmj ) ≤ 0.

On the other hand, (30) implies that for any i = 1, 2, . . . , �Ejη/2,

(xmj (ui), xmk
(ui)) = (1, 1),

(xmj (ui + 1), xmk
(ui + 1)) = (0, 1),

...

(xmj (ti − 1), xmk
(ti − 1)) = (0, 1),

(xmj (ti), xmk
(ti)) = (0, 1).

Thus for every t = ui, ui + 1, . . . , ti − 1, we have

δmjmk
(t+ 1) = 1 and δmkmj (t+ 1) = 0,

and according to the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjmk

≤ D
x(t)→x(t+1)amkmj ≤ 0.

Therefore∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t))) −
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

=
∑

1≤i≤�Ej
η/2

(amjmk
(ti) − amjmk

(ui)) −
∑

1≤i≤�Ej
η/2

(amkmj (ti) − amkmj (ui))

=
∑

1≤i≤�Ej
η/2

(D
x(ui)→x(ui+1)amjmk

+ · · · + D
x(ti−1)→x(ti)

amjmk
)

−
∑

1≤i≤�Ej
η/2

(D
x(ui)→x(ui+1)amkmj + · · · + D

x(ti−1)→x(ti)amkmj ) ≤ 0.
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Case 2. �Ejη is odd.
Subcase 2-1. xmk

(t) = 0 for min(Ejη) ≤ t ≤ max(Ejη). Then
∑

t∈M+
j ∩Ej

η

(xmk
(t)(amjmk

(t)−amkmj (t))) −
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t)−amkmj (t))) = 0.

Subcase 2-2. xmk
(t) = 1 for min(Ejη) ≤ t ≤ max(Ejη). According to (b) we can

write Ejη as

{t1, t2, . . . , t(�Ej
η−1)/2, t(�Ej

η+1)/2, u1, u2, . . . , u(�Ej
η−1)/2},

where ti ∈M+
j for i = 1, 2, . . . , (�Ejη +1)/2, ui ∈M−

j for i = 1, 2, . . . , (�Ejη−1)/2 and

t1 < u1 < t2 < u2 < · · · < t(�Ej
η−1)/2 < u(�Ej

η−1)/2 < t(�Ej
η+1)/2,(31)

or as

{t1, t2, . . . , t(�Ej
η−1)/2, u1, u2, . . . , u(�Ej

η−1)/2, u(�Ej
η+1)/2},

where ti ∈M+
j for i = 1, 2, . . . , (�Ejη−1)/2, ui ∈M−

j for i = 1, 2, . . . , (�Ejη +1)/2 and

u1 < t1 < u2 < t2 < · · · < u(�Ej
η−1)/2 < t(�Ej

η−1)/2 < u(�Ej
η+1)/2.(32)

Inequality (31) implies that for any i = 1, 2, . . . , (�Ejη − 1)/2,

(xmj (ti), xmk
(ti)) = (0, 1),

(xmj (ti + 1), xmk
(ti + 1)) = (1, 1),

...

(xmj (ui − 1), xmk
(ui − 1)) = (1, 1),

(xmj (ui), xmk
(ui)) = (1, 1).

Thus for every t = ti, ti + 1, . . . , ui − 1, we have

δmjmk
(t+ 1) = 1 and δmkmj (t+ 1) = 0,

and by the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjmk

≥ D
x(t)→x(t+1)amkmj ≥ 0.

Then∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t))) −
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

=
∑

1≤i≤(�Ej
η−1)/2

(amjmk
(ti) − amjmk

(ui)) −
∑

1≤i≤(�Ej
η−1)/2

(amkmj (ti) − amkmj (ui))

+ amjmk
(t(�Ej

η+1)/2) − amkmj (t(�Ej
η+1)/2)

=
∑

1≤i≤(�Ej
η−1)/2

(−D
x(ti)→x(ti+1)amjmk

− · · · − D
x(ui−1)→x(ui)

amjmk
)
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−
∑

1≤i≤(�Ej
η−1)/2

(−D
x(ti)→x(ti+1)amkmj − · · · − D

x(ui−1)→x(ui)
amkmj )

+ amjmk
(t(�Ej

η+1)/2) − amkmj (t(�Ej
η+1)/2)

≤ amjmk
(t(�Ej

η+1)/2) − amkmj (t(�Ej
η+1)/2)

≤ max({amjmk
(t) − amkmj (t); t = t∗, . . . , t

∗} ∪ {0}).

On the other hand, (32) implies that for any i = 1, 2, . . . , (�Ejη − 1)/2,

(xmj (ui), xmk
(ui)) = (1, 1),

(xmj (ui + 1), xmk
(ui + 1)) = (0, 1),

...

(xmj (ti − 1), xmk
(ti − 1)) = (0, 1),

(xmj (ti), xmk
(ti)) = (0, 1).

Thus for every t = ui, ui + 1, . . . , ti − 1, we have

δmjmk
(t+ 1) = 1 and δmkmj (t+ 1) = 0,

and using the coincidence-detection evolving algorithm, we conclude that

D
x(t)→x(t+1)amjmk

≤ D
x(t)→x(t+1)amkmj ≤ 0.

Then
∑

t∈M+
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t))) −
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

=
∑

1≤i≤(�Ej
η−1)/2

(amjmk
(ti) − amjmk

(ui)) −
∑

1≤i≤(�Ej
η−1)/2

(amkmj (ti) − amkmj (ui))

− amjmk
(u(�Ej

η+1)/2) + amkmj (u(�Ej
η+1)/2)

=
∑

1≤i≤(�Ej
η−1)/2

(D
x(ui)→x(ui+1)amjmk

+ · · · + D
x(ti−1)→x(ti)

amjmk
)

−
∑

1≤i≤(�Ej
η−1)/2

(D
x(ui)→x(ui+1)amkmj + · · · + D

x(ti−1)→x(ti)
amkmj )

− amjmk
(u(�Ej

η+1)/2) + amkmj (u(�Ej
η+1)/2)

≤ amkmj (u(�Ej
η+1)/2) − amjmk

(u(�Ej
η+1)/2)

≤ max({amkmj (t) − amjmk
(t); t = t∗, . . . , t

∗} ∪ {0}).

Let

Δ = {η; �Ejη is odd, η = 1, 2, . . . , ν}.
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Combining Cases 1 and 2 gives
∑

1≤η≤ν

∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t)))

−
∑

1≤η≤ν

∑
t∈M−

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t)))

=
∑
η 	∈Δ

⎛
⎜⎝ ∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t)))

−
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

⎞
⎟⎠(33)

+
∑
η∈Δ

⎛
⎜⎝ ∑
t∈M+

j ∩Ej
η

(xmk
(t)(amjmk

(t) − amkmj (t)))

−
∑

t∈M−
j ∩Ej

η

(xmk
(t)(amjmk

(t) − amkmj (t)))

⎞
⎟⎠

≤
∑

η∈Δ,max(Ej
η)∈M+

j

max({amjmk
(t) − amkmj (t); t = t∗, . . . , t

∗} ∪ {0})

+
∑

η∈Δ,max(Ej
η)∈M−

j

max({amkmj (t) − amjmk
(t); t = t∗, . . . , t

∗} ∪ {0}).

Since

�Ej1 + �Ej2 + · · · + �Ejν = �(M+
j ∪M−

j ),

�Δ is even. Let us write

Δ = {η1, η2, . . . , η2β},

where β ≥ 0 and η1 < η2 < · · · < η2β . Then

2β ≤ ν ≤ 2�M−
j

and (d) gives

ν − 1 ≤ �(M+
k ∪M−

k ).

Hence

β ≤ 1
2
ν ≤ min

({
�M−

j ,
1
2

+ �M−
k

})
,

and so

β ≤ min({�M−
j , �M

−
k }).
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Note that for each i = 1, 2, . . . , 2β − 1, if max(Ejηi
) belongs to M+

j (resp., M−
j ), then

max(Ejηi+1
) belongs to M−

j (resp., M+
j ). Thus

∑
η∈Δ,max(Ej

η)∈M+
j

max({amjmk
(t) − amkmj (t); t = t∗, . . . , t

∗} ∪ {0})

+
∑

η∈Δ,max(Ej
η)∈M−

j

max({amkmj (t) − amjmk
(t); t = t∗, . . . , t

∗} ∪ {0})

= βmax({amjmk
(t) − amkmj (t); t = t∗, . . . , t

∗} ∪ {0})(34)

+ βmax({amkmj (t) − amjmk
(t); t = t∗, . . . , t

∗} ∪ {0})

≤ min({�M−
j , �M

−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0})

+ min({�M−
j , �M

−
k })max({amkmj (t) − amjmk

(t); t = t∗, . . . , t
∗} ∪ {0}).

So we conclude from (26), (33), and (34) that

∑
1≤j,k≤q

∑
1≤i≤�M+

j

(xmk
(tij)(amjmk

(tij) − amkmj (tij)))

−
∑

1≤j,k≤q

∑
1≤i≤�M−

j

(xmk
(uij)(amjmk

(uij) − amkmj (uij)))

≤
∑

1≤j,k≤q
min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0})

+
∑

1≤j,k≤q
min({�M−

j , �M
−
k })max({amkmj (t) − amjmk

(t); t = t∗, . . . , t
∗} ∪ {0})

=
∑

1≤j,k≤q
2 min({�M−

j , �M
−
k })max({amjmk

(t) − amkmj (t); t = t∗, . . . , t
∗} ∪ {0}),

establishing (25) and completing the proof of the assertion.
Since the discrete flow x(t) iterates asynchronously, there exists a sequence of

time steps T1, T2, . . . with 0 < T1 < T2 < · · · such that
⋃

Tj≤t<Tj+1

s(t) = {1, 2, . . . , n}(35)

for any j = 1, 2, . . . . The assertion and the above choice of T1, T2, . . . in effect imply
that a finite k > 1 and a subset V of {1, 2, . . . , n} can be determined so that if the
minimal total excitability in the period of time t = 0, 1, . . . , Tk satisfies the assembling
coordination, then

1(x(t)) = V for all Tk−1 ≤ t ≤ Tk.(36)

(A passing remark: Without the coincidence-detection evolving algorithm support,
(3), (4), and (36) cannot generically arrive at the conclusion that 1(x(t)) = V for all
t ≥ Tk.) Set

T ′ = Tk−1 and T = Tk.
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Armed with (36), we now claim that for all t ≥ T the discrete flow x(t) undergoing
the coincidence-detection evolving algorithm satisfies

1(x(t)) = V.(37)

For the proof, put

γ(t) =

⎛
⎝1(x(t)) ∩

⎧⎨
⎩i;

∑
j

aij(t)xj(t) < bi

⎫⎬
⎭
⎞
⎠∪

⎛
⎝0(x(t)) ∩

⎧⎨
⎩i;

∑
j

aij(t)xj(t) ≥ bi

⎫⎬
⎭
⎞
⎠

for t = 0, 1, . . . . Then, by (36) and the coincidence-detection evolving algorithm, we
have for any given i = 1, 2, . . . , n and T ′ < t ≤ T

∑
1≤j≤n

aij(t)xj(t)

=
∑

1≤j≤n
(aij(t− 1) + D

x(t−1)→x(t)aij)xj(t)

=
∑

1≤j≤n
aij(t− 1)xj(t− 1) +

∑
1≤j≤n

D
x(t−1)→x(t)aijxj(t)

≥
∑

1≤j≤n
aij(t− 1)xj(t− 1)

if i ∈ 1(x(t)); otherwise
∑

1≤j≤n
aij(t)xj(t)

=
∑

1≤j≤n
(aij(t− 1) + D

x(t−1)→x(t)aij)xj(t)

=
∑

1≤j≤n
aij(t− 1)xj(t− 1) +

∑
1≤j≤n

D
x(t−1)→x(t)aijxj(t)

≤
∑

1≤j≤n
aij(t− 1)xj(t− 1).

Thus we have

γ(T ′) ⊃ γ(T ′ + 1) ⊃ · · · ⊃ γ(T ).(38)

Furthermore, γ(T ) = ∅. To see this, suppose γ(T ) �= ∅. Then (35) and (38) imply that
there is τ with T ′ ≤ τ < T such that γ(τ) ∩ s(τ) �= ∅, and so 1(x(τ + 1)) �= V , which
contradicts (36). We apply now the condition γ(T ) = ∅ to prove the assertion (37),
which shows that a transient period of synchronization of neural firing propagates to
the whole period of time t ≥ T . (As illustrated in Figure 4, the condition γ(T ) = ∅
means that a transition state of neural activity occurs at time T . The accumulation of
both excitability coordination and activity-dependent changes of coupling strengths
causes a group of neurons to come into synchronized activity prior to time T . When a
transient period of synchronization of neural firing occurs, we need only the support
of coincidence detection to produce a sort of positive feedback that admits the syn-
chronized neural impulses between populations of neurons to continue to synchronize
posterior to time T .)
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Fig. 4. A monotonically decreasing sequence of γ(t) (the nodes encompassed by closed curves
in the period of time T ′ and T ) can be generated in a transient period of synchronization of neural
firing. The condition γ(T ) = ∅ determines a transition state of neural activity at time T .

We prove the assertion (37) by induction on time t ≥ T . The case of t = T follows
from (36). Assume that t > T and the assertion (37) is true for all cases of time less
than t (except the cases of time less than T ). Then, by induction hypothesis and the
coincidence-detection evolving algorithm, we have

γ(T ) ⊃ γ(T + 1) ⊃ · · · ⊃ γ(t− 1).

Since γ(T ) = ∅, we get γ(t− 1) = ∅, so that
∑
j

aij(t− 1)xj(t− 1) ≥ bi for all i ∈ 1(x(t− 1)),(39)

∑
j

aij(t− 1)xj(t− 1) < bi for all i ∈ 0(x(t− 1)).(40)

Inequalities (39), (40) and the induction hypothesis together imply that 1(x(t)) = V.
This completes the inductive proof of the assertion (37) and concludes the proof of
the theorem.

6. Stability of neural synchrony. This section is devoted to the study of
the stability problem of neural synchrony underlying the nonlinear dynamical system
modeled by the parametric equations (3) and (4). The question may be stated as
follows: Would small perturbations of the initial neuronal active state cause only
small variations of the discrete flow which iterates to a state of synchronous neuronal
firing?

To solve this, we first introduce a quantity to clarify the mathematical meaning of
disturbance of neuronal activity states, and then introduce the phenomenon of local
absorption of the discrete flow.

For any given n-by-n real matrixA = [aij ]n×n and s ∈ {1, 2, . . . , n}, the state tran-
sition function HA,s : {0, 1}n −→ {0, 1}n is defined by [HA,s(x)]i = hea(

∑n
j=1 aijxj−

bi) if i = s; otherwise xi, i = 1, 2, . . . , n. For each pair x, y of distinct points of {0, 1}n,
we define the proximal number from x to y with respect to the state transition func-
tions HA,� by

ProA(x, y) = min{r; HA,sr−1 ◦HA,sr−2 ◦ · · · ◦HA,s0(x) = y},

and let ProA(x, x) = 0. Here the operation “ ◦ ” denotes the composition of two
functions. For each nonempty subset Ω of {0, 1}n, the proximal number from x to Ω
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with respect to the state transition functions HA,� is defined to be the minimum of
proximal numbers ProA(x, y), where y is taken over all elements in Ω. The proximal
number ProA(x, y) measures the absorption of x into y underlying the state transition
functions HA,�.

Let x(t) iterate according to the parametric equations (3) and (4). We show now
that, based on the coincidence-detection evolving algorithm, the establishment of the
evolutionary couplings enables the states locally absorbed by x(t) to be absorbed by
x(t + 1) for all t = 0, 1, . . . . This phenomenon is aptly called local absorption of the
discrete flow x(t), which reveals an underlying principle of the coincidence-detection
rule to stabilize neural synchrony.

Theorem 3. Consider the evolutionary network of n coupled neurons subject to
the dynamics (3) and (4) and obeying the coincidence-detection evolving algorithm.
Let the discrete flow x(t) iterate asynchronously and let A(t) satisfy the condition of
assembling coordination described in Theorem 2. If the plasticity parameters satisfy

∣∣∣∣∣∣
∑

j∈1(x(t+1)),j 	=i
D

x(t)→x(t+1)aij

∣∣∣∣∣∣ ≥ max
j∈0(x(t+1))

|D
x(t)→x(t+1)aij |(41)

for all i ∈ 1(x(t + 1)) and t = 0, 1, . . . , then

{y; ProA(t)(y, x(t)) ≤ 1} ⊂ {y; ProA(t+1)(y, x(t+ 1)) ≤ 2}(42)

for all t = 0, 1, . . . .
Proof. Let x(0) be any initial neuronal active state in {0, 1}n, and let x(t) iterate

asynchronously, guided by the dynamics (3), (4) and the coincidence-detection evolv-
ing algorithm. Fix τ ≥ 0 and consider the fragment x(τ), x(τ +1), x(τ +2), x(τ+3) of
the discrete flow x(t). We may first suppose that, in the period of time τ, τ +1, τ +2,
the minimal total excitability fulfills the assembling coordination and the plasticity
parameters satisfy (41). According to (3) and (4), there are A(τ), A(τ + 1), A(τ + 2)
and s(τ), s(τ + 1), s(τ + 2) such that

x(t+ 1) = HA(t),s(t)(x(t)) for t = τ, τ + 1, τ + 2,

and by (4) we have

lt+1(1(x(τ)), s(τ)) = lt(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(t)→x(t+1)as(τ)j(43)

for t = τ, τ + 1. To prove (42), we have to claim that

x(τ + 1) = HA(τ+1),s(τ)(x(τ))(44)

and

x(τ + 1) = HA(τ+2),s(τ)(x(τ)).(45)

To prove (44), we consider (43) at time t = τ , that is,

lτ+1(1(x(τ)), s(τ)) = lτ (1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ)→x(τ+1)as(τ)j.

By the asynchronous iteration of x(t), we split the arguments into three cases.
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Case 1. 1(x(τ)) � 1(x(τ +1)). Then s(τ) = 0(x(τ))∩1(x(τ +1)), and according
to the coincidence-detection evolving algorithm, we have

D
x(τ)→x(τ+1)as(τ)j ≥ 0 for all j ∈ 1(x(τ)).(46)

Since x(τ + 1) = HA(τ),s(τ)(x(τ)), we have

lτ (1(x(τ)), s(τ)) ≥ bs(τ),(47)

and hence, together with (46), we conclude that

lτ+1(1(x(τ)), s(τ)) = lτ (1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ)→x(τ+1)as(τ)j

(48)
≥ lτ (1(x(τ)), s(τ)) ≥ bs(τ).

This implies that

HA(τ+1),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (44).
Case 2. 1(x(τ)) � 1(x(τ +1)). Then s(τ) = 1(x(τ))∩0(x(τ +1)), and according

to the coincidence-detection evolving algorithm, we have

D
x(τ)→x(τ+1)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).(49)

Since x(τ + 1) = HA(τ),s(τ)(x(τ)), we have

lτ (1(x(τ)), s(τ)) < bs(τ),(50)

and hence, together with (49), we conclude that

lτ+1(1(x(τ)), s(τ)) = lτ (1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ)→x(τ+1)as(τ)j

(51)
≤ lτ (1(x(τ)), s(τ)) < bs(τ).

This implies that

HA(τ+1),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (44).
Case 3. 1(x(τ)) = 1(x(τ + 1)). Then either s(τ) ∈ 1(x(τ)) or s(τ) ∈ 0(x(τ)). If

s(τ) ∈ 1(x(τ)), then, according to the coincidence-detection evolving algorithm, we
have

D
x(τ)→x(τ+1)as(τ)j ≥ 0 for all j ∈ 1(x(τ)).(52)

Since x(τ + 1) = HA(τ),s(τ)(x(τ)), we have

lτ (1(x(τ)), s(τ)) ≥ bs(τ),(53)

and hence, together with (52), we conclude that

lτ+1(1(x(τ)), s(τ)) = lτ (1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ)→x(τ+1)as(τ)j

(54)
≥ lτ (1(x(τ)), s(τ)) ≥ bs(τ).
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This implies that

HA(τ+1),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1).

On the other hand, if s(τ) ∈ 0(x(τ)), then, according to the coincidence-detection
evolving algorithm, we have

D
x(τ)→x(τ+1)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).(55)

Since x(τ + 1) = HA(τ),s(τ)(x(τ)), we have

lτ (1(x(τ)), s(τ)) < bs(τ),(56)

and hence, together with (55), we conclude that

lτ+1(1(x(τ)), s(τ)) = lτ (1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ)→x(τ+1)as(τ)j

(57)
≤ lτ (1(x(τ)), s(τ)) < bs(τ).

This implies that

HA(τ+1),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (44).
We turn now to establish (45). Since x(t) iterates asynchronously, we need only

consider three cases.
Case 1. 1(x(τ)) � 1(x(τ + 1)). Then

s(τ) = 0(x(τ)) ∩ 1(x(τ + 1))(58)

and, by (43) and (48), we have

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

(59)
≥ bs(τ) +

∑
j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j .

Subcase 1-1. 1(x(τ + 1)) � 1(x(τ + 2)). Then, by (58), we have

s(τ) ∈ 1(x(τ + 2)) and 1(x(τ)) ⊂ 1(x(τ + 2)),

and according to the coincidence-detection evolving algorithm, we see that

D
x(τ+1)→x(τ+2)as(τ)j ≥ 0 for all j ∈ 1(x(τ)).

Thus, by (59), we have

lτ+2(1(x(τ)), s(τ)) ≥ bs(τ).

Combining this with (47) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
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Subcase 1-2. 1(x(τ + 1)) � 1(x(τ + 2)). Then s(τ) �= s(τ + 1). Indeed, if s(τ) =
s(τ +1), then, applying (48), (58), and the assembling coordination (10) to U = s(τ),
t∗ = τ , and t∗ = τ + 2, we get

lτ+1(1(x(τ + 1)), s(τ + 1)) = lτ+1(1(x(τ + 1)), s(τ))
= lτ+1(1(x(τ)), s(τ)) + lτ+1(s(τ), s(τ))

(60)
≥ bs(τ) + as(τ)s(τ)(τ + 1)
≥ bs(τ).

Since s(τ + 1) = s(τ) ∈ 1(x(τ + 1)), inequality (60) implies that

x(τ + 2) = HA(τ+1),s(τ+1)(x(τ + 1)) = x(τ + 1),

contradicting the assumption 1(x(τ+1)) � 1(x(τ+2)). Now combining s(τ) �= s(τ+1)
with the fact that

s(τ) ∈ 1(x(τ + 1)) and s(τ + 1) = 1(x(τ + 1)) ∩ 0(x(τ + 2))

gives

s(τ) ∈ 1(x(τ + 2)).(61)

Thus, together with (58), we have

s(τ + 1) = 1(x(τ + 1)) ∩ 0(x(τ + 2))
= (1(x(τ)) ∩ 0(x(τ + 2))) ∪ (s(τ) ∩ 0(x(τ + 2)))(62)
= 1(x(τ)) ∩ 0(x(τ + 2))

and

1(x(τ + 2)) \ s(τ) = (1(x(τ + 1)) ∩ 1(x(τ + 2))) \ (s(τ) ∩ 1(x(τ + 2)))
= (1(x(τ + 1)) \ s(τ)) ∩ 1(x(τ + 2))(63)
= 1(x(τ)) ∩ 1(x(τ + 2)).

From (62) and (63), we see that
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

=
∑

j∈1(x(τ))∩0(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j +

∑
j∈1(x(τ))∩1(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j

= D
x(τ+1)→x(τ+2)as(τ)s(τ+1) +

∑
j∈1(x(τ+2)),j 	=s(τ)

D
x(τ+1)→x(τ+2)as(τ)j,

and hence, by (41), (61), and the coincidence-detection evolving algorithm, we have
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j ≥ 0.

Thus, by (59), we have

lτ+2(1(x(τ)), s(τ)) ≥ bs(τ).
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Combining this with (47) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Subcase 1-3. 1(x(τ + 1)) = 1(x(τ + 2)). Then, by (58), we have

s(τ) ∈ 1(x(τ + 2)) and 1(x(τ)) ⊂ 1(x(τ + 2)),

and according to the coincidence-detection evolving algorithm, we see that

D
x(τ+1)→x(τ+2)as(τ)j ≥ 0 for all j ∈ 1(x(τ)).

Thus, by (59), we have

lτ+2(1(x(τ)), s(τ)) ≥ bs(τ).

Combining this with (47) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Case 2. 1(x(τ)) � 1(x(τ + 1)). Then

s(τ) = 1(x(τ)) ∩ 0(x(τ + 1))(64)

and, by (43) and (51), we have

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

(65)
< bs(τ) +

∑
j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j .

Subcase 2-1. 1(x(τ + 1)) � 1(x(τ + 2)). Then s(τ) �= s(τ + 1). Indeed, if s(τ) =
s(τ +1), then, applying (51), (64), and the assembling coordination (10) to U = s(τ),
t∗ = τ , and t∗ = τ + 2, we get

lτ+1(1(x(τ + 1)), s(τ + 1)) = lτ+1(1(x(τ + 1)), s(τ))
= lτ+1(1(x(τ)), s(τ)) − lτ+1(s(τ), s(τ))

(66)
< bs(τ) − as(τ)s(τ)(τ + 1)
≤ bs(τ).

Since s(τ + 1) = s(τ) ∈ 0(x(τ + 1)), inequality (66) implies that

x(τ + 2) = HA(τ+1),s(τ+1)(x(τ + 1)) = x(τ + 1),

contradicting the assumption 1(x(τ+1)) � 1(x(τ+2)). Now combining s(τ) �= s(τ+1)
with the fact that

s(τ) ∈ 0(x(τ + 1)) and s(τ + 1) = 0(x(τ + 1)) ∩ 1(x(τ + 2))

gives

s(τ) ∈ 0(x(τ + 2)).(67)
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From (67) and the coincidence-detection evolving algorithm, we see that

D
x(τ+1)→x(τ+2)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).

Thus, by (65), we have

lτ+2(1(x(τ)), s(τ)) < bs(τ).

Combining this with (50) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Subcase 2-2. 1(x(τ+1)) � 1(x(τ+2)). Then, by (64), we have s(τ) ∈ 0(x(τ+2)),

and hence, according to the coincidence-detection evolving algorithm, we see that

D
x(τ+1)→x(τ+2)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).

Thus, by (65), we have

lτ+2(1(x(τ)), s(τ)) < bs(τ).

Combining this with (50) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Subcase 2-3. 1(x(τ+1)) = 1(x(τ+2)). Then, by (64), we have s(τ) ∈ 0(x(τ+2)),

and hence, according to the coincidence-detection evolving algorithm, we see that

D
x(τ+1)→x(τ+2)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).

Thus, by (65), we have

lτ+2(1(x(τ)), s(τ)) < bs(τ).

Combining this with (50) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Case 3. 1(x(τ)) = 1(x(τ + 1)). Then the assertion holds: If x(τ + 1) �= x(τ + 2),

then s(τ) �= s(τ + 1). Indeed, if s(τ) = s(τ + 1), then, by (54) and (57), we have

lτ+1(1(x(τ + 1)), s(τ + 1)) = lτ+1(1(x(τ + 1)), s(τ))
= lτ+1(1(x(τ)), s(τ))(68)
≥ bs(τ) if s(τ) ∈ 1(x(τ))

and

lτ+1(1(x(τ + 1)), s(τ + 1)) = lτ+1(1(x(τ + 1)), s(τ))
= lτ+1(1(x(τ)), s(τ))(69)
< bs(τ) if s(τ) ∈ 0(x(τ)).
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Inequalities (68) and (69) together imply that

x(τ + 2) = HA(τ+1),s(τ+1)(x(τ + 1)) = x(τ + 1),

contradicting the assumption x(τ+1) �= x(τ+2). This contradiction shows the validity
of the assertion, and next we have to consider three subcases.

Subcase 3-1. 1(x(τ + 1)) � 1(x(τ + 2)). Then

s(τ + 1) = 0(x(τ + 1)) ∩ 1(x(τ + 2))(70)

and, according to the assertion, we have

s(τ) �= s(τ + 1).(71)

Since 1(x(τ)) = 1(x(τ + 1)), we have either

s(τ) ∈ 1(x(τ)) = 1(x(τ + 1))(72)

or

s(τ) ∈ 0(x(τ)) = 0(x(τ + 1)).(73)

In case of (72), we see that

s(τ) ∈ 1(x(τ + 2)) and 1(x(τ)) ⊂ 1(x(τ + 2)),(74)

and from (43) and (54) we have

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

(75)
≥ bs(τ) +

∑
j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j .

Thus we conclude from (74), (75), and the coincidence-detection evolving algorithm
that

lτ+2(1(x(τ)), s(τ)) ≥ bs(τ).

Combining this with (53) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1).

On the other hand, in case of (73) we have

s(τ) ∈ 0(x(τ + 2))

by combining (70), (71), and (73). Hence, by the coincidence-detection evolving
algorithm, we have

D
x(τ+1)→x(τ+2)as(τ)j ≤ 0 for all j ∈ 1(x(τ)).(76)

Combining (76) with (43) and (57) implies that

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

< bs(τ) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

≤ bs(τ).
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Thus, together with (56), we have

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Subcase 3-2. 1(x(τ + 1)) � 1(x(τ + 2)). Then

s(τ + 1) = 1(x(τ + 1)) ∩ 0(x(τ + 2))(77)

and, according to the assertion, we have

s(τ) �= s(τ + 1).(78)

Since 1(x(τ)) = 1(x(τ + 1)), we have either

s(τ) ∈ 1(x(τ)) = 1(x(τ + 1))(79)

or

s(τ) ∈ 0(x(τ)) = 0(x(τ + 1)).(80)

In case of (79), we have

s(τ) ∈ 1(x(τ + 2))(81)

by combining (77), (78), and (79). Since

1(x(τ)) ∩ 1(x(τ + 2)) = 1(x(τ + 1)) ∩ 1(x(τ + 2))
= 1(x(τ + 2))

and

1(x(τ)) ∩ 0(x(τ + 2)) = 1(x(τ + 1)) ∩ 0(x(τ + 2))
= s(τ + 1),

we conclude from (43) and (54) that

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

≥ bs(τ) +
∑

j∈1(x(τ))∩1(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j

(82)
+

∑
j∈1(x(τ))∩0(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j

= bs(τ) +
∑

j∈1(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j

+ D
x(τ+1)→x(τ+2)as(τ)s(τ+1).

According to (41), (81), and the coincidence-detection evolving algorithm, we get∑
j∈1(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j + D

x(τ+1)→x(τ+2)as(τ)s(τ+1)

=
∑

j∈1(x(τ+2)),j 	=s(τ)
D

x(τ+1)→x(τ+2)as(τ)j + D
x(τ+1)→x(τ+2)as(τ)s(τ)(83)

+ D
x(τ+1)→x(τ+2)as(τ)s(τ+1)

≥
∑

j∈1(x(τ+2)),j 	=s(τ)
D

x(τ+1)→x(τ+2)as(τ)j + D
x(τ+1)→x(τ+2)as(τ)s(τ+1) ≥ 0.
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Thus, from (82) and (83), we see that

lτ+2(1(x(τ)), s(τ)) ≥ bs(τ).

Combining this with (53) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1).

On the other hand, in case of (80) we have

s(τ) ∈ 0(x(τ + 2))

and, from (43), (57), and the coincidence-detection evolving algorithm, we see that

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

< bs(τ) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

≤ bs(τ).

Combining this with (56) implies that

HA(τ+2),s(τ)(x(τ)) = HA(τ),s(τ)(x(τ)) = x(τ + 1),

proving (45).
Subcase 3-3. 1(x(τ + 1)) = 1(x(τ + 2)). Then, by (43), (54), and the coincidence-

detection evolving algorithm, we have

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

≥ bs(τ) +
∑

j∈1(x(τ+2))

D
x(τ+1)→x(τ+2)as(τ)j(84)

≥ bs(τ) if s(τ) ∈ 1(x(τ)),

and, on the other hand, by (43), (57), and the coincidence-detection evolving algo-
rithm we have

lτ+2(1(x(τ)), s(τ)) = lτ+1(1(x(τ)), s(τ)) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j

< bs(τ) +
∑

j∈1(x(τ))

D
x(τ+1)→x(τ+2)as(τ)j(85)

≤ bs(τ) if s(τ) ∈ 0(x(τ)) = 0(x(τ + 2)).

Combining (84) and (85) accordingly with (53) and (56) implies that

x(τ + 2) = HA(τ+1),s(τ+1)(x(τ + 1)) = x(τ + 1),

proving (45).
Having completed the proof of the claims (44) and (45), we turn now to establish

(42). To see this, let T ≥ 0 be determined by Theorem 2 so that the minimal total
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excitability in the period of time t = 0, 1, . . . , T satisfies the assembling coordination
and that

1(x(t)) = V for all t ≥ T.

Given τ = 0, 1, . . . , T − 1 and y ∈ {y; ProA(τ)(y, x(τ)) ≤ 1}, then either

y = x(τ)(86)

or

HA(τ),(1(x(τ))∩0(y))∪(0(x(τ))∩1(y))(y) = x(τ).(87)

In case of (86), it is readily seen that

y ∈ {y; ProA(τ+1)(y, x(τ + 1)) ≤ 2}

since HA(τ+1),s(τ)(x(τ)) = x(τ + 1) by (44). In case of (87), we consider the discrete
flow z(t) given by z(0) = y, z(1) = x(τ), z(2) = x(τ + 1), . . . so that

HW (t),s̃(t)(z(t)) = z(t+ 1) for t = 0, 1, . . . ,

where

W (0) = A(τ),W (1) = A(τ),W (2) = A(τ + 1), . . .

and

s̃(0) = (1(x(τ)) ∩ 0(y)) ∪ (0(x(τ)) ∩ 1(y)), s̃(1) = s(τ), s̃(2) = s(τ + 1), . . . .

Let D
w(t)→w(t+1)wij = wij(t + 1) − wij(t) for all i, j ∈ {1, 2, . . . , n} and t = 0, 1, . . . .

Then, based on the construction of x(t), A(t), and W (0) = W (1), it is readily seen
that z(t) will be one of the discrete flows guided also by the dynamics (3), (4) and the
coincidence-detection evolving algorithm. Further, since τ+1 ≤ T and the assembling
coordination, associated to x(t), is satisfied in the period of time t = 0, 1, . . . , T , we
have
∑
i∈U

min({wii(t); t = 0, 1, 2}) ≥
∑
i∈U

min({aii(t); t = 0, . . . , T})

≥
∑
i,j∈U

max({aij(t) − aji(t); t = 0, . . . , T} ∪ {0})

≥
∑
i,j∈U

max({wij(t) − wji(t); t = 0, 1, 2} ∪ {0})

for each nonempty subset U of {1, 2, . . . , n}. Thus, according to (45) and the fact
that the choice of D

w(t)→w(t+1)wij satisfies (41), we have

HW (2),s̃(0)(z(0)) = z(1).(88)

Since

HW (2),s̃(1)(z(1)) = z(2)(89)
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by (44), we conclude from (88) and (89) that

HA(τ+1),s̃(1) ◦HA(τ+1),s̃(0)(y) = x(τ + 1),

proving (42) for t = 0, 1, . . . , T − 1. Now let τ ≥ T be given and consider y satisfying
ProA(τ)(y, x(τ)) ≤ 1. If y = x(τ), then

ProA(τ+1)(y, x(τ + 1)) = ProA(τ+1)(x(τ), x(τ)) = 0,

so

y ∈ {y; ProA(τ+1)(y, x(τ + 1)) ≤ 2}.

If y �= x(τ), then ProA(τ)(y, x(τ)) = 1, and hence exactly one of the following holds:

1(x(τ)) ∩ 0(y) �= ∅ or 0(x(τ)) ∩ 1(y) �= ∅.(90)

Since ProA(τ)(y, x(τ)) = 1, the former of (90) implies that

lτ (1(y),1(x(τ)) ∩ 0(y)) ≥ b1(x(τ))∩0(y).

Thus

lτ+1(1(y),1(x(τ)) ∩ 0(y)) = lτ (1(y),1(x(τ)) ∩ 0(y))

+
∑
j∈1(y)

D
x(τ)→x(τ+1)a1(x(τ))∩0(y)j

≥ b1(x(τ))∩0(y) +
∑
j∈1(y)

D
x(τ)→x(τ+1)a1(x(τ))∩0(y)j.

Since 0(x(τ)) ∩ 1(y) = ∅ and 1(x(τ)) = 1(x(τ + 1)), we have

D
x(τ)→x(τ+1)a1(x(τ))∩0(y)j ≥ 0 for all j ∈ 1(y).

This implies that

lτ+1(1(y),1(x(τ)) ∩ 0(y)) ≥ b1(x(τ))∩0(y),

and hence

HA(τ+1),1(x(τ))∩0(y)(y) = x(τ) = x(τ + 1).

So we have

ProA(τ+1)(y, x(τ + 1)) ≤ 2.

On the other hand, suppose the latter of (90) holds. Then

lτ (1(y),0(x(τ)) ∩ 1(y)) < b0(x(τ))∩1(y).

Since 0(x(τ)) = 0(x(τ + 1)), we have

lτ+1(1(y),0(x(τ)) ∩ 1(y)) = lτ (1(y),0(x(τ)) ∩ 1(y))

+
∑
j∈1(y)

D
x(τ)→x(τ+1)a0(x(τ))∩1(y)j

< b0(x(τ))∩1(y) +
∑
j∈1(y)

D
x(τ)→x(τ+1)a0(x(τ))∩1(y)j

≤ b0(x(τ))∩1(y).



GROWTH DYNAMICS OF CELL ASSEMBLIES 1147

Fig. 5. A schematic illustration of what local absorption effects. Consider the discrete flow
x(t) (the black curve) and its perturbation (the gray curve). Based on the local absorption of the
discrete flow x(t), each state y absorbed by x(t) underlying HA(t),� (the arrow from y to x(t)) can
also be absorbed by x(t+ 1) underlying HA(t+1),� (the arrow from y to x(t+ 1)). Thus, as the state
y transits (the arrow from y to y′), it can only cause small variations of the state x(t + 1).

This implies that

HA(τ+1),0(x(τ))∩1(y)(y) = x(τ) = x(τ + 1),

completing the proof of (42) for t = T, T + 1, . . . , and the proof of Theorem 3 is
complete.

Theorem 3 is applied to show that neural synchrony is stable (see Figure 5 for an
illustration). To accomplish this, let x(t), A(t), and s(t) be defined by (3) and (4),
and consider the perturbed system

y(t+ 1) = HA(t),s̃(t)(y(t)), t = 0, 1, . . . ,(91)

where s̃(t) ∈ {1, 2, . . . , n} for t = 0, 1, . . . .
Theorem 4. Consider the evolutionary network of n coupled neurons subject to

the dynamics (3) and (4) and obeying the coincidence-detection evolving algorithm.
Let the discrete flow x(t) iterate asynchronously, and let A(t) satisfy the condition of
assembling coordination described in Theorem 2. If the regime of plasticity parameters
(41) holds, then for any y(0) ∈ {0, 1}n with

ProA(0)(y(0), x(0)) ≤ 2,(92)

there are discrete flows y(t) for the perturbed system (91) such that

ProA(t)(y(t), x(t)) ≤ 2

for all t = 0, 1, . . . .
Proof. Choose y(0) ∈ {0, 1}n so that

ProA(0)(y(0), x(0)) ≤ 2.
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Having chosen y(0), y(1), . . . , y(τ), it is readily seen that if ProA(τ)(y(τ), x(τ)) = 0,
then

{HA(τ),s(y(τ)), s = 1, 2, . . . , n} ∩ {y; ProA(τ+1)(y, x(τ + 1)) ≤ 2} �= ∅;

and if ProA(τ)(y(τ), x(τ)) �= 0, then, by (42), we have

{HA(τ),s(y(τ)), s = 1, 2, . . . , n} ∩ {y; ProA(τ+1)(y, x(τ + 1)) ≤ 2}
⊃ {HA(τ),s(y(τ)), s = 1, 2, . . . , n} ∩ {y; ProA(τ)(y, x(τ)) ≤ 1} �= ∅.

Choose y(τ + 1) in

{HA(τ),s(y(τ)), s = 1, 2, . . . , n} ∩ {y; ProA(τ+1)(y, x(τ + 1)) ≤ 2}.

Then

ProA(τ+1)(y(τ + 1), x(τ + 1)) ≤ 2,

and further we have

y(τ + 1) ∈ {HA(τ),s(y(τ)), s = 1, 2, . . . , n}.

Thus the discrete flow y(t) is constructed for the perturbed system (91) such that

ProA(t)(y(t), x(t)) ≤ 2 for all t = 0, 1, . . . ,

and the proof is complete.

7. Nonlinear effect of neural synchrony. Synchrony and stability of syn-
chrony may lead to formulating evolutionary network architecture. To visualize this,
we first show that the effect of synchronization admits self-sustaining activity of
strengthening in evolutionary couplings, and then show that such strengthening gives
the robust stability of neural synchrony.

The first of these follows immediately from the coincidence-detection evolving
algorithm. In fact, we have shown in Theorem 2 that the discrete flow x(t) can
iterate to a state x∗ of synchronous neuronal firing, that is, a finite T ≥ 0 can be
determined so that

x(t) = x∗ for all t ≥ T.(93)

By the alternating nature of (3) and (4), and by the coincidence-detection evolving
algorithm, we see that the assertion (93) is equivalent to saying that for each t ≥ T ,
we have the following chain of implications:

x(t) = x(t+ 1) = x∗

=⇒
{
aij(t+ 1) − aij(t) = D

x(t)→x(t+1)aij ≥ 0 if i, j ∈ 1(x(t+ 1)) = 1(x∗),
aij(t+ 1) − aij(t) = D

x(t)→x(t+1)aij ≤ 0 otherwise.

=⇒ x(t+ 1) = x(t+ 2) = x∗

=⇒
{
aij(t+ 2) − aij(t+ 1) = D

x(t+1)→x(t+2)aij ≥ 0 if i, j ∈ 1(x(t+ 2)) = 1(x∗),
aij(t+ 2) − aij(t+ 1) = D

x(t+1)→x(t+2)aij ≤ 0 otherwise.

=⇒ x(t+ 2) = x(t+ 3) = x∗

=⇒ · · · .
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The chain of implications demonstrates how synchrony could indeed specify positive
feedback. It is positive feedback to give rise to the consolidation of sync-dependent
circuitry, which feeds back to reinforce the neurons to fire in synchrony.

To see the second of these, let us consider the evolutionary coupling states A(T ),
A(T + 1), . . . , each containing distinctive sync-dependent circuitry resulting from the
positive feedback. Given a fixed A(τ), τ = T, T + 1, . . . , it follows from (39) and (40)
that for any choice of s ∈ {1, 2, . . . , n},

HA(τ),s(x∗) = x∗.

Thus x∗ is a common fixed point of state transition functions HA(τ),s for all s =
1, 2, . . . , n, and x∗ corresponds to an equilibrium state of the dynamical system being
modeled by the nonlinear parametric equations

z(t+ 1) = HW (t),s(t)(z(t)), t = 0, 1, . . . ,
(94)

W (t+ 1) = W (t) +Dz(t)→z(t+1)W, t = 0, 1, . . . ,

where W (0) = A(τ) and z(t) iterates asynchronously, guided by the coincidence-
detection evolving algorithm. By Theorem 4, we can associate to each A(τ) a region

{y; ProA(τ)(y, x∗) ≤ 2}(95)

such that for any y(0) chosen from (95), there are discrete flows y(t) for the perturbed
system of (94) satisfying

ProW (t)(y(t), x∗) ≤ 2 for all t = 0, 1, . . . .(96)

Therefore, (96) indicates that to every distinctive construction of sync-dependent
circuitry A(τ), τ = T, T + 1, . . . , there corresponds the region of states (95) which
initializes the stability process of x∗.

With the notion above, we can show that, under the conditions of Theorem 4,
the inclusions

{y; ProA(T )(y, x∗) ≤ 2} ⊂ {y; ProA(T+1)(y, x∗) ≤ 2} ⊂ · · ·(97)

hold. This reveals the robust stability of neural synchrony, meaning that the synchro-
nization state x∗ is not only stable but also capable of expanding the region of states
for initializing its stability process. For the proof of (97), let τ ≥ T be given and y
satisfy ProA(τ)(y, x∗) ≤ 2. If ProA(τ)(y, x∗) ≤ 1, then, by Theorem 3, we have

ProA(τ+1)(y, x∗) ≤ 2.

On the other hand, if ProA(τ)(y, x∗) = 2, then there exist s0, s1 ∈ {1, 2, . . . , n} with
s0 �= s1 such that

HA(τ),s1 ◦HA(τ),s0(y) = x∗.(98)

These y, HA(τ),s0(y), and x∗ are mutually distinct. Let y′ = HA(τ),s0(y). We have to
show that

y′ = HA(τ+1),s0(y) and x∗ = HA(τ+1),s1(y
′).(99)
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Case 1. s0, s1 ∈ 1(x∗). Then, by (98), we have

1(y) � 1(y′) � 1(x∗),

and

s0 = 0(y) ∩ 1(y′) and s1 = 0(y′) ∩ 1(x∗).

This implies that

lτ (1(y), s0) ≥ bs0 and lτ (1(y′), s1) ≥ bs1 .

Hence, according to the coincidence-detection evolving algorithm, we have

lτ+1(1(y), s0) = lτ (1(y), s0) +
∑
j∈1(y)

D
x(τ)→x(τ+1)as0j ≥ bs0

and

lτ+1(1(y′), s1) = lτ (1(y′), s1) +
∑

j∈1(y′)

D
x(τ)→x(τ+1)as1j ≥ bs1 ,

proving (99).
Case 2. s0, s1 ∈ 0(x∗). Then, by (98), we have

0(y) � 0(y′) � 0(x∗),

and

s0 = 1(y) ∩ 0(y′) and s1 = 1(y′) ∩ 0(x∗).

This implies that

lτ (1(y), s0) < bs0 and lτ (1(y′), s1) < bs1 .

Hence, according to the coincidence-detection evolving algorithm, we have

lτ+1(1(y), s0) = lτ (1(y), s0) +
∑
j∈1(y)

D
x(τ)→x(τ+1)as0j < bs0

and

lτ+1(1(y′), s1) = lτ (1(y′), s1) +
∑

j∈1(y′)

D
x(τ)→x(τ+1)as1j < bs1 ,

proving (99).
Case 3. s0 ∈ 1(x∗) and s1 ∈ 0(x∗). Then, by (98), we have

1(y) � 1(y′) and 1(y′) � 1(x∗),

and

s0 = 0(y) ∩ 1(y′) and s1 = 1(y′) ∩ 0(x∗).
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This implies that

lτ (1(y), s0) ≥ bs0 and lτ (1(y′), s1) < bs1 .

Since

1(y) ∩ 1(x∗) = (1(y) ∪ 0(y′)) ∩ 1(x∗)
= 1(x∗) \ (0(y) ∩ 1(y′))
= 1(x∗) \ s0

and

1(y) ∩ 0(x∗) = (1(y′) ∩ 0(x∗)) \ (0(y) ∩ 1(y′) ∩ 0(x∗))
= (1(y′) ∩ 0(x∗)) \ (s0 ∩ s1)
= s1,

it follows from (41) and the coincidence-detection evolving algorithm that
∑
j∈1(y)

D
x(τ)→x(τ+1)as0j =

∑
j∈1(y)∩1(x∗)

D
x(τ)→x(τ+1)as0j +

∑
j∈1(y)∩0(x∗)

D
x(τ)→x(τ+1)as0j

=
∑

j∈1(x∗),j 	=s0

D
x(τ)→x(τ+1)as0j + D

x(τ)→x(τ+1)as0s1 ≥ 0.

Thus

lτ+1(1(y), s0) = lτ (1(y), s0) +
∑
j∈1(y)

D
x(τ)→x(τ+1)as0j ≥ bs0 .

On the other hand, since s1 ∈ 0(x∗), it follows from the coincidence-detection evolving
algorithm that

lτ+1(1(y′), s1) = lτ (1(y′), s1) +
∑

j∈1(y′)

D
x(τ)→x(τ+1)as1j < bs1 ,

proving (99).
Case 4. s0 ∈ 0(x∗) and s1 ∈ 1(x∗). Then, by (98), we have

1(y) � 1(y′) and 1(y′) � 1(x∗)

and

s0 = 1(y) ∩ 0(y′) and s1 = 0(y′) ∩ 1(x∗).

This implies that

lτ (1(y), s0) < bs0 and lτ (1(y′), s1) ≥ bs1 .

Hence, according to the coincidence-detection evolving algorithm, we have

lτ+1(1(y), s0) = lτ (1(y), s0) +
∑
j∈1(y)

D
x(τ)→x(τ+1)as0j < bs0
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and

lτ+1(1(y′), s1) = lτ (1(y′), s1) +
∑

j∈1(y′)

D
x(τ)→x(τ+1)as1j ≥ bs1 ,

proving (99). This implies that

ProA(τ+1)(y, x∗) ≤ 2,

completing the proof of (97).
With the notation and the arguments above, we describe the mathematical feature

of neural synchrony as follows.
Theorem 5. If x∗ is a synchronization state, then
(i) aij(t + 1) ≥ aij(t) for all t ≥ T if i, j ∈ 1(x∗); otherwise aij(t + 1) ≤ aij(t)

for all t ≥ T ;
(ii) {y; ProA(T )(y, x∗) ≤ 2} ⊂ {y; ProA(T+1)(y, x∗) ≤ 2} ⊂ · · · .

8. Determination of the size of neural synchrony. We have shown in The-
orem 2 that, after a finite number of time steps, synchronously firing neural groups
emerge. But it is possibly the case that the dynamics can evolve to zero activity
or tend to synchronize the entire network. In that case it seems to be irrelevant to
the brain function. This raises a question: How is the size of the synchronous group
determined?

To solve this, we need a criterion for predicting neuronal activty states posterior
to each time t. We show that for any given t = 0, 1, . . . and x(t), A(t), s(t) such that

x(t+ 1) = HA(t),s(t)(x(t))

by (3) and (4), the regions of all possible neuronal activity states generated at times
t+ 2 and t+ 3 can be dominated by the regions of states generated according to the
former A(t) and x(t+ 1).

Theorem 6. Consider the evolutionary network of n coupled neurons subject to
the dynamics (3) and (4) and obeying the coincidence-detection evolving algorithm.
Let the discrete flow x(t) iterate asynchronously and let A(t) satisfy the condition
of assembling coordination described in Theorem 2. Then for each t = 0, 1, . . . , the
inclusion holds:

{y; ProA(t+1)(x(t+ 1), y) ≤ 1} ⊂ {y; ProA(t)(x(t+ 1), y) ≤ 1}.(100)

If, in addition, the plasticity parameters satisfy (41), then

{y; ProA(t+2)(x(t + 2), y) ≤ 1} ⊂ {y; ProA(t)(x(t+ 2), y) ≤ 1}(101)

and

{y; ProA(t+2)(x(t+ 2), y) ≤ 1} ⊂ {y; ProA(t)(x(t+ 1), y) ≤ 2}.(102)

Proof. Let x(0) be any initial neuronal active state in {0, 1}n, and let x(t) iterate
asynchronously, guided by the dynamics (3), (4) and the coincidence-detection evolv-
ing algorithm. To prove (100), it suffices to show that for each t = 0, 1, . . . , if there
exists y with ProA(t+1)(x(t + 1), y) = 1, then ProA(t)(x(t + 1), y) = 1. Fixing t and
y, we split the arguments into two cases.
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Case 1. 1(x(t+ 1)) � 1(y). Let s = 0(x(t+ 1)) ∩ 1(y). Since

ProA(t+1)(x(t+ 1), y) = 1,

we have

HA(t+1),s(x(t+ 1)) = y.

This implies that

lt+1(1(x(t + 1)), s) ≥ bs.(103)

Since

lt+1(1(x(t+ 1)), s) = lt(1(x(t + 1)), s) +
∑

j∈1(x(t+1))

D
x(t)→x(t+1)asj

and s ∈ 0(x(t + 1)), it follows from (103) and the coincidence-detection evolving
algorithm that

lt(1(x(t+ 1)), s) ≥ lt+1(1(x(t + 1)), s) ≥ bs.

This implies that

HA(t),s(x(t+ 1)) = y,

and hence

ProA(t)(x(t+ 1), y) = 1.

Case 2. 1(x(t+ 1)) � 1(y). Let s = 1(x(t+ 1)) ∩ 0(y). Since

ProA(t+1)(x(t+ 1), y) = 1,

we have

HA(t+1),s(x(t+ 1)) = y.

This implies that

lt+1(1(x(t + 1)), s) < bs.(104)

Since

lt+1(1(x(t+ 1)), s) = lt(1(x(t + 1)), s) +
∑

j∈1(x(t+1))

D
x(t)→x(t+1)asj

and s ∈ 1(x(t + 1)), it follows from (104) and the coincidence-detection evolving
algorithm that

lt(1(x(t+ 1)), s) ≤ lt+1(1(x(t + 1)), s) < bs.

This implies that

HA(t),s(x(t+ 1)) = y,
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and hence

ProA(t)(x(t+ 1), y) = 1,

proving (100).
To prove (101) and (102), we have to claim that

{y; ProA(t+1)(x(t+ 2), y) ≤ 1} ⊂ {y; ProA(t)(x(t+ 2), y) ≤ 1}.(105)

So, together with (100), we have

{y; ProA(t+2)(x(t + 2), y) ≤ 1} ⊂ {y; ProA(t+1)(x(t+ 2), y) ≤ 1}
⊂ {y; ProA(t)(x(t + 2), y) ≤ 1}.

Also, by (100), we get

ProA(t)(x(t + 1), x(t+ 2)) ≤ ProA(t+1)(x(t + 1), x(t+ 2)) ≤ 1.

Thus for each y with ProA(t+2)(x(t+ 2), y) ≤ 1, we have

ProA(t)(x(t+ 1), y) ≤ ProA(t)(x(t+ 1), x(t+ 2)) + ProA(t)(x(t + 2), y) ≤ 2.

To prove (105), it suffices to show that if there exists y with

ProA(t+1)(x(t+ 2), y) = 1,

then

ProA(t)(x(t+ 2), y) = 1.

Case 1. 1(x(t+ 2)) � 1(y). Let s = 0(x(t+ 2)) ∩ 1(y). Since

ProA(t+1)(x(t+ 2), y) = 1,

we have

HA(t+1),s(x(t+ 2)) = y.

This implies that

lt+1(1(x(t + 2)), s) ≥ bs.(106)

Since

lt+1(1(x(t + 2)), s) = lt(1(x(t+ 2)), s) +
∑

j∈1(x(t+2))

D
x(t)→x(t+1)asj ,

it follows from (106) and the coincidence-detection evolving algorithm that

lt(1(x(t+ 2)), s) ≥ lt+1(1(x(t+ 2)), s) ≥ bs(107)

if s ∈ 0(x(t + 1)). Indeed, if s �∈ 0(x(t + 1)), then, according to the asynchronous
iteration of x(t), we have

s = 1(x(t+ 1)) ∩ 0(x(t + 2))
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and

HA(t+1),s(x(t+ 1)) = x(t+ 2).

This implies that

lt+1(1(x(t + 1)), s) < bs,

and hence, applying the assembling coordination (10) to U = s, t∗ = 0 and t∗ = t+1,
we get

lt+1(1(x(t+ 2)), s) = lt+1(1(x(t + 1)), s) − ass(t+ 1)
< bs − ass(t+ 1) ≤ bs,

contradicting (106). Thus, by (107), we conclude that

HA(t),s(x(t+ 2)) = y,

and hence

ProA(t)(x(t+ 2), y) = 1.

Case 2. 1(x(t+ 2)) � 1(y). Let s = 1(x(t+ 2)) ∩ 0(y). Since

ProA(t+1)(x(t+ 2), y) = 1,

we have

HA(t+1),s(x(t+ 2)) = y.

This implies that

lt+1(1(x(t + 2)), s) < bs.(108)

Further we have s ∈ 1(x(t + 1)). Indeed, if s �∈ 1(x(t + 1)), then, according to the
asynchronous iteration of x(t), we have

s = 0(x(t+ 1)) ∩ 1(x(t + 2))

and

HA(t+1),s(x(t+ 1)) = x(t+ 2).

This implies that

lt+1(1(x(t + 1)), s) ≥ bs.

Applying the assembling coordination (10) to U = s, t∗ = 0, and t∗ = t+ 1, we get

lt+1(1(x(t+ 2)), s) = lt+1(1(x(t + 1)), s) + ass(t+ 1)
≥ bs + ass(t+ 1) ≥ bs,

contradicting (108). Thus, by the coincidence-detection evolving algorithm, we have
∑

j∈1(x(t+2))

D
x(t)→x(t+1)asj ≥ 0(109)
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if 1(x(t + 2)) ⊂ 1(x(t + 1)), and together with (41) and applying the assembling
coordination (10) to U = s, t∗ = 0, and t∗ = t+ 1, we see that

∑
j∈1(x(t+2))

D
x(t)→x(t+1)asj =

∑
j∈1(x(t+1)),j 	=s

D
x(t)→x(t+1)asj + D

x(t)→x(t+1)ass

(110)
+ D

x(t)→x(t+1)as0(x(t+1))∩1(x(t+2)) ≥ 0

if 1(x(t+ 2)) �⊂ 1(x(t+ 1)). Since

lt+1(1(x(t + 2)), s) = lt(1(x(t+ 2)), s) +
∑

j∈1(x(t+2))

D
x(t)→x(t+1)asj ,

we conclude from (108), (109), and (110) that

lt(1(x(t+ 2)), s) ≤ lt+1(1(x(t + 2)), s) < bs.

This implies

HA(t),s(x(t+ 2)) = y,

and hence

ProA(t)(x(t+ 2), y) = 1,

proving (105), and the theorem follows.
Theorem 6 yields the determination of the size of neural synchrony.
Theorem 7. Consider the evolutionary network of n coupled neurons subject to

the dynamics (3) and (4) and obeying the coincidence-detection evolving algorithm.
Let the discrete flow x(t) iterate asynchronously, the evolutionary coupling state A(t)
satisfy the condition of assembling coordination described in Theorem 2, and the plas-
ticity parameters satisfy (41). Let Ω be a nonempty subset of {0, 1}n with 0 ∈ Ω and
k = 1, 2. Suppose for every y ∈ {0, 1}n, z ∈ Ω with

ProA(t)(x(t+ 1), y) = k − 1 and ProA(t)(y, z) = 1,

the plasticity parameters D
x(t)→x(t+1)aij satisfy the conditions

∑
j∈1(y)

D
x(t)→x(t+1)asj ≥ bs−

∑
j∈1(y)

asj(t) whenever s = 1(x(t+1))∩1(y)∩0(z),(111)

∑
j∈1(y)

D
x(t)→x(t+1)asj < bs−

∑
j∈1(y)

asj(t) whenever s = 0(x(t+1))∩0(y)∩1(z).(112)

If ProA(0)(x(0),Ω) > k, then

ProA(t)(x(t),Ω) > k for t = 1, 2, . . . ,(113)

and

lim
t→∞

x(t) �∈ Ω.(114)
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Proof. It suffices to prove (113), because (114) follows immediately from (113)
and Theorem 2. Fix k = 1, 2, and let x(0) and A(0) be the initial states satisfying

ProA(0)(x(0),Ω) > k.

Having chosen x(0), x(1), . . . , x(τ) and A(0), A(1), . . . , A(τ) with

ProA(t)(x(t),Ω) > k for t = 0, 1, . . . , τ,

we see from (3) and (4) that x(τ + 1) satisfies

ProA(τ)(x(τ + 1),Ω) ≥ k.

Then, by (111) and (112), we see that the construction of A(τ + 1) satisfies

ProA(τ+1)(x(τ + 1),Ω) �= k.(115)

Indeed, if there exists z ∈ Ω such that ProA(τ+1)(x(τ + 1), z) = k, then we can find
s0, s1, . . . , sk−1 ∈ {1, 2, . . . , n} such that

HA(τ+1),sk−1 ◦HA(τ+1),sk−2 ◦ · · · ◦HA(τ+1),s0(x(τ + 1)) = z.

Put

z(0) = x(τ),

z(1) = x(τ + 1),

z(2) = HA(τ+1),s0(z(1)),
...

z(k + 1) = HA(τ+1),sk−1(z(k))

and

W (0) = A(τ),W (1) = W (2) = · · · = W (k) = A(τ + 1).

Then z(0), z(1), . . . , z(k+1) are mutually distinct. Since ProW (1)(z(1), z(k)) = k−1,
it follows from Theorem 6 that

ProW (0)(z(1), z(k)) = k − 1.

Since ProW (k)(z(k), z(k + 1)) = 1, it follows from Theorem 6 that

ProW (0)(z(k), z(k + 1)) = 1.

Note that z(k + 1) = z ∈ Ω, and

1(z(k)) ∩ 0(z(k + 1)) ⊂ 1(z(k − 1)) ∩ 1(z(k)),

0(z(k)) ∩ 1(z(k + 1)) ⊂ 0(z(k − 1)) ∩ 0(z(k)),

so by (111) and (112), we have
∑

j∈1(z(k))

asj(τ + 1) ≥ bs if s = 1(z(k)) ∩ 0(z(k + 1))
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and
∑

j∈1(z(k))

asj(τ + 1) < bs if s = 0(z(k)) ∩ 1(z(k + 1)),

in contradiction to

z(k + 1) = HA(τ+1),sk−1(z(k)).

Now, according to the inductive assumption

ProA(τ)(x(τ + 1),Ω) ≥ k

and the inclusion derived from Theorem 6,

{y; ProA(τ+1)(x(τ + 1), y) ≤ k − 1} ⊂ {y; ProA(τ)(x(τ + 1), y) ≤ k − 1},

we have

ProA(τ+1)(x(τ + 1),Ω) ≥ k.

Combining this with (115) implies that

ProA(τ+1)(x(τ + 1),Ω) > k,

completing the inductive proof of (113) and the proof of Theorem 7 (see Figure 6 for
an illustration).

Fig. 6. The regime of plasticity parameters described in Theorem 7 reveals an inductive scheme
for the construction of the evolutionary coupling strengths so that the synchronously firing groups
of neurons can be determined by a nonempty subset Ω of {0, 1}n. For each t = 0, 1, . . . and each
choice of A(t), if ProA(t)(x(t + 1),Ω) ≥ k (illustrated by the bigger square that meets Ω and the
smaller square that doesn’t meet Ω), then we need only focus on the choice of A(t + 1) such that
ProA(t+1)(x(t + 1),Ω) �= k, and according to Theorem 6, it is guaranteed that ProA(t+1)(x(t +
1),Ω) > k (illustrated by both the bigger and the smaller black circles that don’t meet Ω). Therefore,
when x(t+1) iterates (the gray arrow), we have ProA(t+1)(x(t+2),Ω) ≥ k (the gray circle centered
at x(t + 2) is a translation of the smaller black circle centered at x(t + 1) and it doesn’t meet Ω),
yielding the inductive scheme.
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For a specialized region

Ω = {x; x1 + · · · + xn = l1} ∪ {x; x1 + · · · + xn = l2},

where 0 < l1 � l2 < n, if the initial state x(0) satisfies

l1 + k < x1(0) + · · · + xn(0) < l2 − k

for k = 1, 2 and the discrete flow x(t) fulfills the parameter regime of Theorem 7, then
Theorem 7 implies that the evolutionary network will eventually evolve to a state of
a synchronously firing group of neurons whose size is greater than l1 and less than l2.
This implies that, with the Hebbian synaptic plasticity, there are regimes of plasticity
parameters such that global synchrony or zero activity cannot occur in the dynamics
of the evolutionary network.

9. Conclusions. We describe a model of evolutionary neural networks and un-
ravel its meta-complication of nodal and coupling dynamics. We show that there
are time- and activity-dependent nodal-and-coupling changes in the dynamics of the
evolutionary network and prove that the dynamics will eventually result in a state of
synchronization if those changes are based on Hebbian synaptic plasticity.

Furthermore, we study the stability problem of neural synchrony. We introduce
the proximal number to quantify the disturbance of neuronal activity states and reveal
the phenomenon of local absorption in a network’s dynamics. We show that, under-
lying Hebbian synaptic plasticity, small perturbations of the initial neuronal active
state can cause only small variations of the discrete flow which iterates to a state of
neural synchrony.

The combined effect of neural synchrony and its stability shows that neural syn-
chrony is not only to spark tighter connections between neurons but also to generate
a monotonically increasing region of states for initializing the stability process. This
implies the robust stability of neural synchrony.

We also show that, with Hebbian synaptic plasticity, there is a criterion for pre-
dicting neuronal activity states while the evolutionary network evolves. It represents
an inductive scheme for the determination of the size of synchronous groups.

Our model of neural processing reflects, in a deep mathematical sense, that plas-
ticity emerges not only as a source of computational power but a source of spontaneous
order as well. The extent of plasticity, synchrony, and stability, and the laws it depicts,
may find use across many levels in nature and society, appealing to the understand-
ing of the growth dynamics of assemblies, clusters, or communities to interpret the
organization of hierarchical architecture in complex systems.
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For well-prepared data, which are polarized on the ground space of the transversal Hamiltonian,
the resulting model is the cubic defocusing nonlinear Schrödinger equation. Our main tool is a
refined analysis of the Poisson kernel when acting on strongly confined densities. In that direction,
an appropriate scaling of the initial data is required, to avoid divergent integrals when the gas
concentrates on the axis.

Key words. Schrödinger–Poisson system, asymptotic analysis, singular perturbation, quantum
transport, nanowire, nanoelectronics

AMS subject classifications. 35Q40, 35Q55, 35B40, 35B25, 82D37

DOI. 10.1137/080715950

1. Introduction.

1.1. The physical problem and the singularly perturbed system. Arti-
ficially confined structures are now routinely realized in the nanoelectronic industry,
and the functioning of many electronic devices is based on the transport of charged
particles which are bounded in transversal directions; see, e.g., [AFS, Bas, FG, VW].
The confinement can be typically monodimensional, like in quantum wells where two
directions remain for the transport, or bidimensional, like in quantum wires where the
transport is in dimension one. In this work we are interested in the second case, and
this paper is devoted to the rigorous derivation of a dynamic one-dimensional quan-
tum model with space-charge effects describing the transport of electrons confined in
a nanowire. Compared with some previous works that treat problems of quantum
confinement, as, for instance, [CDR] about an asymptotic model for two particles on
the surface of a nanotube (see also references therein), our concern here is to deal
more specifically with the nonlinear Poisson term.

Our strategy is inspired by that in [BAMP, BMSW, BCM] and consists of an
asymptotic analysis of the three-dimensional Schrödinger–Poisson system (or Hartree
system), that will be referred to as our “starting model,” with a singular perturbation
modeling a strong potential confining the electron gas in a wire. The interesting point
concerning the reduced model obtained in the limit is that the nonlinearity describing
space-charge effects is now localized, this reduced model taking the form of a cubic
defocusing nonlinear Schrödinger (NLS) equation.

Let us describe the starting model. The space variable is written (x, z1, z2), where
x ∈ R is the direction in which the electron gas is transported free from any external
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force and z = (z1, z2) ∈ R2 are the confined directions. We consider the following
singularly perturbed Schrödinger–Poisson system:

(1.1) i∂tΨε = −ΔΨε +
1
ε2
Vc

(z
ε

)
Ψε + V

εΨε,

(1.2) V
ε =

1
4πr

∗
(
|Ψε|2

)
.

The unknown in this system is the pair (Ψε,Vε) made of the electronic wave function
Ψε and the self-consistent potential Vε due to space charge effects, written here as a
convolution with the Poisson kernel. We use the notation r(x, z) =

√
x2 + |z|2. The

main modeling assumption is that a strong external potential is applied to the gas,
written here 1

ε2 Vc(
z
ε ), where Vc(z) is a prescribed function satisfying the following

assumption.
Assumption 1.1. The function Vc : R2 �→ R belongs to L2

loc(R
2), and there

exists α > 0 and C > 0 such that

Vc(z) ≥ C |z|α.

The crucial assumption here is the growth at infinity, which determines the
strength of the confinement. The parameter ε ∈ (0, 1) is the scaled thickness of
the electron gas. As we will see after a rescaling in the next section, the normal-
ization term 1

ε2 is natural in order to balance the strong external potential with the
Laplace operator in the z variable.

This paper studies the asymptotic behavior of (Ψε,Vε) as ε goes to zero. Of
course, an initial datum Ψε(0, x, z) needs to be prescribed for (1.1), whose specific
form is made precise in the next section.

1.2. Scaling of the initial data and formal limit. In this section, we derive
heuristically the asymptotic model satisfied by the solution of (1.1)–(1.2) as ε goes
to zero. Precise and rigorous statements will be made in the next section. Let us
introduce the following notation for averages upon the transversal variables:

〈f〉 =
∫

R2
f(z)dz.

The singular term 1
ε2 Vc(

z
ε ) in the Schrödinger equation (1.1) induces a concen-

tration of the density on the axis z = 0. We expect that, as ε→ 0, the density takes
the form of a line density multiplied by a delta function:

(1.3) |Ψε(t, x, z)|2 ∼
〈
|Ψε(t, x, ·)|2

〉
δ(z).

The crucial point is the consequence of (1.3) on the self-consistent potential. Indeed,
we can prove (see Proposition 2.1) that, near the axis z = 0, the solution of (1.2)
looks like

(1.4) V
ε(t, x, z) ∼ − 1

2π
log ε

〈
|Ψε(t, x, ·)|2

〉
.

This estimate suggests the following choice of initial data: we choose Ψε(0, x, z) to be
small, of order | log ε|−1/2 (e.g., in L2(R3)).
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In order to observe the system at the scale of the gas, we work with rescaled space
variables, setting

Ψε(t, x, z) =
1

ε
√
| log ε|

ψε
(
t, x,

z

ε

)
, V

ε(t, x, z) =
1

| log ε|V
ε
(
t, x,

z

ε

)
.

The system in the new unknowns ψε, V ε becomes

(1.5) i∂tψ
ε = −∂2

xψ
ε +

1
ε2
Hzψ

ε +
1

| log ε|V
εψε ,

(1.6) V ε =
1

4πrε
∗ |ψε|2, rε(x, z) =

√
x2 + ε2|z|2,

(1.7) ψε(0, x, z) = ψε0(x, z),

where the Hamiltonian in the z direction is

Hz = −Δz + Vc(z).

Inserting (1.4) into (1.5), we obtain that, asymptotically, ψε satisfies

(1.8) i∂tψ
ε = −∂2

xψ
ε +

1
ε2
Hzψ

ε +
1
2π
〈
|ψε|2

〉
ψε ,

(1.9) ψε(0, x, z) = ψε0(x, z).

This is our reduced model. An elementary remark is that the term
〈
|ψε|2

〉
in the

nonlinearity does not depend on the z variable. It is thus easy to filter out the
oscillations in time induced by the 1

ε2Hz term. Indeed the function

φε = eitHz/ε
2
ψε

satisfies the following problem, independent of ε:

(1.10) i∂tφ
ε = −∂2

xφ
ε +

1
2π
〈
|φε|2

〉
φε ,

(1.11) φε(0, x, z) = ψε0(x, z),

where we used the fact that eitHz/ε
2

is an isometry on L2
z(R

2), i.e.,
〈
|φε|2

〉
=
〈
|ψε|2

〉
.

The limit model can be seen as a system of NLS equations in dimension one. To
see this, let us introduce the eigenfunctions (χk(z))k≥1 of the operator Hz and the
associated eigenvalues (Ek)k≥1 . Note that Assumption 1.1 implies that the operator
Hz is self-adjoint (see, e.g., [RS, Vol. 2, Theorem X.28]) and, defined as a sum of
quadratic forms, is an operator with compact resolvent (see [RS, Vol. 4, Theorem
XIII.67]). It possesses purely discrete spectrum and a complete set of eigenfunctions.
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The reduced model (1.10), (1.11) can be projected on the χk’s and is equivalent to
the system

(1.12) i∂tϕk = −∂2
xϕk +

1
2π

⎛
⎝ ∞∑
j=1

|ϕj |2
⎞
⎠ϕk ,

(1.13) ϕk(0, x) =
∫

R

ψ0(x, z)χk(z)dz, k ∈ N
∗.

The solution of the rescaled initial problem is then—formally—asymptotically close
to

ψε(t, x, z) =
∞∑
k=1

e−itEk/ε
2
ϕk(t, x)χk(z).

1.3. Statement of the main result. Let us introduce the energy space

(1.14) H = {u ∈ H1(R3),
√
Vcu ∈ L2(R3)},

endowed with the norm

‖u‖2
H = ‖u‖2

H1(R3) + ‖
√
Vcu‖2

L2(R3) = ‖∂xu‖2
L2(R3) + ‖H1/2

z u‖2
L2(R3).

Note that Assumption 1.1 yields the following control for functions in the energy
space:

(1.15) ∀u ∈ H,
∫

R3
|z|α|u|2 dxdz ≤ C‖u‖2

H .

Consider for the rescaled starting model (1.5)–(1.7) a sequence of initial data (ψε0)ε>0

satisfying the following assumption.
Assumption 1.2. The sequence (ψε0)ε>0 is uniformly bounded in H and converges

in L2(R3) to a function ψ0.
Standard techniques [BM, Caz, IZL, Cas] allow us to prove that for any ε ∈ (0, 1)

the three-dimensional Schrödinger–Poisson system (1.5)–(1.7) admits a unique global
weak solution (ψε, V ε) for t ∈ R in the energy space. In order to analyze its limit
as ε → 0, let us summarize the available estimates on ψε. The first one is the L2

estimate. For all t we have

(1.16) ‖ψε(t)‖2
L2(R3) = ‖ψε0‖

2
L2(R3) ≤ C.

Unfortunately (see Proposition 2.1), this estimate alone does not enable us to bound
the self-consistent potential, and one needs at least an estimate on the derivative
of ψε with respect to x. Let us now examine the second natural estimate for the
Schrödinger–Poisson system, namely, the energy estimate. It reads, in rescaled vari-
ables:

(1.17) ‖∂xψε(t)‖2
L2(R3) +

1
ε2

‖H1/2
z ψε(t)‖2

L2(R3) +
1

| log ε|
∥∥V ε(t)|ψε(t)|2∥∥

L1(R3)

= ‖∂xψε0‖2
L2(R3) +

1
ε2

‖H1/2
z ψε0‖2

L2(R3) +
1

| log ε|
∥∥V ε(0)|ψε0|2

∥∥
L1(R3)

.
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Multiplying this equation by ε2, one can deduce a bound for ‖H1/2
z ψε(t)‖L2(R3) (see

the beginning of section 3), but not for ‖∂xψε(t)‖L2(R3). However, for a certain set of
well-prepared initial data it can be easily proved that this quantity is bounded. As it
was remarked in [BMSW], it suffices to consider initial data which are polarized on
the first eigenmode χ1 of the transverse Hamiltonian Hz. This leads to the following
theorem, which is our main result.

Theorem 1.3. Under Assumptions 1.1 and 1.2, assume, moreover, that the
initial data is nearly polarized on the first eigenmode χ1 of Hz, associated with the
eigenvalues E1 in the sense:

(1.18)
∥∥∥(Hz − E1)1/2 ψε0

∥∥∥
L2(R3)

≤ C ε.

Then there exist C > 0 such that the solution ψε of (1.5)–(1.7) satisfies

(1.19) ‖∂xψε(t)‖L2 ≤ C, independently of ε > 0 and t ∈ R,

and the following convergence result holds, for all T > 0:∥∥∥ψε(t, x, z) − e−itE1/ε
2
ϕ(t, x)χ1(z)

∥∥∥
L2(R3)

−→
ε→0

0 uniformly on [−T, T ],

where ϕ(t, x) solves the cubic defocusing NLS equation

(1.20) i∂tϕ = −∂2
xϕ+

1
2π

|ϕ|2ϕ , ϕ(0, x) =
∫

R

ψ0(x, z)χ1(z)dz.

Note that (1.20) is a particular case of the limit model (1.12), (1.13) derived
formally in the previous subsection. The keystone of the convergence proof is the
L2 estimate (1.19) of ∂xψε. In the general case of initial data bounded in H but
not polarized on the first eigenmode, the following partial result can be proved as an
easy extension of Theorem 1.3. Under the assumption that (1.19) holds, the function
eitHz/ε

2
ψε converges locally uniformly in L2(R3) to the solution φ of

i∂tφ = −∂2
xφ+

1
2π
〈
|φ|2

〉
φ , φ(0, x, z) = ψ0(x, z).

The outline of the paper is the following. In section 2, we give an asymptotic
expansion as ε → 0 of the solution of the rescaled Poisson equation (1.6), for wave-
functions ψε in a suitable functional space. Section 3 is devoted to the proof of
Theorem 1.3. As a first step we use the energy estimate for well-prepared data in
order to get an estimate of ‖∂xψε‖L2 in that case. We conclude the proof using a
stability result for the cubic NLS equation.

2. Approximation of the Poisson kernel. In this section, we study the con-
volution with the Poisson kernel when ε is close to zero. We consider the Poisson
potential V ε, after the rescaling z �→ εz, x �→ x, and let ε → 0 in (1.6). In order
to make a precise statement, let us first recall the definition of the finite part of a
singular integral. For u ∈ C0,η(R) ∩ L1(R), with η ∈ (0, 1), we have

(2.1)
FP
∫

R

u(x′)
|x− x′| dx

′ = lim
η→0

(∫
|x−x′|>η

u(x′)
|x− x′|dx

′ + 2u(x) log η

)

=
∫
|x−x′|<1

u(x′) − u(x)
|x− x′| dx′ +

∫
|x−x′|>1

u(x′)
|x− x′|dx

′ .
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Both quantities are well defined whenever u ∈ C0,η(R) ∩ L1(R). Our aim here is to
prove the following result.

Proposition 2.1. Consider ψ in the energy space H defined by (1.14), and let

Gε(ψ) =
∫

R

∫
R2

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′.

Then we have the following asymptotic expansion,

(2.2) Gε(ψ) = −2 log ε〈|ψ(x, ·)|2〉 +R1(ψ) +Rε2(ψ),

where

R1(ψ) = −2
∫

R2
log |z − z′||ψ(x, z′)|2dz′ + 2 log 2〈|ψ(x, ·)|2〉 + FP

∫
R

〈|ψ(x′, ·)|2〉
|x− x′| dx′,

and for all u ∈ H we have

(2.3) ‖R1(ψ)u‖L2 ≤ C‖ψ‖2
H ‖u‖H , ‖Rε2(ψ)u‖L2 ≤ Cβ ε

β‖ψ‖2
H ‖u‖H

for all β < min(1/2, α/2), α being defined according to Assumption 1.1.
Proof. Let us first list some useful available estimates deduced from Sobolev

embeddings and from (1.15): for all u ∈ H, we have

(2.4) ‖∂xu‖L2(R3) + ‖u‖L∞
x L

2
z

+ ‖∂zu‖L2(R3) + ‖(1 + |z|α/2)u‖L2(R3) ≤ C ‖u‖H.

Let us now decompose

(2.5)

Gε(ψ) =
∫

R3

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

=
∫

R2

∫
|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

+
∫

R2

∫
|x−x′|<1

|ψ(x, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

+
∫

R2

∫
|x−x′|≥1

|ψ(x′, z′)|2√
(x− x′)2 + ε2|z − z′|2

dx′dz′

= I1 + I2 + I3 .

We first analyze the term I1 by rewriting it as

(2.6) I1 =
∫

R2

∫
|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2
|x− x′| dx′dz′ + rε1,

where rε1 is to be upper-bounded later. Using

(2.7) |ψ(x, z) − ψ(x′, z)| ≤ C|x− x′|1/2
(∫

R

|∂xψ(y, z)|2 dy
)1/2

,

we deduce that the first term on the right-hand side is well defined and can be bounded
thanks to (2.4):
∣∣∣∣∣
∫

R2

∫
|x−x′|<1

|ψ(x′, z′)|2 − |ψ(x, z′)|2
|x− x′| dx′dz′

∣∣∣∣∣ ≤ C ‖∂xψ‖L2 ‖ψ‖L∞
x L2

z

∫ 1

0

1
ξ1/2

dξ

≤ C‖ψ‖2
H.
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In order to estimate the remainder rε1, we remark that for all γ ∈ [0, 2] there holds

(2.8) 0 ≤ 1
|x− x′| −

1√
(x− x′)2 + ε2|z − z′|2

≤ εγ |z − z′|γ
|x− x′|1+γ .

Pick β such that 0 < β < min(1
2 ,

α
2 ) and take γ = β. One can estimate the remainder

as

|rε1| ≤ Cεβ
∫

R2

∫
|x−x′|<1

‖∂xψ(·, z′)‖L2
x

|x− x′|1/2+β (|z|β + |z′|β) (|ψ(x′, z′)| + |ψ(x, z′)|) dx′dz′,

where we used (2.8) and (2.7). By the Cauchy–Schwarz estimate, for all u ∈ H we get

‖rε1 u‖L2 ≤ Cεβ‖∂xψ‖L2

(
‖|z|βψ‖L2 ‖u‖L∞

x L2
z

+ ‖ψ‖L∞
x L2

z
‖|z|βu‖L2

) ∫ 1

0

1
ξ1/2+β

dξ

+ Cεβ‖∂xψ‖L2‖uw‖L2

with

w(x) :=
∫
|x−x′|<1

(
∫

R2 |z′|2β |ψ(x′, z′)|2dz′)1/2

|x− x′|1/2+β dx′ .

The first line of the right-hand side is bounded thanks to (2.4) and β < 1
2 . To bound

the last term, we use Hölder and Hardy–Littlewood–Sobolev inequalities:

‖uw‖L2 ≤ ‖w‖L1/β ‖u‖
L

2/(1−2β)
x L2

z
≤ C ‖|z|βψ‖L2 ‖u‖

L
2/(1−2β)
x L2

z
≤ C ‖ψ‖H ‖u‖H ,

where we used (2.4) and the fact that β < α
2 and 2

1−2β > 2. Finally, we have

‖rε1 u‖L2 ≤ C εβ ‖ψ‖2
H ‖u‖H.

For the term I2, a direct computation of the integral with respect to x′ gives

(2.9) I2 = 2(− log ε+ log 2)〈|ψ(x, ·)|2〉 − 2
∫

R2
log |z − z′||ψ(x, z′)|2dz′ + rε2 ,

with

rε2 = 2
∫

R2
|ψ(x, z′)|2 log

(
1 +

√
1 + ε2|z − z′|2

2

)
dz′.

Let us first estimate the dominant term in (2.9). The term 〈|ψ(x, ·)|2〉 is clearly
bounded in L∞ by (2.4). In order to bound the second term

v =
∫

R2
log |z − z′||ψ(x, z′)|2dz′,

we remark that

|log |z − z′|| ≤ C

(
1|z−z′|<1

|z − z′|1/2 + 1 + |z|α/2 + |z′|α/2
)
,



TRANSPORT OF ELECTRONS IN A NANOWIRE 1169

and from Hardy–Littlewood–Sobolev and Gagliardo–Nirenberg inequalities we get,
pointwise in x,

∫
|z−z′|<1

1
|z − z′|1/2 |ψ(x, z′)|2dz′ ≤ C‖ψ(x, ·)‖2

L4 ≤ C‖ψ(x, ·)‖L2‖∂zψ(x, ·)‖L2 .

Hence, for all u ∈ H,

‖uv‖L2 ≤ C ‖ψ‖L∞
x L2

z
‖∂zψ‖L2 ‖u‖L∞

x L2
z

+ C‖|z|α/2ψ‖2
L2 ‖u‖L∞

x L2
z

+ C‖ψ‖2
L∞

x L2
z
‖(1 + |z|α/2)u‖L2 ≤ C ‖ψ‖2

H ‖u‖H,

where we used (2.4). Let us now estimate the remainder rε2. With the above choice
of β ≤ 1

2 < 2, we have

log

(
1 +

√
1 + t2

2

)
≤ Ctβ ∀t > 0,

and thus, for all u ∈ H,

‖rε2 u‖L2 ≤ C εβ‖ψ‖L∞
x L2

z
(‖|z|βψ‖L2 ‖u‖L∞

x L2
z

+ ‖ψ‖L∞
x L2

z
‖|z|βu‖L2)

≤ C εβ ‖ψ‖2
H ‖u‖H,

where we used again (2.4) and β < α
2 .

Consider now the term I3, which we write as

(2.10) I3 =
∫
|x−x′|≥1

〈
|ψ(x′, z′)|2

〉
|x− x′| dx′ + rε3,

with the following immediate bound for the dominant term:

0 ≤
∫
|x−x′|≥1

〈
|ψ(x′, z′)|2

〉
|x− x′| dx′ ≤ ‖ψ‖2

L2 .

Moreover, from (2.8), the following estimate can be deduced for the remainder:

|rε3| ≤ C εβ
∫

R2

∫
|x−x′|≥1

|z − z′|β |ψ(x′, z′)|2
|x− x′|1+β dx′dz′

≤ C εβ
(
|z|β‖ψ‖2

L2 + ‖|z|β/2 ψ‖2
L2

)
.

This is enough to conclude that

‖rε3 u‖L2 ≤ C εβ ‖ψ‖2
H ‖u‖H .

To complete the proof of the proposition, it suffices to gather (2.6), (2.9), and (2.10),
and then to use (2.1).
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3. Proof of the main theorem. As we said in the introduction, the system
(1.5)–(1.7) admits two natural conservation laws: the conservation of the L2 norm
(1.16) and the energy estimate (1.17). Whereas it is immediate to deduce from the
first one a uniform estimate of the L2 norm of ψε, let us examine the second one.
Multiplied by ε2, it gives

(3.1) ‖H1/2
z ψε(t)‖2

L2(R3) ≤ ε2‖∂xψε0‖2
L2(R3) + ‖ψε0‖2

H +
ε2

| log ε| ‖V
ε(0)|ψε0|2‖L1(R3) .

From Proposition 2.1 and the Cauchy–Schwarz inequality, we get

(3.2)

1
| log ε|‖V

ε(0)|ψε0|2‖L1 ≤ 1
| log ε| ‖V

ε(0)ψε0‖L2‖ψε0‖L2

=
1

4π| log ε| ‖G
ε(ψ0)ψε0‖L2‖ψε0‖L2 ≤ C ‖ψε0‖4

H,

and thus

(3.3) ‖H1/2
z ψε(t)‖2

L2(R3) ≤ ‖ψε0‖2
H + C ε2‖ψε0‖4

H,

which is uniformly bounded, thanks to Assumption 1.2. In order to have a bound for
ψε in the energy space H, it remains to bound the L2 norm of ∂xψε. This is done in
the next subsection for well-prepared initial data.

3.1. Energy estimate for well-prepared data. We name “well-prepared
data” a sequence of initial data (ψε0)ε>0 in H which are polarized on the first eigen-
mode χ1 of Hz, associated with the eigenvalue E1 in the sense (1.18).

We now prove that, under Assumptions 1.1 and 1.2 and the assumption of well-
prepared data, estimate (1.19) holds true. This relies only on the two conservation
laws (1.16) and (1.17). Since E1 is the bottom of the spectrum of Hz , we have

‖H1/2
z u‖2

L2 − E1‖u‖2
L2 =

∫
R3
u (Hz − E1)u dxdz = ‖(Hz − E1)1/2u‖2

L2 ;

thus subtracting E1
ε2 × (1.16) from (1.17) leads to the identity

‖∂xψε(t)‖2
L2 +

1
ε2

‖(Hz − E1)1/2ψε(t)‖2
L2 +

1
| log ε|

∥∥V ε(t)|ψε(t)|2∥∥
L1

= ‖∂xψε0‖2
L2 +

1
ε2

‖(Hz − E1)1/2ψε0‖2
L2 +

1
| log ε|

∥∥V ε(0)|ψε0|2
∥∥
L1 .

By Assumption 1.2, (1.18), and (3.2), the right-hand side of this inequality is bounded
independently of ε. Hence

(3.4) ‖∂xψε(t)‖2
L2 +

1
ε2

‖(Hz − E1)1/2ψε(t)‖2
L2 ≤ C.

This estimate has two consequences. First, with (3.3) it gives

(3.5) ‖ψε(t)‖H ≤ C,

uniformly with respect to t. Second, this estimate shows that ψε remains polarized
on the first mode for all time. More precisely, denote

rε(t, x, z) = ψε(t, x, z) − χ1(z)
∫
ψε(t, x, z′)χ1(z′)dz′.
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Remarking that (Hz − E1)1/2 ≥ (E2 − E1)1/2 > 0 in the operator sense on H, the
following estimate can be deduced from (3.4):

(3.6) ‖rε(t)‖H ≤ Cε.

3.2. The convergence theorem. In this section, we prove the convergence
result stated in Theorem 1.3. Let

(3.7) ψε(t, x, z) = e−itE1/ε
2
ϕε1(t, x)χ1(z) + rε(t, x, z).

Inserting (3.7) into (1.5) and projecting on Span(χ1) leads to the following equation:

(3.8) i∂tϕ
ε
1 = −∂2

xϕ
ε
1 +

eitE1/ε
2

| log ε|

∫
R2
V ε(t, x, z)ψε(t, x, z)χ1(z)dz.

To deal with the nonlinear term, we use the decomposition given by Proposition 2.1,
with V ε = 1

4πG
ε(ψε). Remarking that, by orthogonality, we have

〈
|ψε|2

〉
= |ϕε1|2 +

〈
|rε|2

〉
,

we get from (2.2)

eitE1/ε
2

| log ε|

∫
R2
V ε(t, x, z)ψε(t, x, z)χ1(z)dz =

1
2π

|ϕε1|2ϕε1 + fε,

with

fε =
1
2π
〈
|rε|2

〉
ϕε1 +

eitE1/ε
2

4π| log ε|

∫
R2

(R1(ψε) +Rε2(ψ
ε))ψεχ1dz.

We clearly have

‖fε‖L2(R) ≤ C
∥∥〈|rε|2〉∥∥

L∞(R)
‖ψε‖L2 +

C

| log ε| (‖R1(ψε)ψε‖L2 + ‖Rε2(ψε)ψε‖L2) .

In order to bound the first term, we notice that by the Cauchy–Schwarz estimate,

∣∣∂x 〈|rε|2〉∣∣1/2 =

∣∣Re
∫
rε ∂xr

ε dz
∣∣

〈|rε|2〉1/2
≤ ‖∂xrε‖L2

z
,

and thus by the Sobolev embedding H1(R) ↪→ L∞(R),

∥∥〈|rε|2〉∥∥
L∞(R)

≤ C
∥∥∥〈|rε|2〉1/2∥∥∥2

H1(R)
≤ C

(
‖rε‖2

L2(R3) + ‖∂xrε‖2
L2(R3)

)
≤ Cε2,

where we used (3.6). Therefore, one deduces directly from (2.3) and (3.5) that

(3.9) ‖fε‖L2(R) ≤
C

| log ε| .

Now, the conclusion stems from a stability result for the cubic NLS equation in
dimension one. Indeed, the functions ϕε1 and ϕ solve, respectively,

(3.10) i∂tϕ
ε
1 = −∂2

xϕ
ε
1 +

1
2π

|ϕε1|2ϕε1 + fε , ϕε1(0, x) =
∫

R

ψε0(x, z)χ1(z)dz
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and

(3.11) i∂tϕ = −∂2
xϕ+

1
2π

|ϕ|2ϕ , ϕ(0, x) =
∫

R

ψ0(x, z)χ1(z)dz.

We remark that both functions are bounded in H1(R), and thus in L∞(R), uniformly
in time. For ϕε1 this property is a direct consequence of (3.5), as ‖ϕε1‖H1(R) ≤ ‖ψε‖H.
For ϕ, this stems from the energy conservation for the defocusing NLS equation (3.11)
and from the fact that, by Assumption 1.2, the initial data ϕ(0, ·) belongs to H1(R).
Then it is easily seen that for all t we have

‖ϕε1(t) − ϕ(t)‖L2 ≤ ‖ψε0 − ψ0‖L2 +
∫ t

0

(
1
2π

∥∥|ϕε1|2ϕε1 − |ϕ|2ϕ
∥∥
L2 + ‖fε(s)‖L2

)
ds

≤ ‖ψε0 − ψ0‖L2 + C

∫ t

0

‖ϕε1(s) − ϕ(s)‖L2ds+
∫ t

0

‖fε(s)‖L2ds;

so it follows from (3.9), from Assumption 1.2, and from the Gronwall lemma that for
all T > 0

‖ϕε1 − ϕ‖L∞([−T,T ],L2(R)) −→ε→0
0.

3.3. Towards a more precise approximation. According to (3.9), the con-
vergence rate in Theorem 1.3 is at most O

(
1

| log ε|
)
. To go further, Proposition 2.1

suggests the form of the next term in the approximation of the initial model. Taking
into account the R1 term, one can consider the following system:

(3.12) i∂tϕ̃ = −∂2
xϕ̃+

1
2π

|ϕ̃|2ϕ̃+
1

4π| log ε|

(
γ|ϕ̃|2 + FP

∫
R

|ϕ̃(x′)|2
|x− x′| dx

′
)
ϕ̃,

where

γ = −
∫

R4
log
(
|z − z′|2

4

)
|χ1(z)|2|χ1(z′)|2dzdz′

and

ϕ̃(0, x) =
∫

R2
ψε0(x, z)χ1(z)dz.

From the approximation result given by Proposition 2.1, one could expect a better
convergence rate:

‖ψε(t, x, z) − eitHz/ε
2
ϕ̃(t, x)χ1(z)‖L2 ≤ C εβ

with β > 0 as in Proposition 2.1. At the level of this article, this refined convergence
result is a conjecture, as is the existence of the solution ϕ̃ of (3.12). These questions
will be investigated in a future work.
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BLOOMING IN A NONLOCAL, COUPLED
PHYTOPLANKTON-NUTRIENT MODEL∗

A. ZAGARIS† , A. DOELMAN†, N. N. PHAM THI‡ , AND B. P. SOMMEIJER§

Abstract. Recently, it has been discovered that the dynamics of phytoplankton concentrations
in an ocean exhibit a rich variety of patterns, ranging from trivial states to oscillating and even
chaotic behavior [J. Huisman, N. N. Pham Thi, D. M. Karl, and B. P. Sommeijer, Nature, 439
(2006), pp. 322–325]. This paper is a first step towards understanding the bifurcational structure
associated with nonlocal coupled phytoplankton-nutrient models as studied in that paper. Its main
subject is the linear stability analysis that governs the occurrence of the first nontrivial stationary
patterns, the deep chlorophyll maxima (DCMs) and the benthic layers (BLs). Since the model can
be scaled into a system with a natural singularly perturbed nature, and since the associated eigen-
value problem decouples into a problem of Sturm–Liouville type, it is possible to obtain explicit
(and rigorous) bounds on, and accurate approximations of, the eigenvalues. The analysis yields
bifurcation-manifolds in parameter space, of which the existence, position, and nature are confirmed
by numerical simulations. Moreover, it follows from the simulations and the results on the eigen-
value problem that the asymptotic linear analysis may also serve as a foundation for the secondary
bifurcations, such as the oscillating DCMs, exhibited by the model.

Key words. phytoplankton, singular perturbations, eigenvalue analysis, Sturm–Liouville, Airy
functions, WKB

AMS subject classifications. 35B20, 35B32, 34B24, 34E20, 86A05, 92D40

DOI. 10.1137/070693692

1. Introduction. Phytoplankton forms the foundation of most aquatic ecosys-
tems [16]. Since it transports significant amounts of atmospheric carbon dioxide into
the deep oceans, it may play a crucial role in climate dynamics [6]. Therefore, the
dynamics of phytoplankton concentrations have been studied intensely and from vari-
ous points of view (see, for instance, [7, 11, 15] and the references therein). Especially
relevant and interesting patterns exhibited by phytoplankton are the deep chlorophyll
maxima (DCMs), or phytoplankton blooms, in which the phytoplankton concentration
exhibits a maximum at a certain, well-defined depth of the ocean (or, in general, of
a vertical water column). Simple, one-dimensional, scalar—but nonlocal—models for
the influence of a depth-dependent light intensity on phytoplankton blooms have been
studied since the early 1980s [14]. The nonlocality of these models is a consequence
of the influence of the accumulated plankton concentration on the light intensity at
a certain depth z (see (1.2) below). Numerical simulations and various mathemat-
ical approaches (see [5, 7, 8, 10, 12]) show that these models may, indeed, exhibit
DCMs, depending on the manner in which the decay of the light intensity with depth
is modeled and for certain parameter combinations.

∗Received by the editors June 5, 2007; accepted for publication (in revised form) October 6, 2008;
published electronically January 30, 2009. This work was supported by the Netherlands Organisation
for Scientific Research (NWO).

http://www.siam.org/journals/siap/69-4/69369.html
†Korteweg-de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV

Amsterdam, The Netherlands, and Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090
GB Amsterdam, The Netherlands (A.Zagaris@cwi.nl, A.Doelman@cwi.nl).

‡ABN AMRO Bank N.V., P.O. Box 283, 1000 EA, Amsterdam, The Netherlands (Nga.Pham.
Thi@nl.abnamro.com).

§CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands (B.P.Sommeijer@cwi.nl).

1174



BLOOMING IN A PHYTOPLANKTON-NUTRIENT MODEL 1175

The analysis in [14] establishes that, for a certain (large) class of light intensity
functions, the scalar model has a stationary global attractor. This attractor may be
trivial; i.e., the phytoplankton concentration W may decrease with time to W ≡ 0. If
this trivial pattern is spectrally unstable, either the global attractor is a DCM or the
phytoplankton concentration is maximal at the surface of the ocean (this latter case
is called a surface layer (SL) [10, 15]). It should be noted here that benthic layers
(BLs) [15]—i.e., phytoplankton blooms that become maximum at the bottom of the
water column—cannot occur in the setting of [14], due to the choice of boundary
conditions. Although the analysis in [14] cannot be applied directly to all scalar
models in the literature, the main conclusion—that such models may only exhibit
stationary nontrivial patterns (DCMs, SLs, or BLs)—seems to be true for each one
of these models.

In sharp contrast to this, it has been numerically discovered recently [11] that
systems—i.e., nonscalar models in which the phytoplankton concentration W is cou-
pled to an evolution equation for a nutrientN—may exhibit complex behavior ranging
from periodically oscillating DCMs to chaotic dynamics. These nonstationary DCMs
have also been observed in the Pacific Ocean [11].

In this paper, we take a first step towards understanding the rich dynamics of
the phytoplankton-nutrient models considered in [11]. Following [11], we consider the
one-dimensional (i.e., depth-dependent only), nonlocal model,

(1.1)

{
Wt = DWzz − V Wz + [μP (L,N) − l]W,
Nt = DNzz − αμP (L,N)W,

for (z, t) ∈ [0, zB]×R+ and where zB > 0 determines the depth of the water column.
The system is assumed to be in the turbulent mixing regime (see, for instance, [5,
10]), and thus the diffusion coefficient D is taken to be identically the same for W
and N . The parameters V , l, α, and μ measure, respectively, the sinking speed of
phytoplankton, the species-specific loss rate, the conversion factor, and the maximum
specific production rate, and they are all assumed to be positive (see Remark 1.1
also). The light intensity L is modeled by

(1.2) L(z, t) = LI e−Kbgz−R
∫

z
0 W (ζ,t) dζ,

where LI is the intensity of the incident light at the water surface, Kbg is the light
absorption coefficient due to nonplankton components, and R is the light absorption
coefficient due to the plankton. Note that L is responsible for the introduction of
nonlocality into the system. The function P (L,N), which is responsible for the cou-
pling, models the influence of light and nutrient on the phytoplankton growth, and it
is taken to be

(1.3) P (L,N) =
LN

(L+ LH)(N +NH)
,

where LH and NH are the half-saturation constants of light and nutrient, respectively.
We note that, from a qualitative standpoint, the particular form of P is of little
importance. Different choices for P yield the same qualitative results, as long as they
share certain common characteristics with the function given in (1.3); see Remark 1.1.
Finally, we equip the system with the boundary conditions

(1.4) DWz − V W |z=0,zB = 0, Nz|z=0 = 0, and N |z=zB = NB,
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i.e., no-flux through the boundaries except at the bottom of the column where N is at
its maximum (prescribed by NB). We refer the reader to Remark 1.1 for a discussion
of more general models. To recast the model in nondimensional variables, we rescale
time and space by setting

x = z/zB ∈ (0, 1) and τ = μt ≥ 0;

we introduce the scaled phytoplankton concentration ω, nutrient concentration η, and
light intensity j,

ω(x, τ) =
lαz2

B

DNB
W (z, t), η(x, τ) =

N(z, t)
NB

, j(x, τ) =
L(z, t)
LI

;

and thus we recast (1.1) in the form

(1.5)

{
ωτ = εωxx −

√
εa ωx + (p(j, η) − �)ω,

ητ = ε
(
ηxx − 1

�p(j, η)ω
)
.

Here,
(1.6)

j(x, τ) = exp
(
−κx− r

∫ x

0

ω(s, τ) ds
)
, with κ = KbgzB and r =

RDNB
lαzB

,

and

(1.7) ε =
D

μz2
B

, a =
V√
μD

, � =
l

μ
, and p(j, η) =

jη

(j + jH)(η + ηH)
,

where jH = LH/LI , ηH = NH/NB. The rescaled boundary conditions are given by

(1.8)
(√
εωx − aω

)
(0) =

(√
εωx − aω

)
(1) = 0, ηx(0) = 0, and η(1) = 1.

These scalings are suggested by realistic parameter values in the original model (1.1)
as reported in [11]. Typically,

D ≈ 0.1 cm2/s, V ≈ 4.2 cm/h, zB ≈ 3 · 104 cm, l ≈ 0.01/h, and μ ≈ 0.04/h,

so that

(1.9) ε ≈ 10−5, a ≈ 1, and � ≈ 0.25

in (1.5). Thus, realistic choices of the parameters in (1.1) induce a natural singularly
perturbed structure in the model, as is made explicit by the scaling of (1.1) into
(1.5). In this article, ε will be considered as an asymptotically small parameter, i.e.,
0 < ε� 1.

The simulations in [11] indicate that the DCMs bifurcate from the trivial station-
ary pattern,

(1.10) ω̄(x, τ) ≡ 0, η̄(x, τ) ≡ 1 for all (x, τ) ∈ [0, 1]× R+;

see also section 3. To analyze this (first) bifurcation, we set

(ω(x, τ), η(x, τ)) =
(
ω̃eλτ , 1 + η̃eλτ

)
, with λ ∈ C,



BLOOMING IN A PHYTOPLANKTON-NUTRIENT MODEL 1177

and consider the (spectral) stability of (ω̄, η̄). This yields the linear eigenvalue problem

(1.11)

{
εωxx −

√
εa ωx + (f(x) − �)ω = λω,

ε
(
ηxx − 1

� f(x)ω
)

= λη,

where we have dropped the tildes with a slight abuse of notation. The boundary
conditions are

(1.12)
(√
εωx − aω

)
(0) =

(√
εωx − aω

)
(1) = 0 and ηx(0) = η(1) = 0,

while the function f is the linearization of the function p(j, η),

(1.13) f(x) =
1

(1 + ηH)(1 + jHeκx)
.

The linearized system (1.11) is partially decoupled, so that the stability of (ω̄, η̄) as so-
lution of the two-component system (1.5) is determined by two one-component Sturm–
Liouville problems,

ε ωxx −
√
ε a ωx + (f(x) − �)ω = λω,(√

εωx − aω
)
(0) =

(√
εωx − aω

)
(1) = 0,

(1.14)

with η determined from the second equation in (1.11), and

(1.15) ε ηxx = λη with ηx(0) = η(1) = 0,

with ω identically equal to zero. The second of these problems, (1.15), is exactly
solvable and describes the diffusive behavior of the nutrient in the absence of phyto-
plankton. Thus, it is not directly linked to the phytoplankton bifurcation problem
that we consider, and we will not discuss it further. The phytoplankton behavior that
we focus on is described by (1.14) instead, and hence we have returned to a scalar
system as studied in [5, 7, 8, 10, 12, 14, 15]. However, our viewpoint differs signifi-
cantly from that of those studies. The simulations in [11] (and section 3 of the present
article) suggest that the destabilization of (ω̄, η̄) into a DCM is merely the first in
a series of bifurcations. In fact, section 3 shows that this DCM undergoes “almost
immediately” a second bifurcation of Hopf type; i.e., it begins to oscillate periodically
in time. According to [14], this is impossible in a scalar model (also, it has not been
numerically observed in such models), and so the Hopf bifurcation must be induced
by the weak coupling between ω and η in the full model (1.5).

Our analysis establishes that the largest eigenvalue λ0 of (1.14) which induces the
(stationary) DCM as it crosses through zero is the first of a sequence of eigenvalues
λn that are only O(ε1/3) apart (see Figure 3.3, where ε1/3 ≈ 0.045). The simulations
in section 3 show that the distance between this bifurcation and the subsequent Hopf
bifurcation of the DCM is of the same magnitude; see Figure 3.3 especially. Thus,
the stationary DCM already destabilizes while λ0 is still asymptotically small in ε,
which indicates that the amplitude of the bifurcating DCM is also still asymptotically
small and determined (at leading order) by ω0(x), the eigenfunction associated with
λ0. This agrees fully with our linear stability analysis, since ω0(x) indeed has the
structure of a DCM (see sections 2 and 7). As a consequence, the leading order (in
ε) stability analysis of the DCM is also governed by the partially decoupled system
(1.11). In other words, although what drives the secondary bifurcation(s) is the
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coupling between ω(x) and η(x) in (1.5), the leading order analysis is governed by
the eigenvalues and eigenfunctions of (1.14). Naturally, the next eigenvalues and their
associated eigenfunctions will play a key role in such a secondary bifurcation analysis,
as will the eigenvalues and eigenfunctions of the trivial system (1.15).

Therefore, a detailed knowledge of the nature of the eigenvalues and eigenfunc-
tions of (1.14) forms the foundation of analytical insight in the bifurcations exhibited
by (1.5). This is the topic of the present paper; the subsequent (weakly) nonlinear
analysis is the subject of work in progress.

The structure of the eigenvalue problem (1.14) is rather subtle, and therefore we
employ two different analytical approaches. In sections 4–6, we derive explicit and
rigorous bounds on the eigenvalues in terms of expressions based on the zeroes of the
Airy function of the first kind and its derivative; see Theorem 2.1. We supplement
this analysis with a WKB approach in section 7, where we show that the critical
eigenfunctions have the structures of a DCM or a BL. This analysis establishes the
existence of, first, the aforementioned sequence of eigenvalues that are O(ε1/3) apart,
which is associated with the bifurcation of a DCM; and second, of another eigenvalue
which also appears for biologically relevant parameter combinations and which is
associated with the bifurcation of a BL—this bifurcation was not observed in [11].
This eigenvalue is isolated, in the sense that it is not part of the eigenvalue sequence
associated with the DCMs—instead, it corresponds to a zero of a linear combination
of the Airy function of the second kind and its derivative. Depending on the value of
the dimensionless parameter a, the trivial state (ω̄, η̄) bifurcates either into a DCM
or into a BL. Our analysis establishes the bifurcation sets explicitly in terms of the
parameters in the problem (section 2.2) and is confirmed by numerical simulations
(section 3). Note that the codimension 2 point, at which DCM- and BL-patterns
bifurcate simultaneously and which we determine explicitly, is related to that studied
in [20]. Nevertheless, the differences are crucial—for instance, [20] considers a two-
layer ODE model where, additionally, the DCM interacts with an SL instead of a BL
(an SL cannot occur in our setting because V > 0 in (1.1); see Remark 1.1).

The outcome of our analysis is summarized in section 2, in which we also sum-
marize the bio-mathematical interpretations of this analysis. We test and challenge
the results of the stability analysis by numerical simulations of the full model in sec-
tion 3. Although our insights are based only on linear predictions, and we do not
yet have analytical results on the (nonlinear) stability of the patterns that bifurcate,
we do find that there is an excellent agreement between the linear analysis and the
numerical simulations. Thus, our analysis of (1.14) yields explicit bifurcation curves
in the biological parameter space associated with (1.1). For any given values of the
parameters, our analysis predicts whether one may expect a phytoplankton pattern
with the structure of a (possibly oscillating) DCM, a pattern with the structure of
a BL, or whether the phytoplankton will become extinct. Moreover, we also briefly
consider secondary bifurcations into time-periodic patterns. These bifurcations are
not directly covered by our linear analysis, but the distance between the first and
second bifurcation in parameter space implies that the linearized system (1.14) must
play a crucial role in the subsequent (weakly) nonlinear analysis; see the discussion
above.

Remark 1.1. Our approach and findings for the model (1.1) (equivalently, (1.5))
are also applicable and relevant for more extensive models:

• In [11], (1.1) was extended to a model for various phytoplankton species Wi(z, t)
(i = 1, . . . , n). A stability analysis of the trivial pattern Wi ≡ 0, N ≡ NB yields n
uncoupled copies of (1.14) in which the parameters depend on the species, i.e., on
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the index i. As a consequence, the results of this paper can also be applied to this
multispecies setting.

• It is natural to include the possibility of horizontal flow and diffusion in the
model (1.1). In the most simple setting, this can be done by allowingW andN to vary
with (x, y, z, t) and to include horizontal diffusion terms in (1.1), i.e., DH(Wxx+Wyy)
and DH(Nxx + Nyy) with DH �= D, in general—see [17], for instance. Again, the
linear stability analysis of the trivial state is essentially not influenced by this ex-
tension. The exponentials in the ansatz following (1.10) now need to be replaced by
exp(λτ + i(kxx̃+ ky ỹ)), where kx and ky are wave numbers in the (rescaled) x and y
directions. As a consequence, one only has to replace � by �−DH(k2

x + k2
y) in (1.14).

• The fact that we assign specific formulas to the growth and light intensity
functions P (L,N) (see (1.3)) and L(z, t) (see (1.2)) is inessential for our analysis.
One needs only that f(x) is decreasing and bounded in [0, 1]—both assumptions are
natural from a biological standpoint.

• We have considered “sinking” phytoplankton species in our model, i.e., V > 0
in (1.1) and thus a > 0 in (1.14). Our analysis can also be applied to buoyant species
(V ≤ 0). In that case, the bifurcating DCMs may transform into SLs—see also
[10, 15].

• The values of ε, a, and � in (1.9) are typical of oceanic settings [11]. These values
differ in an estuary, and ε can no longer be assumed to be asymptotically small; see
[19] and the references therein. Moreover, phytoplankton blooms in an estuary are
strongly influenced by the concentration of suspended sediment and typically occur
not only at a certain depth z, but also at a certain horizontal position in the estuary.
Thus, (1.14) must be extended to account for such blooms; however, it may still play
an important role as a limiting case or a benchmark [19].

2. The main results. In the first part of this section, we present our main
results in full mathematical detail. In section 2.2, we present a bio-mathematical
interpretation of these results.

2.1. Mathematical analysis. We define the parameter ν = 1/(1 + ηH), the
function F through

(2.1) F (x) = F (x; jH , κ, ν) = f(0) − f(x) ≥ 0 for all x ∈ [0, 1]

(see (1.13)), and the constants σL = σL(κ, jH , ν) and σU = σU (κ, jH , ν) so that

(2.2) σL x ≤ F (x) ≤ σU x for all x ∈ [0, 1].

The optimal values of σU and σL can be determined explicitly. This (simple yet tech-
nical) analysis is postponed until after the formulation of Theorem 2.1; see Lemma 2.1
and Figures 2.2 and 2.3. Next, we define the parameters

(2.3) A =
a2

4
, β =

√
A

σ
, and 0 < γ ≡

( ε
σ

)1/3

� 1,

with a as in (1.7) and σ an a priori parameter. (Later, σ will be set equal to either σL
or σU .) Furthermore, we write Ai and Bi for the Airy functions of the first and second
kind [1], respectively, and An < 0, n ∈ N, for the nth zero of Ai(x); see Figure 2.1.
We also define the functions

(2.4) Γ (Ai, x) = Ai(x) −√
γ β−1 Ai′(x) and Γ (Bi, x) = Bi(x) −√

γ β−1 Bi′(x)
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Fig. 2.1. Left: Airy function of the first kind (thick line) plotted with the function Γ (Ai, ·)
(thin line). Right: Airy function of the second kind (thick line) plotted with Γ (Bi, ·) (thin line).
Here, ε = 0.1, a = 3, and σ = 2.

(see Figure 2.1 and section 5.1) and write A′
n,σ for the nth zero of Γ (Ai, x) (n ∈ N)—

which is O(
√
γ) close to An—and B0,σ for the positive zero of Γ

(
Bi, γ−1(1 + x)

)
—

which exists for all β > 1 and is equal to β2 − 1 at leading order in γ; see Lemma A.2
for more accurate estimates. Finally, we let
(2.5)
λ∗ = f(0)− �−A, λ∗,σ0 = λ∗ +Aβ−2B0,σ, λ∗,σn = λ∗ − γ Aβ−2

∣∣A′
n,σ

∣∣ , n ∈ N,

and we note that λ∗,σ0 and λ∗,σn are decreasing functions of σ. We can now formulate
our main result.

Theorem 2.1. Let M ∈ N. There exists an ε0 > 0 and a constant C > 0 such
that, for all 0 < ε < ε0 and 0 ≤ n ≤ M , the first M + 1 eigenvalues λ0 > · · · > λM
of (1.14) satisfy the following:

(a) For each 0 < σU < A, there exists a constant B > 0 such that

λ∗,σU

0 − C ε2/3 e−B/
√
ε ≤ λ0 ≤ λ∗,σL

0 + C ε2/3 e−B/
√
ε

and

λ∗,σU
n − C ε1/6 e−B/

√
ε ≤ λn ≤ λ∗,σL

n + C ε1/6 e−B/
√
ε for all 1 ≤ n ≤M.

(b) For each σL > A, there exists a constant B > 0 such that

λ∗,σU

n+1 − C ε1/6 e−B/
√
ε ≤ λn ≤ λ∗,σL

n+1 + C ε1/6 e−B/
√
ε for all 0 ≤ n ≤M.

Theorem 2.1 and (2.5) establish that, for any M ∈ N and for sufficiently small
ε > 0 (equivalently, for sufficiently small γ > 0), all first M + 1 eigenvalues of (1.14)
are O(ε1/3) close to λ∗, except for the special eigenvalue λ0 if σU < A. Both types
of eigenvalues correspond to biologically relevant patterns in (1.1)—to DCMs and
BLs, respectively; see section 2.2. This dependence on the parameters is quite subtle;
further, the weakly nonlinear stability analysis must be based on a detailed under-
standing of the linear eigenvalue problem including all of the eigenmodes associated
with the asymptotically close eigenvalues (see also the introduction). As a result, the
required analysis becomes rather extensive. For this reason, we defer the proof of
Theorem 2.1 to sections 4–6.
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Fig. 2.2. The function F (thick curve) and the linear functions bounding it (thin lines). Here,

ηH = 1, κ = 6, and jH = 0.01 < j
(1)
H (top left panel), j

(1)
H < jH = 0.1 < j

(2)
H (top right panel),

j
(2)
H < jH = 0.2 < 1 (bottom left panel), and jH = 1.2 > 1 (bottom right panel).

Moreover, this analysis establishes that the bounds on the eigenvalues are, up to
exponentially small terms, explicitly given in terms of zeroes of the Airy functions
Ai(x) and Bi(x) (and their derivatives (2.4)) and of the bounds σL x and σU x on
F (x) in (2.2). This enables us (by unscaling) to explicitly quantify the regions in
the parameter space associated with (1.1) in which DCMs or BLs can be expected to
appear (see sections 2.2 and 3).

The following lemma provides explicit control on σL x and σU x.
Lemma 2.1. Let

j
(1)
H (κ) =

e−κ − 1 + κ

eκ − 1 − κ
and j

(2)
H (κ) =

e−κ

j
(1)
H (κ)

,

so that 0 < j
(1)
H (κ) < j

(2)
H (κ) < 1 for all κ > 0. Also, for all κ > 0 and jH ∈

(j(1)H (κ), 1), define the point x0 = x0(κ, jH) ∈ (0, 1) via F (x0) = x0 F
′(x0). Then,

(2.6) σL =

{
F ′(0), 0 < jH ≤ j

(2)
H ,

F (1), jH > j
(2)
H ,

σU =

⎧⎪⎨
⎪⎩

F (1), 0 < jH ≤ j
(1)
H ,

F ′(x0), j
(1)
H < jH < 1,

F ′(0), jH ≥ 1,

and

(2.7) σL(κ, jH , ν) = ν σL(κ, jH , 1), σU (κ, jH , ν) = ν σU (κ, jH , 1).

This lemma is proved by straightforward calculus. Figures 2.2 and 2.3 give a
graphical representation of the lemma for various representative subcases.

As we shall see in section 3, the eigenvalue bounds established in Theorem 2.1
are quite sharp and predict very well the bifurcations of the full unscaled model
(1.1). Nevertheless, the rigorous analysis of sections 4–6 yields no information on the
characteristics of the associated eigenfunctions, which are of particular interest to the
nature of the patterns generated by (1.1) as λ0 crosses through zero (see section 3).
Moreover, the width of the intervals bounding the eigenvalues of (1.14) is of the same
order in ε—namely of O(ε1/3)—as the distance between successive eigenvalues. This
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Fig. 2.3. The quantities σU (upper thick curve), σL (lower thick curve), F (1) (dashed curve
to the left), and F ′(0) (dashed curve to the right) as functions of jH and for ηH = 0.1, κ = 2. Note

that F (1) merges with σU for jH ≤ j
(1)
H and with σL for jH ≥ j

(2)
H , while F ′(0) merges with σL for

jH ≤ j
(2)
H and with σU for jH ≥ 1. Also note that the WKB method (see section 7) yields that the

location of the eigenvalue close to λ∗,σ
0 (see Theorem 2.1) is determined by F (1), at leading order,

whereas the locations of the eigenvalues close to λ∗,σ
n , n ∈ N, are determined by F ′(0) at leading

order.

is especially relevant in the transitional case σL < A < σU , for which Theorem 2.1
offers no information.

For these reasons, we complete our analysis of (1.14) with an asymptotic WKB
approximation (section 7). We derive asymptotic formulas for the eigenvalues and for
the corresponding eigenfunctions. Using these formulas, we show the following:

• In case (a) of Theorem 2.1, the profile of the eigenfunction ω0 corresponding to
the largest eigenvalue λ0 is of boundary layer type near the bottom. In terms of the
phytoplankton concentration, this profile corresponds to a BL.

• In case (b) of the same theorem, ω0 has the shape of a spike around the point
x = xDCM, where xDCM is determined, to leading order in ε, by F (xDCM) = A (see
Figure 7.1). This profile corresponds to a DCM around xDCM.

• The transitional region between cases (a) and (b) in Theorem 2.1 is described, to
leading order in ε, by the equation A = F (1). Indeed, the leading order approximation
to λ0 is

(2.8)
λ0,0 = f(1) − � in the region F (1) = f(0) − f(1) < A (and ω0 is a BL),
(2.9)
λ0,0 = λ∗ = f(0) − �−A in the region F (1) = f(0) − f(1) > A (and ω0 is a DCM).

Recalling Lemma 2.1, we see that this transition occurs at a value of A which is, to
leading order in ε, equal to σU when 0 < jH ≤ j

(1)
H , equal to σL when jH ≥ j

(2)
H , and

between σU and σL when j(1)H < jH < j
(2)
H .

2.2. Bio-mathematical interpretation. The agreement between the numeri-
cal simulations and the field data reported in [11] establishes the biological relevance
of model problem (1.1) and of its dynamics. This paper contains the first steps
towards a bio-mathematical understanding of this model, especially in relation to
the existing models in the literature that exhibit only simple, stationary patterns
[5, 7, 8, 10, 12, 14].
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The fact that (1.1) can be scaled into the singularly perturbed equation (1.5)
for biologically relevant choices of the parameters is essential to the analysis in this
paper. Moreover, together with the linear stability analysis, these scalings enable us
to understand the fundamental structure of the twelve-dimensional parameter space
associated with (1.1) and its boundary conditions (1.4) (in the biologically relevant
region). In fact, it follows from Theorem 2.1 and (2.8)–(2.9) that the dimensionless
parameters A, �, f(0), and f(1), which are defined in section 2.1, are the main param-
eter combinations in the model as they capture its most relevant biological aspects.

Our stability analysis determines the regions in parameter space in which phyto-
plankton may persist, i.e., in which the trivial solution of (1.1) and (1.4) corresponding
to absence of phytoplankton (W (z, t) ≡ 0 in (1.1)) is unstable. In that case, nontrivial
patterns with W (z, t) > 0, for all t, bifurcate from the trivial solution, which implies
that the model admits stable, positive phytoplankton populations. Theorem 2.1 es-
tablishes the existence of two distinct types of phytoplankton populations at onset.
One is formed by a large—in fact infinite—family of “DCM-modes” and occurs for A
below the threshold value f(0) − f(1); the region where these modes become stable
is determined by λ∗ = f(0)− �−A; see (2.9). Within this family, the phytoplankton
concentrations are negligible for most z, except for a certain localized (spatial) region
in which the phytoplankton population is concentrated—see Figure 7.1 in which the
first, most unstable member of this family is plotted (in scaled coordinates). These
are the DCM-patterns observed in [11]. Our analysis shows that many different DCM-
patterns appear almost instantaneously. More precisely, as a parameter enters into the
region in which the trivial solution is unstable, a succession of asymptotically close bi-
furcations in which different types of DCM-patterns are created takes place. In other
words, even asymptotically close to onset, there are many competing DCM-modes.
This partly explains why the “pure” DCM-mode as represented in Figure 7.1 can be
observed only very close to onset (see [11] and section 3.2): it may be destabilized by
the competition with other modes.

The second type of phytoplankton population that may appear at onset occurs
for A above the threshold value f(0) − f(1) and has the structure of a BL: the
phytoplankton population is concentrated near z = zB, i.e., at the bottom of the water
column. Unlike the DCM-modes, there is a single BL-mode; the region where this
mode becomes stable is determined, in this case, by f(1)−�; see (2.8). This mode may
also dominate the dynamics of (1.1) in a part of the biologically relevant parameter
space, as may be seen in section 3.2. Note that the BL-mode has not been observed
in [11]; naturally, this is hardly surprising since one can sample numerically only a very
limited region of a twelve-dimensional parameter space. From the biological point of
view, the fact that the model (1.1) allows for attractors of the BL type may be the most
important finding of this paper. Like DCMs, BLs have been observed in field data
(see [15] and references therein). The analysis here quantifies the parameter values
for which DCM- or BL-patterns occur. Hence, our results may be used to determine
oceanic regions and/or phytoplankton species for which BLs may be expected to exist.
It would be even more interesting to locate a setting in which DCMs and BLs interact,
as they are expected to do because of the existence of the codimension 2 point at which
the (first) DCM-mode and the BL-mode bifurcate simultaneously; see section 3.

3. Bifurcations and simulations.

3.1. The bifurcation diagram. In this section, we use the WKB expressions
(2.8)–(2.9) for the first few eigenvalues to identify the bifurcations that system (1.14)
undergoes. In this way, we identify the regions in the parameter space where the BL
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Fig. 3.1. The bifurcation diagram in the (ν, A)-plane. The horizontal axis corresponds to
ν = 1/(1 + ηH), while the vertical one corresponds to A = a2/4. In the region shaded horizontally,
the trivial zero state is stable. In the region shaded vertically, DCMs bifurcate, while BL profiles
remain damped. In the region shaded diagonally, BL profiles bifurcate, while DCM profiles remain
damped. Finally, in the unshaded region, both profiles grow linearly.

and DCM steady states become stable. As already mentioned in the Introduction,
we are primarily interested in the effect of environmental conditions—in particular, of
nutrient concentration and diffusion—on phytoplankton. For this reason, we choose to
vary the parameters ηH = NH/NB (which encapsulates information pertaining to the
nutrient levels and nutrient absorption by phytoplankton) and a = V/

√
μD (which is

a measure of diffusion; see (1.7)). The remaining four dimensionless parameters (ε,
κ, jH , and �) are kept constant. We recall here the definitions ν = 1/(1 + ηH) and
A = a2/4.

The curves separating the regions in the (ν,A)-plane which are characterized by
qualitatively different behavior of the rescaled model (1.5), (1.8) may be found by
recasting (2.9) and (2.8) in terms of the rescaled parameters. In particular, using
(1.13), (2.1), and (2.5), we find (see Figure 3.1) the following:

• In regions I and II, λ0 is given, to leading order, by (2.8) (in region I) and by
(2.9) (in region II). In either case, λ0 < 0, and hence the zero (trivial) state is stable.

• In region III, λ0 is given by (2.9) and is positive. In fact, the further into this
region one goes, the more eigenvalues cross zero and become positive, since they are
O(ε1/3) apart by Theorem 2.1. All of these eigenvalues are associated with DCMs.

• In region VI, λ0 is given by (2.8) and is positive, while all other eigenvalues are
negative. Thus, the only bifurcating patterns in this regime are BL profiles.

• Finally, in regions IV and V, eigenvalues associated with both BL and DCM
profiles are positive, and thus no further info can be derived from our linear analysis.

The boundaries of these regions may be deduced explicitly in the aforementioned
manner. First, setting the expression for λ0 in (2.8) equal to zero, we obtain, to
leading order, the vertical line separating the regions I, II, and III from the regions
IV, V, and VI,

ν = � (1 + eκjH).

Next, setting the expression for λ0 in (2.9) equal to zero, we obtain, to leading order,
the diagonal line separating the regions I, II, and VI from III, IV, and V,

A =
1

1 + jH
ν − �.
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Fig. 3.2. The bifurcation diagram in the (ν, A)-plane for ε = 9 ·10−5, � = 0.2, jH = 0.5, κ = 1.
(“NB” stands for “no blooming.”) The solid curves correspond to numerical simulations, while the
dashed ones correspond to the bounds predicted theoretically; see Theorem 2.1.

Finally, setting the expressions for λ0 in (2.8) and (2.9) equal to each other, we obtain
the transitional regime A = F (1). In terms of the rescaled parameters, we find

A =
(

1
1 + jH

− 1
1 + eκjH

)
ν.

Since the physical region nH > 0 corresponds to the region 0 < ν < 1, these formulas
imply that

(a) for 0 < � < (1 + eκjH)−1, both a BL and a DCM may bifurcate,
(b) for (1 + eκjH)−1 < � < (1 + jH)−1, only a DCM may bifurcate,
(c) for � > (1 + jH)−1, the trivial state is stable.
Remark 3.1. Similar information may be derived by the rigorous bounds in The-

orem 2.1, with the important difference that the dividing curves have to be replaced
by regions of finite thickness.

3.2. Numerical simulations. In this section, we present numerical simulations
on the full model (1.1)–(1.4), and we compare the results with our theoretical predic-
tions. The parameters are chosen in biologically relevant regions [11].

We considered first the validity of our asymptotic analysis; i.e., we checked
whether the analytically obtained bounds for the occurrence of the DCMs and BLs—
see Theorem 2.1, section 3.1, Figure 3.1, and Remark 3.1—can be recovered by nu-
merical simulations of the PDE (1.1)–(1.4). We used the numerical method described
in Remark 3.2 at each node of a two-dimensional grid of a part of the (ν,A)-parameter
plane (keeping all other parameters fixed) to determine the attracting pattern gener-
ated by (1.1)–(1.4) and chose the initial profile at each node in the parameter space
to be the numerically converged pattern for an adjacent node at the previous step.

In Figure 3.2, we present the region near the codimension 2 point in the (ν,A)-
parameter plane at which both the DCMs and the BLs bifurcate (with all other
parameters fixed: ε = 9 · 10−5, � = 0.2, jH = 0.5, κ = 1). Away from this codi-
mension 2 point, the numerically determined bifurcation curves are clearly within the
bounds given by Theorem 2.1 and thus confirm our analysis. Note that this suggests
that the bifurcations have a supercritical nature—an observation that does not follow
from our linear analysis. Near the codimension 2 point, a slight discrepancy between



1186 ZAGARIS, DOELMAN, PHAM THI, AND SOMMEIJER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

OSCDCMNB

Fig. 3.3. The bifurcation diagram in the (ν, A)-plane for ε = 9 · 10−5, � = 0.25, jH = 0.033,
κ = 20. Region NB corresponds to no blooming, and region OSC to oscillatory DCMs. The solid
curves correspond to numerical simulations, and the dashed ones to the points at which λ0 (left line)
and λ1 (right line) cross zero; see (2.9) and Figure 3.1. For these parameter values, the bifurcation
of the BLs occurs in a nonphysical part of the domain.

our analysis and the numerical findings becomes apparent. First, we note that the bi-
furcation from the trivial state (no phytoplankton) to the DCM state is not exactly in
the region determined by Theorem 2.1. However, for this combination of parameters,
this region is quite narrow—in fact, it is narrower than the width of the rectangular
grid of the (ν,A)-parameter plane that we used to determine Figure 3.2, which implies
that the simulations do not disagree with the analysis. The other discrepancy, namely
the occurrence of a small “triangle” of BL patterns in the region where one would
expect DCMs, is related to the presence of the codimension 2 point. To understand
the true nature of the dynamics, one needs to perform a weakly nonlinear analysis
near this point and, presumably, a more detailed numerical analysis that distinguishes
between DCMs, BLs, and patterns that have the structure of a combined DCM and
BL. This is the topic of work in progress.

Unlike the simulations presented in [11], here we considered the secondary bifur-
cations only briefly. Figure 3.3 shows the primary bifurcation of the trivial state into
a DCM and the secondary bifurcation (of Hopf type) of the DCM into an oscillating
DCM—see [11] for more (biological) details on this behavior. A priori, one would
expect that our linear stability analysis of the trivial state could not cover this Hopf
bifurcation. However, in Figure 3.3 we also plotted the leading order approximations
of the curves at which the first two eigenvalues associated with the stability of the
trivial state, λ0 and λ1, cross through the imaginary axis. It follows that the distance
(in parameter space) between the primary and the secondary bifurcations is asymp-
totically small in ε, and similar to the distance between the successive eigenvalues
λn. This observation is based on several simulations realized for different values of
ε. It is crucial information for the subsequent (weakly) nonlinear analysis, since the
fact that the DCM undergoes its secondary Hopf bifurcation for parameter combi-
nations that are asymptotically close (in ε) to the primary bifurcation implies that
the above a priori expectation is not correct; instead, the stability and bifurcation
analysis of the DCM can, indeed, be based on the linear analysis presented here. The
higher order eigenvalues λ1, λ2, . . . , the associated eigenfunctions ω1(x), ω2(x), . . . ,
and their “slaved” η-components η1(x), η2(x), . . . (which can be determined explicitly
using (1.11)) will serve as necessary inputs for this nonlinear analysis.
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Thus, a “full” linear stability analysis of the uncoupled system (1.14) as pre-
sented here may serve as a foundation for the analysis of secondary bifurcations that
can only occur in the coupled system (see the introduction and [14]). This feature
is very special and quite uncommon in explicit models. It is due to the natural sin-
gularly perturbed nature of the scaled system (1.5), and it provides an opportunity
to obtain fundamental insight into phytoplankton dynamics. This analysis, including
the aforementioned codimension 2 analysis and the associated secondary bifurcations
of BLs, is the topic of work in progress.

Remark 3.2. The numerical results were obtained by the “Method of Lines” ap-
proach. First, we discretized the spatial derivatives approximating the diffusion terms
in the model using second-order symmetric formulas and employing a third-order
upwind-biased method to discretize the advection term (see [13] for the suitability of
these schemes to the current problem). Next, we integrated the resulting system of
ODEs forward in time with the widely used time-integration code VODE (see [3] and
http://www.netlib.org/ode). Throughout all simulations, we combined a spatial grid
of a sufficiently high resolution with a high precision time integration to ensure that
the conclusions drawn from the simulations are essentially free of numerical errors.

4. Eigenvalue bounds. As a first step towards the proof of Theorem 2.1, we
recast (1.14) in a form more amenable to analysis. First, we observe that the operator
involved in this eigenvalue problem is self-adjoint only if a = 0. Applying the Liouville
transformation

(4.1) w(x) = e−
√
A/εxω(x) = e−(β/γ3/2)xω(x),

we obtain the self-adjoint problem

εwxx + (f(x) − �−A)w = λw,(√
εwx −

√
Aw
)

(0) =
(√

εwx −
√
Aw
)

(1) = 0.

Recalling (2.1) and (2.5), we write this equation in the form

(4.2) Lw = μw, with G (w, 0) = G (w, 1) = 0.

The operator L, the scalar μ, and the linear functionals G(·, x) are defined by

(4.3) L = −ε d
2

dx2
+ F (x), μ = λ∗ − λ, G (w, x) = w(x) −

√
ε

A
wx(x).

This is the desired form of the eigenvalue problem (1.14). To prove Theorem 2.1, we
decompose the operator L into a self-adjoint part for which the eigenvalue problem is
exactly solvable and a positive definite part. Then, we use the following comparison
principle to obtain the desired bounds.

Theorem 4.1 (see [18, sections 8.12–8.13]). Let Â and A be self-adjoint operators
bounded below with compact inverses, and write their eigenvalues as μ̂0 ≤ μ̂1 ≤ · · · ≤
μ̂n ≤ · · · and μ0 ≤ μ1 ≤ · · · ≤ μn ≤ · · · , respectively. If A−Â is positive semidefinite,
then μ̂n ≤ μn for all n ∈ {0, 1, . . .}.

4.1. Crude bounds for the eigenvalues of L. First, we derive crude bounds
for the spectrum {μn} of L to demonstrate the method and establish that L satisfies
the boundedness condition of Theorem 4.1.
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Lemma 4.1. The eigenvalues μn satisfy the inequalities

(4.4) −A ≤ μ0 ≤ F (1) −A and εn2π2 ≤ μn ≤ F (1) + εn2π2, n ∈ N.

Proof. Let c ∈ R. We start by decomposing L as

(4.5) L = L0,c + F0,c, where L0,c = −ε d
2

dx2
+ c and F0,c = F (x) − c.

Then, we write {μ0,c
n } for the set of eigenvalues of the problem

(4.6) L0,cw0,c = μ0,cw0,c, with G
(
w0,c, 0

)
= G

(
w0,c, 1

)
= 0,

with the eigenvalues arranged so that μ0,c
0 ≤ μ0,c

1 ≤ · · · ≤ μ0,c
n ≤ · · · .

For c = cL = 0, the operator L0,cL is self-adjoint, while F0,cL = F (x) ≥ 0 is
a positive definite multiplicative operator. Thus, using Theorem 4.1, we obtain the
inequalities

(4.7) μ0,cL
n ≤ μn for all n ∈ N ∪ {0}.

Next, for c = cU = F (1), the operator F0,cU = F (x) − F (1) ≤ 0 is negative definite,
while L0,cU is self-adjoint. Hence, we may write

L0,cU = L− F0,cU ,

where −F0,cU is now positive definite. The fact that the spectrum {μn} of L is
bounded from below by (4.7) allows us to use Theorem 4.1 to bound each μn from
above,

μn ≤ μ0,cU
n for all n ∈ N ∪ {0}.

Combining this bound and (4.7), we obtain

(4.8) μ0,cL
n ≤ μn ≤ μ0,cU

n for all n ∈ N ∪ {0}.

Naturally, the eigenvalue problem (4.6) may be solved exactly to obtain

(4.9) μ0,c
0 = c−A and μ0,c

n = c+ εn2π2, n ∈ N.

Combining these formulas with (4.8), we obtain the inequalities (4.4).

4.2. Tight bounds for the eigenvalues of L. The accurate bounds for the
eigenvalues of (4.2) described in Theorem 2.1 may be obtained by bounding F by linear
functions; see (2.2) and Lemma 2.1. In the next lemma, we bound the eigenvalues μn
by the eigenvalues μ1,σ

n of a simpler problem. Then, in Lemma 4.3, we obtain strict,
exponentially small bounds for μ1,σ

n .
Lemma 4.2. Let σ ∈ {σL, σU}, with σL and σU as defined in Lemma 2.1, define

the operator L1,σ = −ε d2dx2 + σx, and write {μ1,σ
n } for the eigenvalues corresponding

to the problem

(4.10) L1,σw = μ1,σw, with G (w, 0) = G (w, 1) = 0.

Let {μ1,σ
n } be arranged so that μ1,σ

0 ≤ μ1,σ
1 ≤ · · · ≤ μ1,σ

n ≤ · · · . Then,

(4.11) μ1,σL
n ≤ μn ≤ μ1,σU

n for all n ∈ N ∪ {0}.
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Proof. First, we decompose L as

(4.12) L = L1,σ + F1,σ, where L1,σ = −ε d
2

dx2
+ σx, F1,σ = F (x) − σx,

and σ ∈ {σL, σU}. We note here that L1,σ is self-adjoint.
Next, F1,σL is a positive definite multiplicative operator, since F (x) ≥ σLx (see

(2.2)). Thus, μ1,σL
n ≤ μn for all n ∈ N ∪ {0}, by Theorem 4.1. In contrast, F1,σU is

negative definite, since F (x) ≤ σUx. Therefore, we write

L1,σU = L− F1,σU ,

where now −F1,σU is positive definite. The fact that the spectrum {μn} is bounded
from below by Lemma 4.1 allows us to use Theorem 4.1 to bound each μn from above,
μn ≤ μ1,σU

n . Combining both bounds for each n, we obtain (4.11).
Hence, it remains to solve the eigenvalue problem (4.10). Although this problem

is not explicitly solvable, the eigenvalues may be calculated up to terms exponentially
small in ε. Letting

μ∗,σ
0 = λ∗ − λ∗,σ0 = −Aβ−2B0,σ and μ∗,σ

n = λ∗ − λ∗,σn = γ Aβ−2
∣∣A′

n,σ

∣∣ > 0,

n ∈ N,

(4.13)

where we have recalled the definitions in section 2, we can prove the following lemma.
Lemma 4.3. Let M ∈ N be fixed, and define

δ0,σ = γ2 exp
(
− 2

3γ
−3/2

[
3(1 +B0,σ −B)3/2 − 2(B0,σ −B)3/2 − (1 +B0,σ +B)3/2

])
,

δn,σ =
√
γ A1/6 β−1/3 exp

(
− 4

3 γ
−3/2 + 2 |An+1| γ−1/2

)
for all 1 ≤ n ≤M + 1

and for all 0 < B < B0,σ for which the exponent in the expression for δ0,σ is negative.
Then, for each such B, there exists an ε0 > 0 and positive constants C0, . . . , CM+1

such that, for all 0 < ε < ε0 and 0 ≤ n ≤M , the first M+1 eigenvalues μ1,σ
0 , . . . , μ1,σ

M

corresponding to (4.10) satisfy the following:
(a) For β > 1,

∣∣μ1,σ
0 − μ∗,σ

0

∣∣ < C0 δ0,σ and
∣∣μ1,σ
n − μ∗,σ

n

∣∣ < Cn δn,σ for all
1 ≤ n ≤M .

(b) For 0 < β < 1,
∣∣μ1,σ
n − μ∗,σ

n+1

∣∣ < Cn+1 δn+1,σ for all 0 ≤ n ≤M .
Lemmas 4.2 and 4.3 in combination with definitions (2.5) and (4.13) yield Theo-

rem 2.1. The bounds on μ1,σ
0 , . . . , μ1,σ

M are derived in section 5. The fact that these
are indeed the M + 1 first eigenvalues corresponding to (4.10) is proved in section 6.
Note that Theorem 2.1 follows immediately from this lemma, in combination with
the above analysis and the observation that the condition β > 1 is equivalent to
0 < σ < A, and the condition 0 < β < 1 equivalent to σ > A.

5. The eigenvalues μ1,σ
0 , . . . , μ1,σ

M . In this section, we derive the bounds on
μ1,σ

0 , . . . , μ1,σ
M of Lemma 4.3. In section 5.1, we reduce the eigenvalue problem (4.10)

to the algebraic one of locating the roots of an Evans-type function D. In section 5.2,
we identify the roots of D with those of two functions A and B which are related to
the Airy functions and simpler to analyze than D. Finally, in section 5.3, we identify
the relevant roots of A and B and thus also of D.
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Fig. 5.1. The function D(χ̄) for a = 3, σ = 1, and ε = 0.1 (left panel), ε = 0.001 (right panel).

5.1. Reformulation of the eigenvalue problem. First, we derive an algebraic
equation, the solutions of which correspond to the eigenvalues of (4.10). We start by
rescaling the eigenvalue μ1,σ and the independent variable x via

(5.1) χ̄ = −γ−1A−1 β2 μ1,σ and x = γ(χ− χ̄).

Then, we define the linear functional

(5.2) Γ (w, χ̄) = w(χ̄) −√
γ β−1 w′(χ̄) for all differentiable functions w,

and we remark that, for w equal to Ai or Bi, this definition agrees with that given in
(2.4). Further introducing the Wronskian

(5.3) D(χ̄) = Γ (Ai, χ̄) Γ
(
Bi, γ−1 + χ̄

)
− Γ

(
Ai, γ−1 + χ̄

)
Γ (Bi, χ̄)

(see also Figure 5.1), we can prove the following lemma.
Lemma 5.1. The eigenvalue problem (4.10) has μ1,σ as an eigenvalue if and only

if D(χ̄) = 0.
Proof. Using (5.1), we rewrite problem (4.10) in the form

d2w

dχ2
= χw, χ ∈ [χ̄, γ−1 + χ̄],

Γ (w, χ̄) = Γ
(
w, γ−1 + χ̄

)
= 0.

(5.4)

This is an Airy equation and thus has the general solution

(5.5) w(χ) = DA Ai(χ) +DB Bi(χ).

The boundary conditions become

(5.6)
Γ (w, χ̄) = DAΓ (Ai, χ̄) +DBΓ (Bi, χ̄) = 0,

Γ
(
w, γ−1 + χ̄

)
= DAΓ

(
Ai, γ−1 + χ̄

)
+DBΓ

(
Bi, γ−1 + χ̄

)
= 0.

The sufficient and necessary condition for the existence of nontrivial solutions to this
system is that its determinant—which is the Wronskian D given in (5.3)—vanishes,
and the lemma is proved.
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5.2. Product decomposition of the function D. In the preceding section,
we saw that the values of χ̄ corresponding to the eigenvalues μ1,σ must be zeroes of
D. In the next section, we will prove that the first few zeroes of D are all O(1), in
the case 0 < β < 1, and both O(1) and O(γ−1) in the case β > 1. To identify them,
we rewrite D in the form

(5.7) D(χ̄) = Γ
(
Bi, γ−1 + χ̄

)
A(χ̄) = Γ (Ai, χ̄)B(χ̄),

where we have defined the functions

A(χ̄) = Γ (Ai, χ̄) −
Γ
(
Ai, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

Γ (Bi, χ̄) ,(5.8)

B(χ̄) = Γ
(
Bi, γ−1 + χ̄

)
− Γ (Bi, χ̄)

Γ (Ai, χ̄)
Γ
(
Ai, γ−1 + χ̄

)
.(5.9)

Here, A is well defined for all χ̄ such that Γ
(
Bi, γ−1 + χ̄

)
�= 0, while B is well defined

for all χ̄ such that Γ (Ai, χ̄) �= 0. Equation (5.7) implies that the roots of A and B
are also roots of D.

In the next section, we will establish that the O(1) roots of D coincide with roots
of A and the O(γ−1) ones with roots of B. To prove this, we first characterize the
behaviors of A and B for O(1) and O(γ−1) values of χ̄, respectively, by means of the
next two lemmas. In what follows, we write E(x) = exp(−(2/3)x3/2) for brevity and
|| · ||[XL,XR] for the W1

∞-norm over any interval [XL, XR],

(5.10) ||w||[XL,XR] = max
χ̄∈[XL,XR]

|w(χ̄)| + max
χ̄∈[XL,XR]

|w′(χ̄)| .

Lemma 5.2. Let X < 0 be fixed. Then there is a γ0 > 0 and a constant cA > 0
such that

(5.11) ||A(·)− Γ (Ai, ·)||[X,0] < cA γ
−1/2E(γ−1(2 + 3 γ X)2/3) for all 0 < γ < γ0.

For the next lemma, we switch to the independent variable ψ̄ = γχ̄ to facilitate
calculations. We analyze the behavior of B(γ−1ψ̄) for O(1) values of ψ̄ (equivalently,
for O(γ−1) values of χ̄) as γ ↓ 0.

Lemma 5.3. Let 0 < ΨL < ΨR be fixed. Then there is a γ0 > 0 and a constant
cB > 0 such that, for all 0 < γ < γ0,∣∣∣∣E(γ−1(1 + ψ̄))

[
B
(
γ−1ψ̄

)
− Γ

(
Bi, γ−1(1 + ψ̄)

)]∣∣∣∣
ψ̄∈[ΨL,ΨR]

< cB γ
−1/4

[
E(γ−1(1 + ΨL))
E(γ−1ΨL)

]2
.

The proofs of these lemmas are given in Appendices B and C, respectively.

5.3. Zeroes of D. Using Lemma 5.2 and an auxiliary result, we can locate the
roots of D.

Lemma 5.4. Let M ∈ N be fixed, A′
n,σ and B0,σ be defined as in section 2, and

B, δ0,σ, . . . , δM,σ be defined as in Lemma 4.3. Then, for each admissible B, there is
a γ0 > 0 and positive constants c0, . . . , cM such that, for all 0 < γ < γ0, D(χ̄) has
roots χ̄0 > χ̄1 > · · · > χ̄M satisfying the following bounds:

(a) For β > 1,∣∣χ̄0 − γ−1B0,σ

∣∣ < c0 γ
−1 δ0,σ and

∣∣χ̄n −A′
n,σ

∣∣ < cn γ
−1 δn,σ for all 1 ≤ n ≤M.
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(b) For 0 < β < 1,
∣∣χ̄n −A′

n+1,σ

∣∣ < cn γ
−1 δn+1,σ for all 0 ≤ n ≤M.

The proof of this lemma requires the following elementary result.
Lemma 5.5. Let C and G be real-valued continuous functions and H be real-

valued and differentiable. Let δ > 0 and z0 ∈ [ZL, ZR] ⊂ R be such that

H(z0) = 0, max
[ZL,ZR]

H ′ = −H0 < 0, max
[ZL,ZR]

|C(G −H)| < δ,

and min
[ZL,ZR]

C = C0 > 0.

If δ < C0H0 min(z0−ZL, ZR−z0), then G has a zero z∗ such that |z∗−z0| ≤ δ/(C0H0).
Proof. Let z� = z0 − δ/(C0H0) and zr = z0 + δ/(C0H0). Since ZL < z� < z0 <

zr < ZR, we have

G(z�) = H(z�) +G(z�) −H(z�) ≥
∫ z�

z0

H ′(z) dz −
max[ZL,ZR] |C(G −H)|

min[ZL,ZR] C

> (z0 − z�)H0 −
δ

C0
= 0.

Similarly, we may prove that G(zr) < 0, and the desired result follows.
Proof of Lemma 5.4. (a) First, we prove the existence of a root χ̄0 satisfying the

desired bound. We recall that ψ̄ was defined above via ψ̄ = γχ̄; hence, it suffices
to show that there is a root ψ̄0 of D(γ−1ψ̄) satisfying the bound |ψ̄0 − B0,σ| < c0 δ0
for some c0 > 0. Equation (5.7) reads D(γ−1ψ̄) = Γ (Ai, γ−1ψ̄)B(γ−1ψ̄). Here,
Γ (Ai, γ−1ψ̄) has no positive roots, by definition of Γ and because Ai(γ−1ψ̄) > 0 and
Ai′(γ−1ψ̄) < 0 for all ψ̄ > 0. Thus, χ̄0 must be a root of B. Its existence and the
bound on it follow from Lemmas 5.3 and 5.5. Indeed, let z0 = B0,σ, ZL = B0,σ − B,
ZR = B0,σ + B, C = E (see section 5.2), G = B, and H = Γ (Bi, ·). Lemma 5.3
provides a bound δ on ||C(G−H)||[ZL,ZR]. Also, using Corollary A.1, we may calculate

C0 = min[ZL,ZR]E(γ−1(1 + ψ̄)) = E(γ−1(1 + ZR)),

−H0 = max[ZL,ZR] Γ
(
Bi′, γ−1(1 + ψ̄)

)
< −c γ5/4

[
E(γ−1(1 + ZL))

]−1
.

Now, δ satisfies the condition δ < C0H0B of Lemma 5.5 for all γ small enough. Thus,
we may apply Lemma 5.5 to obtain the desired bound on χ̄0.

Next, we show that A has the remaining roots χ̄1, . . . , χ̄M . We fix AM+1 <
X < AM and let I1, . . . , IM be disjoint intervals around the first M zeroes of Ai,
A1, . . . , AM , respectively. Lemma 5.2 states that A(χ̄) and Γ (Ai, χ̄) are exponentially
close in the W1

∞-norm over [X, 0]. Thus, for all 0 < γ < γ0 (with γ0 small enough),
A has M distinct roots χ̄1 ∈ I1, . . . , χ̄M ∈ IM in [X, 0] by Lemma A.2. Since
Γ
(
Bi, γ−1 + χ̄

)
can be bounded away from zero over [X, 0] using Lemma A.1 (with

p = 1 and q = χ̄), we conclude that D has the M distinct roots χ̄1, . . . , χ̄M in [X, 0].
(b) The argument used in part (a)—where β > 1—to establish the bounds on the

O(1) roots of A does not depend on the sign of β − 1. Therefore, it applies also to
this case—where 0 < β < 1—albeit in an interval [X, 0], with AM+2 < X < AM+1,
yielding M + 1 roots which we label χ̄0, . . . , χ̄M .

On the other hand, B0,σ < 0 for 0 < β < 1, because of the estimate on B0,σ in
Lemma A.2. As a result, the argument used to identify that root does not apply any
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more, since now B0,σ < 0 and thus Lemma 5.3 may not be applied to provide the
bound δ needed in Lemma 5.5. In fact, were this root to persist and remain close
to γ−1B0,σ as in case (a), it would become large and negative by the estimate in
Lemma A.2 and hence smaller than the roots χ̄0, . . . , χ̄M obtained above. Thus, it
could never be the leading eigenvalue in this parameter regime.

6. The eigenfunctions w1,σ
0 , . . . , w1,σ

M . In the previous section, we located
some of the eigenvalues μ1,σ. In this section, we show that the eigenvalues we iden-
tified are the largest ones. To achieve this, we derive formulas for the eigenfunctions
w1,σ

0 , . . . , w1,σ
M associated with μ1,σ

0 , . . . , μ1,σ
M , respectively, and show that w1,σ

n has n
zeroes in the interval [χ̄n, γ−1 + χ̄n] (corresponding to the interval [0, 1] in terms of x;
see (5.1)). The desired result follows, then, from standard Sturm–Liouville theory [4].
In particular, we prove the following lemma.

Lemma 6.1. Let M ∈ N. Then, there is a γ0 > 0 such that, for all 0 < γ < γ0

and for all n = 0, 1, . . . ,M , the eigenfunction w1,σ
n corresponding to the eigenvalue

μ1,σ
n has exactly n zeroes in the interval [χ̄n, γ−1 + χ̄n].

The proof of this lemma occupies the rest of this section. Parallel to it, we show
that the profile of ω0 associated with w0 through (4.1) is that of (a) a boundary
layer near the bottom of the water column (BL) for β > 1, and (b) an interior,
nonmonotone boundary layer (a spike [9]) close to the point 0 < xDCM = β2 < 1
(DCM) for 0 < β < 1.

We start by fixing χ̄ to be χ̄n, for some n = 1, . . . ,M . The corresponding eigen-
value is μ1,σ

n = −γσχ̄n (see (5.1)), while the corresponding eigenfunction wn is given
by (5.5),

(6.1) w1,σ
n (χ) = DAAi(χ) +DB Bi(χ), where χ ∈ [χ̄n, γ−1 + χ̄n].

Here, the coefficients DA and DB satisfy (5.6),

DAΓL,n(Ai) +DBΓL,n(Bi) = DAΓR,n(Ai) +DBΓR,n(Bi) = 0,

where ΓL,n(·) = Γ (·, χ̄n) and ΓR,n(·) = Γ
(
·, γ−1 + χ̄n

)
. We treat the cases β > 1 and

0 < β < 1 separately.

6.1. The case β > 1. In this section, we select DA and DB so that (6.1)
becomes

(6.2) w1,σ
n (χ) = DnBi(χ) − Ai(χ), with Dn =

ΓL,n(Ai)
ΓL,n(Bi)

=
ΓR,n(Ai)
ΓR,n(Bi)

.

Using this formula, we prove Lemma 6.1 and verify that ω0 is of boundary layer type
near x = 1.

6.1.1. The eigenfunction w1,σ
0 . First, we show that w1,σ

0 has no zeroes in the
corresponding interval. Using Lemma A.1 and the estimates of Lemmas 5.4 for χ̄0

and A.2 for B0,σ, we estimate

D0 =
(

Δ2
1

2
+ C̄0(γ)

)
exp
(
−4
(

(β2 − 1)3/4

3γ3/2
+
√

1 − 1
β2

))
.

Here, Δ1 = β +
√
β2 − 1 and

∣∣C̄0(γ)
∣∣ < c0

√
γ, for some c0 > 0. Thus also, D0 > 0.

It suffices to show that w1,σ
0 is positive in this interval, and thus that (w1,σ

0 )′ > 0
everywhere on the interval and w1,σ

0 (χ̄0) > 0. For n = 0, (6.2) yields (w1,σ
0 )′(χ) =



1194 ZAGARIS, DOELMAN, PHAM THI, AND SOMMEIJER

D0 Bi′(χ) − Ai′(χ), while Lemma 5.4 shows that [χ̄0, γ
−1 + χ̄0] ⊂ R+. Hence,

Bi′(χ) > 0 and Ai′(χ) < 0 for all χ in this interval. Since D0 > 0, we conclude
that (w1,σ

0 )′ > 0, as desired. Next, we determine the sign of w1,σ
0 (χ̄0). This function

is given in (6.2) with n = 0, while the definition of ΓL,0 yields

Ai(χ̄0) = ΓL,0(Ai) + β−1 √γ Ai′(χ̄0) and Bi(χ̄0) = ΓL,0(Bi) + β−1 √γ Bi′(χ̄0).

Substituting into (6.2), we calculate w1,σ
0 (χ̄0) = β−1 √γ [D0 Bi′(χ̄0)−Ai′(χ̄0)]. Thus,

w1,σ
0 (χ̄0) is positive by our remarks on the signs of Bi′, Ai′, and D0, and the proof is

complete.
Next, we study the profile of the associated solution ω0 to the original problem

(1.14). Equations (4.1) and (5.1) yield

ω0(x) = exp
(

β

γ3/2
x

)[
D0 Bi(γ−1x+ χ̄0) − Ai(γ−1x+ χ̄0)

]
, x ∈ [0, 1].

Using the estimation of Lemma 5.4 for χ̄0 and the estimations of Lemma A.1 for Ai
and Bi, we find

ω0(x) = CI(x)
(
x+ β2 − 1

)−1/4
exp
(

β

γ3/2
x

)
sinh(θ1(x)), x ∈ [0, 1],

where CI(x) = CI,0 + CI,1(x), sup[0,1] |CI,1(x)| < cI
√
γ, for some cI > 0, and

θ1(x) =
2

3γ3/2

[(
x+β2−1

)3/2−(β2−1
)3/2]+ 2

β

[(
x+β2−1

)1/2−(β2−1
)1/2]+log Δ1.

The first two terms on the right-hand side of the expression for ω0 are bounded, while
the other two correspond to localized concentrations (boundary layers) at x = 1.
Thus, ω0 also corresponds to a boundary layer of width O(γ3/2) = O(

√
ε) at the

same point.

6.1.2. The eigenfunctions w1,σ
1 , . . . , w1,σ

M . Next, we show that the eigenfunc-
tion w1,σ

n has n zeroes in [χ̄n, γ−1 + χ̄n], where n = 1, . . . ,M . The eigenfunction w1,σ
n

is given by (6.2). Here also, Lemmas A.1 and 5.4 yield

(6.3) Dn =
(

Δ2
2

2
+ C̄n(γ)

)
exp
(
− 4

3γ3/2
+ 2

|An|√
γ

− 2
β

)
,

where Δ2 = (β + 1)1/2 (β − 1)−1/2 and
∣∣C̄n(γ)

∣∣ < cn
√
γ, for some cn > 0. Hence,

Dn > 0.
First, we show that the function w1,σ

n has exactly n − 1 zeroes in [χ̄n, 0]. The
estimate (6.3) and the fact that Bi is uniformly bounded on [χ̄n, 0] imply that, for
all 0 < γ < γ0 (with γ0 small enough), the functions w1,σ

n and −Ai are exponentially
close in the W1

∞-norm over that interval,

(6.4)
∣∣∣∣w1,σ

n + Ai
∣∣∣∣

[χ̄n,0]
< cn exp

(
− 4

3γ3/2
+ 2

|An|√
γ

)
for some cn > 0.

As a result, we may use an argument exactly analogous to the one used in the proof
of Lemma 5.4 to show that w1,σ

n has at least n − 1 distinct zeroes in [χ̄n, 0], each of
which is exponentially close to one of A1, . . . , An−1. Observing that χ̄n is algebraically
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Fig. 6.1. The eigenfunctions w
1,σL
0 , w

1,σU
0 (always positive and coinciding within plotting ac-

curacy) and w
1,σL
1 , w

1,σU
1 (changing sign). Here, a = 0.775, nH = 0.667, ε = 0.001, κ = 1,

� = 0.25, and jH = 0.5, which yields σL = 0.1333, σU = 0.1457 (and thus σL < σU < a2/4),

0.0104 ≤ λ0 ≤ 0.0222, and −0.0541 ≤ λ1 ≤ −0.0512. Note that λ1 < λ0 and that none of w
1,σL
0

and w
1,σU
0 has zeroes in [0, 1], while w

1,σL
1 and w

1,σU
1 have exactly one zero in the same interval.

larger than An, by Lemmas 5.4 and A.2, while w1,σ
n is exponentially close to −Ai,

by estimate (6.4), we conclude that the zero of w1,σ
n close to An lies to the left of χ̄n

(and hence outside [χ̄n, 0]) and thus there are no other zeroes in [χ̄n, γ−1 + χ̄n].
It remains to show only that there is a unique zero of w1,σ

n in [0, γ−1 + χ̄n]. We
work as in section 6.1.1 and show that w1,σ

n is increasing and changes sign in that
interval. First, we calculate (w1,σ

n )′(χ) = DnBi′(χ)−Ai′(χ) > 0, where we have used
that Bi′(χ) > 0, Ai′(χ) < 0, and Dn > 0. Also, w1,σ

n (0) < 0 (by Ai(0) > 0 and (6.4))
and, working as in section 6.1.1,

w1,σ
n (γ−1 + χ̄n) = β−1 √γ

[
DnBi′(γ−1 + χ̄n) − Ai′(γ−1 + χ̄n)

]
> 0.

This completes the proof.

6.2. The case 0 < β < 1. In this section, we select DA and DB so that (6.1)
becomes

(6.5) w1,σ
n (χ) = Ai(χ) +Dn Bi(χ), with Dn = −ΓL,n(Ai)

ΓL,n(Bi)
= −ΓR,n(Ai)

ΓR,n(Bi)
.

Using this formula, we prove Lemma 6.1 and verify that the profile of ω0 has a spike
around xβ = β2.

We shall show that the eigenfunction w1,σ
n (n = 0, . . . ,M) has n zeroes in [χ̄n,

γ−1 + χ̄n]; see Figure 6.1. The proof is entirely analogous to that in section 6.1.2.
Here also, the nth eigenvalue is μ1,σ

n = −γσχ̄n, while the corresponding eigenfunction
w1,σ
n is given by (6.5). The constant Dn may be estimated by

(6.6) Dn =
(

Δ2
3

2
+ Ĉn(γ)

)
exp
(
− 4

3γ3/2
+ 2

|An+1|√
γ

− 2
β

)
,

where Δ3 =
√

1 + β/
√

1 − β and
∣∣Ĉn∣∣ < c′n

√
γ for some c′n > 0. This is an estimate

of the same type as (6.3) but with An+1 replacing An. Thus, the estimate (6.4) holds
here as well with the same change. Recalling that χ̄n is algebraically larger than



1196 ZAGARIS, DOELMAN, PHAM THI, AND SOMMEIJER

An+1 (see Lemmas 5.4 and A.2), we conclude that w1,σ
n has n distinct zeroes, each

of which is exponentially close to one of A1, . . . , An. Next, we show that w1,σ
n > 0 in

[0, γ−1 + χ̄n] and thus has no extra zeroes. First, w1,σ
n (χ) = Ai(χ) +Dn Bi(χ). Now,

Bi(χ) > 0 and Ai(χ) > 0, for all χ ∈ [0, γ−1 + χ̄n], while Dn > 0 by (6.6). Hence,
w1,σ
n > 0, and the proof is complete.

Next, we examine the solution ω0 associated with w0. Working as in section 6.1.1,
we calculate

ω0(x) = CII(x)x−1/4 exp
(

β

γ3/2
x

)
cosh(θ2(x)), x ∈ [0, 1],

where CII(x) = CII,0 + CII,1(x), sup[0,1] |CII,1(x)| < cII
√
γ for some cII > 0, and

θ2(x) =
2

3γ3/2

(
1 − x3/2

)
−
(
|A1|√
γ

− 1
β

)
(1 −

√
x) − log Δ3.

The first two terms on the right-hand side of the expression for ω0 are bounded, while
the other two correspond to boundary layers at x = 1 and x = 0, respectively. A
straightforward calculation shows that ω0 corresponds to a spike of width O(γ3/4) =
O(ε1/4) around the point xβ , where

(6.7)
∣∣xβ −

(
β2 + |A1| γ

)∣∣ < cγ2 for some c > 0.

We remark that xβ does not correspond to the position of the DCM for the problem
(1.14) involving the function f . This information is obtained in the next section,
instead, through a WKB analysis.

7. The WKB approximation. In the previous sections, we derived strict
bounds for the eigenvalues μ1, . . . , μM of L and summarized them in Theorem 2.1. In
this section, we use the WKB method to derive explicit (albeit asymptotic) formulas
for these eigenvalues. The outcome of this analysis has already been summarized in
section 2.1.

7.1. The case A < σL.

7.1.1. WKB formulas for w. The eigenvalue problem (4.2) reads

(7.1) εwxx = (F (x) − μ)w, with G (w, 0) = G (w, 1) = 0.

Since we are interested in the regime σL > A, Lemma 4.3 states that the eigenvalues
μ0, . . . , μM lie in a O(ε1/3) region to the right of zero. Thus, for any 0 ≤ n ≤M ,

F (x) < μn for x ∈ [0, x̄n), and F (x) > μn for x ∈ (x̄n, 1].

Here, x̄n corresponds to a turning point, i.e., F (x̄n) = μn, and it is given by the
formula

(7.2) x̄n =
1
κ

log
1 + μn(1 + ηH)(1 + j−1

H )
1 − μn(1 + ηH)(1 + jH)

.

Lemmas 4.3 and A.2 suggest that the eigenvalue μn may be expanded asymptotically
in powers of ε1/6 starting with O(ε1/3) terms, μn =

∑∞
�=2 ε

�/6 μn,�. Thus, we also
find

(7.3) x̄n = ε1/3σ−1
0 μn,2 + ε1/2σ−1

0 μn,3 + O
(
ε2/3
)
, where σ0 = F ′(0).
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The solution in the region (x̄n, 1], where F (x) − μn > 0, can be determined using
standard formulas (see [2, section 10.1]),

(7.4) wn(x) = [F (x)−μn]−1/4
[
Ca exp−

∫
x
x̄n

√
(F (s)−μn)/ε ds+Cb e

∫
x
x̄n

√
(F (s)−μn)/ε ds

]
.

Here, Ca and Cb are arbitrary constants, to leading order in ε. (Higher order terms
in the asymptotic expansions of Ca and Cb generally depend on x; see [2] for details.)
Using this information and the asymptotic expansion for μn, we may determine the
principal part of the solution wn,

(7.5) wn,0(x) = [F (x)]−1/4
[
Ca,0 e−θ3(x) + Cb,0 eθ3(x)

]
,

for arbitrary constants Ca,0 and Cb,0 and where
(7.6)

θ3(x) =
1
ε1/2

∫ x

0

√
F (s) ds− 1

ε1/6
μn,2
2

∫ x

0

ds√
F (s)

+
μn,2√
σ0

− 2
3
√
σ0 −

μn,3
2

∫ x

0

ds√
F (s)

.

To determine the solution in [0, x̄n), we change the independent variable through
(7.7)
x = ε1/3σ

−1/3
0 (χ− χ̄n), where χ̄n = −σ1/3

0 ε−1/3 x̄n = −σ−2/3
0 μn,2 + O

(√
ε
)
< 0,

and expand F (x) − μn = F (x) − F (x̄n) asymptotically:
(7.8)
F (x) − F (x̄n) = F (ε1/3σ−1/3

0 (χ− χ̄n)) − F (−ε1/3σ−1/3
0 χ̄n) = ε1/3σ

2/3
0 χ+ O(

√
ε).

As a result, (7.1) becomes the Airy equation (wn)χχ = χwn, to leading order, whence

(7.9) wn,0(χ) = Da,0 Ai(χ) +Db,0 Bi(χ), with χ ∈ (−σ−2/3
0 μn,2, 0].

7.1.2. Boundary conditions for the WKB solution. Next, we determine
the coefficients appearing in (7.5) and (7.9). Formula (7.5) represents the solution
in the region (x̄n, 1], and thus it must satisfy the boundary condition G (wn, 1) = 0.
Using (4.3), we find, to leading order,

(7.10) Ca,0 (a+ 2
√
σ1) e−θ3(x) + Cb,0 (a− 2

√
σ1) eθ3(x) = 0, where σ1 = F (1).

Next, the formula given in (7.9) is valid for χ ∈ (−σ−2/3
0 μn,2, 0] (equivalently, for

x ∈ [0, x̄n)), and thus it must satisfy the boundary condition G (w, 0) = 0. Recasting
the formula for G given in (4.3) in terms of χ, we obtain to leading order the equation

(7.11) Da,0 Ai
(
−σ−2/3

0 μn,2

)
+Db,0 Bi

(
−σ−2/3

0 μn,2

)
= 0.

Finally, (7.5) and (7.9) must also match in an intermediate length scale to the right
of x = x̄n (equivalently, of χ = 0). To this end, we set ψ = εd (x − x̄n), where
1/5 < d < 1/3 [2, section 10.4], and recast (7.5) in terms of ψ. We find, to leading
order and for all O(1) and positive values of ψ,

wn,0(x(ψ)) = ε−d/4 σ
−1/4
0 ψ−1/4

[
Ca,0 e−θ4(ψ)−σ−1

0 (μn,2)3/2
+ Cb,0 eθ4(ψ)+σ−1

0 (μn,2)
3/2
]
,

where θ4(ψ) = (2/3) ε(3d−1)/2√σ0 ψ
3/2. Similarly, (7.9) yields

wn,0(χ(ψ)) = ε1/12−d/4 σ
−1/12
0 π−1/2 ψ−1/4

[
Da,0

2
e−θ4(ψ) +Db,0 eθ4(ψ)

]
.



1198 ZAGARIS, DOELMAN, PHAM THI, AND SOMMEIJER

The matching condition around the turning point then gives

(7.12) Ca,0 = ε1/12
σ

1/6
0

2
√
π

eσ
−1
0 (μn,2)

3/2
Da,0 and Cb,0 = ε1/12

σ
1/6
0√
π

e−σ
−1
0 (μn,2)

3/2
Db,0.

7.1.3. The eigenvalues μ0, . . . , μn. The linear system (7.10)–(7.12) has a
nontrivial solution if and only if the determinant corresponding to it vanishes identi-
cally:

2 (a− 2
√
σ1) eθ3(1)−σ−1

0 (μn,2)3/2
Ai(σ−2/3μn,2)

+ (a+ 2
√
σ1) e−θ3(1)+σ

−1
0 (μn,2)

3/2
Bi(σ−2/3μn,2) = 0.

Since σ1 ≥ σL by Lemma 2.1 and σL > A by assumption, a − 2
√
σ1 is O(1) and

negative. Also, θ3(1) is O(1) and positive by (7.6). Thus, the determinant condition
reduces to Ai(σ−2/3μn,2) = 0, whence μn,2 = −σ2/3

0 An+1 = σ
2/3
0 |An+1| > 0. Hence,

we find for the eigenvalues of (1.14)

(7.13) λn = λ∗ − ε1/3σ
2/3
0 |An+1| + O(

√
ε).

Working in a similar way, we find μn,3 = −2σ0/a.
Recalling that σ0 = F ′(0) = −f ′(0) by (2.1) and Lemma 2.1 (see also Figure 2.3),

we find that the WKB formula (7.13) coincides—up to and including terms of O(1)
and O(ε1/3)—(a) for 0 < jH < j

(2)
H , with the rigorous lower bound for λn derived in

Theorem 2.1, and (b) for jH > 1, with the rigorous upper bound for λn derived in
the same theorem. For the remaining values of jH , (7.13) yields a value for λn which
lies in between the upper and lower bounds derived in Theorem 2.1—indeed, in that
case, σL < F ′(0) < σU ; see Figure 2.3.

7.1.4. The eigenfunctions w0, . . . , wn. Finally, one may determine the con-
stants Ca, Cb, Da, and Db corresponding to the eigenfunction wn, and thus also wn
itself, through (7.10)–(7.12). The principal part of wn is given by the formula

(7.14) wn,0(x) =

⎧⎨
⎩

Ai
(
An+1 + ε−1/3σ

1/3
0 x

)
for x ∈ [0, ε1/3σ−1/3

0 |An+1|),

C [F (x)]−1/4 coshΘ(x) for x ∈ (ε1/3σ−1/3
0 |An+1| , 1].

Here,

C = ε1/12
σ

1/6
0

2
√
π

Δ4 e|An+1|3/2−Θ3(1), where Δ4 =

(√
σ1 +

√
A

√
σ1 −

√
A

)1/2

,(7.15)

Θ(x) = ε−1/2

∫ 1

x

√
F (s) ds−

(
ε−1/6 σ

2/3
0 |An+1|

2
− σ0

a

)∫ 1

x

ds√
F (s)

+ log Δ4.

(7.16)

Recalling (4.1), we find

ωn,0(x) =

⎧⎨
⎩

e
√
A/εx Ai

(
An+1 + ε−1/3σ

1/3
0 x

)
for x ∈ [0, ε1/3σ−1/3

0 |An+1|),

C [F (x)]−1/4 e
√
A/εx coshΘ(x) for x ∈ (ε1/3σ−1/3

0 |An+1| , 1].

(7.17)
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Fig. 7.1. The eigenfunction ω0 as given by (7.17). Here, a = 0.5, nH = 0.667, ε = 2 · 10−7,
κ = 1, and jH = 0.5. The eigenfunction has been scaled so that its maximum value is equal to one.

A straightforward calculation shows that ω0 corresponds to a spike around the point

(7.18) xDCM = xDCM,0 + O(ε1/3),

where xDCM,0 is the unique solution to F (xDCM,0) = A = a2/4; see also Figure 7.1,
where ω0 is plotted for specific parameter values. Thus, ω0,0 indeed corresponds to
a DCM. Furthermore, the location of the maximum phytoplankton concentration is
expressed explicitly by this equation in terms of the rescaled biological parameters κ,
ηH , jH , and a.

7.2. The case A > σU . To obtain the eigenvalues and their corresponding
eigenfunctions in this case, we work as in the preceding section. Here also, the eigen-
value problem (4.2) has the form (7.1). Since A > σU , the eigenvalue μ0 is O(1) and
negative, while μ1, . . . , μM are O(ε1/3) and positive; see Lemma 4.3. Due to the qual-
itative difference between μ0 and the eigenvalues of higher order, we consider them
separately.

We start with the case 1 ≤ n ≤M . Then, for each such n, the eigenvalue problem
(7.1) has a unique turning point x̄n given by (7.2), and the analysis presented in the
preceding section applies here also. The formulas for μn and ωn, 1 ≤ n ≤ M , are
identical to those of the preceding section, with the sole modification that An in
(7.13)–(7.16) must be replaced by An−1. This completes the analysis for the case
1 ≤ n ≤M .

Next, we treat the case n = 0. Since μ0 < 0 < F (x) for all x ∈ [0, 1], the
eigenvalue problem (7.1) corresponding to μ0 has no turning points. Thus, the WKB
formula (7.4), with n = 0 and x̄n replaced by zero, is valid for all x ∈ [0, 1]. Lemmas
4.3 and A.2 suggest that μ0 may be expanded asymptotically as μ0 =

∑∞
�=0 ε

�/2 μ0,�.
Using this expansion, we calculate the principal part of w0,

(7.19) w0,0(x) = [F (x) − μ0,0]−1/4
[
Ca,0 e−θ5(x) + Cb,0 eθ5(x)

]
,

where Ca,0 and Cb,0 are arbitrary constants and

(7.20) θ5(x) =
1
ε1/2

∫ x

0

√
F (s) − μ0,0 ds−

μ0,1

2

∫ x

0

ds√
F (s) − μ0,0

.
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Next, recalling the boundary conditions G (w, 0) = G (w, 1) = 0, we obtain, to leading
order,

Ca,0 (a+ 2
√
−μ0,0) + Cb,0 (a− 2

√
−μ0,0) = 0,

Ca,0 (a+ 2
√
σ1 − μ0,0) e−θ5(1) + Cb,0 (a− 2

√
σ1 − μ0,0) eθ5(1) = 0,

(7.21)

where we recall that σ1 = F (1). Here, θ5(1) is O(1) and positive by (7.20), while
a+ 2

√−μ0,0 > 0. Thus, we obtain μ0,0 = F (1) −A, to leading order, whence

λ0,0 = f(1) − �.

This is precisely (2.8). Using this formula, one may also determine Ca,0 and Cb,0 to
obtain w0,0,

(7.22) w0,0(x) = [F (x) − μ0,0]−1/4 sinh Φ(x),

for x ∈ [0, 1] and up to a multiplicative constant. Here,

Φ(x) =
1
ε1/2

∫ x

0

√
F (s) − μ0,0 ds−

μ0,1

2

∫ x

0

ds√
F (s) − μ0,0

+ log Δ5,

where

Δ5 = β1 +
√
β2

1 − 1 and β1 =

√
A

F (1)
.

Recalling (4.1), we find

ω0,0(x) = [F (x) − μ0,0]−1/4 eax/2
√
ε sinh Φ(x) for x ∈ [0, 1].

The profile of ω0 corresponds to a boundary layer at the point x = 1.

7.3. The transitional regime σL < A < σU . Equations (2.9) and (2.8)
may be used to derive information for the transitional regime σL < A < σU (see
Theorem 2.1 and the discussion in section 2). In particular, the transition between
the case where λ0 is associated with a boundary layer (in biological terms, with a
BL) and the case where it is associated with a spike (that is, with a DCM) occurs, to
leading order, when f(1) − � = λ∗. Recalling (2.5), we rewrite this equation as

(7.23) F (1) = f(0) − f(1) = A.

This condition reduces, to leading order, to A = σU for 0 < jH ≤ j
(1)
H , and to A = σL

for jH ≥ j
(2)
H . For j(1)H < jH < j

(2)
H , this transitional value of A lies between σU and

σL; see section 2 and Figure 2.3.

Appendix A. Basic properties of the Airy functions. In this section, we
summarize some properties of the Airy functions Ai and Bi which we use repeatedly.

Lemma A.1. Let p > 0 and q be real numbers. Then,

Γ
(
Ai, γ−1 p+ q

)
= (π−1/2/2)

(
γ p−1

)1/4
exp
(
− (2/3)

(
γ−1 p

)3/2 − q
(
γ−1 p

)1/2)

·
[(

1 + β−1 √p
) (

1 −
(
q2/4

) (
γ p−1

)1/2
+ (q/4)

(
q3/8 − 1

)
γ p−1

)

− (1/48)
(
5 − 5q3 + q6/8 −

(
43 − q3 − q6/8

)
β−1 √p

) (
γ p−1

)3/2]
, γ ↓ 0,
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Γ
(
Bi, γ−1p+ q

)
= π−1/2

(
γ p−1

)1/4
exp
(
(2/3)

(
γ−1 p

)3/2
+ q
(
γ−1 p

)1/2)

·
[(

1 − β−1 √p
) (

1 +
(
q2/4

) (
γ p−1

)1/2
+ (q/4)

(
q3/8 − 1

)
γ p−1

)

+ (1/48)
(
5 − 5q3 + q6/8 +

(
43 − q3 − q6/8

)
β−1 √p

) (
γ p−1

)3/2]
, γ ↓ 0,

where the remainders of O(γ2) were omitted from within the square brackets.
Proof. We derive only the first of these asymptotic expansions. The second one

is derived in an entirely analogous manner. Definition (5.2) yields

Γ
(
Ai, γ−1 p+ q

)
= Ai

(
γ−1 p+ q

)
−√

γ β−1 Ai′
(
γ−1 p+ q

)
.

Then, we recall the standard asymptotic expansions [2]

Ai(z) =
(
π−1/2 z−1/4/2

)
exp
(
−(2/3)z3/2

) [
1 − (5/48) z−3/2 + O(z−3)

]
, z ↑ ∞,

Ai′(z) = −
(
π−1/2 z1/4/2

)
exp
(
−(2/3)z3/2

) [
1 + (7/48) z−3/2 + O(z−3)

]
, z ↑ ∞,

(
γ−1p+ q

)r
= prγ−r +

∞∑
k=1

1
k!

⎛
⎝k−1∏
j=0

(r − j)

⎞
⎠ pr−kqk γk−r.

The desired equation now follows by combining these asymptotic expansions.
Corollary A.1. Let p and q be as in Lemma A.1. Then, for γ ↓ 0,

Γ
(
Ai′, γ−1 p+ q

)
= −

(
π−1/2/2

)(
γ−1 p

)1/4
exp
(
−(2/3)

(
γ−1p

)3/2 − q
(
γ−1p

)1/2)

·
[(

1 + β−1 √p
) (

1 −
(
q2/4

) (
γ p−1

)1/2)

+ (q/4)
((
q3/8 − 1

)
+
(
q3/8 + 3

)
β−1 √p

)
γ p−1

− (1/48)
(
−19 + q3 + q6/8 +

(
−7 + 7q3 + q6/8

)
β−1 √p

) (
γ p−1

)3/2]
,

Γ
(
Bi′, γ−1 p+ q

)
= π−1/2

(
γ−1 p

)1/4
exp
(
(2/3)

(
γ−1 p

)3/2
+ q
(
γ−1 p

)1/2)

·
[(

1 − β−1 √p
) (

1 +
(
q2/4

) (
γ p−1

)1/2)

+ (q/4)
((
q3/8 − 1

)
−
(
q3/8 + 3

)
β−1 √p

)
γ p−1

+ (1/48)
(
−19 + q3 + q6/8 −

(
−7 + 7q3 + q6/8

)
β−1 √p

) (
γ p−1

)3/2]
,

where the remainders of O(γ2) were omitted from within the square brackets.
Proof. Definition (5.2) and the identities Ai′′(z) = zAi(z) and Bi′′(z) = zBi(z)

yield

Γ
(
Ai′, γ−1p+ q

)
= Ai′

(
γ−1p+ q

)
−√

γ β−1
(
γ−1 p+ q

)
Ai
(
γ−1 p+ q

)
,

Γ
(
Bi′, γ−1 + χ̄

)
= Bi′

(
γ−1 p+ q

)
−√

γ β−1
(
γ−1 p+ q

)
Bi
(
γ−1 p+ q

)
.

The desired result now follows from Lemma A.1.
Lemma A.2. The function Γ (Ai, χ̄) has no positive roots. Further, for any

M ∈ N, there is an ε0 > 0 such that, for all 0 < ε < ε0, Γ (Ai, χ̄) has roots A′
M,σ <

· · · < A′
1,σ < 0 satisfying∣∣A′

n,σ −
(
An +

√
γ β−1

)∣∣ < ca γ for some ca > 0.
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Here, An < 0 is the nth root of Ai (see Figure 2.1), and β, γ are given in (2.3). For
β > 1 (equivalently, for 0 < σ < a2/4), the function Γ

(
Bi, γ−1(1 + ψ̄)

)
defined in

(2.4) has a root B0,σ > 0 satisfying∣∣∣B0,σ −
(
β2 − 1 + 2 γ3/2 β−1

)∣∣∣ < cb γ
3 for some cb > 0.

Proof. The fact that there exist no positive roots of Γ (Ai, χ̄) is immediate by the
definition of Γ (Ai, χ̄) (see (2.4)) and the fact that Ai(χ̄) > 0 and Ai′(χ̄) < 0 for all
χ̄ > 0.

Next, the existence of M discrete and negative roots may be proved as follows.
Fix |AM | < X < |AM+1| and let I1, . . . , IM be disjoint intervals around A1, . . . , AM ,
respectively. Definition (2.4) implies that Γ (Ai, ·) is O(

√
γ) close to Ai over [−X, 0] in

the norm introduced in (5.10). Thus, for all 0 < γ < γ0 and γ0 small enough, Γ (Ai, χ̄)
has M distinct roots A′

1,σ ∈ I1, . . . , A′
M,σ ∈ IM in [−X, 0]. That these are ordered

as A′
M,σ < · · · < A′

1,σ follows from AM,σ < · · · < A1,σ and the fact that I1, . . . , IM
were chosen to be disjoint. The bounds on A′

1,σ, . . . , A
′
M,σ may be derived by writing

A′
n,σ =

∑
�≥0 ε

�/6 a
(�)
n,σ, substituting into the equation Γ (Ai, χ̄) = 0, and expanding

asymptotically.
The existence of B0,σ > 0 and the bound on it may be established using Lemma

A.1 (with p = 1 + ψ̄ and q = 0).

Appendix B. Proof of Lemma 5.2. Using definition (5.8), we calculate

(B.1) A(χ̄) − Γ (Ai, χ̄) = −
Γ
(
Ai, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

Γ (Bi, χ̄) .

To estimate the fraction on the right-hand side, we apply standard theory for Airy
functions [2]; see Appendix A. Using Lemma A.1 (with p = 1 and q = χ̄), we find
that

sup
χ̄∈[X,0]

∣∣∣∣∣exp
(

4
3γ3/2

+
2χ̄
γ1/2

)
Γ
(
Ai, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

− 1
2
β + 1
β − 1

∣∣∣∣∣ < c1
√
γ,

for some c1 > 0 and γ small enough. Therefore,

(B.2) sup
χ̄∈[X,0]

∣∣∣∣∣
Γ
(
Ai, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

∣∣∣∣∣ < c2 exp
(
−4 + 6 γ X

3γ3/2

)
,

for some c2 > 0. Next, sup[X,0] |Γ (Bi, ·)| ≤ c3 for some c3 > 0, since Bi and Bi′ are
uniformly bounded over [X, 0]. Combining these estimates, we find

(B.3) sup
χ̄∈[X,0]

|A(χ̄) − Γ (Ai, χ̄)| < c4 exp
(
−4 + 6 γ X

3γ3/2

)
,

for some c4 > 0 and for all γ small enough.
Next, differentiating (B.1), we calculate

A′(χ̄) − Γ(Ai′, χ̄) =

(
Γ
(
Ai, γ−1 + χ̄

)
Γ
(
Bi′, γ−1 + χ̄

)
[Γ (Bi, γ−1 + χ̄)]2

−
Γ
(
Ai′, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

)
Γ (Bi, χ̄)

−
Γ
(
Ai, γ−1 + χ̄

)
Γ (Bi, γ−1 + χ̄)

Γ
(
Bi′, χ̄

)
.(B.4)
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Using Lemma A.1, we may bound the term in parentheses by

c′1√
γ

exp
(
−4 + 6 γ X

3 γ3/2

)
,

for some c′1 > 0. Next, Γ (Bi, χ̄) was uniformly bounded by a constant c3 above. Also,
the term Γ

(
Bi′, χ̄

)
may be bounded by a constant c′3, since

Γ
(
Bi′, χ̄

)
= Bi′(χ̄) −√

γ β Bi′′(χ̄) = Bi′(χ̄) −√
γ β χ̄Bi(χ̄),

and the term multiplying it in (B.4) was bound in (B.2). These inequalities yield,
then,

(B.5)
∣∣∣∣A′(·) − Ai′(·)

∣∣∣∣
[X,0]

< c′2 γ
−1/2 exp

(
−4 + 6Xγ

3γ3/2

)
,

for some c′2 > 0 and for all γ small enough. Equation (5.11) follows now from (B.3)
and (B.5).

Appendix C. Proof of Lemma 5.3. Definition (5.9) yields

(C.1) B(γ−1ψ̄) − Γ
(
Bi, γ−1(1 + ψ̄)

)
= −

Γ
(
Bi, γ−1ψ̄

)
Γ
(
Ai, γ−1ψ̄

)Γ (Ai, γ−1(1 + ψ̄)
)
.

To estimate the right-hand side, we work as in Appendix B. Using Lemma A.1 twice
(once with p = ψ̄, q = 0 and once with p = 1 + ψ̄, q = 0), we obtain

sup
ψ̄∈[ΨR,ΨL]

∣∣∣∣∣E(γ−1(1 + ψ̄))
Γ
(
Bi, γ−1ψ̄

)
Γ
(
Ai, γ−1ψ̄

)Γ (Ai, γ−1(1 + ψ̄)
)∣∣∣∣∣

< c1 γ
1/4

[
E(γ−1(1 + ΨL))
E(γ−1ΨL)

]2
,

(C.2)

for some c1 > 0 and γ small enough.
Next, differentiating (C.1), we calculate

B′(γ−1ψ̄) − Γ′(Bi, γ−1(1 + ψ̄)) = −
Γ
(
Bi, γ−1ψ̄

)
Γ
(
Ai, γ−1ψ̄

)Γ (Ai′, γ−1(1 + ψ̄)
)

+

(
Γ
(
Bi, γ−1ψ̄

)
Γ
(
Ai′, γ−1ψ̄

)
[Γ
(
Ai, γ−1ψ̄

)
]2

−
Γ
(
Bi′, γ−1ψ̄

)
Γ
(
Ai, γ−1ψ̄

)
)

Γ
(
Ai, γ−1(1 + ψ̄)

)
.

Using Lemma A.1 and Corollary A.1 to estimate the right-hand side, we find

sup
ψ̄∈[ΨR,ΨL]

∣∣E(γ−1(1 + ψ̄))
[
B′(γ−1ψ̄) − Γ′(Bi, γ−1(1 + ψ̄))

]∣∣

< c′1 γ
−1/4

[
E(γ−1(1 + ΨL))
E(γ−1ΨL)

]2
,

(C.3)

for some c′1 > 0 and γ small enough.
The desired result follows from (C.2) and (C.3).
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THE COMPLETE CLASSIFICATION FOR DYNAMICS IN A
NINE-DIMENSIONAL WEST NILE VIRUS MODEL∗

JIFA JIANG† AND ZHIPENG QIU‡

Abstract. Bowman et al. [Bull. Math. Biol., 67 (2005), pp. 1107–1133] proposed a nine-
dimensional system of ordinary differential equations modelling West Nile virus in a mosquito–bird-
human community and presented some mathematical analysis and its biological explanation. Jiang
et al. [Bull. Math. Biol., 2008, DOI 10.1007/s11538-008-9374-6] continued to study the existence
and classification of all equilibria and all their local stability and dealt with saddle-node bifurcation
of the system. The previous investigation shows that the unique positive equilibrium is globally
asymptotically stable if the basic reproduction number is greater than one and the bird death rate
is suitably small, but numerical simulations suggest that the unique endemic equilibrium is globally
asymptotically stable even if for a large value of the bird death rate. So, they all leave it an open
problem. The present paper is to provide a thorough classification of dynamics for this system. In
particular, if the reproduction number is greater than one, then a unique endemic equilibrium exists
and is globally asymptotically stable in the interior of the feasible region, and the disease persists
at an endemic equilibrium if it initially exists, which completely solves the open problem above.
Besides, the sufficient and necessary conditions for switch phenomena of the model are obtained if
the reproduction number is smaller than one. The results show that the reproduction number alone
is not enough to determine whether West Nile virus can prevail or not. Meanwhile, the dynamics of
the model for the critical case where the reproduction number is one is also analyzed.

Key words. West Nile virus, differential equations, compound matrices, switch phenomena,
global stability
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1. Introduction. Compartmental epidemiological models have played a signif-
icant role in the development of a better understanding the mechanism of epidemic
transmission and the various preventive strategies used against it. Since the pioneer-
ing work of Kermack-Mckendrick, susceptible-infective-recovered (SIR)/susceptible-
exposed-infective recovered (SEIR) epidemiological models have received much atten-
tion from scientists (see [1, 2, 3] and references therein). West Nile virus (WNV), a
single-stranded ribonucleic acid (RNA) virus of the genus Flavivirus and the family
Flaviviridae, remains a significant threat to public health in the world. Since the first
outbreak in New York in the late summer of 1999 [4], WNV has been keeping spread
through the continent of North America for the last several years. In the United
States between 1999 and 2001, WNV was associated with 149 cases of neurological
diseases in humans, 814 cases of equine encephalitis, and 11,932 deaths in the avian
population. During 2003, 9,858 human cases and 14 deaths were reported [5]. It is,
therefore, imperative to gain some insights into the transmission dynamics of WNV
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so that we can assess the various anti-WNV preventive strategies. The purpose of the
paper is to use mathematical modelling to understand the transmission dynamics of
WNV in the mosquito–bird-human population.

A brief review of the salient features of WNV transmission will be useful. WNV
is an “arbovirus,” which means it is carried by an arthropod, usually an insect, from
host to host. WNV is primarily an avian virus and is usually transmitted from bird
to bird by mosquitoes. When a mosquito bites an infected bird (to feed on its blood),
virus particles in the bird’s blood are picked up. These particles make their way
to the salivary glands of the mosquito, where they are reproduced. The mosquito
then injects them into the next bird it bites. Virus particles injected into susceptible
species recognize, and infect, the cells of particular tissues and co-opt those cells into
making more virus particles. These particles then leave the cells and circulate in the
blood, where they can be picked up by biting mosquitoes; this is how mosquitoes
become infected. Humans, horses, and probably other vertebrates are circumstantial
hosts; that is, they can be infected if bitten by an infectious mosquito but they do
not transmit the disease.

Recently, there has been some effort in the mathematical modelling of the trans-
mission of WNV. Lord and Day [6] carried out simulation studies of St. Louis en-
cephalitis and WNV using a model of differential equations. Thomas and Urena [7]
formulated a difference equation model for WNV, targeting its effects on New York
City. Wonham, de-Camino-Beck, and Lewis [8] presented a single season ordinary
differential equations model for WNV transmission in the mosquito-bird population.
Kenkre et al. [9] provided a theoretical framework for the analysis of the WNV epi-
demic and for dealing with mosquito diffusion and bird migration. Liu et al. [10] stud-
ied the impact of the directional dispersal of birds on the spatial spreading of WNV.
In a more recent work by Bowman et al. [11], they proposed a single-season ordinary
differential equation model for the transmission dynamics of WNV in a mosquito–bird-
human community, with birds as reservoir hosts and culicine mosquitoes as vectors.
The model in paper [11] is described by the following equations:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMu

dt = ΠM − b1(NM ,NB,NH)β1MuBi

NB
− μMMu,

dMi

dt = b1(NM ,NB,NH)β1MuBi

NB
− μMMi,

dBu

dt = ΠB − b1(NM ,NB ,NH)β2MiBu

NB
− μBBu,

dBi

dt = b1(NM ,NB ,NH)β2MiBu

NB
− μBBi − dBBi,

dS
dt = ΠH − b2(NM ,NB,NH)β3MiS

NH
− μHS,

dE
dt = b2(NM ,NB,NH)β3MiS

NH
− μHE − αE,

dI
dt = αE − μHI − δI,

dH
dt = δI − μHH − dHH − τH,

dR
dt = τH − μHR.

The above model is based on monitoring the temporal dynamics of the populations
of uninfected female mosquitoes Mu(t), infected female mosquitoes Mi(t), uninfected
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birds Bu(t), infected birds Bi(t), susceptible humans S(t), asymptomatically infected
humans E(t), symptomatically infected humans I(t), hospitalized WNV-infected hu-
mans H(t), and recovered humans R(t). In (1.1), NM (t) = Mu(t)+Mi(t) is the total
population of female mosquitoes in the community, NB(t) = Bu(t)+Bi(t) is the total
population of birds in the community, and NH(t) = S(t) +E(t) + I(t) +H(t) +R(t)
is the total human population. ΠM , ΠB, and ΠH are the recruitment of uninfected
(susceptible) mosquitoes, birds, and human (either by birth or immigration), respec-
tively; b1(NM , NB, NH), b2(NM , NB, NH) is the per capita biting rate of mosquitoes
on the primary host (birds) and on humans, respectively. In paper [11], it was al-
ways assumed that b1(NM , NB, NH) = b1 and b2(NM , NB, NH) = b2 are positive
constants. β1, β2, and β3 are the probability of WNV transmission from infected
birds to uninfected mosquitoes, from mosquitoes to birds, and from mosquitoes to
humans, respectively; μM , μB, and μH are the natural death rate of mosquitos, birds,
and humans, respectively; dB, dH denote the WNV-induced death rate of birds and
humans; α is the development rate from asymptomatically infected humans into the
symptomatically infected humans; δ is the hospitalization rate from the symptomatic
population to the population of hospitalized individuals; τ is the recovery rate from
the population of hospitalized individuals into the recovered population.

In paper [11], by investigating the qualitative features of the system, an important
epidemiological threshold, known as the basic reproduction number, was determined,
and sufficient conditions for the local and global stability of the associated equilibria
were obtained; all parameters were estimated by real data, and detailed explanations
were given for their theoretic results. Applying the theory ofK-competitive dynamical
systems [19] and index theory of dynamical systems on a surface, Jiang et al. [12]
considered a subsystem for the primary mosquito-bird cycle and obtained sufficient
and necessary conditions for local stability of equilibria of the subsystem. The results
in paper [12] suggested that the basic reproduction number alone is not enough to
determine whether WNV can prevail or not, and that more attention should be paid
to the initial state of WNV.

However, there remain some problems. Although the global stability of the en-
demic equilibrium was proved in [11] with the assumption that dB is sufficiently
small and the basic reproduction number is above unity, Bowman et al. [11] were not
able to show the global dynamics of system (1.1) for all dB > 0, and mass numer-
ical simulations in [11, 12] suggest that the unique endemic equilibrium is globally
asymptotically stable even for large values of dB. However, “rigorous proof for the
global stability of the endemic equilibrium in the case when the basic reproduction
number is greater than 1 remains an open problem” [12]. In addition, paper [12]
classified the equilibria and their local stability for the subsystem of system (1.1),
which involves only the mosquitoes and birds. Therefore, we expect to obtain the
complete dynamical behavior of system (1.1) and give it a good explanation in real-
ity. In this paper we will not only give a positive answer for the above conjecture,
but we also completely classify the dynamics of the WNV model even for the critical
case.

The remaining part of this paper is organized as follows: In section 2, we mainly
classify the existence of equilibria and investigate their local stability. In section 3, we
study the dynamics of the limiting subsystem involving only the mosquitoes and birds.
Based on the dynamics of the limiting system, we provide a thorough classification
for the dynamics of (1.1) in section 4. In the last section we conclude the paper with
a discussion.
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2. The existence of equilibria and their local stability. Since NM (t) =
Mu(t) +Mi(t), system (1.1) is equivalent to

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dNM

dt = ΠM − μMNM ,

dMi

dt = b1β1MuBi

NB
− μMMi,

dBu

dt = ΠB − b1β2MiBu

NB
− μBBu,

dBi

dt = b1β2MiBu

NB
− μBBi − dBBi,

dS
dt = ΠH − b2β3MiS

NH
− μHS,

dE
dt = b2β3MiS

NH
− μHE − αE,

dI
dt = αE − μHI − δI,

dH
dt = δI − μHH − dHH − τH,

dR
dt = τH − μHR.

Since the equilibrium for NM is

NM (t) =
ΠM

μM
,

the limiting system of (2.1) is

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMi

dt =
b1β1(

ΠM
µM

−Mi)Bi

Bi+Bu
− μMMi,

dBu

dt = ΠB − b1β2MiBu

Bi+Bu
− μBBu,

dBi

dt = b1β2MiBu

Bi+Bu
− μBBi − dBBi,

dS
dt = ΠH − b2β3MiS

NH
− μHS,

dE
dt = b2β3MiS

NH
− μHE − αE,

dI
dt = αE − μHI − δI,

dH
dt = δI − μHH − dHH − τH,

dR
dt = τH − μHR.

Therefore, the dynamics of (1.1) or (2.1) is qualitatively equivalent to it given by (2.2)
(e.g., see [14, 15, 16, 17, 30]), we investigate only (2.2) hereafter. In this section, we
mainly investigate the existence of equilibria for system (2.2) and their local stability.

Let

D =
{

(Mi, Bu, Bi, S, E, I,H,R) ∈ R
8
+ : 0 < Mi ≤

ΠM

μM
,

ΠB

μB + dB
< NB ≤ ΠB

μB
, 0 < NH ≤ ΠH

μH

}
.

Then it follows from paper [11] that all solutions of the system (2.2) starting in D
remain in D for all t > 0. Thus, D is positively invariant, and it is sufficient to consider
solutions in D. In this region, the usual existence, uniqueness, and continuation results
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hold for the system (2.2). In what follows, we always assume that the initial points
lie in D.

It is well known that one of the most important subjects in epidemic models is
to obtain a threshold or reproduction number R0 that determines the persistence and
extinction of a disease. There are many papers investigating the reproduction number
for systems modelled by ordinary and delay differential equations [1, 2, 3, 18]. The
basic reproduction number for the system (2.2) was calculated in [11]:

R0 =

√
b21β1β2μBΠM

μ2
M (μB + dB)ΠB

.

Adopting the notations in [12], we denote

a2 =
dB(μMdB − b1β1μB)

b1β2μB
,

a1 =
b1β1ΠM

μM
− (2μMdB − b1β1μB)ΠB

b1β2μB
,

a0 =
μMΠ2

B(1 −R2
0)

b1β2μB
,

Δ = a2
1 − 4a0a2,

B∗
i2 =

ΠB

μB + dB
.

Now we are able to state the result on the existence of equilibria for system (2.2).
Theorem 2.1. The system (2.2) can have up to three equilibria. More precisely,

we have the following:
(1) The boundary equilibrium, the disease-free equilibrium (DEF) E0(0, ΠB

μB
, 0, ΠH

μH
,

0, 0, 0, 0) always exists.
(2) Assume R0 > 1. Then system (2.2) has a unique positive equilibrium E∗(M∗

i ,
B∗
u, B

∗
i , S

∗, E∗, I∗, H∗, R∗), where 0 < B∗
i < B∗

i2 = ΠB

μB+dB
.

(3) Assume R0 < 1. Then we have
(3a) if a2 ≤ 0, system (2.2) has no positive equilibrium;
(3b) if a2 > 0, system (2.2) has either no or two possible equilibria. More-

over, system (2.2) has two positive equilibria E1(M1
i , B

1
u, B

1
i , S

1, E1, I1, H1, R1) and
E2(M2

i , B
2
u, B

2
i , S

2, E2, I2, H2, R2), where 0 < B1
i < B2

i < B∗
i2 = ΠB

μB+dB
, if and only

if

Δ > 0 and 0 <
−a1

2a2
<

ΠB

μB + dB
.

These two equilibria coalesce into one equilibrium E1(M1
i , B

1
u, B

1
i , S

1, E1, I1, H1, R1)
if and only if 0 < −a1

2a2
< ΠB

μB+dB
and Δ = 0.

(4) Assume R0 = 1. Then system (2.2) has no positive equilibrium if μM (dB −
μB) ≤ b1β1μB, and if μM (dB − μB) > b1β1μB , system (2.2) has a unique positive
equilibrium E∗(M∗

i , B
∗
u, B

∗
i , S

∗, E∗, I∗, H∗, R∗).
The proof of Theorem 2.1 is based on a simple algebraic analysis, and the reader

can refer to the papers [11] and [12].
Now let E#(M#

i , B
#
u , B

#
i , S

#, E#, I#, H#, R#) be an arbitrary equilibrium of
the system (2.2) and

N#
H = S# + E# + I# +H# +R#.
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Then the Jacobian matrix of the vector field corresponding to system (2.2), evaluated
at E#, is

J(E#) =
[
A11 0
A21 A22

]
,

where

A11 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(
μM +

b1β1B
#
i

B#
i +B#

u

)
−
b1β1(ΠM

μM
−M#

i )B#
i

(B#
i +B#

u )2
b1β2M

#
i B

#
u

(B#
i +B#

u )2

− b1β2B
#
u

B#
i +B#

u

−
(
b1β2M

#
i B

#
i

(B#
i +B#

u )2
+ μB

)
b1β1(ΠM

μM
−M#

i )B#
u

(B#
i +B#

u )2

b1β2B
#
u

B#
i +B#

u

b1β2M
#
i B

#
i

(B#
i +B#

u )2
−
(
μB + dB +

b1β2M
#
i B

#
u

(B#
i +B#

u )2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b2β3M
#
i (N#

H − S#)

(N#
H )2

− μH
b2β3M

#
i S

#

(N#
H )2

b2β3M
#
i S

#

(N#
H )2

b2β3M
#
i (N#

H − S#)

(N#
H )2

−b2β3M
#
i S

#

(N#
H )2

− μH − α −b2β3M
#
i S

#

(N#
H )2

0 α −(μH + δ)
0 0 δ

0 0 0

b2β3M
#
i S

#

(N#
H )2

b2β3M
#
i S

#

(N#
H )2

−b2β3M
#
i S

#

(N#
H )2

−b2β3M
#
i S

#

(N#
H )2

0 0
−(μH + dH + τ) 0

τ −μH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

A21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b2β3S
#

N#
H

0 0

b2β3S
#

N#
H

0 0

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

After extensive algebraic calculations [11], the characteristic equation associated with
A22 is given by
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(λ+ μH)

[
(λ+ μH + dH + τ)(λ + μH + δ)(λ+ μH + α)

(
λ+ μH +

b2β3M
#
i

N#
H

)
− dHδαb2β3M

#
i S

#

(N#
H )2

]
= 0.

The constant term in the above polynomial is positive, and the Routh–Hurwitz con-
ditions show that all eigenvalues of the matrix A22 have negative real parts. Thus
the stability of the equilibrium E# is determined by the eigenvalues of the matrix
A11, since the eigenvalues of the matrix J(E#) are made up of the eigenvalues of
the matrices A11 and A22. The stability of the matrix A11 is discussed in paper [12].
Combining Theorems 3.4 and 3.5 in paper [12] and the stability of the matrix A22,
we have the following results.

Theorem 2.2. (1) Assume R0 > 1. Then the disease-free equilibrium E0 is
unstable, and the unique positive equilibrium E∗ is locally asymptotically stable.

(2) Assume R0 < 1. Then the unique boundary equilibrium E0 is locally asymp-
totically stable, and we have

(2a) if a2 > 0, Δ > 0, and 0 < −a1
2a2

< ΠB

μB+dB
, then the positive equilibrium

E1 is a saddle point and the positive equilibrium E2 is locally asymptotically stable.
Moreover, dimW s(E1) = 7, dimWu(E1) = 1, and dimW s(E2) = 8;

(2b) if a2 > 0, 0 < −a1
2a2

< ΠB

μB+dB
, and Δ = 0, then the unique positive equilibria

E1 is unstable and dimW s(E1) = 7, dimW c(E1) = 1.

3. The dynamics of a subsystem. Since humans do not feed back into the
mosquito-bird cycle, the subsystem involving only the mosquitoes and birds is in-
dependent. The dynamics of the subsystem for the primary mosquito-bird cycle is
governed by the following three-dimensional differential equations:

(3.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dMi

dt =
b1β1(

ΠM
µM

−Mi)Bi

Bi+Bu
− μMMi,

dBu

dt = ΠB − b1β2MiBu

Bi+Bu
− μBBu,

dBi

dt = b1β2MiBu

Bi+Bu
− μBBi − dBBi.

In this section, we mainly provide a complete classification for system (3.1). In
paper [12], Jiang et al. provided the classification for equilibria of system (3.1) and
by applying the theory of K-competitive dynamical systems [19] and index theory of
dynamical systems on a surface, sufficient and necessary conditions for local stability
of equilibria are also obtained if the basic reproduction number is not unity. In the
following, we will study the dynamics of system (3.1) further and provide a through
classification of dynamics for system (3.1).

First, let us present some preliminary results for system (3.1). As in [12], we set

Γ =
{

(Mi, Bu, Bi)| 0 ≤Mi ≤
ΠM

μM
,

ΠB

μB + dB
≤ Bu +Bi ≤

ΠB

μB

}
.

Then we have what follows.
Proposition 3.1 (see [12]). All solutions of the system (3.1) with nonnegative

initial conditions remain nonnegative. Moreover, Γ is a global attractor in R3
+ and

positively invariant for (3.1).
In what follows, we always assume that the initial points (Mi(0), Bu(0), Bi(0)) of

system (3.1) lie in Γ. From the last section, it is easy to verify that if E#(M#
i , B

#
u , B

#
i ,
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S#, E#, I#, H#, R#) is an equilibrium of (2.2), then Ê#(M#
i , B

#
u , B

#
i ) is an equi-

librium of (3.1), and E# and Ê# have the same stability. For convenience, we still
denote the equilibrium Ê# by E#.

By analyzing the vector field of system (3.1) on the boundary ∂R3
+

⋂
Γ, we have

that ∂R3
+

⋂
Γ contains only positive Bu-axis as its invariant set, in other words, any

positive orbit from a point in ∂R3
+

⋂
Γ but not in the positive Bu-axis will enter

IntR3
+. In particular, any periodic orbit if it exists lies in IntR3

+.
Let M = Df(E0) and λ1 < λ2 = −μb < λ3 be its eigenvalues and v1, v2 =

(0, 1, 0), v3 be their eigenvector, respectively. From the Perron–Frobenius theorem,
we may assume v1 �K 0. Let Π be the plane spanned by v1 and v2. We claim that
if any solution (Mu(t), Bu(t), Bi(t)) is convergent to E0 as t → ∞ and tangent to Π
at E0, then Mu(t) = Bi(t) = 0. This implies that there is neither homoclinic nor
heteroclinic orbit initiating from E0.

Proposition 3.2. (1) If the system (3.1) has a periodic orbit, then the periodic
orbit lies in IntR3

+;
(2) The system (3.1) has neither homoclinic nor heteroclinic orbit from E0.
The Jacobian of system (3.1) is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(
μM +

b1β1Bi
Bi +Bu

)
−
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2

− b1β2Bu
Bi +Bu

−
(
b1β2MiBi
(Bi +Bu)2

+ μB

)
b1β2MiBu
(Bi +Bu)2

b1β2Bu
Bi +Bu

b1β2MiBi
(Bi +Bu)2

−
(
μB + dB +

b1β2MiBu
(Bi +Bu)2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows from paper [19] that the system (3.1) is K-competitive in Γ, with K =
{(Mi, Bu, Bi) |Mi > 0, Bu > 0, Bi < 0}. From the expressions ofM1

i , B
1
u, B

1
i ,M

2
i , B

2
u,

B2
i ,M

∗
i , B

∗
u, B

∗
i , it is easy to see that the equilibria E1, E2, E0 or E0, E

∗ are un-
ordered in the K-order. It follows from Proposition 3.2 in [20] and Proposition 1.3 in
[21] that there exists a two-dimensional compact Lipschitz submanifold Σ such that
E1, E2 ∈ IntΣ or E∗ ∈ IntΣ, E0 ∈ ∂Σ. Moreover, Σ is K-balanced. Since Σ is
a two-dimensional compact Lipschitz submanifold and homeomorphic to a compact
domain in the plane, it is obvious that the Poincaré–Bendixson theorem holds for
the dynamics of (3.1) on Σ. This finding is the key point we can completely analyze
for the global behavior for the system (3.1). Moreover, we have the following useful
result.

Proposition 3.3. If the system (3.1) has no positive equilibrium, then the
disease-free equilibrium E0 is globally asymptotically stable in Γ.

Proof. Since system (3.1) has the Pioncaré–Bendixson property, the assumption
that system (3.1) has no positive equilibrium implies that there is no nontrivial peri-
odic orbit for (3.1). Thus every positive limit set contains the unique equilibrium E0.
If E0 is not globally asymptotically stable, then there is an entire orbit converging to
E0 in either direction, since asymptotical behavior for three-dimensional competitive
system is reduced to two dimension (see [19]), i.e., system (3.1) has a homoclinic orbit
from E0. This contradicts Proposition 3.2. The contradiction implies that the disease-
free equilibrium E0 of system (3.1) is globally asymptotically stable and completes
the proof of Proposition 3.3

3.1. The global stability of system (3.1) for the case R0 > 1. In this
subsection we mainly study the dynamics of system (3.1) for the case R0 > 1. We
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start with a general mathematical framework for proving global stability, which will
be used to prove the principal result in this subsection. The framework is developed
in the paper of Muldowney [23, 24, 27]. The presentation here follows from [24].

Let x→ f(x) ∈ R3 be a C1 function defined in R3
+. We consider the autonomous

system in Γ ⊂ R
3
+

(3.2) ẋ = f(x).

Let x(t, x0) denote the solution of (3.2) such that x(0, x0) = x0. The linear variational
equation of (3.2) with respect to x(t, x0) is given by

(3.3) ẏ(t) = Df(x(t, x0))y(t),

where Df is the Jacobian matrix of f . The second compound equation with respect
to the solution x(t, x0) ∈ Γ to (3.3) can be described by

(3.4) ż(t) = Df [2](x(t, x0))z(t).

Df [2] is the second additive compound matrix of the Jacobian matrix Df of f . Gen-
erally speaking, for a 3×3 matrix A = (aij)3×3, the second additive compound matrix
of A is the matrix A[2] defined as follows:⎡

⎣ a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎤
⎦ .

Suppose system (3.2) has a periodic solution x = p(t), with the least positive
period ω > 0 and the orbit γ = {p(t) : 0 ≤ t ≤ ω}. The orbit is orbitally stable if for
each ε > 0, there exists a δ > 0 such that any solution x(t), for which the distance
of x(0) from γ is less than δ, remains at a distance less than ε from γ for all t ≥ 0.
It is asymptotically orbitally stable if the distance of x(t) from γ also tends to zero
as t → ∞. This orbit γ is asymptotically orbitally stable with asymptotic phase if
it is asymptotically orbitally stable and there is a b > 0 such that any solution x(t),
for which the distance of x(0) from γ is less than b, satisfies |x(t) − p(t − ν)| → 0 as
t→ ∞ for some ν which may depend on x(0).

The following is a criterion given in [23] and [24].
Lemma 3.4 (see [24]). A sufficient condition for a periodic orbit γ = {p(t) : 0 ≤

t ≤ ω} of (3.2) to be asymptotically orbitally stable with asymptotic phase is that the
linear system

(3.5) ż(t) = Df [2](p(t))z(t)

is asymptotically stable.
Theorem 3.5. The trajectory of any nonconstant periodic solution to (3.1), if it

exists, is asymptotically orbitally stable with asymptotic phase.
Proof. The Jacobian matrix J(Mi, Bu, Bi) of system (3.1) is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−
(
μM +

b1β1Bi
Bi +Bu

)
−
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2

− b1β2Bu
Bi +Bu

−
(
b1β2MiBi
(Bi +Bu)2

+ μB

)
b1β2MiBu
(Bi +Bu)2

b1β2Bu
Bi +Bu

b1β2MiBi
(Bi +Bu)2

−
(
μB + dB +

b1β2MiBu
(Bi +Bu)2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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Suppose that the solution (Mi(t), Bu(t), Bi(t)) is periodic with the least period ω > 0.
The second compound system of (3.1) along a periodic solution (Mi(t), Bu(t), Bi(t))
is

(3.6)

Ẋ = −
(
μM + μB +

b1β1Bi
Bi +Bu

+
b1β2MiBi
(Bi +Bu)2

)
X +

b1β2MiBu
(Bi +Bu)2

Y

−
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2
Z,

Ẏ =
b1β2MiBi
(Bi +Bu)2

X −
(
μM + μB + dB +

b1β1Bi
Bi +Bu

+
b1β2MiBu
(Bi +Bu)2

)
Y

−
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2
Z,

Ż = − b1β2Bu
Bi +Bu

X − b1β2Bu
Bi +Bu

Y −
(

2μB + dB +
b1β2Mi

Bi +Bu

)
Z.

To show that (3.6) is asymptotically stable, we construct a Lyapunov function

V (X,Y, Z;Mi, Bu, Bi) = sup
{
Bi
Mi

(|X | + |Y |), |Z|
}
.

It follows from Proposition 3.2 that any periodic orbit, if it exists, lies in IntR3
+. Thus

any periodic solution (Mi(t), Bu(t), Bi(t)) is at a positive distance from the boundary,
and there exists a constant c1 > 0 such that

V (X,Y, Z;Mi, Bu, Bi) ≥ c1sup{|X |, |Y |, |Z|}

for all (X,Y, Z) ∈ R3 and (Mi(t), Bu(t), Bi(t)), t ∈ [0, ω]. The right derivative of V
along a solution (X(t), Y (t), Z(t)) to (3.6) and (Mi(t), Bu(t), Bi(t)) can be estimated
as follows:
(3.7)

D+|X(t)| ≤ −
(
μM + μB +

b1β1Bi
Bi +Bu

+
b1β2MiBi
(Bi +Bu)2

)
|X(t)|

+
b1β2MiBu
(Bi +Bu)2

|Y (t)| +
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2
|Z(t)|,

D+|Y (t)| ≤ b1β2MiBi
(Bi +Bu)2

|X(t)| −
(
μM + μB + dB +

b1β1Bi
Bi +Bu

+
b1β2MiBu
(Bi +Bu)2

)
|Y (t)|

+
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2
|Z(t)|

and
(3.8)

D+|Z(t)| ≤ b1β2Bu
Bi +Bu

|X(t)| + b1β2Bu
Bi +Bu

|Y (t)| −
(

2μB + dB +
b1β2Mi

Bi +Bu

)
|Z(t)|

=
b1β2BuMi

(Bi +Bu)Bi
Bi
Mi

(|X(t)| + |Y (t)|) −
(

2μB + dB +
b1β2Mi

Bi +Bu

)
|Z(t)|.
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Therefore,

D+
Bi
Mi

(|X(t)| + |Y (t)|)

=

(
Ḃi
Bi

− Ṁi

Mi

)
Bi
Mi

(|X(t)| + |Y (t)|) +
Bi
Mi

D+(|X(t)| + |Y (t)|)

≤
(
Ḃi
Bi

− Ṁi

Mi
− μM − μB − b1β1Bi

Bi +Bu

)
Bi
Mi

(|X(t)| + |Y (t)|)

+
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)Mi
|Z(t)|.

We conclude that (3.7) and (3.8) lead to

(3.9) D+V (t) ≤ sup{g1(t), g2(t)}V (t),

where

(3.10) g1(t) =
Ḃi
Bi

− Ṁi

Mi
− μM − μB − b1β1Bi

Bi +Bu
+
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)Mi
,

(3.11) g2(t) =
b1β2BuMi

(Bi +Bu)Bi
− 2μB − dB − b1β2Mi

Bi +Bu
.

Rewriting (3.1), we find that

(3.12)
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)Mi
=
Ṁi

Mi
+ μM ,

b1β2BuMi

(Bi +Bu)Bi
=
Ḃi
Bi

+ μB + dB .

From (3.10)–(3.12) we have

sup{g1(t), g2(t)} ≤ Ḃi
Bi

− μB,

and thus ∫ ω

0

sup{g1(t), g2(t)}dt ≤ logBi(t)|ω0 − μBω = −μBω < 0,

since Bi(t) is periodic with the least period ω. This relation and (3.9) imply that
V (t) → 0 as t → +∞, and, in turn, that (X(t), Y (t), Z(t)) → 0 as t → +∞.
As a result, the linear system (3.6) is asymptotically stable, and the periodic so-
lution (Mi(t), Bu(t), Bi(t)) is asymptotically orbitally stable with asymptotic phase
by Lemma 3.4. This completes the proof.

Our principal result in this subsection can be stated as follows.
Theorem 3.6. Assume that R0 > 1. Then the unique endemic equilibrium E∗

is globally stable in IntΓ.
Proof. Firstly, we claim that system (3.1) has no nontrivial periodic orbit if

R0 > 1. Suppose not, then there is a nontrivial periodic orbit γ with every point
positive. Therefore, there exists a two-dimensional compact Lipschitz submanifold Σ,
which must contain E∗ in its interior. Without loss of generality, we may assume that
γ is the nearest periodic orbit from E∗ in Σ. From the stability of E∗, γ is unstable
on Σ, contradicting Theorem 3.5. This implies that every positive limit set contains
an equilibrium.
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Secondly, we analyze the geometrical behavior of the stable manifold W s(E0).
Direct calculation yields that λ1 < λ2 = −μB < 0 < λ3, where λ1, λ2, λ3 are the
eigenvalues of the linearized matrix at E0. Therefore, W s(E0) is tangent to the plane
Π spanned by v1 and v2. Therefore, W s(E0)

⋂
R3

+ = {(0, μ, 0) : μ > 0}. This shows
that any solution from a positive initial point cannot converge to E0.

Finally, for any initial point P = (Mi(0), Bu(0), Bi(0)), with (Mi(0))2+(Bi(0))2 	=
0, we conclude that ω(P ) = {E∗}. Otherwise, there exists such a P such that ω(P ) 	=
{E∗}. By the stability of E∗, E∗ is not in ω(P ). By the arguments in the first
and second paragraph, ω(P ) contains E0 and is not a singleton. Since asymptotical
behavior for the three-dimensional competitive system is reduced to two dimensions
(see [19]), ω(P ) contains an entire orbit which is convergent to E0 as t → ±∞.
The second paragraph implies that such an entire orbit lies in positive Bu-axis, a
contradiction. This completes the proof of Theorem 3.6.

We remark that Theorem 3.5 also holds for the case R0 ≤ 1. In the proof of The-
orem 3.6, we use only Theorem 3.5 and the fact that the unique positive equilibrium
E∗ is locally asymptotically stable and the boundary equilibrium E0 is unstable, with
the stable manifold two-dimensional and unstable manifold one-dimensional.

3.2. The global stability of system (3.1) for the critical case R0 = 1.
Now let us state the main result of this subsection.

Theorem 3.7. Assume R0 = 1. If μM (dB−μB) ≤ b1β1μB, then the disease-free
equilibrium E0 of system (3.1) is globally asymptotically stable; if μM (dB − μB) >
b1β1μB, the unique positive equilibrium E∗ of system (3.1) is globally asymptotically
stable in IntR3

+.
Proof. If R0 = 1 and μM (dB − μB) ≤ b1β1μB , it follows from Theorem 2.1 that

the disease-free equilibrium E0 is the unique equilibrium. Proposition 3.3 implies that
the disease-free equilibrium E0 of system (3.1) is globally asymptotically stable and
completes the proof of the first conclusion.

Now we present the proof of the second conclusion. Assume that R0 = 1 and
μM (dB − μB) > b1β1μB. It follows from Theorem 2.1 that system (3.1) has a unique
boundary equilibrium E0 and a unique positive equilibrium E∗. Recall the remark
for Theorem 3.6, in order to prove the second conclusion, it then suffices to show
that E∗ is locally asymptotically stable and E0 is unstable, with the stable manifold
two-dimensional and unstable manifold one-dimensional.

We first claim that E∗ is locally asymptotically stable. After extensive algebraic
calculations [12], the characteristic equation of the linearized system of (3.1) at E∗

can be read
(3.13) λ3 +A1λ

2 +A2λ+A3 = 0,

where

A1 =
1

(ΠB − dBB∗
i )(ΠB − (μB + dB)B∗

i )
[b1β1μBB

∗
i (ΠB − (μB + dB)B∗

i )

+ (ΠB − dBB
∗
i )[(μM + 2μB + dB)(ΠB − (μB + dB)B∗

i ) + (μB + dB)μBB∗
i ]];

A2 =
μMμBΠB

(ΠB − (μB + dB)B∗
i )

+
(μB + dB)μB[(ΠB − dBB

∗
i )

2 + dBμBB
∗
iB

∗
i ]

(ΠB − dBB∗
i )(ΠB − (μB + dB)B∗

i )

+
ΠBμ

2
Bb1β1B

∗
i

(ΠB − dBB∗
i )(ΠB − (μB + dB)B∗

i )
+
b1β1μB(μB + dB)B∗

i

ΠB − dBB∗
i

;

A3 =
(μB + dB)μBB∗

i

(ΠB − dBB∗
i )2(ΠB − (μB + dB)B∗

i )
[dB(μB + dB)(b1β1μB − dBμM )(B∗

i )
2

+ 2ΠBdB(dBμM − b1β1μB)B∗
i + Π2

B(b1β1μB + μMμB − dBμM )].
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We also have

A1A2 −A3 = D2b
2
1 +D1b1 +D0,

where

D2 =
((μB + dB)(ΠB − (dB + μB)B∗

i ) + ΠBμB)(β1μBB
∗
i )

2

(ΠB − dBB∗
i )2(ΠB − (μB + dB)B∗

i )
;

D1 =
μBβ1B

∗
i μM ((dB + μB)(ΠB − (dB + μB)B∗

i ) + 2ΠBμB)
(ΠB − dBB∗

i )(ΠB − (μB + dB)B∗
i )

+
μBβ1B

∗
i ((dB + μB)(ΠB − (dB + μB)B∗

i ) + ΠBμB)2

(ΠB − dBB∗
i )(ΠB − (μB + dB)B∗

i )2
;

D0 =
ΠBμBμ

2
M

ΠB − (μB + dB)B∗
i

+
1

(ΠB − dBB∗
i )(ΠB − (μB + dB)B∗

i )2

×{ΠBμBμM ((μB + dB)(ΠB − (μB + dB)B∗
i )

2

+ (2μB+dB)(ΠB− (μB + dB)B∗
i )(ΠB−dBB∗

i )+(μB+dB)μBB∗
i (ΠB − dBB

∗
i ))

+μB(μB + dB)[(dB + μB)(ΠB − (μB + dB)B∗
i )

+ ΠBμB ]((ΠB − dBB
∗
i )

2 + μBdB(B∗
i )

2)}.

Thus it is clear that

A1A2 −A3 = D2b
2
1 +D1b1 +D0 > 0, A1 > 0,

since 0 < B∗
i <

ΠB

μB+dB
.

Let λ̄1, λ̄2, λ̄3 be the roots of (3.13) and assume Reλ̄1 ≤ Reλ̄2 ≤ Reλ̄3. The
Perron–Frobenius theorem implies that λ̄1 < 0. Since R0 = 1 and μM (dB − μB) >
b1β1μB, direct calculation yields that Δ 	= 0. It follows from Proposition 3.2 in paper
[12] that A3 	= 0. The compact of Σ, together with the fact that the dynamics of
system (3.1) on Σ is positively invariant, implies that A3 = −λ̄1λ̄2λ̄3 > 0. Thus we
have A1 > 0, A3 > 0, A1A2 − A3 > 0. By the Routh–Huriwitz criterion, we obtain
that Reλ̄1 < 0,Reλ̄2 < 0,Reλ̄3 < 0. Thus the positive equilibrium E∗ is locally
asymptotically stable.

It is easy to see that the linearized matrix for (3.1) at E0 has two negative eigen-
values and 0. Suppose that E0 is locally asymptotically stable. Then, pick up a
point which is neither in the basin of attraction for E∗ nor in the basin of attraction
for E0. The positive limit set for this point contains no equilibrium and hence is a
nontrivial periodic orbit, contradicting Theorem 3.5. Thus, E0 is unstable with the
stable manifold two-dimensional and unstable manifold one-dimensional.

Using the same way as in the proof of Theorem 3.6, we conclude that E∗ is
globally asymptotically stable in this case.

3.3. The global stability of system (3.1) for the case R0 < 1. In this
subsection, we mainly prove the following principal results.

Theorem 3.8. Assume that R0 < 1. The dynamics of system (3.1) are deter-
mined by the number of the positive equilibria, and there are three cases:

(1) If a2 > 0, 0 < −a1
2a2

< B∗
i2, and Δ > 0, then system (3.1) has switch

phenomenon. That is, a two-dimensional stable manifold for E1 separates intR3
+

into two parts, denoted by V, U , respectively. Part V contains E0 and one branch
Wu

1 (E1) of the unstable manifold for E1, and part U contains E2 and the other branch
Wu

2 (E1) of the unstable manifold for E1. Moreover, if (Mi(0), Bu(0), Bi(0)) ∈ V ,
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then (Mi(t), Bu(t), Bi(t)) → E0 as t → ∞; if (Mi(0), Bu(0), Bi(0)) ∈ U , then
(Mi(t), Bu(t), Bi(t)) → E2 as t → ∞; otherwise, (Mi(0), Bu(0), Bi(0)) ∈ W s(E1)
and (Mi(t), Bu(t), Bi(t)) → E1 as t→ ∞.

(2) If a2 > 0, 0 < −a1
2a2

< B∗
i2, and Δ = 0, then system (3.1) also has a two-

dimensional stable manifold for E1 which also separates intR3
+ into two parts, denoted

by V, U , respectively. Part V contains E0 and one branch W c
1 (E1) of the center

manifold for E1, and part U contains no positive equilibrium and the other branch
W c

2 (E1) of the center manifold for E1. Moreover, if (Mi(0), Bu(0), Bi(0)) ∈ V , then
(Mi(t), Bu(t), Bi(t)) → E0 as t → ∞; otherwise, (Mi(t), Bu(t), Bi(t)) → E1 as t →
∞.

(3) Otherwise, the disease-free equilibrium E0 is globally asymptotically stable.
Proof. First, let us consider the case a2 > 0, 0 < −a1

2a2
< B∗

i2, and Δ > 0.
By Theorems 2.1 and 2.2, (3.1) has three equilibria E0, E

1, E2. Moreover, E0, E
2

are locally asymptotically stable, the positive equilibrium E1 is a saddle point, and
W s(E1) = 2,Wu(E1) = 1. Let U be the basin of attraction of the positive equilibrium
E2 in IntR3

+. Then U is an open simply connected set, i.e., each closed curve in U

can be continuously deformed to a point within U . Let U be the closure of the set
U in IntR3

+. Since E0 is locally asymptotically stable, it follows that E0 	∈ U . The
result that any positive orbit from a point in ∂R3

+ but not in positive Bu-axis will
enter IntR3

+ implies that there exists constant ξ > 0 such that

lim inf
t→∞

Mi(t) > ξ, lim inf
t→∞

Bu(t) > ξ, lim inf
t→∞

Bi(t) > ξ,

provided that the initial points (Mi(0), Bu(0), Bi(0)) lie in U by [25]. Thus there
exists a compact absorbing set J ⊂ U .

Denote by W the Euclidean unit ball in R2, and let W and ∂W be its closure
and boundary, respectively. A function ϕ ∈ Lip(W → U) will be described as a
simply connected rectifiable 2-surface in U ; a function ψ ∈ Lip(∂W → U) is a closed
rectifiable curve in U and will be called simple if it is one to one.

We claim that there is not any simple closed rectifiable curves which are invariant
with respect to system (3.1) in U . Assume that our claim is not true, i.e., there exists
a simple closed rectifiable curve ψ ∈ Lip(∂W → U) in U , which is invariant with
respect to system (3.1). Since system (3.1) is K-competitive and dimWu(E1) = 1, we
have that ψ ∈ Σ.

Denote

Π(ψ,U) = {ϕ ∈ Lip(W → U) : ϕ(∂W ) = ψ(∂W )}.

Then Π(ψ,U ) is nonempty, since Σ is a two-dimensional compact Lipschitz manifold.
Define a functional S on Π(ψ,U) by

Sϕ =
∫
W

∣∣∣∣P (ϕ)
∂ϕ

∂u1
∧ ∂ϕ

∂u2

∣∣∣∣ ,
where (u1, u2) ∈ W , ∧ is Grassman product, and

P (Mi, Bu, Bi) =

⎛
⎝

Bi

Mi
0 0

0 Bi

Mi
0

0 0 1

⎞
⎠ .

From Proposition 2.2 of [26] and the fact that |P−1(Mi, Bu, Bi)| is uniformly bounded
for (Mi, Bu, Bi) in any compact subset of U , for each compact F ⊂ U there exists
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δ > 0 such that

(3.14) Sϕ ≥ δ

for all ϕ ∈ Π(ψ,U ) such that ϕ(W ) ⊂ F . Let x = (Mi, Bu, Bi) and f(x) denote the
vector field of (3.1), and let ϕt = x(t, ϕ). Then yi(t) = ∂ϕt

∂ui
, i = 1, 2, are solutions of

the linear variational equation of (3.1)

(3.15) ẏ(t) = Df(x(t, ϕ))y(t),

where

Df(x(t, ϕ))

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(μM +
b1β1Bi
Bi +Bu

) −
b1β1(ΠM

μM
−Mi)Bi

(Bi + Bu)2
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2

− b1β2Bu
Bi +Bu

−
(
b1β2MiBi
(Bi +Bu)2

+ μB

)
b1β2MiBu
(Bi +Bu)2

b1β2Bu
Bi +Bu

b1β2MiBi
(Bi +Bu)2

−
(
μB + dB +

b1β2MiBu
(Bi +Bu)2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and z(t) = ∂ϕt

∂u1
∧ ∂ϕt

∂u2
is a solution of the second compound equation of (3.15) (see

[22, 23])

(3.16) ż(t) = Df [2](x(t, ϕ))z(t),

where
(3.17)
Df [2](x(t, ϕ)) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(
μM + μB +

b1β1Bi
Bi +Bu

+
b1β2MiBi
(Bi +Bu)2

) b1β2MiBu
(Bi +Bu)2

−
b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2

b1β2MiBi
(Bi +Bu)2

−
(
μM + μB + dB +

b1β1Bi
Bi +Bu

+
b1β2MiBu
(Bi +Bu)2

) −
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2

− b1β2Bu
Bi +Bu

− b1β2Bu
Bi +Bu

−
(

2μB + dB +
b1β2Mi

Bi +Bu

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Straightforward differentiation shows that w(t) = P (ϕt)∂ϕt

∂u1
∧ ∂ϕt

∂u2
satisfies the differ-

ential equation

ẇ(t) = B(ϕt(u))w(t),

where

B = PfP
−1 + P

∂f

∂x

[2]

P−1,

where the matrix Pf is obtained by replacing each entry pij of P by its derivative in

the direction of f, pijf . The matrix B = PfP
−1 + P ∂f

∂x

[2]
P−1 can be written in the
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following block form:

B =
(
B11 B12

B21 B22

)
,

with

B11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ḃi
Bi

− Ṁi

Mi
−
(
μM + μB +

b1β1Bi
Bi +Bu

+
b1β2MiBi
(Bi +Bu)2

) b1β2MiBu
(Bi + Bu)2

b1β2MiBi
(Bi +Bu)2

Ḃi
Bi

− Ṁi

Mi
−
(
μM + μB +

dB +
b1β1Bi
Bi +Bu

+
b1β2MiBu
(Bi +Bu)2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B12 =

⎛
⎜⎜⎜⎝
− Bi
Mi

b1β1(ΠM

μM
−Mi)Bu

(Bi +Bu)2

− Bi
Mi

b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)2

⎞
⎟⎟⎟⎠ ,

B21 =
(
−Mi

Bi

b1β2Bu
Bi +Bu

−Mi

Bi

b1β2Bu
Bi +Bu

)
,

B22 = −
(

2μB + dB +
b1β2Mi

Bi +Bu

)
.

Let z = (u, v, w) denote the vectors in R3; we select a norm in R3 as

|(u, v, w)| = sup{|u| + |v|, |w|}.

Let μ(B) be the Lozinskĭı measure of B with respect to the induced matrix norm
| · | in R3, defined by

μ(B) = lim
h→0+

|I + hB| − 1
h

.

Then the Lozinskĭı measure μ(B) with respect to | · | can be estimated as follows
(see [28] and [29]):

μ(B) ≤ sup{ζ1, ζ2},

where

(3.18) ζ1 = μ1(B11)+ |B12| ≤
Ḃi
Bi

− Ṁi

Mi
−μM −μB − b1β1Bi

Bi +Bu
+
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)Mi
,

(3.19) ζ2 = B22 + |B21| ≤
b1β2BuMi

(Bi +Bu)Bi
− 2μB − dB − b1β2Mi

Bi +Bu
.

Note that μ1(B11) is the Lozinskĭı measure of the 2 × 2 matrix B11 with respect to
the l1 norm in R2, |B12| and |B21| are the operator norms of B12 and B21 when they
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are regarded as mappings from R to R2 and from R2 to R, respectively, and R2 is
endowed with the l1 norm. Also note that since B22 is a scalar, its Lozinskĭı measure
with respect to any vector norm in R is equal to B22.

Rewriting (3.1), we find that

(3.20)
b1β1(ΠM

μM
−Mi)Bi

(Bi +Bu)Mi
=
Ṁi

Mi
+ μM ,

b1β2BuMi

(Bi +Bu)Bi
=
Ḃi
Bi

+ μB + dB .

From (3.18)–(3.20) we have

μ(B) ≤ Ḃi
Bi

− μB.

A solution (Mi(t), Bu(t), Bi(t)) to system (3.1) with (Mi(0), Bu(0), Bi(0)) in the ab-
sorbing set J exists for all t > 0. Thus there exists T > 0 such that t > T implies
that ∫ t

0

μ(B)dt ≤ log
Bi(t)
Bi(0)

− μBt < −μB
2
t

for all (Mi(0), Bu(0), Bi(0)) ∈ J . From a property of Lozinskĭı measure, we have

Sϕt =
∫
W

∣∣∣∣P (ϕt)
∂ϕt
∂u1

∧ ∂ϕt
∂u2

∣∣∣∣
≤
∫
W

∣∣∣∣P (ϕ)
∂ϕ

∂u1
∧ ∂ϕ

∂u2

∣∣∣∣ exp
(∫ t

0

μ(B(ϕs(u))ds)
)

≤ Sϕ exp
(
−μB

2
t
)
.

Therefore, Sϕt → 0 as t → ∞. This contradicts (3.14), since ψ is invariant with
respect to system (3.1), ψt ∈ Π(ψ,U), and ϕt(W ) ⊂ J for all sufficiently large t.
This contradiction implies that no simple closed rectifiable curve in U is invariant
with respect to system (3.1). In particular, it rules out not only periodic trajectories
but also homoclinic trajectories and heteroclinic loops, since each case gives rise to a
simple closed rectifiable curve in U .

We secondly claim that there is no period orbit on Σ. Suppose not, then there
is a nontrivial periodic orbit χ in Σ, which must contain E2 in its interior. Without
loss of generality, we may assume that χ is the nearest periodic orbit from E2 in
Σ. This implies that χ ⊂ U , contradicting the above discussion. Similarly, we can
conclude that there is no homoclinic orbit in Σ. Thus every positive limit set contains
an equilibrium.

Since E0 is locally asymptotically stable, let V be the basin of attraction on
the equilibrium E0. Pick up an initial point Q = (Mi(0), Bu(0), Bi(0)) and Q ∈
IntR3

+ \ (U ∪V ). Then we can easily conclude that ω(Q) = {E1}, since every positive
limit set contains an equilibrium, i.e., Q ∈ W s(E1). This completes the proof of the
first conclusion.

Second, let us consider the case a2 > 0, 0 < −a1
2a2

< B∗
i2, and Δ = 0. It follows from

Theorem 2.1 that two positive equilibria E1, E2 coalesce into one positive equilibrium
E1. By Theorem 2.2, E0 is locally asymptotically stable. This, together with the
index theory of dynamics system on a two-dimensional compact manifold Σ which is
positive invariant, implies that E1 is unstable. Thus there is no period and homoclinic
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orbit, and every positive limit set contains an equilibrium. Using the same way as in
the proof of the first conclusion, we can conclude that the second conclusion is true.

Otherwise, by Theorem 2.1, there is no positive equilibrium on Σ. It follows from
Proposition 3.3 that the disease-free equilibrium E0 is globally asymptotically stable.
This completes the proof of Theorem 3.8.

4. The classification for global behavior of system (2.2). In this section,
we mainly study the dynamics of system (2.2). First, let us consider the dynamics of
the following subsystem:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = ΠH − b2β3MiS

NH
− μHS,

dE
dt = b2β3MiS

NH
− μHE − αE,

dI
dt = αE − μHI − δI,

dH
dt = δI − μHH − dHH − τH,

dR
dt = τH − μHR.

Combining Theorems 3.6, 3.7, and 3.8, all solutions of system (2.2) starting in D
satisfy that Mi(t) → M#

i as t → +∞, where M#
i is constant. Consequently, the

limiting system of (4.1) is

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = ΠH − b2β3M

#
i S

NH
− μHS,

dE
dt = b2β3M

#
i S

NH
− μHE − αE,

dI
dt = αE − μHI − δI,

dH
dt = δI − μHH − dHH − τH,

dR
dt = τH − μHR.

After simple algebraic analysis, system (4.2) has a unique positive equilibrium Ẽ#(S#,
E#, I#, H#, R#). The Jacobian matrix of the system (4.2) associated with Ẽ# is the
matrix A22 defined in section 2. Then, it follows from section 2 that the unique
positive equilibrium Ẽ# is locally asymptotically stable.

Using the change of variables XH = NH+ dH

τ R,X1 = S+E, and X2 = S+E+I,
system (4.2) can be written as

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXH

dt = ΠH − μHXH ,

dX1
dt = ΠH − (μH + α)X1 + αS,

dX2
dt = ΠH − (μH + δ)X2 + δX1,

dS
dt = ΠH − b2β2M

#
i S

NH
− μHS,

dNH

dt = ΠH − (μH + dH + τ)NH + dHX2 + τXH .

It follows from the first equation of system (4.3) that XH(t) → ΠH

μH
as t→ +∞. Then,
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the limiting system of (4.3) is

(4.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dX1
dt = ΠH − (μH + α)X1 + αS,

dS
dt = ΠH − b2β2M

#
i S

NH
− μHS,

dNH

dt = ΠH − (μH + dH + τ)NH + dHX2 + τ ΠH

μH
,

dX2
dt = ΠH − (μH + δ)X2 + δX1.

Straightforward calculation yields that system (4.4) has only one positive equilibrium
(X#

1 , S
#, N#

H , X
#
2 ) = (S# +E#, S#, N#, S# +E# + I#) in R4

+. From the Jacobian
of system (4.4), we can easily verify that system (4.4) is a cooperative irreducible
system in R4

+ [19]. By Theorem 3.1 in [19] or the result in [13], we conclude that the
equilibrium (X#

1 , S
#, N#

H , X
#
2 ) is globally asymptotically stable in R4

+. Since system
(4.4) is the limiting system of (4.3) and system (4.3) is the limiting system of (4.2),
it follows from Theorem 2.3 in paper [15] that the unique positive equilibrium Ẽ# is
a globally asymptotically stable equilibrium of system (4.2).

Therefore, the dynamics of system (2.2) can be easily derived from Theorems 3.6,
3.7, 3.8, and the above discussion.

Theorem 4.1. (A) If R0 > 1 or R0 = 1 and μM (dB − μB) > b1β1μB, then the
unique positive equilibrium E∗ of system (2.2) is globally asymptotically stable in D.

(B) If R0 < 1, then
(B1) if a2 > 0, 0 < −a1

2a2
< B∗

i2, and Δ > 0, then system (2.2) has switch phe-
nomenon. That is, system (2.2) has a seven-dimensional stable manifold for E1 which
separates intR8

+ into two parts V ×R5
+ and U ×R5

+. If an initial point lies in V ×R5
+,

then the solution (Mi(t), Bu(t), Bi(t), S(t), E(t), I(t), H(t), R(t)) → E0 as t → ∞; if
an initial point lies in U×R5

+, then (Mi(t), Bu(t), Bi(t), S(t), E(t), I(t), H(t), R(t)) →
E2 as t→ ∞; otherwise, the solution (Mi(t), Bu(t), Bi(t), S(t), E(t), I(t), H(t), R(t)) →
E1 as t→ ∞;

(B2) if a2 > 0, 0 < −a1
2a2

< B∗
i2, and Δ = 0, then system (2.2) also has a seven-

dimensional stable manifold for E1 which also separates intR8
+ into two parts. If an

initial point lies in V ×R5
+, then the solution (Mi(t), Bu(t), Bi(t), S(t), E(t), I(t), H(t),

R(t)) → E0 as t → ∞; otherwise, the solution (Mi(t), Bu(t), Bi(t), S(t), E(t), I(t),
H(t), R(t)) → E1 as t→ ∞.

(C) Otherwise, the disease-free equilibrium E0 is globally asymptotically stable.

5. Discussion. In this section, we mainly summarize our results and make some
further remarks.

In this article, we have mainly studied the asymptotical behavior of a nine-
dimensional WNV model. By applying an asymptotically autonomous convergence
theorem, competitive and cooperative theory, and a criterion for the orbital stability
of periodic orbits associated with higher-dimensional nonlinear autonomous systems,
we provide a complete classification of dynamics for this model in Theorem 4.1, which
includes the critical case. It is shown that the dynamics of system (2.2) is determined
by the basic reproduction number and the number of the positive equilibria. There
are only four cases:

(1) If there is no positive equilibrium, then the unique disease-free equilibrium E0

is globally asymptotically stable. In this case, the dynamics of the model on Σ can
be depicted in Figure 1(a).

(2) If R0 ≥ 1 and system (2.2) has a unique positive equilibrium, then the unique
endemic equilibrium is globally asymptotically stable in the interior of the feasible
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Fig. 1. The possible dynamics of system (2.2) on Σ.

region, and the disease persists at an endemic equilibrium if it initially exists. In
particular, when R0 > 1, system (2.2) has a unique positive equilibrium, and the
unique positive is globally asymptotically stable in IntR8

+. This result provides a
positive answer for the conjecture proposed in [11, 12]. In this case, the dynamics of
the model on Σ can be depicted in Figure 1(b).

(3) If system (2.2) has two positive equilibria E1, E2, then system (2.2) has switch
phenomenon, that is, a seven-dimensional stable manifold for E1 separates intR8

+ into
two parts. One contains E0 and one branch Wu

1 (E1) of the unstable manifold for E1,
the other contains E2 and the other branch Wu

2 (E1) of the unstable manifold for E1.
All solutions not in W s(E1) are convergent to either E0 or E2. This result indicates
that the reproduction number can’t simply describe whether WNV will prevail or not
and suggests that we should pay attention to the initial states of WNV. In this case,
the dynamics of the model on Σ can be depicted in Figure 1(c).

(4) Otherwise, system (2.2) has a unique positive equilibrium E1 which has one-
dimensional center manifold, and there exists a seven-dimensional stable manifold
for E1 which also separates intR8

+ into two parts. One contains E0 and one branch
W c

1 (E1) of the center manifold for E1, the other contains no positive equilibrium and
the other branch W c

2 (E1) of the center manifold for E1. All solutions are convergent
to either E0 or E1, respectively. In this case, the dynamics of system (2.2) on Σ can
be depicted in Figure 1(d).

The basic reproduction number R0 of the model can be expressed by

R0 =

√
b21β1β2μBΠM

μ2
M (μB + dB)ΠB

.

Now let us explain the biological means of R0. If system (1.1) has no infected female
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mosquitoes and infected birds and is in balance, then Theorem 2.1 implies that the
numbers of the susceptible female mosquitos and birds are ΠM

μM
and ΠB

μB
, respectively.

On these conditions, the average times that one infected bird is bitten by mosquitoes
can be defined by

b̂1 :=
b1

ΠM

μM

ΠB

μB

.

Since the mean lifespan of the infected bird is

τ̂B :=
1

μB + dB
,

the average number of the infected female mosquitoes generated by infection of the
infected bird can be defined as

M̂i := b̂1β1τ̂B =
b1β1

ΠM

μM

ΠB

μB

1
μB + dB

.

The average number of the infected birds generated by infection of the infected female
mosquitoes can be defined as

B̂i := b2β2
1
μM

.

Therefore, the total number of secondary cases generated by transmission of one
infected bird can be defined by

R̃0 := B̂iM̂i =
b1β1

ΠM

μM

ΠB

μB

1
μB + dB

b2β2
1
μM

= (R0)2

when the numbers of the susceptible mosquitoes and birds are ΠM

μM
and ΠB

μB
, respec-

tively. If R0 > 1, i.e., R̃0 > 1, Theorem 4.1(A) implies that the WNV will prevail,
since an infective bird will be replaced with greater than one new case. If R0 < 1 is
less than one, Theorem 4.1(B) implies that the WNV will be likely to fade out, since
an infective individual will be replaced with less than one new case.

It follows from the expression of R0 that the quantity R0 grows with the recruit-
ment of uninfected mosquito population, the natural death rate of birds, and the per
capita rate of the mosquitoes on the birds but falls with the natural death rate of
mosquitoes, the recruitment of uninfected birds, and the WNV-induced death rate of
birds. Thus, this result implies that the WNV spreads more rapidly if birds migrate
to a region with higher mosquito density, and it also implies that it is an efficient way
to halt the spread of WNV by using the mosquito-reduction strategies. However, the
decreasing of the recruitment of the uninfected birds and the increasing natural death
rate of the birds is beneficial to the prevalence of the WNV. This tells us that it is a
risk factor for the spread of WNV to kill the birds during the period that the WNV
prevails. By contraries, we should increase the recruitment of the uninfected birds.

Additionally, in this paper we consider only the dynamics of the model with WNV
transmission among one single mosquito–bird-human community. However, the effect
of seasonality and migration of birds are important factors, since, for nontropical
regions, the cold season signals the end of the epidemic season, while the heterogeneity
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and migration of birds from region to region plays a key role in the viral amplification
process. Also, it is feasible that infected birds can migrate from one region to another.
Thus, it is also interesting to study how the dynamics of the model incorporates
infected birds can migrate from one region to another. We leave these for future
investigations.
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STABILITY OF CURVED INTERFACES IN THE PERTURBED
TWO-DIMENSIONAL ALLEN–CAHN SYSTEM∗

DAVID IRON† , THEODORE KOLOKOLONIKOV†, JOHN RUMSEY† , AND

JUNCHENG WEI‡

Abstract. We consider the singular limit of a perturbed Allen–Cahn model on a bounded two-

dimensional domain:

{
ut = ε2Δu− 2(u− εa)(u2 − 1), x ∈ Ω ⊂ R

2

∂nu = 0, x ∈ ∂Ω
where ε is a small parameter

and a is an O(1) quantity. We study equilibrium solutions that have the form of a curved interface.
Using singular perturbation techniques, we fully characterize the stability of such an equilibrium
in terms of a certain geometric eigenvalue problem, and give a simple geometric interpretation of
our stability results. Full numerical computations of the time-dependent PDE as well as of the
associated two-dimensional eigenvalue problem are shown to be in excellent agreement with the
analytical predictions.

Key words. Allen–Cahn equation, interface motion, spectral analysis, matched asymptotic
expansions
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1. Introduction. We consider a perturbed two-dimensional Allen–Cahn equa-
tion,

(1)
{
ut = ε2Δu + f(u) + εg(u), x ∈ Ω ⊂ R2 ,
∂nu = 0, x ∈ ∂Ω .

Here, Ω is a smooth two-dimensional domain and f(u) is a smooth function having
the following properties:

1. f has three roots u− < u0 < u+ with f ′(u±) < 0,
2.
∫ u+

u−
f(u) du = 0,

and g(u) is any smooth function function with
∫ u+

u−
g(u) du �= 0.

The standard Allen–Cahn equation corresponds to g = 0, f = −2u(u2 − 1). This
model was introduced in [2] as a simple model of evolution of antiphase boundaries and
is now well understood. In the limit ε→ 0, the solution forms a sharp interface layer.
On one side of the interface, u ∼ u−, while on the other, u ∼ u+. Once the interface
layer is formed, its motion is described by the mean curvature law which minimizes
the perimeter of the interface ([5], [9]). The stable stationary solution corresponds
to an interface with a minimal perimeter that intersects the boundary orthogonally
([12]). Therefore, any nontrivial stable steady equilibrium of the unperturbed Allen–
Cahn equation consists of a straight interface. The stability of such an interface has
been analyzed by several authors in variety of settings; see for instance [1], [10], [11],
[14], [16], [18]. The main result is that such an interface can be stable provided the
domain contains a “neck”. More precisely, as shown in [10], [11], in the limit ε → 0,
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Fig. 1. Motion of an interface for the perturbed Allen–Cahn model given by ut = ε2Δu−2(u−
εa)(u2 − 1), with a = 0.3, ε = 0.07. Top row: the interface is unstable and eventually disappears.
Bottom row: The interface gets “stuck” in the middle of the domain; a nontrivial equilibrium is
reached. The domain height is 1.5 and the distance between the side boundaries is 0.5. The radius
of the left boundary is 1.5 for the top row and 1.0 for the bottom row.

the interface stability depends only on the curvatures κ+, κ− of the boundary at the
two points that intersect the interface, and the interface length �. The interface is
stable provided that �+κ−1

+ +κ−1
− < 0. Geometrically, the threshold case corresponds

to the two boundaries that are locally concentric.
More generally, the perturbed Allen–Cahn equation (1) is used as a prototype

model of wave propagation in various contexts. In two or higher dimensions, a small
perturbation leads to weakly curved fronts. For an overview, see [15], Chapter 2.2. In
the absence of boundaries, the front becomes a closed curve which lies on a perimeter
of some circle. Moreover, such a front is unstable, and either shrinks to a point or else
expands indefinitely, depending on the initial conditions [15]. A typical nonlinearity
is f + εg = −2(u − A)(u2 − 1) where A is close to 0. This system (but without the
assumption that A is small) was used as a simple model of spreading depressions in the
human brain that are associated with cerebral strokes [4]. (When A is replaced by an
inhomogeneous term a(x), it is called the Fife–Greenlee problem [8], [6].) For convex
domains, it is known ([3] [13]) that the only stable solution is a trivial equilibrium.
Indeed any interface propagates until it merges with the boundary and disappears.

However, when the domain consists of two boxes of different heights, it was shown
in [4] that the interface can get “stuck” at the juncture between the two boxes, pro-
vided their dimensions are sufficiently different. A similar phenomenon was reported
in [17], where the propagation of chemical pulses in complex geometries with corners
and junctures was studied numerically and experimentally.

The perturbation by a small term εg(u) has a large effect on the shape and
stability of the interface. In particular, the equilibrium solution now consists of a
curved interface. In the limit ε→ 0, this curve is part of a circular arc whose radius R̂,
given by (2) below and is independent of the domain shape. For non-convex domains,
it is possible to get a stable interface. One such domain is illustrated in Figure 1. It
consists of a rectangle with a circular cutout. In the first simulation (top row), the
interface propagates through the domain without reaching any equilibrium, whereas
in the second simulation (second row) the interface settles to a steady state somewhere
in the middle of the domain. The only difference between the two simulations is the
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curvature of the left boundary of the domain, which has been increased in the second
simulation.

In this paper, we fully characterize the stability of curved interfaces. First, we pro-
vide the necessary and sufficient conditions that describe the stability of an interface.
Second, we give a simple geometric interpretation of our stability results.

Before stating our stability result, we characterize the radius of the steady state.
This simple result was already given in [16], Appendix A. We summarize it here as
following.

Proposition 1. Let U be a solution to

U ′′(y) + f(U) = 0, U → u± as y → ±∞

and define

(2) R̂ = −
∫∞
−∞ U ′2(y)dy∫ u+

u−
g(u)du

.

Suppose that there exists a circle of radius R̂ which intersects ∂Ω orthogonally, and
let p be its center. Then in the limit ε→ 0 we have

(3) u(x) ∼ U

(
R̂− |p− x|

ε

)
, ε→ 0.

Moreover, any solution to (1) of the form (3) must satisfy (2).
We are now ready to state our main result.
Theorem 2. Let u(x) be the steady-state solution as given in Proposition 1 and

R̂ its radius as defined in (2). Let � be the length of the interface and let κ+, κ− be
the curvatures of the boundary at the points which intersect the interface. Consider
the stability problem associated with (1),

(4)
{
λφ = ε2Δφ+ f ′(u)φ+ εg′(u)φ, x ∈ Ω
∂nφ = 0, x ∈ ∂Ω.

In the limit ε→ 0, the eigenvalues λ are of O(ε2) given by

(5a) λ = ε2λ0,

where λ0 solves the following geometric eigenvalue problem:

(5b)

⎧⎪⎨
⎪⎩

T ′′ +
(
R̂−2 − λ0

)
T = 0

T ′(−�/2) + κ−T (−�/2) = 0
T ′(�/2) − κ+T (�/2) = 0.

Thus, the interface is stable if all solutions λ0 of (5b) are negative, and unstable
if at least one solution is positive. Equivalently, λ0 solves

(6) λ0 =
1
R̂2

− μ2 where tan (μ�) = −μ (κ+ + κ−)
μ2 − κ+κ−

or

(7) arctan
(
−κ+

μ

)
+ arctan

(
−κ−
μ

)
= μ�

for some branch of arctan.
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1.0

0.8
1.0

1.2

1.0

a
b

c d

e

Fig. 2. Geometric interpretation of stability criterion (see Theorem 3). The numbers indicate
the radius of the corresponding interface below that number. The maximum and minimum radius is
1.2 and 0.8, respectively. If R̂ = 1, then curve c represents the location of a stable interface, whereas
curves a and e correspond to unstable interfaces.

Remark. Suppose that λ0 �= 0, i.e., the geometric eigenvalue problem (5b) has
no zero eigenvalue. Then the existence of such steady state can be rigorously proved,
following the lines of [11]. We omit the details.

In the case of the unperturbed Allen–Cahn equation (g = 0, R̂ = ∞), the
geometric eigenvalue problem (5b) is identical to (1.5) obtained by Kowalczyk in [10],
[11]. However, here we use a somewhat different method using solvability condition
and test functions.

The stability criterion (5b) has a natural geometric interpretation which we now
discuss. Consider a domain such as shown in Figure 2. Parameterize the top boundary
in terms of arclength s, from left to right, and let q(s) be the corresponding point on
the top boundary. We suppose that there is a unique circle that goes through q(s)
and that intersects both top and bottom boundaries orthogonally. Let R(s) denote
the radius of such a circle. Then we have the following.

Theorem 3. Let R̂ be the radius of a steady interface as defined in Proposition 1,
let R(s) be as defined above, and suppose that R(s) = R̂ for some s. Then the interface
is stable if R′(s) < 0 and it is unstable if R′(s) > 0.

For example, for the domain as shown in Figure 2, if R̂ ∈ (0.8, 1.2), then there
exists a stable steady interface between curves b and d. On the other hand, any
interface to the left of b or to the right of d is unstable. To our knowledge, this is
the first result that combines both the effects of perturbation and the effects of the
boundary.

The rest of the paper is outlined as follows. Proposition 1 is derived in section 2.
The main result, Theorem 2, is then derived in section 3. Finally we prove Theorem 3
in section 4. We conclude with numerical calculations in section 5 and some discussions
and open problems in section 6.

2. Equilibrium front solution. In this section we construct the steady state
consisting of a single interface. The main goal is to derive (2) of Proposition 1.

We seek a solution which divides the domain into two regions. In one of the
regions u ∼ u+ and in the other u ∼ u−. The two regions are separated by an
interface, or front, of thickness O(ε). We expect the interface to be localized about a
circle segment which intersects the boundary of Ω orthogonally. Let R̂ be the radius
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p

Front

R−

R
+

Γ−

Γ+

R̂

θ−

ŝ

(x, y)
r−

r̂

Fig. 3. Schematic used for the derivation of coordinate systems in the interior of the domain
and localized near the boundaries.

of the interface and define the following coordinate system as illustrated in Figure 3:

x = R− − r− cos(θ−) = r̂ sin(ŝ/R̂) ,(8)

y = r− sin(θ−) = r̂ cos(ŝ/R̂) − R̂ .(9)

Near the boundaries, we define localized coordinates ρ± and t± as follows:

(10) ρ± ≡ r± −R±
ε

, t± ≡ R±θ±
ε

.

Here, + and − are used to denote the right and left curved boundaries, respectively.
The ± will be dropped whenever the meaning is clear. We also define coordinates
localized near the front by

(11) ρ̂ ≡ r̂ − R̂

ε
.

We can then write ρ̂ as a function of t and ρ:

(12) ρ̂ = t− ε

(
ρt

R
− ρ2

2R̂

)
+ · · · .

In the interior of the domain, we expect the front to be radially symmetric. Thus, in
the new coordinate system, the equilibrium front will satisfy

(13) uρ̂ρ̂ +
ε

R̂+ ερ̂
uρ̂ + f(u) + εg(u) = 0 ,
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in the interior of the domain. We expand

(14) u = u0 + εu1 + ε2u2 + · · · ,

substitute into (13), and collect powers of ε to obtain,

u′′0 + f(u0) = 0 ,(15)

u′′1 + f ′(u0)u1 = − 1
R̂
u′0 − g(u0) ,(16)

u′′2 + f ′(u0)u2 =
1
R̂2

ρ̂u′0 −
1
R̂
u′1 −

f ′′(u0)u2
1

2
− g′(u0)u1 .(17)

From here on ′ denotes differentiation with respect to ρ̂ when associated with ui. In all
other cases ′ will represent differentiation with respect to the appropriate argument.
At this point it is convenient to define the operator Lψ ≡ ψ′′ + f ′(u0)ψ.

From conditions 1 and 2 following (1), u0 will be given by the unique heteroclinic
orbit connecting u+ to u−. For the case f(u) = 2u(1−u2), we have the exact solution
u0 = tanh(ρ̂). We note that by differentiating (15) with respect to ρ̂, Lu′0 = 0.

To determine R̂, we consider the steady-state system,

(18) ε2Δu+ f(u) + εg(u) = 0 .

We multiply (18) by u′0 and integrate over the domain,

(19)
∫

Ω

u′0(ε
2Δu+ f(u) + εg(u)) dA = 0 .

Applying Green’s identity to (19) we obtain

(20) −ε2
∫
∂Ω

u ∂nu
′
0 ds+

∫
Ω

ε2uΔ(u′0) + u′0(f(u) + εg(u)) dA = 0 .

We now use (14) and (11) in (20) and collect powers of ε to obtain

(21) − ε2
∫
∂Ω

u0∂nu
′
0 ds+

∫
Ω

(
(u0(u′0)

′′ + f(u0)u′0) + ε

(
(u′0)

′′u1 +
1
R̂

(u′0)
′u0 + f ′(u0)u1u

′
0 + g(u0)u′0

))
dA = 0 .

Integrating over ρ̂ by parts and using limρ̂→±∞ u′0 = 0 yields
∫

Ω

(u′0)
′′u0 dA =

∫
Ω

u′′0u
′
0 dA ,(22)

∫
Ω

(u′0)
′u0 dA =

∫
Ω

(u′0)
2 dA .(23)

Using (15) and Lu0 = 0, (21) may be written as

(24) −ε
∫
∂Ω

∂nu
′
0u0 ds = −

∫
Ω

(
u′0

R̂
+ g(u0)

)
u′0 dA .
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Using (12) we find the leading order behavior of ∂nu′0|∂Ω:

∂nu
′
0|∂Ω ∼ ∂

∂ρ
u′0

(
t− ε

(
ρt

R
− ρ2

2R̂

))∣∣∣∣
ρ=0

,(25)

= −εu′′0
t

R
.(26)

Thus, the boundary term in (24) is of a much lower order, and the equilibrium radius
of the front is given by

(27) R̂ ∼ −
∫∞
−∞(u′0)

2 dt∫ u+

u−
g(y) dy

.

This shows, that to leading order, R̂ is independent of the domain shape and completes
the derivation of Proposition 1.

3. Proof of Theorem 2. We now construct a solvability condition to determine
the principal eigenvalues of (4). Since u′0 is of one sign and Lu′0 = 0, we expect that
the principal eigenvalue is small and to leading order the principal eigenfunction will
behave like u′0 in the interior of the domain. Such an eigenfunction is often referred to
as a translation eigenfunction as it is associated with the near translation invariance
of the front in the interior of the domain with respect to the radial co-ordinate. In this
case, ŝu′0 also satisfies (4) to leading order and as a result, we will need two solvability
conditions to determine the principal eigenvalue.

We construct our solvability conditions by multiplying (4) by test function v and
integrating over the domain we obtain

(28)
∫

Ω

v
(
ε2Δφ+ f ′(u)φ

)
dA+ ε

∫
g′(u)φ v dA = λ

∫
Ω

φ v dA ,

where v is of the form

(29) v(ŝ, ρ̂) = w(ŝ)u′0(ρ̂)

and w(ŝ) is an arbitrary test function.
Using Green’s identity and applying the boundary conditions in (4) results in

(30) −ε2
∫
∂Ω

φ∂nv ds+
∫

Ω

(
ε2Δv + f ′(u) v + ε g′(u) v

)
φdA = λ

∫
Ω

φ v dA .

Here, s is arc length along the boundary and dA is an element of area in the interior.
From (10) and (11),

ds = Rdθ = ε dt ,(31)

dA =
r̂

R̂
dr̂ dŝ = ε

(
1 + ε

ρ̂

R̂

)
dρ̂ dŝ .(32)

Consider the
∫
Ω

(
ε2Δv + f ′(u) v + ε g′(u) v

)
φdA term in (30), in which v, u, φ are

written in the interior coordinates r̂ and ŝ. Expand φ:

(33) φ = φ0 + εφ1 + ε2φ2 + · · · .
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Use (11), (32), (33), and (14) to write
∫
Ω

(
ε2Δv+ f ′(u) v+ ε g′(u) v

)
φdA in terms of

the coordinates, ρ̂ and ŝ:
(
ε2Δv(r̂) + f ′(u) v(r̂) + ε g′(u) v(r̂)

)
φdA

∼
[
ε2
(

1
ε2
vρ̂ρ̂ +

1
R̂+ ερ̂

1
ε
vρ̂ + vŝŝ

)
+ f ′ (u0 + ε u1 + ε2 u2

)
v

+ ε g′
(
u0 + ε u1 + ε2 u2

)
v

][
φ0 + εφ1 + ε2φ2

] [
ε

(
1 + ε

ρ̂

R̂

)
dρ̂ dŝ

]

∼
{
ε2
[

1
R̂
vρ̂ φ0 + u1 f

′′(u0) v φ0 + g′(u0) v φ0

]

+ ε3
[
vŝŝφ0 + u2 f

′′(u0) v φ0 +
1
2
u2

1 f
′′′(u0) v φ0 + u1 g

′′(u0) v φ0

+
1
R̂
vρ̂ φ1 + u1 f

′′(u0) v φ1 + g′(u0) v φ1

+
ρ̂

R̂
u1 f

′′(u0) v φ0 +
ρ̂

R̂
g′(u0) v φ0

]}
dρ̂ dŝ(34)

since v = w(ŝ)u
′

0(ρ̂) is in the kernel of L.
Equation (34) has terms involving u1 and u2, so we must examine (16) and (17)

for these terms. We take the derivative of (16) with respect to ρ̂ and multiply by
wφ0, integrate, and use Green’s identity to obtain

(35)
∫
∂Ω

∂nu
′
1wφ0 ds =

∫
Ω

(
− 1
R̂
u′′0 − f ′′(u0)u′0u1 − g′(u0)u′0

)
wφ0 dA .

It will become evident that λ = O(ε2). To avoid tedious calculations, we will write
λ = ε2λ0 + · · · . In this way, λ0 terms will enter at the correct order. We substitute
(31) and (32) into (35), multiply by ε, and arrange the terms to match the u1 term
in (34):

(36) ε2
∫

Ω

f ′′(u0)u′0u1wφ0 dρ̂ dŝ

= − ε2
(∫

Ω

(
1
R̂
u′′0 + g′(u0)u′0

)
wφ0 dρ̂ dŝ+

∫
∂Ω

∂nu
′
1wφ0 dt

)

+ ε3
∫

Ω

(
− 1
R̂
u′′0 − f ′′(u0)u′0u1 − g′(u0)u′0

)
ρ̂

R̂
wφ0 dρ̂ dŝ+ · · · .

We repeat the above procedure to handle the u2 term in (34). First we differentiate
(17) with respect to ρ̂,

(37) Δ(u′2) + f ′(u0)u′2 = − 1
R̂
u′′1 +

1
R̂2

ρ̂u′′0 +
1
R̂2

u′0 − f ′′(u0)u′0u2

− f ′′′(u0)u′0u2
1

2
− f ′′(u0)u1u

′
1 − g′′(u0)u′0u1 − g′(u0)u′1 .

We multiply the above expression by φ0, integrate over the domain, apply Green’s
identity to the right-hand side, and multiply by ε3 to match the u2 term in (34) which
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results in the following:

ε3
∫

Ω

f ′′(u0)u′0u2wφ0 dρ̂ dŝ = ε3
∫

Ω

(
− 1
R̂
u′′1 +

1
R̂2

ρ̂u′′0 +
1
R̂2

u′0 −
f ′′′(u0)u′0u

2
1

2

− f ′′(u0)u1u
′
1 − g′′(u0)u′0u1 − g′(u0)u′1

)
wφ0 dρ̂ dŝ

+ ε3
∫
∂Ω

∂nu
′
2wφ0 dt+ · · · .(38)

Since φ is a translation eigenfunction, in the interior we may write

(39) φi = T (ŝ)u′i(ρ̂).

We also note that

(40)
∫

Ω

1
R̂
u′′1wφ0 dρ̂ dŝ = −

∫
Ω

1
R̂
wφ′0u

′
1 dρ̂ dŝ .

Using (40), (39), (38), (36), and (34) we can write (28) as

(41) ε2λ0

∫
Ω

vφ0 dρ̂ dŝ

= ε2
∫

Ω

(
vŝŝφ0 +

2
R̂
φ1vρ̂ +

1
R̂2

wφ0

)
dρ̂ dŝ− ε2

∫
∂Ω

(φ0∂nv + wφ0∂nu
′
1) dt+ · · · ,

where, from (38), the boundary integral involving ∂nu′2 is of higher order. The eigen-
function φ0 = T (ŝ)u′0 is the derivative of a monotonic front and is, thus, of one sign
and hence is the principal eigenfunction. The principal eigenfunction of L must be
even in the radial direction and the function v′ will be odd in the radial direction.
Thus, the term

∫
Ω

2
R̂
φ1v

′ dρ̂ dŝ will be zero to leading order.
For the boundary integral involving ∂nv, we need to find ∂nv on ∂Ω. Away from

the points where the front and boundary intersect, ∂nv will be exponentially small, so
we will only consider the two components of the boundary Γ±. Since the front meets
Γ± orthogonally,

(42) ∂nv|Γ±
=
∂v

∂r

∣∣∣∣
Γ±

.

We note from (8), (9), (10), and (11),

(43)
∂ŝ

∂r

∣∣∣∣
Γ±

∼ ±1 and
∂ρ̂

∂r

∣∣∣∣
Γ±

∼ t

R

∣∣∣∣
Γ±

.

Thus,

(44) ∂nv
∣∣
Γ±

∼
(
±w′(ŝ)u′0(t) + w(ŝ)u′′0(t)

t

R

)∣∣∣∣
Γ±

.

We let � be the length of the interface and place ŝ = 0 such that ŝ = ±�/2 on Γ±.
Then, using (39), (29), ρ̂ ∼ t on Γ± and

∫
tu′′0u0 = − 1

2

∫
u′0

2 with (44) results in

−
∫
∂Ω

∂nvφ0 dt ∼ w′(−�/2)T (−�/2)
∫ ∞

−∞
(u′0(t))

2 dt+
w(−�/2)T (−�/2)

2R−

∫ ∞

−∞
(u′0(t))

2 dt

− w′(�/2)T (�/2)
∫ ∞

−∞
(u′0(t))

2 dt+
w(�/2)T (�/2)

2R+

∫ ∞

−∞
(u′0(t))

2 dt .(45)
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For the boundary integral involving ∂nu′1, we have that, near ∂Ω,

(46) u ∼ u0(ρ̂) + ε u1 = u0(t) + ε

(
ρ t

R
+
ρ2

2R̂

)
u′0(t) + ε u1 + · · · .

Also, on ∂Ω, we have ∂nu = 0, so that, on ∂Ω

(47) ∂nu1 ∼ − ∂

∂ρ

[
1
ε
u0(t) +

(
ρ t

R
+
ρ2

2R̂

)
u′0(t)

]∣∣∣∣
ρ=0

= − t

R
u′0(t)

∣∣∣∣
Γ±

.

Then

(48) ∂nu
′
1 ∼ − 1

R
u′0(t) −

t

R
u′′0(t)

and

−
∫
∂Ω

∂nu
′
1wφ0 dt ∼

∫
Γ−

w(−�/2)T (−�/2)
(
u′′0(t)u′(t)

t

R
+ u′0(t)

2 1
R

)
dt

+
∫

Γ+

w(�/2)T (�/2)
(
u′′0(t)u′(t)

t

R
+ u′0(t)

2 1
R

)
dt ,

=
(
w(�/2)T (�/2)

2R+
+
w(−�/2)T (−�/2)

2R−

)∫ ∞

−∞
(u′0(t))

2 dt .(49)

Substitute (44) and (49) into (41) to obtain
(
λ0 −

1
R̂2

)∫
Ω

vφ0 dρ̂ dŝ ∼
∫

Ω

vŝŝφ0 dρ̂ dŝ+
(
w′(−�/2)T (−�/2) +

w(−�/2)T (−�/2)
2R−

−w′(�/2)T (�/2) +
w(�/2)T (�/2)

2R+

)∫ ∞

−∞
(u′0(t))

2 dt .(50)

The eigenfunctions will depend on both ŝ and ρ̂. We thus substitute the ansatz
φ = T (ŝ)Φ(ρ̂) into the eigenvalue problem (4),

(51)
(

Φ′′ +
ε

R̂
Φ′ − ε2

ρ̂

R̂2
Φ′ + f ′(u)Φ + εg′(u)Φ

)
T + ε2T ′′Φ = ε2λ0TΦ .

We divide both sides by TΦ,

(52)

(
Φ′′ + ε

R̂
Φ′ − ε2 ρ̂

R̂2 Φ′ + f ′(u)Φ + εg′(u)Φ

Φ

)
+ ε2

T ′′

T
= ε2λ0 .

Since T is independent of ρ̂, the term in the brackets must be independent of ρ̂ or
equal to a constant α:

(53) Φ′′ +
ε

R̂
Φ′ − ε2

ρ̂

R̂2
Φ′ + f ′(u)Φ + εg′(u)Φ = αΦ .

We expand Φ = Φ0 + εΦ1 + ε2Φ2 + · · · and α = α0 + εα1 + εα2 + · · · . The lowest
order terms satisfy

(54) Φ′′
0 + f ′(u0)Φ0 = α0Φ0 .
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Thus, Φ0 = u′0(ρ̂) and α0 = 0. The O(ε) terms satisfy

(55) Φ′′
1 + f ′(u0)Φ1 = α1Φ0 −

1
R̂

Φ′
0 − f ′′(u0)u1Φ0 − g′(u0)Φ0 .

Differentiating (16) results in the following solvability condition,

(56)
∫ ∞

−∞
f ′′(u0)u1(u′0)

2 dρ̂ = −
∫ ∞

−∞
g′(u0)(u′0)

2 dρ̂ .

Applying (56) to the solvability condition for (55) yields α1 = 0. The O(ε2) terms
satisfy

(57) Φ′′
2 + f ′(u0)Φ2 = α2Φ0 − Φ′

1

1
R̂

+
1
R̂2

ρ̂Φ′
0

− f ′′(u0)u1Φ1 − f ′′(u0)u2Φ0 −
1
2
f ′′′(u0)u2

1Φ0 − g′′(u0)u1Φ0 − g′(u0)Φ1 .

We have the following solvability condition:

α2

∫ ∞

−∞
Φ2

0 dρ̂ =
1
2

∫ ∞

−∞
f ′′′(u0)u2

1Φ
2
0 dρ̂+

∫ ∞

−∞
g′′(u0)u1Φ2

0 dρ̂+
∫ ∞

−∞
g′(u0)Φ1Φ0 dρ̂

+
∫ ∞

−∞
f ′′(u0)u2Φ2

0 dρ̂+
∫ ∞

−∞
f ′′(u0)u1Φ1Φ0 dρ̂−

∫ ∞

−∞

1
R̂2

ρ̂Φ′
0Φ0 dρ̂(58)

+
∫ ∞

−∞

1
R̂

Φ′
1Φ0 dρ̂ .

Differentiating (17) results in the solvability condition,

−
∫ ∞

−∞
f ′′(u0)u2(u′0)

2 dρ̂−
∫ ∞

−∞

1
R̂
u′′1u

′
0 dρ̂+

1
R̂2

∫ ∞

−∞
ρ̂u′′0u

′
0 dρ̂+

1
R̂2

∫ ∞

−∞
(u′0)

2 dρ̂

−
∫ ∞

−∞
f ′′(u0)u1u

′
1u

′
0 dρ̂−

1
2

∫ ∞

−∞
f ′′′(u0)u2

1(u
′
0)

2 dρ̂−
∫ ∞

−∞
g′′(u0)u1(u′0)

2 dρ̂(59)

−
∫ ∞

−∞
g′(u0)u′1u

′
0 dρ̂ = 0 .

Now we use
∫∞
−∞ ρ̂u′′0u

′
0 dρ̂ = − 1

2

∫∞
−∞(u′)2 dρ̂ and (58) in (57) to yield

(60) α2 =
1
R̂2

.

Now we can substitute (53) into (52) using α = ε2

R̂2 + · · · to get

(61) T ′′ =
(
λ0 −

1
R̂2

)
T .
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Note that

(62)
(
λ0 −

1
R̂2

)∫
Ω

vφ0 dρ̂ dŝ ∼
(
λ0 −

1
R̂2

)∫ �/2

−�/2
wTdŝ

∫ ∞

−∞
(u′0(t))

2 dt

(63)
∫

Ω

vŝŝφ0 ∼
∫ �/2

−�/2
w

′′
Tdŝ

∫ ∞

−∞
(u′0(t))

2 dt .

Substituting (61), (62), and (63) into (50), integrating by parts, we obtain

w(−�/2)
[
T

′
(−�/2) +

1
R−

T (−�/2)
]

+ w(�/2)
[
−T ′

(�/2) +
1
R+

T (�/2)
]

= 0.

Since w is an arbitrary test function, we see that T satisfies the following boundary
conditions:

(64) T
′
(−�/2) +

1
R−

T (−�/2) = 0, −T ′
(�/2) +

1
R+

T (�/2) = 0.

Equations (61) and (64) prove that T satisfies the geometric eigenvalue problem
(5b). Hence, λ0 = 1

R̂2 − α where α satisfies

(65)

⎧⎨
⎩

T ′′ + αT = 0,
T ′(−�/2) + κ−T (−�/2) = 0,

T ′(�/2) − κ+T (�/2) = 0,

where κ± ≡ 1
R±

and κ± > 0 corresponds to a convex domain as in Figure 3.
If α ≤ 0, then λ0 ≥ 1

R̂2 . If α = μ2 > 0, (where μ > 0), then it is easy to see that
μ must satisfy the following transcendental relation:

(66) tan(μ�) =
μ(κ+ + κ−)
κ+κ− − μ2

,

and the eigenvalues of (4) are given by

(67) ε2λ =
1
R̂

− μ2 ,

which is precisely (6). Formula (7) is seen to be identical to (6) by applying the
identity

(68) tan (x+ y) =
tanx+ tan y

1 − tanx tan y
.

This completes the proof of Theorem 2.

4. Proof of Theorem 3. In this section we show that the geometric condition
of Theorem 3 is a direct consequence of Theorem 2.

Fix a point q+ on the top boundary and consider a circular arc going through
q+ and intersecting both top and bottom boundaries orthogonally (refer to Figure 4).
Let p be the center of this arc and let R denote its radius. First, we shall show that
dR
dq+

= 0 if and only if the formula (5) holds with λ0 = 0. By zooming into the point
where dR

dq+
= 0, we can assume that locally, p moves along a straight line as q+ moves

along the boundary, and that the boundaries are segments of circles of radii R±, as
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R

R

R+

θ+

θ+

h+

θ−

R−

p

q+

q−

Fig. 4. Setup for proof of Theorem 3.

shown in Figure 4. In general, R± may be positive or negative; for convenience, as
shown in the figure, we chose R± = − 1

κ±
with κ± < 0 so that R± is positive. Now

from geometry, we find the relationship

R =
R+(1 − cos θ+) + h+

sin θ+
,

where h+, θ+ are as shown in Figure 4. We obtain

∂R

∂θ+
=

R+ − (R+ + h+) cos θ+
sin2 θ+

so that upon eliminating h+ we obtain

(69)
∂R

∂θ+
= 0 ⇐⇒ R

R+
= tan θ+

and similarly with + replaced by −. Since θ± are functions of q+, we find that at the
point where dR

dq+
= 0, we have

arctan
R

R±
= θ±.

Now from geometry, θ+ = �+/R, θ− = �−/R, and � = �+ + �−. Therefore, upon
adding the two equations in (69) we obtain

arctan
R

R+
+ arctan

R

R−
= θ+ + θ− =

�

R
.

But this is precisely (7) with λ0 = 0 after substituting R± = − 1
κ±
.
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Fig. 5. Numerical computation of interface and eigenvalue. Left: the steady-state solution u(x)
of (70). Dark denotes u ∼ 1 and light denotes u ∼ −1. Middle: The shape of the corresponding
eigenfunction φ. Right: surface plot of φ. Note the sinusoidal shape along the direction of the
interface boundary. Note also a corner layer that is evident near the boundary of the domain. See
section 5 for parameter values.

Next, we note that in the case of a cone (κ+ = κ− = 0), (7) yields λ0 = 1
R2 > 0

so that the interface is unstable for a cone domain, for which R′ > 0. Since λ0 can
only be real, it follows by continuity that λ0 crosses zero if and only if R′ = 0, and λ0

is negative if and only if R′ < 0. This concludes the proof.

5. Numerical example. We now provide a numerical example of Theorem 2.
All computations were done using using the software FlexPDE [19].

Consider a domain as shown in Figure 5. Its left and right boundaries consist of
arcs of circles of radii R− = 0.8, R+ = 1.5, so that κ− = −1.25, κ+ = −0.667. The
distance between these two boundaries was chosen to be 0.5. The shape of the top
and bottom boundaries does not affect the computation as long as they are located
O(1) distance from the interface. We chose the nonlinearity to be

(70) ut = ε2Δu− 2(u− εa)(u− 1)(u+ 1)

with a = 0.55, ε = 0.06. From Proposition 1 we obtain the theoretical value of the
interface radius to be R̂ = 1

2a = 0.9091. To estimate the numerical value of R̂, we
have used FlexPDE to compute the steady state solution to (70), using u = tanh(y/ε)
as initial conditions. The resulting steady state is shown on Figure 5(a). Next, we
computed the coordinates of the intersection of the middle of the interface (u = 0)
with the boundary, and then used geometry to obtain R̂numerical = 0.9066. This is in
excellent agreement with the theoretical prediction. Geometry then yields an estimate
of l = 0.6486.

Next, we have solved the eigenvalue problem (4) numerically. Using a global error
tolerance of 0.5×10−4, we obtained a numerical estimate of λnumerical = 0.00504. This
required about 10,000 gridpoints (FlexPDE uses adaptive gridding, and chooses the
mesh size based on the global tolerance setting. We have also verified that this result
is correct to two significant digits by changing the tolerance). On the other hand,
solving (6) gives the theoretical estimate of λ = 0.00506. Excellent agreement (within
0.5%) is observed.

6. Discussion. In this paper we have characterized the stability of curved in-
terfaces of the perturbed AC system on a bounded domain. On one hand, it is a
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Fig. 6. A tractrix: the threshold case where all circles intersecting the boundary have identical
radius. Theorem 3 does not apply to such a domain.

generalization of the geometric eigenvalue problem derived in [10], [11] for the Allen–
Cahn equation without perturbations, which only admits straight interfaces. On the
other hand, the perturbed system (1) has been studied on the whole space R2 with-
out the boundaries—see, for example, [16], [15]. We show that the presence of both
boundaries and a perturbation can stabilize a curved front. By contrast, the curved
front is always unstable in the absence of boundaries—it either shrinks to a point or
expands indefinitely depending on the initial conditions [15]. To our knowledge, the
characterization of stability that combines both the curvature of the interface and the
boundary effect is new.

Algebraically, the stability condition is given by Theorem 2. Geometrically, The-
orem 3 states that if R(s) denotes the radius of an arc that intersects the boundary
orthogonally at q±(s), then the interface is stable if R′(s) < 0 whenever R = R̂,
whereas the interface is unstable if R′(s) > 0 at that point (see Figure 2). In particu-
lar, this shows explicitly the well-known result that an interface at equilibrium cannot
be stable in a convex domain [3]; on the other hand we have shown numerical and
theoretical examples where such interface is stable when the domain is nonconvex.

In general, the relationship between the radius R of a circle that intersects the
boundary orthogonally and the domain boundary q = (x, y) is given by

x = p1 +R cos θ, y = p2 +R sin θ,

where p = (p1, p2) is the center of the arc of radius R; p1, p2, R are arbitrary functions
of s; and θ satisfies a differential equation

R
dθ

ds
= p′1 sin θ − p′2 cos θ.

An interesting threshold case corresponds to R = R̂ for all s. If the bottom boundary
is the x-axis and R = R̂ for all s, then the top boundary forms a tractrix (see Figure
6.) This is a well-known curve that is also generated when a ball is dragged on a fixed
string by a tractor moving along the x-axis. Implicitly, this curve is given by

x = R̂(−t+ tanh(t)), y = R̂ sech(t).

It is an open problem to describe either the stability or the location of the interface
for such a domain.

An interesting conjecture arises in studying the propagation of fronts around a
concave corner. Such domains were used in [17], where the propagation of chemical
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fronts was considered. An interface passing through the corner may get “stuck” at the
corner or go through it, depending on the geometry. If we “smooth out” the corner
and take ε sufficiently small, then we can apply Theorem 3. The result is that the
interface will get stuck at the corner if there exists a circle that intersects orthogonally
with one boundary, and that passes through the corner point, and whose radius is at
most R̂. This is essentially the geometrical condition described in section III.B in [17]
and it agrees well with numerical results presented there. However, the construction
of an interface at a corner point is an open theoretical problem.
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THREE LIMIT CYCLES IN A LESLIE–GOWER PREDATOR-PREY
MODEL WITH ADDITIVE ALLEE EFFECT∗
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Abstract. In this work, a bidimensional continuous-time differential equations system is ana-
lyzed which is derived of Leslie-type predator-prey schemes by considering a nonmonotonic functional
response and Allee effect on population prey. For the system obtained we describe the bifurcation
diagram of limit cycles that appears in the first quadrant, the only quadrant of interest for the sake of
realism. We show that, under certain conditions over the parameters, the system allows the existence
of three limit cycles: The first two cycles are infinitesimal ones generated by Hopf bifurcation; the
third one arises from a homoclinic bifurcation. Furthermore, we give conditions over the parameters
such that the model allows long-term extinction or survival of both populations. In particular, the
presence of a weak Allee effect does not imply extinction of populations necessarily for our model.

Key words. stability, limit cycles, homoclinic orbits, bifurcations, predator-prey models, Allee
effect
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1. Introduction. This work deals with a continuous predator-prey model con-
sidering the following: (i) the Allee effect [6, 13, 16, 34] affecting the prey population,
(ii) the functional response of predators of nonmonotonic type, and (iii) a predator
growth function of logistic type. Other inherent assumptions for the model are that
population size varies only in time and it is uniformly distributed in space, there is
no division of ages or sex, and it is not affected by abiotic factors.

It is known that the Allee effect refers to a positive density dependence in prey
population growth at low prey densities [34], and it occurs whenever fitness of an
individual in a small or sparse population decreases as the population size or density
also declines [6]. To be able to recognize the consequences of the Allee effect on repro-
duction, conservation and behavior of species has become an important aim over the
last years. The analysis and understanding of this phenomenon can bring important
benefits not only for ecology but also for various applied engineering disciplines such
as agropecuary, fishing, and forestal industries.

Different mechanisms generating Allee effects have been suggested (see Table 1
in [6]), being largely studied as singular entities and usually describing a situation in
which the population growth rate decreases under some minimum critical density [5] or
when a limited population growth capacity is observed [15]. In some cases this growth
rate might be even negative, causing an extinction threshold [5]. In other words, the
Allee effect may be understood as the cause of the increase in extinction risk at low
densities [16], introducing in some cases a population threshold that has to be exceeded
by population to be able to grow. This effect is also named in population dynamics
as the negative competition effect [38]; in fisheries sciences, it is called depensation
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[9, 16], and in epidemiology, its analogous is the eradication threshold, the population
level of susceptible individuals below which an infectious illness is eliminated from a
population [5].

More precisely, the (component) Allee effect is any positive relationship between
any measurable component of individual fitness and population size or density [6, 13,
34], and it might be the strong Allee effect [6] or critical depensation [9] that implies
the existence of a threshold population level [5, 9], whereas the weak Allee effect
[34] or noncritical depensation [9] does not have it. When the species is submitted
to a strong Allee effect, it may have a bigger tendency to be less able to overcome
these additional mortality causes, to have a slower recovery, and to be more prone to
extinction than other species [34].

In most predation models it has been considered that the Allee effect has influence
only on the prey population, and this effect is independent of the functional response
or consumption rate that reflects the change on predation due to the prey’s population
size. Quantitatively, it is assumed that the functional response has influence on the
extension of the bistability region [15].

The Allee effect has been modeled in different ways using various mathematical
tools and, in a first approach, like a deterministic phenomenon frequently associated
to population’s stochastic fluctuations [5]. For instance, if x = x (t) indicates the
population size, the most usual continuous growth equation to express the Allee effect
is given by

dx

dt
= r

(
1 − x

K

)
(x−m)x,

featuring the multiplicative Allee effect. Clearly, if m = 0, we have the weak Allee
effect and if m > 0, it has the strong Allee effect.

Other mathematical forms have been proposed to describe this phenomenon [8].
In this work, we consider the natural growth function deduced in [16] and [34] given
by the equation

dx

dt
= r

(
1 − x

K
− m

x + b

)
x(1)

that we call additive Allee effect.
Recent ecological research suggests the possibility that two or more Allee effects

generate mechanisms acting simultaneously on a single population (see Table 2 in [6]),
and the combined influence of some of these phenomena has been named the multiple
Allee effects.

In the interacting populations, the predation can be largely reduced due to better
ability of prey to avoid predation when their population size is large enough [42, 43];
but at low population densities, there could be a low effectiveness of antipredator
vigilance, which reflects an Allee effect. For some marine species it has been shown
that the per capita growth decreases as the size population is reduced below some
critical level, and two proposed causes of depensation or Allee effect are the following:
reduced breedings success at low densities of the population and increased relative
predation on small populations [21]. This situation has happened in many real fisheries
as a result of overfishing when man acts as predator [9].

Considering these aspects, (1) can be rewritten as

dx

dt
=

r x

x + b

(
1 − x

xK

)
(x− xm)x,(2)
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where xm = 1
2 (K−b−

√
1
r (r(K+b)2 − 4mK)) and xK = 1

2 (K−b+
√

1
r (r(K+b)2 − 4mK))

for r(K + b)2 − 4mK > 0. Hence, (2) represents two types of Allee effect affecting
the same population since xm expresses the minimum of viable population and the
factor r (x) = r x

x+b indicates the impact of an Allee effect due to other causes affecting
the intrinsic growth rate, for example, the predation reducing breeding success at low
densities [9, 21].

On the other hand, the functional response of predators or consumption rate func-
tion refers to the change in the density of prey attached per unit time per predator
as the prey density changes [20, 42]. In most predator-prey models considered in the
ecological literature, the predator response to prey density is assumed to be mono-
tonic increasing, the inherent assumption being that as there is more prey in the
environment, it is better for the predator [20].

However, there is evidence that indicates that this need not always be the case, for
instance, when a type of antipredator behavior (APB) exists. Group defense is one of
these, and the term is used to describe the phenomenon whereby predators decrease,
or are even prevented altogether, due to the increased ability of the prey to better
defend or disguise themselves when their number is large enough [20, 42, 39, 43], and
in this case a nonmonotonic functional response is better. For example, lone musk ox
can be successfully attacked by wolves; however, large herds of them can be attacked
but with rare success.

Another manifestation of an APB in which a nonmonotonic functional response
(or Holling-type IV or Monod Haldane) can be used is the phenomenon of aggregation,
a social behavior of prey in which prey congregate on a fine scale relative to the preda-
tor so that the predator’s hunting is not spatially homogeneous [36], such as succeeds
with mile-long schools of certain class of fishes. In this case, a primary advantage of
schooling seems to be confusion of the predator when it attacks. The more important
benefit of aggregation is an increasing in wariness. Moreover, aggregation can both
decrease the vulnerability to be attacked and increase the time that group members
can devote to activities other than surveillance [36].

Other related examples of nonmonotone consumption occur at the microbial level
where evidence indicates that when faced with an overabundance of nutrient the
effectiveness of the consumer can begin to decline. This is often seen when micro-
organisms are used for waste decomposition or for water purification, a phenomenon
that is called inhibition [20, 42, 43].

In these cases, the functional response curves have an upper bound on the rate of
predation per individual predator at some prey density, in contrast to the old Lotka–
Volterra model which assumed a linear relationship between prey density and the
rate of predation over the entire range of prey densities [36]. In this work, we use
the function h(x) = qx

x2+a , also employed in [28, 42, 39, 43] and corresponding to the
Holling-type IV functional response [36], which is generalized as h(x) = qx

x2+bx+a in
[44, 40] for a Gause model. This generalized expression is derived by Collings [12],
who affirms that this type of functional response seems a reasonable possibility if
it is assumed that prey and webbing densities are directly related. In [40], for the
corresponding Gause model the existence of two limit cycles is proven. Moreover,
this Gause model exhibits bifurcation of cusp type with codimension two [4, 23] or
Bogdanov–Takens bifurcation [44, 40].

We note that the phenomena of the Allee effect and aggregation described by a
nonmonotonic functional response are quite compatible and justify our assumptions
in the model studied.
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The last aspect in our equations is a feature of Leslie-type predator-prey models
[37] or the Leslie–Gower model [27], in which the conventional environmental carrying
capacity Ky is proportional to prey abundance x [31], that is, Ky = nx, as in the
May–Holling–Tanner model [4] and other models recently analyzed [28, 45].

In [37] it is affirmed that Leslie models can lead to anomalies in their predictions
since they predict that even at very low prey density, when the consumption rate by an
individual predator is essentially zero, predator population can nevertheless increase
if predator population size is even smaller than prey population size. However, Leslie
models are recently employed to model vole-weasel dynamics with a parameter time
dependent [25], and the autonomous model proposed in [24] is analyzed in [45]. This
scheme of modeling differs from a more common Gause-type model [40] in which the
predator equation is based on the mass action principle, since the numerical response
is dependent on functional response.

Although it may seem that the two aspects considered in the model contradict
each other since the prey population exhibits the Allee effect for low densities, while
a nonmonotone functional response is suggested for the aggregation (group defense)
when the prey population size is large, it is known that predation induces an Allee
effect.

Strikingly, a wide range of predator-driven Allee effects have been reported (see
Table 2 in [22]); in particular, there is the case of the Atlantic cod (Gadus morhua)
that forms schools during the day, since commercial fishing (man as predator) provokes
stock collapse because a higher proportion of this aggregative population is caught
per unit effort when population declines [10].

Also, for obligately cooperative breeders as the African wild dog (Lycaon pictus)
and meerkat (Suricata suricatta), there is a similar situation, because juvenile survival
is lower in small groups than large groups in areas with high predator densities but
lower in large groups than small groups in areas with low predator densities [14, 22].

From a mathematical point of view, simple models for the Allee effect may reveal
a lot about its dynamics, and, reciprocally, different nonequivalent dynamics for the
same model will have different biological interpretations. For instance, in our model
we obtain the existence of a subset of parameter values for which three limit cycles
appear but surrounding different equilibrium points. These limit cycles are not only
periodic solutions of the system but also along the attractive behavior of the origin,
allowing the phenomenon of multistability of our predator-prey system, that is, the
existence of four ω-limit sets in the first quadrant.

This paper is structured as follows: The model and the main results are presented
in section 2. In section 3 we give the proofs of the main statements. Finally, an
interpretation of the results is given in section 4, complemented with some numerical
simulations.

2. The model. Let us consider the bidimensional system of ordinary differential
equations

Xμ :

{
ẋ =

[
r
(
1 − x

k

)
− m

x+b

]
x− qxy

x2+a ,

ẏ = sy
(
1 − y

nx

)
,

(3)

where (x, y) ∈ A = {(x, y)|x > 0, y ≥ 0} and μ = (r, a, b, k,m, n, q, s) ∈ R
8
+. In

system (3), x(t) and y(t) denote prey and predator densities, respectively, as functions
of time t. Furthermore, the parameters have the following meanings:

(a) r and s are the intrinsic growth rates or biotic potential of the prey and
predators, respectively.
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(b) q is the maximal predator per capita consumption rate, i.e., the maximum
number of prey that can be eaten by a predator in each time unit.

(c) a is the number of prey necessary to achieve one-half of the maximum rate q.
(d) n is a measure of the food quality that the prey provides for conversion into

predator births.
(e) k is the prey environment carrying capacity [12].
(f) m and b are constants that indicate the severity of the Allee effect that has

been modeled.
In order to describe the dynamics of Xμ we will consider a C∞-equivalent poly-

nomial extension by the following change of coordinates:

ζ : R
2×R

+
0 −→ R

2×R
+
0 such that ζ(u, v, τ) =

(
u, nv,

u(u + b)(u2 + a) τ

s

)
= (x, y, t),

(4)

where detDζ(u, v, τ) = nu(u+b)(u2+a)
s > 0.

Also, let us consider new parameters given by ϕ1 : R
8
+ −→ R × R

7
+,

ϕ1(r, a, b, k,m, n, q, s) =

(
br −m

s
, a, b, k,

m

s
, n,

nq

s
, s

)
:= (L, a, b, k,M, n, c, s),

with Jacobian detDϕ1(r, a, b, k,m, n, q, s) = s3

bn > 0, which says that ϕ1 is invertible.
For simplicity, let us rename the new coordinates u → x, v → y. Then in the new
coordinates we have the vector field Yη = ζ∗Xμ = (Dζ)

−1 ◦Xμ ◦ ζ, where

Yη :

⎧⎨
⎩
ẋ = x

(
(a + x2)

[
(b+x)(L+M)

b

(
1 − x

k

)
−M

]
x− cxy(b + x)

)
,

ẏ = (b + x)(a + x2)(x− y)y,
(5)

with (x, y) ∈ Ω̄ = {(x, y)|x, y ≥ 0} and the new vector of parameters
η = (L, a, b, k,M, c) ∈ D0 is given by the natural projection, where

D0 =
{
η ∈ R × R

5
+|M + L > 0

}
.(6)

Notice that vector field (5) is a polynomial extension of the original system (3)
to the whole first quadrant Ω̄ including axis x = 0. Moreover, Yη and Xμ are clearly
C∞-equivalent in Ω.

First, we study the local behavior of singularities in the coordinate axis, that is,
in absence of prey and predator, respectively. In system (5), it is immediate that
Yη(0, y) = −aby2 ∂

∂y . Then the x = 0 axis in Ω is an invariant manifold of vector field

(5) and the origin is its only singularity, being an attracting one. Moreover, if we
denote Yη(x, y) = P (x, y) ∂

∂x + Q(x, y) ∂
∂y , we have Yη(x, 0) = P (x, 0) ∂

∂x . Hence, the

y = 0 axis in Ω is also an invariant manifold of (5).
For vector field Yη let us define Sing(E) and Sing(Ω) as the sets of singularities of

(5) in the y = 0 axis in Ω and in the open set Ω, respectively. In order to describe the
dynamics of singularities in Sing(E), we consider the following regions in parameter
space D0:

Λ1 = Δ−1(−∞, 0) ∪
(
Δ−1(0,∞) ∩ Θ−1(0,∞) ∩ Υ−1(−∞, 0)

)
;

Λ2 = Δ−1(0,∞) ∩ Θ−1(∞, 0) ∩ Υ−1(−∞, 0); Λ3 = {η ∈ D0| 0 < L < b};
Λ4 = {η ∈ D0| 0 < b ≤ L}; D = Δ−1(0) ∩ Θ−1(0,∞);
Θ+ = Θ−1[0,∞) ∩ Υ−1(0); Θ− = Θ−1(−∞, 0) ∩ Υ−1(0);
Γ+ = Γ−1(0,∞) ∩ Υ−1(0); Γ− = Γ−1(−∞, 0] ∩ Υ−1(0);

(7)
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Fig. 1. Bifurcation diagram in plane Lb = {η ∈ D0| a, k,M, c are constant} in parameter space
for singularities in the y = 0 axis.

where Υ(η) = sign(L), Θ(η) = b− k, and

Δ(η) = (M + L)(k − b)2 + 4bkL,

Γ(η) = −2kcb + a
√
M

(
−a

√
M +

√
aM + 4k2c

)
.

Moreover, in the xy plane let us consider the points P0 = (0, 0), P+ = (x+, 0), and
P− = (x−, 0), with

x± =
(M + L)(k − b) ±

√
(M + L)Δ(η)

2(M + L)
.(8)

Lemma 1. For vector field Yη the origin P0 is a non-hyperbolic singularity and it
satisfies the following:

(i) It has two hyperbolic sectors divided by a repulsing separatrix if η ∈ Γ+ ∩Θ+.
(ii) It has only a hyperbolic sector if η ∈ Λ4.
(iii) It has a hyperbolic sector and a repulsing parabolic sector if η ∈ Λ3∪(Θ− ∩ Γ+) .
(iv) It has a hyperbolic sector and an attracting parabolic sector if η ∈ Θ− ∩ Γ−.
(v) It is a local attractor if η ∈ D ∪ Λ1 ∪ Λ2 ∪ (Θ+ ∩ Λ−) .

A qualitative diagram of these results in plane Lb = {η ∈ D0| a, k,M, c are constant}
is shown in Figure 1.

Lemma 2. For vector field Yη the following statements hold:
(i) P+ ∈ Sing(E) if η ∈ D ∪ Θ− ∪ Λ3 ∪ Λ4. Moreover, P+ is a saddle node if

η ∈ D; otherwise, it is a hyperbolic saddle.
(ii) P− ∈ Sing(E) if η ∈ Λ2. Moreover, P− is a hyperbolic repulsing node.

A qualitative diagram of these results in plane Lb = {η ∈ D0| a, k,M, c are constant}
is shown in Figure 1.

About the boundness of the system, in [1] it is proven that no trajectory of vector
field Yη has the infinity as ω-limit. Since the coordinate axes are invariant, then our
system is bounded. We now state the same result but with a different approach.

Theorem 3. Consider Aw = {(x, y) ∈ R
2 : 0 ≤ x ≤ w, 0 ≤ y}. For every

η ∈ D0, there is a w∗ ≥ 0 such that if w > w∗, then Aw is a trapping domain for
system (5), meaning that it is invariant for positive time evolution and also captures
all trajectories starting in Ω.
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We take care now of the dynamics at the interior of the first quadrant. It is
clear that every singularity of system (5) in the open quadrant Ω must be over the
diagonal y = x. Furthermore, over the isocline y = x the vector field Yη has the form
Yη(x, x) = x2p4(x) ∂

∂x , where p4(x) is a polynomial of degree 4 in x. Therefore, the
existence of equilibrium points in the open first quadrant is given by the existence of
real and positive roots of the polynomial p4(x). In order to describe the bifurcation
diagram for an equilibrium point of Yη in Ω, we change parameters η = (L, a, b, k,M, c)
to get a new vector ξ = (L, a, b, k, V, q) by means of the transformation

ϕ2 : R
6 −→ R

6, (L, a, b, k, V, q) 
→ (L, a, b, k,M(ξ), c(ξ)),(9)

with

c(ξ) = aLq4(b−k+2q)−q6(2b2+kL−b(2k+L−4q)−2(k+L)q+2q2)
kq6 − (b−k+q)V

kq6b2(b+q)5(a+q2)2(a+3q2) ,

M(ξ) = −bq4(b+q)6(a+q2)2(a+3q2)(aL+(L−2b)q2)+V
bq6(b+q)4(a+q2)3(a+3q2) .

Let D1 = ϕ−1
2 (D0) be the new admissible region in parameter space, and let us

consider the projection

π : R
6 −→ R

3 such that π(L, a, b, k, q, V ) = (L, b, k).

If we name

D2 = π
(
D1 ∩ {(L, a, b, k, q, V )| a = 3b2, q = b, V > 0}

)
∩ E−1(0,∞) ⊂ R × R

2
+,

with

E(L, b, k) = −18432b19L + V,

it is easy to check that D2 = F−1(0,∞) ∩ E−1(0,∞), with

F (L, b, k) = 12288b19(b− 2L) + V.

Changing the time t 
→ bkt, let us call Yξ to the new vector field qualitatively
equivalent to (5). Now, it is straightforward to check that there is a singularity in the
isocline y = x at the point with coordinates (b, b). In order to describe the bifurcation
diagram of this singularity of vector field Yξ in parameter space (L, b, k), we consider
the projection (see Figure 2)

πR : S2
R −→ R

2 such that πR(L, b, k) = (L, b),

where S2
R = {(L, b, k)|L2 + b2 + k2 = R2, b, k, R > 0}. Since function F (L, b, k) does

not depend on k, it is clear that in D2 ⊂ R × R
2
+ the surface F−1(0) is a straight

half-cylinder with axis parallel to the k axis, so πR

(
F−1(0) ∩ S2

R

)
is exactly the curve

F = {(L, b)|F (L, b, k) = 0, k > 0} ∩ πR

(
D2 ∩ S2

R

)
,

which is located in the interior of the first quadrant of plane Lb because equa-
tion F (L, b, k) = 0 defines implicitly L = b

2 + V
24576b19 > 0. Furthermore, (0, 0) ∈

F−1(0,∞), so the origin is in the admissible region for parameters in the upper half-
plane Lb. The same arguments follow to sketch the curve πR

(
E−1(0) ∩ S2

R

)
. With

this, the qualitative shape of domain πR(D2 ∩ S2
R) is shown in Figure 3(a).
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Fig. 2. Projection πR from the sphere S2
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Fig. 3. (a) Qualitative shape of parameters domain πR

(
D2 ∩ S2

R

)
. (b) Qualitative shape of

curves H and Σ2
0(R) in parameters domain.

Finally, in πR

(
D2 ∩ S2

R

)
in plane Lb, we define the sets

Σ
sg(ε)
1 (R) = πR

(
{(L, b, k) ∈ D2| sg(T (L, b,K)) = sg(ε)} ∩ S2

R

)
,

Σ
sg(ε)
2 (R) = πR

(
{(L, b, k) ∈ D2| sg(G(L, b,K)) = sg(ε)} ∩ S2

R

)
,

H = Σ0
1(R),

(10)

with

T (L, b, k) = −36864b21 + 55296b20L− 18432b19kL− 3bV + kV,
G(L, b, k) = 1811939328b39(b + L)(b + 2L) − 8bV 2,

and the qualitative shape of curves H and Σ0
2(R), in terms of R, is as in Figure 3(b).

Moreover, H ∩ Σ0
2(R) consists of four points as in Figure 3(b), that is,

H ∩ Σ0
2(R) = {pi = (Li, bi); i = 1, . . . , 4}.(11)

Lemma 4. The singularity (b, b) of vector field Yξ is an order two weak focus if
(L, b) ∈ H ∩ Σ0

2(R) = {pi = (Li, bi); i = 1, . . . , 4}. Moreover, the focus is repellor at
p1 and p2 and attractor at p3 and p4.

Theorem 5.

(i) The system Yξ has a bifurcation diagram as indicated in Figures 4(a)–(d) in
a neighborhood of H ∩ Σ0

2(R).
(ii) The bifurcation curve S34 of semistable limit cycle of the system Yξ in the

parameter space Σ−
1 (R) is as indicated in Figure 4(d).

(iii) The bifurcation curve HC of a homoclinic loop surrounding the focus (b, b) of
system Yξ is as indicated in Figure 4(a), in a tubular neighborhood of curve
H in sector Σ−

2 (R) in parameter space.
Lemma 6. In parameter space ξ = (L, a, b, k, q, V ) ∈ D1 of system Yξ, there exists

an open subset Υ ⊂
(
π−1 ◦ π−1

R (p3)
)
∩{ξ |L < 0}, where the following statements hold:
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Fig. 4. (a) Bifurcation curves for focus (b, b) of vector field Yξ, where H is a Hopf bifurcation
curve, S1, S2, and S34 are semistable limit cycle bifurcation curves, and HC is a Homoclinic bifur-
cation curve. (b) Bifurcation diagram for focus (b, b) in a neighborhood of p1 ∈ H. (c) Bifurcation
diagram for focus (b, b) in a neighborhood of p2 ∈ H. (d) Bifurcation diagram for focus (b, b) in a
tubular neighborhood of curve H between p3 and p4. Notation •ij means a focus with local stability
i ∈ {s, u} and weakness j ∈ {0, 1, 2}.

(i) Yξ has two foci (b, b), (xf , xf ) and two saddle points (xs, xs), (xN , xN ) in the
interior of the first quadrant Ω, where 0 < xs < b < xN < xf .

(ii) There exists an open subset O ∈ R+ and a continuous function H : O −→
R+ such that if V = H(b), then there is a homoclinic loop L0 for vector
field Yξ passing through saddle (xN , xN ) and surrounding focus (xf , xf ), with
(xN , xN ) and (xf , xf ) as in part (i). Moreover, this homoclinic orbit is inner
unstable.

Lemma 7. Let Υ,H, and L0 be as in Lemma 6. There exist δ > 0 and ε > 0 such
that, for every b, V with |H(b) − V | < ε, the vector field Yξ has, at most, one limit
cycle L in the inner δ-neighborhood of L0, and L is unstable.

Theorem 8. There exists an open subset in parameter space such that vector
field Yη in (5) has three hyperbolic limit cycles in the interior of the first quadrant
Ω. Two of them are infinitesimal cycles surrounding a hyperbolic attracting focus
(b, b); moreover, the outermost limit cycle is stable and the innermost unstable. The
third limit cycle is unstable and surrounds a hyperbolic attracting focus (xf , xf ), with
0 < b < xf .

3. Proofs of the main results. The proofs of Lemmas 1 and 2 are straightfor-
ward and follow from the blowing-up method [17] for (0, 0) and the central manifold
and Hartman’s theorems for P+ and P−; for details, see [1].
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x

v

y

u
•

•
x = w
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fw(x, y) = x − w = 0

Fig. 5. The set Aw = f−1
w (−∞, 0) ∩ Ω is an invariant set under ΦYη (t; · ), as stated in the

proof of Theorem 3.

Proof of Theorem 3. We will prove that for every η ∈ D0 (see (6) for definition),
there exists some w = w(η) > 0 such that the integral curves ΦYη

(t; · ) of vector field
Yη, for t > 0, enter an invariant subset Aw ⊂ Ω and do not leave again.

Let us define the function fw : R
2 −→ R given by fw(x, y) = x − w. For each

w > 0 consider the line

Lw = f−1
w (0) ∩ Ω.

If we consider the Poincaré compactification of system (5) given by

Ψy : R
2 × R

+
0 −→ R

2 × R
+
0 , Ψy(u, v, τ) = (u/v, 1/v, τ) = (x, y, t),

it is straightforward to check that the line Ψ−1
y (Lw) contains the point (u, v) = (0, 0).

Hence, we will show that for w sufficiently large, in the Poincaré compactification of
system (5), the compact set Aw = f−1

w (−∞, 0)∩Ω is an invariant set under ΦYη (t; · )
(see Figure 5).

Recall that the axes x = 0 and y = 0 are invariant under ΦYη (t; · ), so it is
sufficient to prove that the scalar product Yη · ∇fw < 0 in Lw for appropriate w > 0
as in Figure 5. We have that for (x, y) ∈ Lw

Yη · ∇fw |x=w = −cw2(b + w)y +
w2

(
a + w2

)
bk

φ(w),

where φ(w) = −(M + L)w2 + (k − b)(M + L)w + bkL. The discriminant of φ as a
quadratic polynomial in w is (M + L)Δ(η) (see (7) for definition). Therefore, since
M + L > 0 in D0, if Δ < 0, then Yη · ∇fu |x=w < 0 for every w > 0. On the other
side, if Δ ≥ 0, the roots of φ(w) are x− and x+ (see (8) for definition); hence, the
statement holds for every w > x+ if x+ > 0 and for every w > 0 if x+ ≤ 0. This
concludes the proof of Theorem 3.

Proof of Lemma 4. Let (L, b) ∈ πR(D2 ∩ S2
R). In order to study the singularity

(b, b) in vector field Yξ, we translate (b, b) to the origin and change the time by means
of

ζ : R
2 × R

+
0 −→ R

2 × R
+
0 ,

(x, y, t) 
→
(
x + b, y + b,

8b3E(L, b, k)

768b15
t

)
,

where

E(L, b, k) = −18432b19L + V.
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So if (L, b, k) ∈ E−1(0,∞), ζ is a C∞-equivalence. Let Zξ = ζ∗Yξ; then we have

trDZξ(0, 0) =
8E(L, b, k)T (L, b, k)

589824b25
,

with

T (L, b, k) = −
(
36864b21 − 55296b20L + 18432b19kL + 3bV − kV

)
.

Moreover, if (L, b) ∈ H = πR(T−1(0) ∩ S2
R), we have detDZξ(0, 0) = V > 0, so

the origin is a weak focus of order, at least, one for Zξ. In order to recognize the
topological type of the origin as (L, b) ∈ H, we bring Zξ onto its Jordan canonical
form at (0, 0). For that, consider the C∞-equivalence ϕ : R

2 × R
+
0 −→ R

2 × R
+
0 ,

ϕ(u, v, τ) =
(
192b10u−

√
V v, 192b10u, τ/

√
V
)

= (x, y, t).

The qualitatively equivalent vector field in the new coordinates is ZJ
ξ = ϕ∗Zξ, and

we have in a neighborhood of the origin

ZJ
ξ (u, v) =

⎛
⎝−v +

5∑
i,j=2

Ai,ju
ivj + H.O.T.

⎞
⎠ ∂

∂u
+

⎛
⎝u +

5∑
i,j=2

Bi,ju
ivj + H.O.T.

⎞
⎠ ∂

∂v
,

where H.O.T. denotes the higher order term and Ai,j = Ai,j(b, V, L), Bi,j =
Bi,j(b, V, L).

For j = 0, 1, 2, let lj be the first three Lyapunov quantities at the origin [2, 7, 33]
of the vector field ZJ

ξ . Since the trace of the linear part of the vector field at the origin
is zero, we have that l0 = 0. Now, as l1 depends on the 3-jet of ZJ

ξ , see [17], then

l1 = (A02A11 +A12 +A11A20 +3A30 +2A02B02 +3B03−B02B11−2A20B20−B11B20 +B21)/8.

Using the Mathematica software [41] we have

l1 =
36864b20 + V

8192b13V 3/2
G(L, b, k),

with

G(L, b, k) = 1811939328b39(b + L)(b + 2L) − 8bV 2.

Thereby, if (L, b) ∈ H ∩Σ0
2(R) (see (10) and (11)), the weakness of the origin depends

only on l2. On the other hand, it is known that l2 depends on the 5-jet of ZJ
ξ . Then,

again using the Mathematica software, as l0 = l1 = 0, we obtain

l2± =
36864b20 + V

98304b15V 3/2
N±,

where

N± = −
(
−221259535220736b61 − 13589544960b41V − 1963008b21V 2 − 57bV 3

±
√

3
(
30349983744b40 + 2211840b20V + 43V 2

)√
28311552b42 + b2V 2

)
and the sign ± denotes the branch

L± =
−27648b39 ±

√
3
√
g(b)

36864b38
(12)
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Fig. 6. Graphics of the function N+ = N+(b, V ) where we can see that N+ < 0: (a) graphic of
N+ for (b, V ) ∈ [0, 0.5] × [0, 0.5]; (b) graphic of 10−2 ×N+ for (b, V ) ∈ [0.6, 1] × [10, 100].

of curve Σ0
2(R) given implicitly by equation G(L, b, k) = 0, where g(b) = 28311552b78+

b38V 2 > 0. Since the branch L− intersects curve H at points p1 and p2 (see Fig-
ure 3(b)), then if (L, b) ∈ {p1, p2} ⊂ H ∩ Σ0

2(R), l2 > 0 and the origin is a repellor
weak focus of order two for ZJ

ξ .
On the other hand, the branch L+ intersects curve H at points p3 and p4 (see

Figure 3(b)), and by looking at the graphic of N+ as a function of b and V it can
be verified that N+ < 0. Figure 6(a) shows the graphic of N+ for the range (b, V ) ∈
[0, 0.5] × [0, 0.5], meanwhile in Figure 6(b) there is the graphic of 10−2 × N+ for
(b, V ) ∈ [0.6, 1] × [10, 100], made with the software Mathematica [41]; here it can be
seen that if b > 0, V > 0, as in our case, then by continuity N+ < 0. Therefore, if
(L, b) ∈ {p3, p4} ⊂ H ∩ Σ0

2(R), l2 < 0 and the origin is an attracting weak focus of
order two for ZJ

ξ .

Proof of Theorem 5(i). It is clear that T−1(0) and S2
R are transversal manifolds

in the parameter space and, by Lemma 4, there are four points

p1, p2, p3, p4 ∈ πR

(
T−1(0) ∩ S2

R

)
= H,

where H is a Hopf bifurcation curve and where the singularity (b, b) is a repellor weak
focus of order 2 of system Yξ at p1 and p2 and an attractor weak focus of order two
at p3 and p4; i.e., the eigenvalues of DYξ(b, b) are on the imaginary axes and nonzero.
Moreover, p1, p2, p3, and p4 have codimension two, since the Lyapunov quantities
l0 = l1 = 0 and l2 �= 0.

Thereby, let (L, b) ∈ H − {p1, p2, p3, p4}. Then we have the following (see Fig-
ure 7):

(a) In a neighborhood of p4, when (L, b) is below l−1
1 (0), the singularity (b, b) of

system Yξ is an order one attractor weak focus, because l1 < 0. Therefore, if
ε > 0 is sufficiently small, the point (L + ε, b + ε) is over the curve H; then
the stability of system Yξ at the singularity (b, b) is reversed; hence, a unique
hyperbolic stable limit cycle bifurcates (Hopf bifurcation).

(b) When (L, b) is above l−1
1 (0) in a neighborhood of p4, the singularity (b, b)

is an order one repellor weak focus surrounded by a hyperbolic stable limit
cycle, because l1 > 0; then Hopf bifurcation from p4 occurs. Therefore, if
ε > 0 is sufficiently small, the point (L+ ε, b) is over the curve H; hence, the
stability of system Yξ at the singularity (b, b) does not change and the limit
cycle persists because it is hyperbolic.

(c) When the point (L, b) is as in case (b), for ε > 0 sufficiently small, the
point (L − ε, b) is under the curve H; then the stability of system Yξ at
the singularity (b, b) is reversed; hence, a new Hopf bifurcation occurs and a
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Fig. 7. Hopf bifurcation curve H near point p4 in parameter space, where the singularity (b, b)
of vector field Yξ is an order two attracting weak focus.

second hyperbolic limit cycle bifurcates, which is surrounded by a hyperbolic
stable limit cycle.

By normal forms theory [17, 23], p4 has a 2-parameter versal unfolding. Under the
same hypothesis that we have here, Takens [35] and Arrowsmith and Place [3] describe
in detail the bifurcation diagram for codimension two singularity type. By using their
results, we have that there exists a neighborhood Vδ(p4), with δ > 0, such that it has
a diagram as in Figure 4, where S34 is a curve in which the unstable and stable limit
cycles collapse (semistable limit cycle). The analysis near points p1, p2, and p3 follows
in the same way.

Proof of Theorem 5(ii). From part (i) of this Theorem, there is an open set
C(R) ⊂ Σ−

1 (R) where system Yξ has two hyperbolic limit cycles surrounding the
singularity (b, b). Moreover, C(R) is upperly bounded by the segment of curve H
between p3 and p4, because at any point in that segment focus (b, b) is surrounded by
a unique infinitesimal limit cycle.

On the other hand, at Σ−
1 (R)\ C(R), the singularity (b, b) has no infinitesimal

limit cycle in its vicinity, so C(R) is bounded and the lower bound must correspond
to a bifurcation curve where both limit cycles collapse into a semistable limit cycle;
hence, by versality of the unfolding of the singularity (b, b) at p3 and p4 described in
part (i) (see [35, 3]), it is clear that the semistable limit cycle bifurcation curve S34

must be as in Figure 4(d).
Proof of Theorem 5(iii). By Hartman–Grobman’s theorem it is straightforward to

see that vector field Yξ has a hyperbolic saddle singularity Ps = (s, s) with 0 < s < b
if (L, b) ∈ H ∩ Σ−

2 (R).
Let (L, b) ∈ H∩Σ−

2 (R) in a neighborhood of p3. By part (i), (b, b) is an attracting
weak focus of order one with no limit cycle in its vicinity, and it can be checked that
Ps ∈ α−lim(b, b). As we move along segment H ∩ Σ−

2 (R) towards p2, the topological
type of focus (b, b) remains the same according part (i); however, if (L, b) ∈ H∩Σ−

2 (R)
in a neighborhood of p2, Ps ∈ (α−lim(b, b))

c
and an infinitesimal limit cycle exists

surrounding (b, b). Therefore, there exist δ > 0 sufficiently small and a differentiable
function

Ψ : Vδ(H) −→ R such that (L, b) 
→ Ψ(L, b),

defined in a tubular neighborhood Vδ(H) of radius δ of segment H ∩Σ−
2 (R) such that

vector field Yξ has a homoclinic loop passing through the saddle Ps and surrounding
focus (b, b), if (L, b) ∈ HC = Ψ−1(0).

Remark. An extended and deeper proof of the existence of a homoclinic loop sur-
rounding another singularity is given in Lemma 6. Nevertheless, the same arguments
might have been used in this case as well.
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Fig. 8. Poincaré map for orbits near W s(N) in two cases: (a) Wu(N) ∩ W s(xf ) �= ∅; (b)
Wu(N) ∩W s(xf ) = ∅.

Proof of Lemma 6(i). Let (L, b) = p3 ∈ H ∩ Σ0
2. It is easy to check that Yξ

has four singularities in isocline y = x at Ω, if L < 0. According to Lemma 4,
one of these equilibria is an attracting weak focus of order two in (b, b). Due to
Hartman–Grobman’s theorem, it is straightforward to see that the other singularities
are a hyperbolic attracting focus in (xf , xf ) and two saddles (xs, xs), (xN , xN ) with
0 < xs < b < xN < xf . The statement follows directly.

Proof of Lemma 6(ii). Let (xN , xN ) and (xf , xf ) be as in the proof of part (i). If
we name N = (xN , xN ), let us consider the function

D(N) = ∇ · Yξ(N),

and let Φt = ΦYξ
(t; · ) be the flow of Yξ and p∗ = (x∗, y∗) be a point in Wu(N) with

xN < x∗. Let Σ be a one-dimensional local cross section to W s(N) ∪ Wu(N) as in
Figure 8. Let p̂ = (p̂1, p̂2) the unique point of Σ ∩W s(N) which never returns to Σ
by the flow Φt with 0 < t < ∞, and let U ⊂ Σ be some neighborhood of p̂. In Σ let
us choose local coordinates given by the chart h : Σ −→ R, h(x, y) = y − p̂2.

Let us consider the Poincaré map P : U −→ Σ defined for a point r ∈ U by
P(r) = Φτ (r), where τ = τ(r) is the time taken for the orbit Φτ (r) based at r to first
return to Σ. Now consider the displacement function d : U −→ R given by

r 
→ d(r) = P(r) − r.

Finally, let r̂ be a point in U located below p̂ as in Figure 8.
Let b = 1 and V = 300. Then it can be seen by means of numerical simulations

on Matlab [30] that D(N) > 0,Wu(N) ∩ W s(xf ) �= ∅,Wu(N) ∩ W s(N) = ∅, and
ω − lim Φt(p

∗) = {(xf , xf )}. In the local coordinates given by h this implies that

d(r̂) < 0.(13)

A qualitatively equivalent situation is shown in Figure 8(a).
Instead, if b = 1 and V = 400, it can be checked (numerically as well) that

D(N) > 0, Wu(N) ∩W s(xf ) = ∅, and Wu(N) ∩W s(N) = ∅; there exists y† > xN

such that the point (xN , y†) ∈ Φt(p
∗) ⊂ Wu(N). Therefore, we have (see Figure 8(b))

d(r̂) > 0.(14)

Hence, by the continuous dependence of the orbits of the vector field on param-
eters, there exists V ∗, 300 < V ∗ < 400, such that for b = 1 and V = V ∗ we have
Wu(N) ∩ W s(N) �= ∅; that is, there is a homoclinic loop L0 ⊂ Wu(N) ∩ W s(N).
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Fig. 9. Existence of a homoclinic orbit along the curve F−1(0) in plane bV .

Therefore, there exists δ > 0 such that in a δ-ball Bδ(1, V
∗) ⊂ R

2
+ of the point (1, V ∗)

in plane bV in parameter space, there is a locally differentiable function

F : Bδ(1, V
∗) −→ R, (b, V ) 
→ F(b, V ),

such that if (b, V ) ∈ F−1(0), there exists an inner unstable homoclinic loop L0 for
vector field Yξ (see Figure 9). The existence of the function H : O −→ R+ in the
statement follows from the implicit function theorem, due to the transversality shown
in passing from (13) to (14).

Proof of Lemma 7. Let the function d : U −→ R, the saddle N = (xN , xN ),
and the point r̂ be as in the proof of Lemma 6 (see Figure 8). From the previous
lemma, a homoclinic bifurcation (see [29]) occurs as V = H(b) since, by continuity,
D(N) = ∇ · Yξ(N) > 0, N is a strong saddle [29], and L0 is inner unstable. Then, for
U sufficiently small, by carrying out a perturbation on parameters, such that d(r̂) > 0,
the homoclinic cycle breaks out and an unstable limit cycle appears surrounding the
attracting focus (xf , xf ).

Proof of Theorem 8. From Lemmas 4 and 7, in parameter space ξ = (L, a, b, k, q, V )
∈ D1 of system Yξ, there exists an open subset ΥL ⊂

(
π−1 ◦ π−1

R (p3)
)
∩ {ξ |L < 0},

where system Yξ has four singularities in the interior of the first quadrant Ω: two
saddles (xs, xs), (xN , xN ), a two-order attracting weak focus (b, b), and a hyperbolic
attracting focus (xf , xf ) surrounded by an unstable limit cycle L, with 0 < xs < b <
xN < xf . Moreover, this limit cycle is hyperbolic, so it persists in an open subset of
π−1(π−1

R (C(R))) in parameter space, where C(R) is the bounded sector in plane Lb
(see Figure 4(d)) where system Yξ also has two infinitesimal limit cycles surrounding
focus (b, b), due to the proof of Theorem 5(ii).

The statement of the theorem is immediate after recalling that vector field Yξ is
induced by a vector field C∞-equivalent to Yη by means of the local difeomorphism
ϕ2 in (9), since

detDϕ2(ξ) =
V

b3q12(b + q)10(a + q2)4(a + 3q2)3
> 0,

where ξ ∈ D1 ∩ π−1(T−1(0)).

4. Discussion. In this paper, a predator-prey model with the Allee effect [5,
16, 34, 38] and a Holling-type IV [36] functional response was considered, making
a qualitative analysis of a bidimensional system of ordinary differential equations of
polynomial type, which is topologically equivalent to the original one, with only six
parameters. Employing a reparameterization and a time change, we showed that b,
k, and L = br−m

s are the most significative parameters of this predator-prey model.
We note that this model predicts that, when L < 0, the system has three equilibria
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P0, P−, and P+ for which the predator density is null; moreover, at low population
densities, both predator and prey populations may disappear, since the equilibrium
P0 = (0, 0) is an attractor; furthermore, P− is a repelling node, and P+ is a saddle.

Unlike other models, in this work we show that the weak Allee effect does not
imply extinction of species necessarily for certain parameter values, which, as far as
we know, is a completely new feature for the continuous model that has not been
reported in the above works. As L = 0, P− collapses with the origin and a weak
Allee effect is obtained if P+ remains an isolated singularity. In this case, the model
predicts two phenomena depending on parameter values. In the first one, the origin
has a separatrix dividing a repelling parabolic sector and a hyperbolic sector; see
Lemma 1(iii). This means that every solution with initial conditions (x0, y0) in the
interior of the first quadrant near the origin ultimately tends to go away from the
origin allowing both populations to not extinct.

The second case is more usual, see Lemma 1(iv), and has been observed in previous
works [19, 32]; that is, the origin has a parabolic attracting sector and a hyperbolic
sector divided by an attracting separatrix, representing a critical line which has to be
trespassed for populations in order to survive in time and not extinct.

In this work, we also show in Theorem 8 that, for an open subset of the parameter
values, three limit cycles can coexist in the open quadrant Ω. This result has been
recently observed [26] but just in general cubic polynomial systems. In our case, only
two of these limit cycles are concentric though, since infinitesimal ones are generated
by Hopf bifurcation, and the third one is generated by a homoclinic bifurcation [23, 29]
and surrounds another focus as stated in Lemma 6 and Theorem 8.

Furthermore, the model can achieve the phenomenon of multistability by the
existence of four ω-limit sets in the first quadrant as L < 0 and a strong Allee effect
is present. A locally stable cycle surrounds a locally stable equilibrium point in the
first quadrant as well as an unstable limit cycle, which serves as their separatrix
in the phase plane; i.e., there is a range for population sizes for which there exists
both autoregulation for the predator-prey system and prey and predator populations
approach equilibrium, depending upon the population size. The third ω-limit set is
the origin, stating that extinction is always possible in the presence of a strong Allee
effect in our model. The fourth ω-limit set is a stable focus surrounded by the third
limit cycle mentioned above.

In order to illustrate the result stated in Theorem 8 and the multistability, Fig-
ure 10 shows a numerical simulation for system (5), which was affected with the
software MATLAB [30]. Here a = 3, b = 1, k = 6.79211, M = 4.07697, c = 4.05116,
and L = L+ + 0.000001 ≈ −0.498898 (see (12)). Initial conditions at (x(0), y(0)) are
(0.8, 0.8), (1.01, 1.01), (2, 2), (2.2, 2.2), (1, 0.95), and (0.4, 0.1).

In Figure 10 it is clear that a limit cycle lies between the orbits by the points (2, 2)
and (2.2, 2.2), respectively, since the ω-limit of (2, 2) is the origin, but the ω-limit of
(2.2, 2.2) is the stable focus located in the diagonal near x = 2.5. On the other hand,
the two infinitesimal limit cycles are surrounding the singular point (1, 1), but they
are too small for both the scale of this figure and these values of parameters. Hence,
we present another numerical simulation in Figure 11 where both infinitesimal limit
cycles are more visible. Here a = 3, b = 1, k = 6.56102, M = 4.16516, c = 4.16276,
and L = L+ + 0.01 ≈ −0.480256 (see (12)). Initial conditions at (x(0), y(0)) are
(0.6, 0.6), (0.8, 0.8), and (0.95, 0.95).

Behaviors of the three positive oriented orbits in Figure 11 imply that, between
two of them, attracting and repelling limit cycles exist. Furthermore, it can be easily
verified that, for these values of parameters, the divergence of vector field (5) in singu-
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Fig. 11. Numerical simulation of the infinitesimal limit cycles.

larity (1, 1) is negative, and, consequently, this equilibrium point is a local attractor
and the innermost limit cycle is the unstable one.

Several natural predator-prey communities have been studied, each one of them
featuring an ecologically stable cycle, that is, a periodic orbit that must be somewhat
insensitive to the perturbations outer to the interaction.

In this work, we have answered partially one of the almost impossible projects
proposed in [11] which is the following: Find a predator-prey or other interacting
system in nature, or construct one in the laboratory, with at least two ecologically
stable cycles.

This shows the ecological relevance of the existence of multiple limit cycles in
predation models and the importance of our result, which should serve for the outlined
problem to be actually feasible in a biological lab with appropriate little creatures [11].

REFERENCES
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DOUBLE-DIFFUSIVE CONVECTION IN A POROUS LAYER IN THE
PRESENCE OF VIBRATION∗

NATALIA STRONG†

Abstract. The present paper examines the effect of vertical harmonic vibration on the onset of
convection in an infinite horizontal layer of a binary fluid mixture saturating a porous medium. A
constant temperature and concentration distribution are assigned on the rigid boundaries, so that
there exist vertical temperature and concentration gradients. The mathematical model is described
by equations of filtration convection in the Darcy–Oberbeck–Boussinesq approximation. The linear
stability analysis for the quasi-equilibrium solution is performed using Floquet theory. Employing the
method of continued fractions allows derivation of the dispersion equation for the Floquet exponent
in an explicit form. The neutral curves of the Rayleigh number versus horizontal wave number
are constructed for the three types of instability modes: synchronous, subharmonic, and complex
conjugate. Asymptotic formulas for these curves are derived for large values of vibration frequency
using the method of averaging. It is shown that, at some finite frequencies of vibration, there
exist regions of parametric instability. Investigations carried out in the paper demonstrate that,
depending on the governing parameters of the problem, vertical vibration can significantly affect the
stability of the system by increasing or decreasing its susceptibility to convection. In addition, even
in the presence of vibration, the onset of convection in the system is affected by variations in the
concentration of the solute in the mixture.

Key words. double-diffusive convection, instability, porous media, resonance, vibration
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1. Introduction. Natural double-diffusive convection in fluid-saturated porous
media has received much attention during the last few decades and has practical im-
portance in many fields such as geophysics, oceanography, ecology, chemistry, and
metallurgy. Specific areas of application range from the flow of groundwater to oil
recovery, underground storage of waste products, food processing, and building insu-
lation.

Double-diffusive convection in an infinite horizontal layer of a porous medium was
first investigated by Nield using linear stability analysis [1] and was later extended
by Taunton and Lightfoot [2]. Rudraiah, Srimani, and Friedrich [3] applied nonlinear
stability analysis to the case of a porous layer with isothermal and isosolutal bound-
aries. Further works on double-diffusive convection in porous media include Brand
and Steinberg [4], Murray and Chen [5], and Mamou and Vasseur [6]. An extensive
review of the literature on natural convection in fluid-saturated porous media may be
found in the fundamental monograph by Nield and Bejan [7].

In addition to free convection in porous media, an important class of problems
involves convective instability in the presence of time-dependent body forces, one of
which is vibration. The time-dependent gravitational field is of great interest, for
example, in space laboratory experiments, crystal growth, petroleum production, and
large-scale atmospheric convection.

∗Received by the editors November 12, 2006; accepted for publication (in revised form) October 27,
2008; published electronically February 4, 2009. An extended abstract of this paper was published
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Although much has been published on convection in the presence of vibration in
fluids, only limited attention has been given to this phenomenon in porous media.
The onset of convection in a region of fluid saturating a porous medium subjected to
high-frequency vibration of arbitrary direction has been examined by Zen’kovskaya
[8] and Zen’kovskaya and Rogovenko [9] using the averaging method. It was shown
that the direction of vibration has a significant effect on the stability of the system.
Malashetty and Padmavathi [10] performed asymptotical analysis of the linear sta-
bility of a horizontal fluid-saturated porous layer heated from below for the case of
small-amplitude gravity modulation. Bardan and Mojtabi [11] studied, numerically
and analytically, convection in a rectangular saturated porous cavity heated from be-
low and subjected to high-frequency vibration. They concluded that high-frequency
vibration moves the onset of convection toward higher values of the Rayleigh number.
Jounet and Bardan [12] generalized the work described above to the case of a binary
mixture saturating a porous medium. They found that high-frequency vibration can
delay or speed up the onset of convection depending on the governing parameters
of the problem. Govender [13] analytically investigated convection in a porous layer
heated from below for the case of low-amplitude vibration and showed that increasing
the frequency of vibration stabilizes the convection.

In the present paper, we generalize the work on the pure fluid case [14] to a binary
fluid mixture saturating a porous medium. Specifically, we investigate the effect of
vertical vibration of arbitrary frequency and amplitude on the onset of convection
in a horizontal layer of a porous medium saturated by a binary fluid mixture. Pre-
vious studies of this problem were restricted to the case of high frequency and/or
small amplitude of vibration due to the limitations of the methods used. This paper’s
novel application of the method of continued fractions to the above-described prob-
lem eliminates these restrictions and enables consideration of vibration of arbitrary
frequency and amplitude. Moreover, employing the method of continued fractions
allows derivation of the dispersion equation for the Floquet exponent in an explicit
form. This dispersion equation is used to find the critical values of parameters and to
construct the neutral curves corresponding to the three types of transition to insta-
bility: the synchronous, subharmonic, and complex conjugate modes. In the case of
high-frequency vibration, the system is investigated using the method of averaging,
which reduces the dispersion equation for the Floquet exponent to a cubic equation.
Comparing the results obtained by the two methods described above allows us to find
the range of vibration parameter values for which the method of continued fractions
can be replaced by the method of averaging in numerical computations.

The structure of the paper is as follows. Section 2 describes the mathematical
model and the mechanical quasi-equilibrium solution to the system. Linear stability
analysis of this quasi-equilibrium solution is performed in section 3 following Floquet
theory and employing the method of continued fractions. The case of high-frequency
vibration of the layer is considered in section 4 using the averaging method. Section
5 presents and discusses the results of the numerical computations.

2. Problem description and basic equations. We consider an infinite hori-
zontal layer of a porous medium saturated by a binary mixture of nonreacting com-
ponents. The layer and its boundaries are subjected to vertical harmonic vibration.
We assume that the fluid component of the mixture is viscous and incompressible, the
porous medium is homogeneous and isotropic, and the boundaries are rigid and im-
permeable, with slip allowed. Constant and uniform temperature and concentration
distributions are specified at the boundaries, so that there exist vertical temperature
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and concentration gradients.
The equation of state has the following form:

ρ = ρ0[1 − β(T − T0) + βc(C − C0)],

where ρ is the density of the fluid mixture, T is the temperature of the fluid mixture
and the porous medium, and C is the concentration of the heavier component of the
fluid mixture; ρ0 = ρ(T0, C0) is the density at some reference temperature T0 and
concentration C0, β is the coefficient of the thermal expansion of the fluid mixture,
and βc is the coefficient of the concentration expansion of the fluid mixture (β > 0
and βc > 0). We assume that T0 = 0, C0 = 0, and variations of the temperature and
concentration in the fluid are sufficiently small.

The basic governing equations for the problem are the momentum equation for
a porous medium, the energy conservation equation, the mass conservation equation,
and the continuity equation. We assume that the Oberbeck–Boussinesq approxima-
tion is valid, which implies that the density variation is included only in the gravita-
tional term of the momentum equation. In the Cartesian coordinate system inflexibly
fixed to the oscillating horizontal layer, with the z-axis directed vertically upward and
the origin at the lower plate, the governing equations have the following form:

1
ϕ

∂v
∂t

= − 1
ρ
∇p− ν

K
v + g(t) (βT − βcC)k,(2.1)

κ
∂T

∂t
+ v · ∇T = χ∇2T,(2.2)

ϕ
∂C

∂t
+ v · ∇C = Dm∇2C,(2.3)

∇ · v = 0,(2.4)

where v = (v1, v2, v3) is the relative filtration velocity of the fluid mixture, p is the
convective pressure, ϕ is the porosity of the medium, ν is the kinematic viscosity of
the fluid mixture, K is the intrinsic permeability of the porous medium, k is the unit
vector directed upward, κ is the heat capacity ratio (porous medium versus fluid), χ
is the thermal diffusivity of the porous medium, and Dm is the mass diffusivity of the
porous medium.

Due to the vertical vibration of the layer, the gravitational field g(t) in the mo-
mentum equation consists of two parts: g(t) = g0 + ge(t). The first term g0 is the
steady acceleration due to the static gravity. The second term ge(t) = A

ϕ Ω2f ′′(τ)
represents the vibrational acceleration and implies that the vertical motion of the
layer is described by the formula z = Af(τ). Here τ = Ωt, A is the amplitude, Ω is
the frequency of vibration, and f(τ) is a 2π-periodic function with zero 2π-average:

〈f〉 :=
1
2π

∫ 2π

0

f(τ)dτ = 0.

We consider the boundary conditions

z = 0 : v3 = 0, T = T1, C = C1,(2.5)
z = h : v3 = 0, T = T2, C = C2,(2.6)

which imply constant and uniform distribution of temperature and concentration
along the rigid and impermeable walls, where slip is allowed. No assumptions are
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made about the relative size of the temperature boundary conditions (T1 versus T2)
or concentration boundary conditions (C1 versus C2), meaning that the temperature
and concentration gradients can be of any sign.

The system (2.1)–(2.6) has a solution corresponding to the quasi-equilibrium basic
state:

v0 = 0, T 0 = T1 −
1
h

(T1 − T2)z, C0 = C1 −
1
h

(C1 − C2)z,

p0 = ρg(t)
[(
βT1 − βcC1

)
z − 1

2h

(
β(T1 − T2) − βc(C1 − C2)

)
z2

]
.(2.7)

To analyze the stability of this basic state by using the linearization method, we
introduce small perturbations of the variables:

(2.8) v = v0 + u, p = p0 + q, T = T 0 + θ, C = C0 + S.

The following scales are used to nondimensionalize the variables:

(x, t,v, p, T, C) →
(
h,
h2

ν
,
ν

h
,
ρν2

K
, ah, bh

)
,

where a = (T1 −T2)/h and b = (C1 −C2)/h are the quasi-equilibrium temperature
and concentration gradients, respectively. The dimensionless linearized system has
the following form (with notation for the dimensionless variables being the same as
for corresponding dimensional variables):

c
∂u
∂t

= −∇q − u +
(
1 + ηf ′′(τ)

)
(Gr θ − GrcS)k,(2.9)

κ
∂θ

∂t
− u3 =

1
Pr

∇2θ,(2.10)

ϕ
∂S

∂t
− u3 =

1
Sc

∇2S,(2.11)

∇ · u = 0,(2.12)

where c = K
ϕh2 , Gr = βah2g0K

ν2 is the thermal Grashoff number, Grc = βcbh
2g0K
ν2 is

the concentration Grashoff number, Pr = ν
χ is the Prandtl number, Sc = ν

Dm
is the

Schmidt number, and η = AΩ2

ϕg0
and ω = Ωh2

ν are the nondimensional amplitude and
frequency of vibration, respectively. Dimensionless boundary conditions are

z = 0 : u3 = θ = S = 0,(2.13)
z = 1 : u3 = θ = S = 0.(2.14)

3. Derivation of the dispersion equation for the Floquet exponent σ.
In order to eliminate pressure and the horizontal components of velocity from the
system (2.9)–(2.14), we apply the curl operator twice to (2.9). The z-component of
the resulting equation has the following form:

(3.1)
(
c
∂

∂t
+ 1

)
∇2u3 =

(
1 + ηf ′′(τ)

)( ∂2

∂x2
+

∂2

∂y2

)[
Gr θ − GrcS

]
.

Now we consider the system of equations (2.10), (2.11), and (3.1) with the bound-
ary conditions (2.13)–(2.14). The x- and y-variables can be separated from this system
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by introducing the following representation for the perturbations of vertical velocity,
temperature, and concentration:

⎡
⎣ u3

θ
S

⎤
⎦ (x, y, z, t) =

⎡
⎣ ũ3

θ̃

S̃

⎤
⎦(z, t) ei(α1x+α2y).

Substituting this representation into the system of equations (2.10), (2.11), and (3.1)
reduces it to the following form:

(
c
∂

∂t
+ 1

)[
∂2

∂z2
− α2

]
ũ3 = −α2

(
1 + ηf ′′(τ)

) [
Gr θ̃ − Grc S̃

]
,(3.2)

κ
∂θ̃

∂t
− ũ3 =

1
Pr

(
∂2

∂z2
− α2

)
θ̃,(3.3)

ϕ
∂S̃

∂t
− ũ3 =

1
Sc

(
∂2

∂z2
− α2

)
S̃,(3.4)

where α2 = α2
1 + α2

2 is the square of the overall horizontal wave number. Boundary
conditions for this system are

(3.5) z = 0, z = 1 : ũ3 = θ̃ = S̃ = 0.

Now we separate the z-variable from the system (3.2)–(3.4) using the following rep-
resentation:

⎡
⎣ ũ3

θ̃

S̃

⎤
⎦ (z, t) =

⎡
⎣ û3

θ̂

Ŝ

⎤
⎦(t) sin (π�z) , � = 1, 2, 3, . . . .

After the substitutions t = t̂
√

Pr κ c and ω = ω̂ /
√

Pr κ c, we obtain a system of
ODEs with periodic coefficients:

c

r

dû3

dt̂
= −û3 +

α2

m2

(
1 + ηf ′′(τ)

)(
Gr θ̂ − GrcŜ

)
,(3.6)

κ

r

dθ̂

dt̂
= û3 −

m2

Pr
θ̂,(3.7)

ϕ

r

dŜ

dt̂
= û3 −

m2

Sc
Ŝ,(3.8)

where m2 = α2 + (π�)2 and r =
√

Pr κ c. For the rest of the paper, we omit the hat
in t̂ and ω̂ and assume that f(τ) = cosωt in (3.6).

Following Floquet theory (see [15]), we search for the solution to the system
(3.6)–(3.8) in the form of a Fourier series:

(3.9)

⎡
⎣ û3

θ̂

Ŝ

⎤
⎦(t) = eσt

+∞∑
n=−∞

⎡
⎣ wn
θn
Sn

⎤
⎦ einωt.

The Floquet exponent σ needs to be chosen in such a way that solution (3.9) is
nonzero. The set of all possible values of σ defines the Floquet spectrum of the system
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(3.6)–(3.8). The behavior of solution (3.9), and therefore the stability of the quasi-
equilibrium basic state (2.7) of the original system, is determined by the distribution of
the Floquet spectrum with respect to the imaginary axis in the complex σ-plane. If the
whole spectrum is located in the left half-plane, the basic state (2.7) is asymptotically
stable. If at least one point of the spectrum is located in the right half-plane, the basic
state (2.7) is unstable. The points of the spectrum where Re(σ) = 0 correspond to
the neutral curves (or marginal curves) in the parameter space, which separate regions
of stability and instability.

Substituting representation (3.9) into the system (3.6)–(3.8) and collecting coef-
ficients of einωt for each n, we obtain an infinite system of linear algebraic equations
for the Fourier coefficients wn, θn, Sn:

2m2

α2η
[c(σ + inω) + 1]wn = Grc

(
Sn−1 + Sn+1 −

2
η
Sn

)

− Gr
(
θn−1 + θn+1 −

2
η
θn

)
,

wn =
[
κ(σ + inω) +

m2

Pr

]
θn,

wn =
[
ϕ(σ + inω) +

m2

Sc

]
Sn, n = 0,±1,±2, . . . .

By eliminating the variables wn and Sn from this system, we transform it into an
infinite tridiagonal system of linear algebraic equations for the coefficients θn:

(3.10) Mnθn + qn−1θn−1 + qn+1θn+1 = 0, n = 0,±1,±2, . . . ,

(3.11) with Mn = (σ + inω)2 +
(
m2

P
+ P

)
(σ + inω) +

(
m2 − 2qn

η

)
,

(3.12) qn =
α2η

2m2

⎡
⎢⎣Ra − Rs

(σ + inω) +
m2

P

L(σ + inω) +
m2

P

⎤
⎥⎦, L = Le

ϕ

κ
, P =

√
Pr κ

c
.

Here Ra = Gr ·Pr is the thermal Rayleigh number, Rs = Grc ·Sc is the concentration
Rayleigh number, and Le = Sc/Pr is the Lewis number.

We use the method of continued fractions to solve the system (3.10) (see Meshalkin
and Sinai [16], followed by Yudovich [17], Markman and Yudovich [18], and Yudovich
et al. [19]). Substituting ζn = θn−1

θn
(in the assumption that θn �= 0, which is verified

in [18]) transforms the system (3.10) into

Mn + qn−1ζn +
qn+1

ζn+1
= 0, n = 0,±1,±2, . . . ,

which can be used to derive two recurrence relations for the unknown ζn:

ζn = − 1
qn−1

(
Mn +

qn+1

ζn+1

)
,

ζn =
−qn

Mn−1 + ζn−1 qn−2
.
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Each of these two relations for ζn yields a corresponding continued fraction expression:

ζn = − Mn

qn−1
− qn+1/qn−1

−Mn+1

qn
− qn+2/qn

−Mn+2

qn+1
− qn+3/qn+1

−Mn+3

qn+2
− · · ·

,(3.13)

ζn =
qn

−Mn−1 −
qn−1qn−2

−Mn−2 −
qn−2qn−3

−Mn−3 − · · ·

.(3.14)

The right-hand sides of relations (3.13) and (3.14) are equal to each other for any
integer value of n. Therefore, assigning n = 0, we obtain the dispersion equation for
the Floquet exponent σ in the explicit form

(3.15) M0 −
q0 q1

M1 −
q1 q2

M2 −
q2 q3

M3 − · · ·

=
q0 q−1

M−1 −
q−1q−2

M−2 −
q−2q−3

M−3 − · · ·

.

Equation (3.15) can be used to determine the Floquet spectrum of the system (3.6)–
(3.8) with all the values of parameters being fixed. Alternatively, (3.15) can be used to
determine the critical values of parameters, corresponding to transition from stability
to instability of the basic state (2.7), and to construct the corresponding neutral
curves.

Convergence of continued fractions from (3.15) was verified numerically. More-
over, the sufficient condition for the absolute convergence of the continued fraction in
the left-hand side of (3.15) is

(3.16) |Mn| ≥ 1 + |qn−1 qn|, n = 1, 2, 3, . . . .

It follows from (3.11) and (3.12) that |Mn| is proportional to n2 and |qn| is proportional
to O(1). Hence, there exists some N such that condition (3.16) is satisfied for any
n ≥ N . This fact guarantees the conditional convergence of the continued fraction
in the left-hand side of (3.15) (see [20]). The same argument (with n being replaced
by −n) can be used to prove conditional convergence of the continued fraction in the
right-hand side of (3.15).

Now we consider two particular cases for which (3.15) simplifies to a real form:
1. For the case σ = 0, corresponding to synchronous modes with period 2π/ω,

the expressions for Mn and qn are simplified so that

M−n = Mn and q−n = qn .

Therefore, dispersion equation (3.15) for the case σ = 0 transforms into

(3.17) Re

⎛
⎜⎜⎜⎜⎝

q0 q1

M1 −
q1 q2

M2 −
q2 q3

M3 − · · ·

⎞
⎟⎟⎟⎟⎠ =

M0

2
.
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2. For the case σ = iω
2 , corresponding to subharmonic modes with period 4π/ω,

the expressions for Mn and qn are simplified so that

M−n = Mn−1 and q−n = qn−1 .

Therefore, dispersion equation (3.15) for the case σ = iω
2 transforms into

(3.18)

∣∣∣∣∣∣∣∣∣∣
M0 −

q0 q1

M1 −
q1 q2

M2 −
q2 q3

M3 − · · ·

∣∣∣∣∣∣∣∣∣∣

2

= q20 .

Transcendental equations (3.17) and (3.18) were investigated numerically to ob-
tain the neutral curves of the Rayleigh number Ra versus the horizontal wavenumber
α for the synchronous and subharmonic modes. In addition to the synchronous and
subharmonic modes, which also occur in the case of a pure fluid saturating a porous
medium, instability in the binary mixture case can occur via a complex conjugate
mode. In order to construct the neutral curves Ra(α) for complex conjugate modes,
we solve a complex equation (3.15) for the two variables: the thermal Rayleigh num-
ber and the frequency of neutral oscillations. Results of the numerical computations
are presented in section 5.

4. The case of a rapidly oscillating external force. In the limiting case
of high-frequency vibration, we apply the Krylov–Bogoliubov averaging method to
investigate the stability of the basic state (2.7) of the original system (see [21], [8],
[9]). First, we eliminate the variable û3 from the system (3.6)–(3.8) (with the hat
omitted in t̂ and ω̂) and reduce it to the form

θ̂ ′′(t) +
(
m2

P
+ P

)
θ̂ ′(t) +

(
m2 − α2

m2
Ra (1 − η cosωt)

)
θ̂(t)

+
α2

m2
Rs Le−1 (1 − η cosωt) Ŝ(t) = 0,(4.1)

θ̂ ′(t) +
m2

P
θ̂(t) =

ϕ

κ
Ŝ ′(t) +

m2

P
Le−1Ŝ(t).(4.2)

Now, assuming ω → ∞, we represent the nondimensional amplitude of vibration in
the form η = Bω, where B = b ν

ϕ g0h2 = O(1) is the nondimensional amplitude of
vibration velocity. Following the averaging method, we introduce a new “fast” time
variable τ = ωt and decompose the solution to the system (4.1)–(4.2) in the following
way:

(4.3)

[
θ̂

Ŝ

]
(t) ∼

[
θ̄
S̄

]
(t) +

1
ω

[
θ̃

S̃

]
(τ, t),

where
(
θ̄(t), S̄(t)

)
is a slowly varying part, which is a function of the “slow” time t

only, and
(
θ̃(τ, t), S̃(τ, t)

)
is a rapidly oscillating part, which is a function of τ and

t. The functions θ̃(τ, t) and S̃(τ, t) are assumed to be 2π-periodic in τ and have zero
mean with respect to τ . Substituting representation (4.3) into the system (4.1)–(4.2)
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and retaining the principal (O(1)) terms, we obtain a system of equations for the
rapidly oscillating part

(
θ̃(τ, t), S̃(τ, t)

)
:

θ̃ττ (τ, t) =
α2

m2
B cos τ

(
Rs Le−1S̄(t) − Ra θ̄(t)

)
,(4.4)

ϕ

κ
S̃τ (τ, t) = θ̃τ (τ, t).(4.5)

Integrating this system with respect to the “fast” time τ (under the assumption that
θ̄(t) and S̄(t) do not depend on τ) gives us expressions for the rapidly oscillating part:

θ̃(τ, t) =
α2

m2
B cos τ

(
Ra θ̄(t) − Rs Le−1S̄(t)

)
,(4.6)

S̃(τ, t) =
α2

m2

κ

ϕ
B cos τ

(
Ra θ̄(t) − Rs Le−1S̄(t)

)
.(4.7)

Now we substitute these expressions back into (4.3), then substitute the resulting
expressions for θ̂(t) and Ŝ(t) into the system (4.1)–(4.2), and take the average of
this system with respect to the “fast” time τ over the modulation period 2π. This
process leads to the system of averaged equations for the slowly varying component(
θ̄(t), S̄(t)

)
:

θ̄ ′′(t) +
(
m2

P
+ P

)
θ̄ ′(t) +

(
m2 − α2

m2
Ra

)
θ̄(t) +

α2

m2
Rs Le−1S̄(t)

+
α4B2

2m4

(
Ra θ̄(t) − Rs Le−1S̄(t)

) (
Ra − κ

ϕ
Rs Le−1

)
= 0,(4.8)

θ̄ ′(t) − ϕ

κ
S̄ ′(t) =

m2

P

(
Le−1 S̄(t) − θ̄(t)

)
.(4.9)

This is a system of autonomous equations with constant coefficients. Searching for
the solution to this system in the form

[
θ̄(t)
S̄(t)

]
=
[
C1

C2

]
eσt, where C1, C2 = const,

yields the characteristic equation for the complex growth rate σ, which determines
the stability of the quasi-equilibrium basic state (2.7) in the limiting case of ω → ∞:

b0σ
3 + b1σ

2 + b2σ + b3 = 0,(4.10)

where L = Le
ϕ

κ
, b0 = L, b1 =

m2

P
(L + 1) + LP,

b2 =
α4B2

2m4L
(Rs − RaL)2 +

α2

m2
(Rs − Ra L) +

(
m2

P
+ P

)
m2

P
,

b3 =
m2

P

[
α4B2

2m4 L
(Rs − RaL) (Rs − Ra) +

α2

m2
(Rs − Ra) +m2

]
.

For the case of transition to monotonic instability (σ = 0), the equation for the neutral
curves is obtained from the characteristic equation (4.10) and has the form b3 = 0, or

(4.11)
α4B2

2m4 L
(Rs − RaL) (Rs − Ra) +

α2

m2
(Rs − Ra) +m2 = 0.
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For the case of transition to oscillatory instability, which occurs via a complex conju-
gate mode (σ = is, s �= 0), the equation for the neutral curves is obtained from the
characteristic equation (4.10) and has the form b0b3 − b1b2 = 0 , or

m2

P
L
[
α4B2

2m4 L
(Rs − RaL) (Rs − Ra) +

α2

m2
(Rs − Ra) +m2

]

=
(
α4B2

2m4L
(Rs − Ra L)2 +

α2

m2
(Rs − Ra L) +

(
m2

P
+ P

)
m2

P

)

×
(
m2

P
(L + 1) + LP

)
.(4.12)

The formula for the square of the frequency s of the neutral oscillations has the form
s2 = b2/b0 , or

(4.13) s2 =
1
L

[
α4B2

2m4L
(Rs − Ra L)2 +

α2

m2
(Rs − RaL) +

(
m2

P
+ P

)
m2

P

]
.

In order to construct the neutral curves for the complex conjugate modes (the case
of oscillatory instability), we solve a system of equations (4.12) and (4.13) for the
thermal Rayleigh number Ra and the frequency of neutral oscillations s. Neutral
curves in the parameter space (Ra, α) obtained by the method of averaging for the
cases of monotonic and oscillatory instability are presented in section 5. Note that,
for the system of a pure fluid saturating a porous medium in the presence of vibration,
instead of a cubic equation (4.10) we have a quadratic equation for the growth rate σ
(see [14]), which can be used to prove that oscillatory instability is not possible in this
case. Further analysis of (4.11) and (4.12) allows additional conclusions concerning
the stability of the system under the influence of vibration and the presence of solute in
the mixture. For example, under zero gravity, vertical vibration can cause instability
in the binary mixture case, but not in the case of pure fluid.

5. Numerical results. The purpose of the performed numerical computations
is twofold. First, we investigate the behavior of the resonant instability regions of the
basic state (2.7), obtained by the method of continued fractions. Second, we find the
range of vibration parameter values that provide close agreement between the results
obtained by the method of continued fractions and the averaging method.

The computer code (in MATLAB) for constructing the neutral curves by the
method of continued fractions solves (3.17) for the case of synchronous modes and
(3.18) for the case of subharmonic modes. The continued fractions are truncated once
the desired precision (10−4 for this paper) is achieved. For all the figures in this
section, parameters not specified on the plots are chosen to be Pr = 0.733, l = 1, and
c = 1.

Neutral curves in the parameter space (Ra, α) obtained by the method of contin-
ued fractions for the synchronous and subharmonic modes are presented in Figures
5.1 and 5.2. Negative values of the thermal Rayleigh number Ra, corresponding to
heating of the layer from the top, are considered in both cases. The concentration
Rayleigh number Rs is chosen to be positive in Figure 5.1 (corresponding to higher
concentration of the heavier component on the bottom of the layer) and negative in
Figure 5.2 (corresponding to higher concentration of the heavier component on the top
of the layer). Regions inside the neutral curves indicate the resonant instability of the
quasi-equilibrium basic state (2.7). The alternating pattern of the instability regions
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Fig. 5.1. Neutral curves of Ra versus α for synchronous (solid line) and subharmonic (dashed
line) modes, obtained by the method of continued fractions; ω = 30, η = 3, Rs = 5000, L = 0.5.
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4

α
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Fig. 5.2. Neutral curves of Ra versus α for synchronous (solid line) and subharmonic (dashed
line) modes, obtained by the method of continued fractions; ω = 30, η = 3, Rs = −5000, L = 0.5.

corresponding to synchronous and subharmonic modes can be observed in Figures 5.1
and 5.2. The values of parameters in Figures 5.1 and 5.2 correspond to the stable
regime of the basic state for the case with no vibration (see [7]). Hence, the existence
of the instability regions demonstrates that vertical vibration can destabilize a stable
system by inducing convection in it.

Comparison of Figures 5.1 and 5.2 shows that decreasing the value of Rs (with
the values of all the other parameters being fixed) causes the regions of instability to
change shape (become more elongated) and move toward lower values of Ra along the
vertical axis. In general, how (and if) the shape of the instability regions changes with
Rs depends on the value of parameter L = Leϕ/κ. The change in shape observed by
comparison of Figures 5.1 and 5.2 corresponds to L = 0.5 or, more generally, L < 1.
When L > 1, the regions of instability become more elongated as the value of Rs
increases. When L = 1, the instability regions do not change in shape with varying of
Rs but simply move upward or downward along the vertical axis. The fact that the
change in the instability regions depends on L can be observed by considering formula
(3.12).

Neutral curves (synchronous modes) in the parameter space (Ra, α) obtained by
the method of continued fractions and the averaging method are presented in Figure
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Fig. 5.3. Neutral curves of Ra versus α for synchronous modes, obtained by the method of
continued fractions (dashed line) and by the method of averaging (solid line); ω = 5000, η = 500
for the method of continued fractions; Rs = 500, L = 0.5.

5.3. The computer code (in MATLAB) solves (3.17) for constructing the neutral
curves by the method of continued fractions and (4.11) for constructing the neutral
curves by the method of averaging. Positive values of Ra, corresponding to heating of
the layer from below, are considered in Figure 5.3. The value of the frequency ω for
the curve obtained by the method of continued fractions is chosen to be 5000, which
provides reasonably close agreement with the curve obtained by the averaging method
in the assumption ω → ∞. This agreement improves as the value of the frequency ω
in the method of continued fractions increases. Table 5.1 provides some illustrative
examples using the data in Figure 5.3.

Table 5.1

Values of Ra from the lower neutral curves in Figure 5.3 obtained by the method of continued
fractions and the method of averaging (rows with ω = 5000). Values of Ra obtained by setting
ω = 10000 are shown for comparison, and percent errors are shown for the method of averaging
relative to the method of continued fractions.

Ra Ra
α ω cont. fractions averaging method relative error (%)
5 5000 518.54 517.78 0.15
5 10000 534.61 534.19 0.08
15 5000 582.91 581.39 0.26
15 10000 679.19 678.78 0.06

The region inside the neutral curves corresponds to instability of the basic state
(2.7). The whole range of values of Ra in Figure 5.3 corresponds to the monotonic
instability regime of the basic state in the unmodulated case. Hence, based on this
figure, we can conclude that vertical vibration can reduce the instability region of the
basic state and therefore stabilize the system.

An interesting phenomenon, which is discovered using the averaging method in
the binary mixture case (and is not present in the case of a pure fluid), is the existence
of closed regions of instability of the basic state (2.7). Such instability regions in the
parameter space (Ra, α) are shown in Figures 5.4 and 5.5 for the case of monotonic
instability and oscillatory instability, respectively. Analytically, existence of these
closed regions can be predicted by considering (4.11) and (4.12) as quadratic equa-
tions for Ra. Double roots of these equations indicate the points in the parameter
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Fig. 5.4. Neutral curves of Ra versus α for synchronous modes, obtained by the method of
continued fractions (dashed line) and by the method of averaging (solid line); ω = 5000, η = 500
for the method of continued fractions; Rs = −1000, L = 0.5.
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Fig. 5.5. Neutral curves of Ra versus α for complex conjugate modes, obtained by the method
of continued fractions (dashed line) and by the method of averaging (solid line); ω = 2000, η = 400
for the method of continued fractions; Rs = −2000, L = 0.5.

space where two branches of the neutral curves Ra(α) meet, forming closed regions
of instability. The fact that these regions are closed makes it difficult to locate them.
To our knowledge, they were not discovered in any previous works on this problem.
These regions grow in size with the growth in the absolute value of Rs, demonstrat-
ing that convective instability in the binary mixture in the presence of vibration is
affected by variations in the solute concentration.

As a summary of the numerical results, sufficiently intensive vertical vibration can
destabilize the system that is stable in the unmodulated case by inducing convection or
stabilize an unstable system by delaying or even suppressing convection. In addition,
even in the presence of vibration, the onset of convection in the system is affected by
variations in the concentration of the solute in the mixture. Therefore, by varying the
vibration parameters (frequency and amplitude) and the concentration of the solute,
we can control convective instability in a horizontal layer of a binary fluid mixture
saturating a porous medium.
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TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT
MATTER∗
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Abstract. Passive microrheology [T. G. Mason and D. A. Weitz, Phys. Rev. Lett., 74 (1995),
pp. 1250–1253] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of
micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here,
we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the
Mason–Weitz theoretical-experimental protocol is ideal and the more challenging inference of bulk
viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation
(GLE) with a memory drag law specified by a kernel. We start with a discrete formulation of the GLE
as an autoregressive stochastic process governing microbead paths measured by particle tracking.
For the inverse problem (recovery of the memory kernel from experimental data) we apply time
series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position
data, an alternative to formulas based on mean-squared-displacement statistics in frequency space.
For direct modeling, we present statistically exact GLE algorithms for individual particle paths as
well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a
generalization of well-known results for a single-mode exponential kernel to an arbitrary M -mode
exponential series, for which the GLE is transformed to a vector Ornstein–Uhlenbeck process.

Key words. generalized Langevin equation, maximum likelihood, Kalman filter, microrheology,
anomalous diffusion, time series analysis
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1. Introduction. In this paper we focus on the diffusive transport of micron-
scale particles in viscoelastic media. We are motivated by applications to pathogen or
drug transport in pulmonary liquids (mucus) or in other biological protective barriers.
We are interested in inverse methods (inference of diffusive transport properties from
the primitive experimental data) and in direct simulation tools to generate both ex-
perimental time series and statistical properties such as mean-squared-displacement
(MSD) and velocity autocorrelations.

To accomplish these goals, we borrow the theoretical and experimental framework
from passive, single-particle microrheology as proposed by Mason and Weitz [12].
Their goal was more ambitious: from diffusive transport statistics (MSD) of dispersed
microbeads, they infer bulk viscoelastic properties of the material. The Mason–Weitz
(MW) theory thus combines two essential elements: a generalized Langevin equation
(GLE) with a memory drag law to model the diffusion process, together with a gen-
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eralized Stokes–Einstein relation (GSER) that relates the GLE memory kernel to the
bulk viscoelastic modulus of the medium. We adopt only the first element, since we
are exclusively interested in particle diffusion, thereby avoiding the harder problem of
a direct relationship between diffusive properties and dynamic bulk moduli of the host
material. The time series methods applied here are ideal for single-particle tracking
experiments, which our colleagues R. Superfine, D. Hill, and J. Cribb (all at UNC)
perform.

There are numerous complexities in soft matter, and especially biological mate-
rials, that frustrate a direct association of the diffusive memory kernel with the bulk
viscoelastic modulus. Particle surface chemistry with the host material, particle size
relative to material network lengthscales (e.g., mesh size), and heterogeneity each
present nontrivial challenges. However, these issues are all circumvented for our less
ambitious goal: to infer diffusive transport properties from displacement path data of
microbeads. Then, one simply has to focus on inference of the memory kernel in the
GLE from experimental data. We therefore choose to call the GLE memory kernel
a “diffusive transport modulus,” to emphasize that we are not attempting to link
diffusive transport properties and bulk viscoelastic moduli.

Our inverse method applies directly to path data from particle tracking exper-
iments, namely, position time series. This has potential advantages over ensemble
averaging in frequency space, the standard approach. First, the information from in-
dividual paths is utilized, and far less data is required for parameter inversion. Second,
unlike traditional microrheometry, we aim to use the results of inverse characterization
to directly simulate single-particle diffusion (single paths and statistics) in biological
layers. For this purpose, a time-domain representation of the memory kernel is re-
quired, which our approach yields. The MW method [11, 12] yields the unilateral
Fourier transform of the imaginary part of the memory kernel, followed by applica-
tion of Kramers–Kronig relations to get the real part. We refer to a very nice review
article by Solomon and Lu [20] for discussions of the numerical methods associated
with mapping the kernel back to the time domain.

Our second goal of direct simulations of diffusive transport processes requires fore-
thought with respect to how one will numerically implement the modulus information
gained from the inversion step. In standard inverse characterization in rheology, it is
sufficient to restrict data-fitting and modulus characterization in the frequency do-
main. For direct simulations, we need the time-domain kernel. Thus we propose a
time-domain method of inversion of the memory kernel that avoids issues with in-
verse transforms as discussed in [20]. Indeed, our long term goal is to couple the GLE
with other dynamic processes in the biological context, e.g., pathogen diffusion in
advected pulmonary liquids, or general situations where there are deterministic forces
and particle-particle interactions.

Another motivation for time-domain methods is the possibility of inversion from
much smaller data sets, e.g., single paths which may not be sufficient for frequency
binning whereas statistical analysis of individual time series data may prove sufficient.
Finally, for very small volume materials there will be constraints on the amount of
sample path data that can be collected (e.g., low bead volume fractions can easily
introduce colloidal effects), and a low number of sample paths may not be statisti-
cally significant for ensemble averaging. Perhaps the most compelling reason for the
method proposed here is that inversion is performed directly on the physically mea-
sured data. In this paper, we present the conceptual framework and a proof-of-principle
illustration of our time-domain methods, for the Langevin and generalized Langevin
models. Particle displacement data is first generated from direct GLE simulations with
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a prescribed diffusive transport modulus (memory kernel); we then analyze the data
with the inverse methods as though the data were path data from particle tracking
experiments. A comparison of prescribed versus recovered modulus parameters is the
accuracy benchmark enforced in this “methods” paper. We also compute MSD statis-
tics directly from our formulation of the GLE and show agreement with ensemble
averaging of path data.

The inverse characterization strategy introduced here is based on statistical tools
developed in the field of time series analysis. These tools yield the following:

i. estimates of the viscoelastic material parameters directly from single or mul-
tiple time traces of Brownian particles,

ii. standard errors for those estimated parameters, and
iii. goodness of fit criteria.
Thus, the methods convey whether the parametrized memory kernels accurately

fit the data and, in practice, how many discrete modes are needed to get a best fit. We
also explore protocols for experimental sampling times and their impact on parameter
inversion.

We consider an exponential (Prony) series approximation to the memory kernel,
which turns out to be particularly efficient for both inversion and direct simulations.
Aside from special GLE kernels, such as Rouse- and Zimm-type which are special
cases of the class considered here, there is very little known about the anomalous
(subdiffusive scaling on intermediate timescales) behavior of Brownian particles. We
refer the reader to [17, 21] for details. For this paper, we show that our direct sim-
ulation tools recover classical Rouse and Zimm scaling properties of MSD statistics
when the kernel is prescribed according to the Rouse or Zimm relaxation spectra.

The remainder of the paper is organized as follows. The standard Langevin equa-
tion for a particle diffusing in a viscous fluid is presented as a tutorial to introduce
the statistical methods. In particular, we illustrate the relationship between the ex-
act Langevin quadrature solution for particle position and autoregressive (AR) time
series models. We also use the Langevin equation to introduce maximum likelihood
methods for performing statistical inference of the single material parameter in the
Langevin model, the fluid viscosity. Furthermore, we formulate the parameter inver-
sion methods when only partial observations of the system are measurable (position
but not velocity of Brownian particles), which is the situation in microbead rheology.
Next, we show how this methodology naturally extends to multivariate AR models
for GLEs with memory kernels that can be written as the sum of exponentials. The
single-mode exponential kernel is presented as another tutorial example of the direct
and inverse methods, since this example can also be analyzed in explicit closed form.
Next, 4-mode kernels, of classical Rouse and Zimm form, are used as a nontrivial
illustration of the direct and inverse methods, and finally a 22-mode Rouse kernel
is presented to show that the direct simulations are not limited to a sparse discrete
spectrum.

A significant by-product of these investigations arises from two critical observa-
tions:

• GLEs with arbitrary finite-mode, exponential kernels are exactly integrable
with a quadrature solution [7]; and

• the quadrature formula extends from the continuous GLE process to a dis-
cretized dynamics.

These two observations yield a statistically exact, discrete-time AR process model
of a Brownian particle in a viscoelastic medium. The first-order Taylor approxima-
tion of this discrete process corresponds to a first-order Euler numerical integration
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scheme. This class of discrete GLE models thereby provides a highly efficient and accu-
rate direct time-domain simulation method. We can generate realizations of Brownian
particles in a viscoelastic fluid, based on matrix function evaluation rather than a
low-order numerical integration of the stochastic GLE model. Furthermore, average
properties (MSD and velocity correlations) also have explicit quadrature representa-
tions, so that statistical correlations may be simulated directly, avoiding the arduous
alternative of generating sample paths and then averaging. In examples presented be-
low, we benchmark the numerical tools by confirming agreement between the two ways
of computing MSD statistics. These direct simulation results thus afford the ability to
simulate time-domain experimental data of individual particles as well as statistical
scaling properties of Brownian particles for any given exponential series form of the
memory kernel in the GLE model.

For arbitrary M -mode kernels with M > 1, there is one numerical analysis re-
sult required to assure accurate computation of matrix exponentials in the discrete
and continuous quadrature formulas, which we provide in the appendix. With this
result, numerical simulations are carried out in the body through various explicit ex-
amples. It is worth emphasizing that this approach—replacing stochastic numerical
integration by matrix function evaluation in a discrete GLE process, for individual
paths as well as for average properties of the process—is guaranteed to be statistically
correct, even for sufficiently long time series. This strategy removes two dominant
sources of numerical error in the direct problem of time-domain simulation: the error
at each time step from a low-order integration method instead of an exponential-order
method, and the cumulative error in time-stepping, which is completely avoided. Be-
cause many generic memory kernels can be approximated to arbitrary accuracy with
a sum of exponentials, this simulation method should find utility in diverse applica-
tions outside of pulmonary liquids. The range of diffusive dynamic scaling behavior
of individual Brownian particle paths, and of ensemble averages, is a topic for future
study to understand the range of diffusive transport statistics possible for GLEs with
exponential series kernels. The known theoretical results for Rouse and Zimm spectra
will be illustrated and confirmed below as rigorous benchmarks on our direct simu-
lation strategy, as well as for inverse characterization benchmarks of the maximum
likelihood method.

2. The Langevin equation and statistical methods. In this section, we re-
view the basic properties of the classical Langevin equation for a microscopic particle
diffusing in a viscous fluid, as a transparent context for introducing our statistical
approach. The solution of the Langevin equation can be exactly represented as a
Gaussian AR statistical model (cf. [8]). Thus, a maximum likelihood approach can be
used to estimate model parameters from time series data. To illustrate the methodol-
ogy, the statistical tools are developed first, assuming that the velocity of the particle
is directly measured. However, in microscopy experiments the particle position (and
not velocity) is measured. Thus, using standard techniques, we next generalize the
statistical framework to a two-dimensional Langevin equation for both position and
velocity, in which only position observations are required for statistical inference of
model parameters. All advantages of maximum likelihood estimation are preserved in
this formulation, which we illustrate numerically.

2.1. The Langevin equation and quadrature solution. The scalar Langevin
equation for a diffusing particle with velocity v is

(2.1) m
dv

dt
= −ξv +

√
2kBTξf(t),
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where m is the particle mass, kBT is the Boltzmann constant times the absolute
temperature, and the friction coefficient ξ = 6πaη, where a is the radius of the particle
and η is the viscosity of the fluid. The stochastic term f(t) is taken to be Gaussian
white noise with zero mean and covariance,

(2.2) 〈f(t)f(s)〉 = δ(t− s).

Equation (2.1) represents a 2-parameter linear stochastic differential equation (SDE),
written equivalently in the standard form of an Ornstein–Uhlenbeck process:

(2.3)
dv(t)
dt

= −αv(t) + σf(t),

where the two parameters in the process are

(2.4) (α, σ) = (ξ/m,
√

2kBTξ/m2).

Ornstein–Uhlenbeck processes have several important properties—Markovian, sta-
tionary (given an appropriate initial condition), and Gaussian—that are amenable to
mathematical and statistical analysis.

• If the initial velocity v(0) is normally distributed with mean zero and variance
σ2/(2α),

(2.5) v(0) ∼ N
(

0,
σ2

2α

)
,

then v(t) has the same distribution for all t, and the velocity autocorrelation
function (ACF) is given by

(2.6) 〈v(t)v(s)〉 =
σ2

2α
e−α|t−s|.

• An Ornstein–Uhlenbeck process can be written in terms of a stochastic inte-
gral:

(2.7) v(t) = e−αtv(0) + σ

∫ t

0

e−α(t−s)f(s)ds,

which is a quadrature solution to the SDE (2.3).
• This representation is useful, as shown below, for developing efficient statis-

tical techniques for estimating the parameters α and σ from time series data
sampled on finite intervals.

• From the exact solution, the tracer position x(t) is given by

(2.8) x(t) = x0 +
∫ t

0

v(s)ds,

where x0 = x(t = 0). The variance of the tracer position (MSD) is likewise
explicit [3]:

(2.9) 〈[x(t) − x(0)]2〉 =
2kBT
αm

[
t− 1

α
(1 − e−αt)

]
.

Next we introduce and apply statistical methods that take advantage of the Gauss-
ian evolution and integrability of the Langevin equation to recover α and σ from time
series data. These features will be shown in subsequent sections to carry over to the
GLE and thereby to inversion of viscoelastic parameters from tracer time series data.
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2.2. AR processes and exact discrete Langevin equations. Suppose we
want to match Brownian tracer experimental data with a discrete model of the
Langevin equation (2.3), where the discrete time step Δ has to be sufficiently small to
resolve the underlying stochastic process. The velocity of a particle diffusing in a vis-
cous fluid can be modeled by discretizing equation (2.3) using an Euler approximation,
which yields

(2.10) vn − vn−1 ≈ −αvn−1Δ + σ
√

Δεn,

where εn is a sequence of independent standard normal random variables and vn =
v(nΔ). Rearranging the above equation yields

(2.11) vn ≈ (1 − αΔ)vn−1 + σ
√

Δεn.

With this discretization, vn is a first-order autoregressive (AR) process. An AR
process is one in which the current observation is a weighted sum of the previous
observations plus a noise term that is independent of previous noise terms. Alter-
natively, we can exploit the quadrature solution (2.7) and replace the approximate
discretization by the exact discrete Langevin process,

(2.12) vn = e−αΔvn−1 + εn,

where εn, n = 1, . . . , N , is a sequence of independent standard Gaussian random
variables with variance

(2.13) s(α, σ) = σ2 1 − e−2αΔ

2α
.

The Euler approximation is recovered as a first-order Taylor series expansion of the
coefficients in this exact discretization. The advantages of this exact discretization are
that one can accurately generate sample paths, and furthermore, the time series are
guaranteed to be statistically consistent with the process (which might otherwise be
polluted by cumulative errors in a numerical integration scheme). We will apply this
discrete process to simulate an experiment, from which experimental time series are
extracted by sampling the full data set.

2.3. Maximum likelihood methods for parameter inversion. We turn
now to maximum likelihood methods which give a general framework for obtaining
point estimators and standard errors for the model parameters, α and σ, given a time
series v0, v1, . . . , vN . The likelihood function is computed from the joint probability
density for an observed velocity time series. Noting that the time series is Markov,
that the conditional distribution of vn given vn−1 is normal with mean e−αΔvn−1

and variance (2.13), and assuming that the initial velocity v0 is known, the likelihood
function is given by

L(α, σ) = g(v1, . . . , vN |v0, α, σ)

=
N∏
n=1

h(vn|vn−1, v0, α, σ)

= (2πs(α, σ))−n/2 exp

(
−

N∑
n=1

(
vn − e−αΔvn−1

2s(α, σ)

)2
)
,
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where g(·|v0, α, σ) is the joint density of v1, . . . , vN and h(·|·, v0, α, σ) is the transition
density for the process. Given a sequence of velocity measurements, the likelihood
function is numerically maximized to obtain estimates, α̂ and σ̂, for α and σ. Hereafter
in the paper, parameter estimates are denoted by ·̂.

One of the benefits of maximum likelihood estimation is that, under fairly general
conditions to be given in the appendix, asymptotic probability distributions for these
estimators may be obtained. Note that while α is not random, α̂ depends on the
random time series v0, . . . , vN and is a random variable; given a new time series, one
obtains a new realization of the random variable. In the present context, we know
a priori that the estimator α̂ is asymptotically (for long time series, i.e., large number
of observations N) normal with mean equal to the true parameter α and variance of
α̂ equal to 1/N(−∂2

α logL(α, σ))−1. We obtain an estimate for the variance of α̂ by
numerically calculating the derivative of the log likelihood function at the maximized
value.

We emphasize that model parameters may be estimated from a single time series
of the process; this will be illustrated in the proof-of-principle illustrations below.
If that single-particle path is sufficiently long, then the MW approach and our ap-
proach should be consistent. (A final example addresses this point.) If multiple paths
are available and they are presumed to be independent, the overall likelihood func-
tion will be defined as the product of likelihood functions for the individual paths,
and maximum likelihood estimators may be obtained as before including the ad-
ditional observations. This methodology will be valid assuming statistical indepen-
dence of the paths. The methods introduced here can be applied even if the data set
is not large; this corresponds either to a large Δ or a low number of iterations in
the discrete process. We will return to this issue below in a discussion of over- and
underresolution of the underlying stochastic process, and in comparisons of quality of
fits versus number of observations.

2.4. Extension to the full system of position and velocity. In general,
microrheology experiments measure the position of the particle, not the velocity. It is
of course unwise to approximate the velocity by differencing the experimental data;
information is lost and unnecessary errors are introduced. Alternatively, we formulate
a vector Langevin model for the position and velocity of the particle, and then de-
velop maximum likelihood methods assuming only partial observations of the process
variables. Specifically, we can observe x0, x1, . . . , xn but cannot observe v0, v1, . . . , vn.
The system can be written in vector form as

(2.14)
d

dt
Y (t) = AY +Kf(t),

where

(2.15) Y =
(
x(t)
v(t)

)
, A =

(
0 1
0 −α

)
, K =

(
0
σ

)
,

and f(t) is a scalar Gaussian white noise process defined above. The quadrature solu-
tion to (2.14) is [15]

(2.16) Y (t) = eAtY (0) +
∫ t

0

eA(t−s)Kf(s)ds.

As noted above, special properties of the exact solution can be exploited when
performing parameter estimation. The process is Gaussian and therefore uniquely
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defined by its mean and covariance. So, given an initial condition Y0 = Y (0) and a
time increment Δ, we can determine the exact distribution of Y1 = Y (Δ) and by
iteration define a vector AR process, as in (2.12) above.

Conditioning on Yn−1, the distribution of Yn is Gaussian with mean eAΔYn−1 and
covariance matrix [8, 15]

(2.17) S(Δ) =
∫ Δ

0

eA(Δ−s)KKT eA
T (Δ−s)ds.

Furthermore, it is straightforward to generate exact realizations of the stochastic
process at finite time intervals, with the caveat that one must be able to accurately
calculate S. (For A,K in (2.15), this is trivial; for the GLE of viscoelastic fluids, we
address this issue in section 3.1.) For a particle starting in state Y0, we generate a
Gaussian vector εn with covariance matrix S and add this to eAΔY0 to obtain Y1, and
then simply iterate this procedure. That is,

(2.18) Yn = eAΔYn−1 + εn,

where εn is an independent sequence of zero mean Gaussian random vectors with
covariance S. Thus, we have an AR representation for the vector process Y0, . . . , YN
associated with the scalar process (2.12).

2.5. The likelihood function for position measurements. Now that we
have cast the Langevin model in the form of a vector AR process, we are in position
to calculate the appropriate likelihood function for estimating parameters, given a
time series of particle positions x0, x1, . . . , xN . In this section, we outline key steps in
the derivation of the likelihood function, leaving a detailed derivation for the appendix.
The derivation relies on the Kalman filter, which was developed to estimate the current
state of a dynamical system from noisy time series data of partial observations of the
process. (This use of the Kalman filter as a method to calculate the likelihood function
has become standard, and further discussion can be found in [2] and [8].) Recall that
discrete observations generated from the Langevin equation satisfy (2.18), where the
noise has a covariance structure given by (2.17). Experimentally, only the position of
the particle is observed, and no other components of the vector Y . That is, at the nth
time interval the observable is

(2.19) xn = CYn, C =
(

1 0
)
.

Assuming that the model parameters, Θ, are known, a Kalman filter is generally used
to recursively estimate the current state, Yn, given the observations x1, . . . , xn. Using
this and the AR structure of the process, we may also give a predictive density for
Yn+1 given x1, . . . , xn. From this we may obtain the density of xn+1 given x1, . . . , xn,
which we denote by h(xn+1|xm,m < n+ 1,Θ, x0). We may then decompose the joint
density for the time series into a product of these conditional densities and obtain

(2.20) g(x1, x2, . . . , xN |Θ, x0) =
N∏
n=2

h(xn|xm,m < n,Θ, x0).

Because the process is Gaussian, the above equation can be rewritten as

− logL(Θ) = − log g(x1, x2, . . . , xN |Θ, x0)

=
1
2

N∑
n=1

(
log 2π + logQn−1 +

(xn − x̂n|n−1)2

Qn−1

)
,(2.21)
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where the conditional mean and variance of xn given x1, . . . , xn−1 are

(2.22) x̂n|n−1 = CeAΔŶn−1

and

(2.23) Qn−1 = CRn−1C
t,

respectively, and the matrix Rn is defined in the appendix. Therefore, once we have
x0, x1, . . . , xN we may numerically maximize this likelihood function with respect to
the parameters to obtain an estimate for Θ. An important feature of this Kalman
derivation of the likelihood function is that it may be calculated recursively; this
dramatically reduces the time necessary to calculate the likelihood function since we
do not have to calculate the full covariance matrix of the entire time series. Use of
the Kalman filter to calculate the likelihood function of dependent data is a common
procedure in time series analysis and is the most accurate and efficient method to
calculate the likelihood function for a number of common models such as the ARIMA
model [6, 18].

This method requires numerical calculation of the matrices S and eAΔ, but this
calculation has to be done only once for each trial parameter set in the maximization
process. This numerical calculation is, of course, trivial for 2×2 systems, but presents
a potential limitation for the GLE, which we will soon formulate in this precise vector
AR setting, and where the matrix size scales with the number of exponential modes.
Below, we overcome this potential limitation due to the special form of the matrices
that arise for GLEs with exponential kernels.

As with the univariate case, there are asymptotic results for the distribution
of our maximum likelihood estimators Θ̂. Under certain reasonable conditions given
in the appendix, Θ̂ is asymptotically normal with mean Θ and covariance given by
cov(Θ̂) = 1/N(−∇ logL(Θ))−1, which may be approximated by numerical evaluation
of the quantity 1/N(−∇2 logL(Θ̂))−1. Thus, to build a 1 − α confidence interval for
θm, we start with

(2.24) P

(
−zα/2 ≤ Θ̂m − θm

cov(Θ̂)m,m
≤ zα/2

)
≈ 1 − α,

where zα/2 is the value that satisfies P (Z > zα/2) = α/2 and Z is a standard Gaussian
random variable. We use the notation Am,n to denote the element in the mth row
and nth column of the matrix A. Some algebra yields

(2.25) θm ∈ (Θ̂m − zα/2cov(Θ̂)m,m, Θ̂m + zα/2cov(Θ̂)m,m),

which is the desired confidence interval for θm.

2.6. The autocorrelation function (ACF). A common diagnostic tool for
determining important timescales in time series data is the discrete autocorrelation
function. This function represents a scaled and discretized estimate of the true auto-
covariance function

(2.26) Cov (U(t)U(s)) = 〈U(t)U(s)〉 − 〈U(t)〉〈U(s)〉.

For a discrete time series U1, . . . , UN , where Uk = U(kΔ) and the data is normalized
to have mean zero, the discrete ACF is defined to be

ACF (j) =

∑N
n=j+1 UnUn−j∑N

n=1 U
2
n

.
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From now on the acronym ACF denotes the discrete autocorrelation function unless
explicitly stated otherwise. Note that for zero time lag, the ACF is normalized to one.
A general guide for verifying that a process is white noise (independent identically
distributed sequence of random variables) is that for all lags greater than or equal to
one the ACF will be less than 2/

√
N , where N is the number of observations [19]. We

illustrate the application of the ACF diagnostic in examples below.

2.7. Illustration of the statistical toolkit. We present a simple example,
Brownian diffusion and simple Langevin dynamics, to show how these methods work
and test their accuracy. The example illustrates the importance of the experimental
sampling time relative to the physical timescales in the model. We always assume (and
enforce in numerical simulations) that the discrete time step Δ in the direct simulation
of sample paths is small enough to resolve the stochastic fluctuation timescales in the
model. This yields a faithful resolution of the physical process from which we can
then sample the resolved data on any coarse timescale, analogous to an experimental
sampling time. With these protocols, we are able to provide measures and indicators
of experimental over- and undersampling.

Throughout the paper, we measure time in milliseconds (ms), mass in milligrams
(mg), and length in microns (μm). Consider a neutrally buoyant particle of diameter
1 μm and mass 5 × 10−10mg moving in a fluid with viscosity 1.5 Pa-s (similar to
glycerol). This corresponds to α = 26 × 106(ms)−1 and σ = 65(ms)−3/2. First, we
simulate the exact discrete Langevin process (2.17), (2.18) for a highly resolved time
step Δ = 10−10ms, which is three orders of magnitude smaller than the viscous
timescale set by the drag coefficient, α−1 = m/ζ ≈ 0.37 × 10−7ms. We generate
one sample path with 105 data points. The examples to follow will strobe this data
set at the prescribed lag Δ; if Δ is 10−10+δ, then each observation corresponds to
10δ numerical time steps.

The ACF is first computed using a coarse sampling time Δ = 5× 10−7ms, which
is 13.4 times the viscous timescale α−1. The process yields the ACF signature of white
noise, Figure 1(top). That is, the ACF nearly approximates a delta distribution versus
lag with most of the weight at zero lag time, and therefore at this sampling interval
the process appears to be white noise. On the other hand, if the sampling interval is
shortened (Δ = 10−8ms) so that it is consistent with the viscous timescale, then the
ACF falls off exponentially, as in Figure 1(bottom).

Next, we use maximum likelihood methods to generate the estimators α̂ and σ̂
for five decades of lags Δ (Figure 2). Note that the estimator (open circles) is most
accurate and the variance (vertical bars) is minimized when the lag time Δ ≈ 10−8–
10−9ms, consistent with the ACF diagnostic (Figure 1(bottom)) showing exponential
decay. Note further that the estimator α̂ degrades as Δ increases, and the variance
grows, consistent with the ACF of Figure 1(top) for coarse sampling. For Δ very
small, e.g., Δ = 10−10ms, the variance of α again grows, but the estimator remains
quite accurate.

This simple example illustrates a method for choosing an appropriate time interval
for sampling. If the observations are too far apart (underresolved), e.g., Δ = 10−7ms,
then the autocovariance of the velocity is near zero after one time step. Indeed, one
can compute the AR matrix

(2.27) eAΔ =
(

1 1−e−αΔ

α
0 e−αΔ

)
Δ=10−7

≈
(

1 3.7·10−8

0 1.5·10−6

)
.

Looking at the discrete process (2.18) and (2.17), there is little information carried
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Fig. 1. ACF of Langevin equation velocity time series: The ACF of the velocity at two different
sampling intervals, one showing underresolution and the other indicating accurate resolution.

over except the previous position, so the process is nearly a discrete white noise pro-
cess. Nonetheless, the time series approaches can often still give reasonable estimates
of the parameters, as shown in Figure 2. By contrast, a reasonable sampling time,
like Δ ∼ 10−8ms, will reflect an exponential ACF, signalling good resolution of the
process. In the extremely improbable situation where observations are too frequent
(overresolved), e.g., Δ = 10−10ms, then the AR matrix will be close to the identity,

eAΔ Δ=10−10

≈
(

1 9.9·10−5

0 9.9·10−1

)
,

and the velocity will appear to be nonstationary with a linear decay in the ACF. These
signatures of the ACF are tools that can be used with experimental data to identify
an appropriate sampling time, and even to estimate the smallest physical timescale
in the underlying process.

3. The GLE and statistical methods.

3.1. Mathematical framework: Quadrature solution for exponential se-
ries kernels. The starting point for modeling the diffusive properties of microscopic
Brownian particles in viscoelastic materials is the GLE [1, 7, 12, 16, 22, 23]:

(3.1) m
dV (t)
dt

= −
∫ t

0

ϕ(t− τ)V (τ)dτ + F̃ (t).

For passive microrheology, F̃ (t) is a Gaussian colored noise, correlated with the mem-
ory kernel ϕ(t) through the fluctuation-dissipation relation,

(3.2) 〈F̃ (t), F̃ (s)〉 = kBTϕ(t− s), t > s.
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Fig. 2. Parameter estimates versus sampling time Δ of the drag α and noise σ for the Langevin
model. The bands represent 95% confidence intervals for the estimates. The true parameter is rep-
resented by a horizontal line.

For consistency with the Langevin illustration, we divide both sides of (3.1) by m and
redefine the memory kernel appropriately to obtain

(3.3)
dV (t)
dt

= −
∫ t

0

ξ(t− τ)V (τ)dτ +

√
kBT

m
F (t),

with

(3.4) 〈F (t), F (s)〉 = ξ(t− s), t > s.

Throughout the remainder of the paper when we refer to the memory kernel, we will
mean ξ(·), which is scaled by 1/m.

In this section, we show that for a certain class of memory kernels, specifically a
sum of exponentials, the GLE can be expressed as a set of coupled linear SDEs of the
same form as (2.14), in which the velocity and position are the first two components.
Therefore, all Langevin equation properties and techniques carry over immediately to
the GLE. In particular, we can (1) apply maximum likelihood methods for parameter
estimation, (2) exactly simulate the stochastic process instead of low-order numerical
integration, and (3) write down explicit formulas for statistical quantities of interest,
such as ACFs for position and velocity.

Suppose the memory kernel is a single exponential,

(3.5) ξ(t) = ce−
t
λ , c =

6πaG
m

,

where a and m are the particle radius and mass, which corresponds to a single-mode
Maxwell fluid with shear modulus G, relaxation time λ, and zero strain rate viscosity
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η = λG. The noise F (t), (3.3)–(3.4), for the single exponential kernel can be expressed
as an Ornstein–Uhlenbeck process,

(3.6)
dF (t)
dt

= − 1
λ
F (t) +

√
2c
λ
f(t),

where f(t) is white noise. Note that the Langevin equation for viscous diffusion is
obtained in the limit λ→ 0; that is, (3.6) becomes (with ξ = 6πaη)

(3.7) F (t) =

√
2ξ
m
f(t).

Analogous to the scalar Ornstein–Uhlenbeck process (2.3), the system (3.3)–(3.6)
may be solved explicitly, which has been noted in several classical references [1, 7, 16,
22, 23]. To see this, define the variable Z(t) by

(3.8) Z(t) =
∫ t

0

e−
t−τ

λ V (τ)dτ,

which yields

(3.9)
dZ(t)
dt

= − 1
λ
Z(t) + V (t).

Now, the full system can be written in matrix form as

(3.10a)
d

dt
Y (t) = AY (t) +KW (t)

with

A =

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 −c
√

kBT
m

0 1 − 1
λ 0

0 0 0 − 1
λ

⎞
⎟⎟⎟⎠ , K =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
√

2c
λ

⎞
⎟⎟⎟⎠ ,(3.10b)

Y (t) = (X(t), V (t), Z(t), F (t))T ,(3.10c)

and W (t) is a vector of independent white noise processes.
This system (3.10a)–(3.10c) is identical in form to (2.14), and therefore another

vector Langevin equation, whose quadrature solution is given by (2.16) and (2.17)
with these Y , A, and K. Following the Langevin example above, we can now generate
the corresponding viscoelastic AR process for a Brownian particle with this specified
memory kernel, starting from Y0 = Y (0).

More generally, suppose that the memory kernel ξM (t) is given by an M -mode
exponential series:

(3.11) ξM (t) = c1e
− t

λ1 + c2e
− t

λ2 + · · · + cMe
− t

λM ,

where ci = 6πaGi/m. Similarly, the total noise FM (t) can be written as

(3.12) FM (t) = F1(t) + F2(t) + · · · + FM (t),



1290 J. FRICKS, L. YAO, T. C. ELSTON, AND M. G. FOREST

where each Fi(t) is an independent Ornstein–Uhlenbeck process characterized by the
ith relaxation time λi. That is,

(3.13)
dFi(t)
dt

= − 1
λi
Fi(t) +

√
2ci
λi
fi(t),

where fi(t), i = 1, . . . ,M , are independent white noise processes.
Therefore, FM (t) is a mean-zero Gaussian process with covariance consistent with

the fluctuation-dissipation theorem,

(3.14) 〈FM (t)FM (s)〉 = c1e
− t−s

λ1 + c2e
− t−s

λ2 + · · · + cMe
− t−s

λM .

This formulation of the GLE yields once again a vector Langevin process of the
form (36), with the following definitions for Y , A, and K:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X(t)
V (t)
Z1(t)
...

ZM (t)
F1(t)
...

FM (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 ... 0 0 ... 0

0 0 −c1 ... −cM
√

kBT
m ...

√
kBT
m

0 1 −1/λ1 ... 0 0 ... 0
... ... ... ... ... ... ... ...
0 1 0 ... −1/λM 0 ... 0
0 0 0 ... 0 −1/λ1 ... 0
... ... ... ... ... ... ... ...
0 0 0 ... 0 0 ... −1/λM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0
... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... 0

0 0 ... 0 0
√

2c1
λ1

... 0
... ... ... ... ... ... ... ...

0 0 ... 0 0 0 ...
√

2cM

λM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.15)

Again, an exact solution of this system is given in the form (2.16) and (2.17)
with these matrix formulas. Thus, all properties of the Langevin equation have been
extended to the GLE for the class of M -mode exponential series kernels. Likewise, the
machinery from section 2 applies for generating direct realizations of GLE processes
and performing statistical analysis of time series for partial observations (of position).

These formulas are valuable to the extent that we can numerically calculate the
matrix exponential eA. The special form of A, (3.15), lends itself to an explicit and
straightforward determination of the eigenvalues and eigenvectors for any mode num-
ber M . Furthermore, this calculation only has to be done once, both to generate
the direct process (or statistics of the process) and to perform parameter inversion
for each M -mode model. The procedures for computing the spectrum and then the
covariance matrix are given in the appendix.

3.2. GLE direct and inverse illustration with a single exponential ker-
nel. We first illustrate the GLE direct and inverse strategy, analogous to the Langevin
illustration in section 2, for the simplest case: a single-mode exponential kernel (3.5)
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Fig. 3. ACF versus sampling interval Δ for a GLE with single-mode exponential kernel with
relaxation timescale λ1 ∼ 1.5ms. Top: Underresolved with Δ ∼ 6λ1. Middle: Resolved with Δ ∼ .3λ1.
Bottom: Overresolved with Δ ∼ .01λ1.

for which the GLE is given by (3.10a)–(3.10c). We select physical parameter values
as follows: λ1 = 1.546 ms, G1 = 1.035 × 10−5mg/ms2μm. The model parameter c1
then has the value c1 = 4.440 × 10−3ms−2. Data are generated by a direct simu-
lation with time step Δ ms; we explore various sampling intervals relative to λ to
identify signatures of over-, under-, and “good” sampling times in the ACF and the
estimators (λ̂1, ĉ1). For each Δ, we generate a single sample path consisting of 5×104

observations, or a total experimental simulation of 5 × 104Δ ms.
We begin with the effect of sampling interval Δ on the ACF for velocity, as shown

in Figure 3. The data for bead velocity were created by differencing the position data
for a sample path of length 50,000. The first plot in Figure 3 corresponds to a very
long sampling interval (6 times the relaxation time λ1) and shows that the velocities
at consecutive time steps are nearly independent of one another. We can see this by
analyzing the matrix eAΔ, and we notice

(3.16) vn+1 ≈ 0.036vn + ε,

where ε is white noise, which explains why the ACF of velocity approximates white
noise. The second plot shows a more reasonable ACF at a sampling interval
Δ = 0.5ms. The last ACF plot in Figure 3 corresponds to a very fast sampling interval
Δ = 0.01ms. Note that for this sampling rate, the ACF appears to fall off linearly,
rather than exponentially as expected, indicative of a process that has been oversam-
pled. This behavior is similar to the Langevin equation, where very short time steps
yield a strong dependence from one velocity to the next. Recall that this scenario
yields a likelihood function that is relatively insensitive to parameter values.

Figure 4 shows the maximum likelihood estimate λ̂1 of a single relaxation time,
λ1, from numerically generated data and demonstrates the effect of the sampling
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Fig. 4. Estimators of the relaxation time λ̂1 versus sampling resolution Δ, with data taken
from a direct discrete GLE simulation with a single-mode exponential memory kernel. The exact
value λ1 = 1.546ms is denoted by the horizontal line. The hollow circle indicates the value of the
estimator, and the error bars indicate 95% confidence intervals.

interval on the estimation of λ1. The horizontal line represents the true value of λ1,
while the error bars represent 95% confidence intervals which are symmetric about
the estimate represented by open circles. As with the ordinary Langevin case, there
is an optimal sampling interval. Note that the natural timescale for this parameter is
on the order of milliseconds; this is approximately the sampling interval at which the
minimum variance of the estimator is obtained.

It is important to note here that for each sampling rate the number of discrete
observations used for inference is being held constant. This implies that the real time
interval over which the observations are being taken is much shorter for the faster
sampling rates and considerably longer for the slowest sampling rates. This shorter
real time interval could partially explain the large variance of the estimator at these
faster rates. However, one should also note that the observations taken at longer than
optimal sampling intervals occur over a longer real time interval and yet also perform
poorly. This demonstrates that both sampling rate and number of observations play
a role in the performance of the method, which is worthy of further investigation.

In Figure 5, the estimate ĉ1 of the model parameter c1 versus sampling interval
Δ is illustrated. As seen when estimating λ1, the estimates improve as the sampling
interval becomes longer. However, beyond the interval of Δ values in this plot the
quality of the estimator declines quickly. Note that this parameter has a natural
timescale of 1/

√
c1 which is approximately 10−

3
2 ms. Note also that there is little

overlap between the very good estimates of c1 and the good estimates of λ1. This points
to a general problem for a system with different relevant timescales. The quality of
relative estimates within a parameter set will be partially determined by the sampling
interval.

In Figure 6, we show the effect of the number of experimental observations on
parameter estimation. Parameter estimates improve with the length of the time series
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Fig. 5. Effect of sampling resolution Δ on estimation of c1 for the single-mode GLE example
in Figures 3 and 4. The horizontal line represents the true value of c1 = 1.109×103ms−2, while the
error bars represent 95% confidence intervals, which are symmetric about the estimates represented
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Fig. 6. Parameter estimation as a function of the number of observations for the single-mode
GLE of Figures 3–5. The sampling interval is fixed, Δ = 0.1ms, which is a good sampling rate
to estimate λ1 = 1.5ms, as shown in Figure 4. The horizontal line represents the true value of
λ1, and the error bars represent 95% confidence intervals which are symmetric about the estimates
represented by a hollow point.

for a given sampling time. This is a general feature of maximum likelihood estima-
tors, and its theoretical verification is given in Appendix B as a consequence of the
asymptotic normality of the estimators.
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With a single-mode exponential kernel, the quadrature solution of the GLE can be
extended to an explicit formula for ensemble averages, particularly for autocorrelations
of velocity and displacement (cf. [7]). We drop the subscript 1 on all parameters for
these 1-mode formulas. The velocity autocorrelation is given by

(3.17) 〈V (t)V (t′)〉 =
kBT

mβ(1 − β)
e−

1−β
2λ |t−t′| − kBT

mβ(1 + β)
e−

1+β
2λ |t−t′|,

while the MSD is

〈[X(t) −X(t′)]2〉 =
4kBT
m

{
2λ

1 − β2
|t− t′| − 2λ2(3 + β2)

(1 − β2)2

+
λ2

β(1 − β2)2
(
e−

1−β
2λ |t−t′|(1 + β)3 − e−

1+β
2λ |t−t′|(1 − β)3

)}
,

(3.18)

where β =
√

1 − 4cλ2 and c = 6πaG/m from (3.5). For sufficiently short times, the
MSD (3.18) exhibits ballistic behavior, 〈[x(t)−x(0)]2〉 ≈ kBT t

2/m, and for sufficiently
long times, diffusive scaling emerges, 〈[x(t)− x(0)]2〉 ≈ 2kBT t/mλc. For intermediate
times, a power law fit of the MSD yields a range of exponents depending on the
window in which one chooses to fit.

We note that the parameter β can be purely imaginary, as pointed out in [7], which
is clear from the formula (3.18). Oscillations are predicted in the velocity correlation
and MSD whenever physical parameters obey 4cλ2 > 1. When extended to the more
general case of multiple exponentials, similar oscillations appear since the relevant
matrix A often has a pair of complex eigenvalues.

This GLE model phenomenon predicts high frequency (short time) oscillations
in experimental path data, even after ensemble averaging of path time series, which
translates to a source of high frequency error of MSD in experimental measurements
because of the phase mismatch between these inherent oscillations and experimental
sampling time. We do not know if this property is generic for a wider class of kernels.

3.3. GLE model illustration with a 4-mode Rouse kernel. A classical
model due to Rouse (cf. [5]) yields a special class of M -mode kernels for which GLE
diffusive transport properties are explicitly solvable. A 4-mode Rouse kernel is im-
plemented now to further illustrate the direct and inverse tools, and to benchmark
our direct simulations against exact MSD scaling laws. To construct a Rouse kernel,
polymer chains are divided into spherical mass segments connected by linear springs
of equilibrium length b (beads in polymer chain); and a kernel function of a series
of exponentials with same weight and different characteristic time is then followed
[4, 17]. A Zimm kernel, in which a different exponential spectra is derived, is presented
next. More complex molecular models may incorporate overlap and entanglements of
polymer chains, or even chemical interactions between Brownian particles and local
environment. Our focus in this paper is to model the fluctuations without attempting
to dissect the various sources. Our goals in this example are once again as follows: for
inversion, to find the best GLE kernel to fit measured path data; for direct predic-
tion, to simulate particle paths or the statistics of paths for a known prescribed GLE
kernel.

To prescribe the kernel for a Rouse chain solution, each segment in a polymer
chain is assigned friction coefficient ξb, and the weight and characteristic times for
the exponentials of the ith mode are given by (with Nm the number of segments in a
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Fig. 7. Sample discrete AR simulation for a GLE with a 4-mode Rouse kernel (top path)
compared to a Brownian motion (Langevin equation path) with the same local variance.

polymer chain)

(3.19) Gi = G0 = νkBT, λi =
ξb

16kBTβ2
b sin2(iπ/2(Nm + 1))

,

where ν is the number density of polymer chains and βb = 3/(Nmb2). In the example
to follow, we choose ν = 2%. We now specify all parameter values in the 4-mode Rouse-
GLE model. The passive tracer bead is 1μm in diameter of mass m = 1.05× 10−9mg.
The single weight factor is given by G0 = G = 1.035 × 10−5mg/ms2μm, so that
our rescaled parameters are c = ci = 6πaG0/m = 4.440 × 10−4(ms)−2. The Rouse
relaxation times are, from (3.19), λ1 = .02415, λ2 = .04294, λ3 = 0.09661, and
λ4 = .38643 in units of ms. Figure 7 shows a typical time series for particle position for
this GLE-Rouse kernel, extracted from the full vector AR simulation. For comparison,
we have included a sample path for a random walk with independent steps. The
variance of the steps for both time series are the same; therefore, the figure gives a
clear illustration of the effect of dependency alone in suppressing the diffusion of a
particle.

We simulate 200 paths with sampling time Δ = 10−3ms for 104 steps. Figure 8
shows the ACF (MSD) for the position of the paths, computed by ensemble averaging
of the 200 paths (green dots). This result is compared with the analytical scaling law
(yellow dashed curve) for a Rouse chain [4, 17]. (Later in this section, we present a
more general result from vector Langevin stochastic processes: an explicit quadrature
formula for the autocorrelation matrix of the vector Langevin process. This formula
allows one to bypass single paths and ensemble averaging of them to directly simulate
MSD and velocity autocorrelations.) Note that the MSD starts out with ballistic scal-
ing for times far below the shortest relaxation time and eventually becomes diffusive
for times longer than the largest relaxation time. Subdiffusive scaling occurs between
the shortest (t = 0.02415ms) and longest (t = 0.38643ms) relaxation times, consistent
with Rouse behavior.
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Fig. 8. MSD of GLE sample paths for a 4-mode Rouse diffusive transport modulus. 200 paths
are generated for a 1 μm diameter bead at 293K. The Rouse relaxation times are λ1 = .02415,
λ2 = .04294, λ3 = 0.09661, and λ4 = .38643 in units of ms, with equal weights for each mode, G0 =
1.035× 10−5mg/ms2μm. To benchmark analytical scaling laws, a linear fit between the two vertical
dashed lines (from the shortest to longest relaxation times) confirms the MSD power law of 0.5 for
the Rouse model. The short term ballistic and long term diffusive scaling are also confirmed.

Now we turn to the application of inverse methods for the path data, treating
the data as though it were generated experimentally. To reveal the effective memory
in this system, we first “preprocess” one sample time series to get an estimate of the
ACF for velocity, which is obtained by differencing the position data. We use this
proxy for the ACF of velocity to obtain initial conditions for the maximum likelihood
method of fitting memory kernels. The ACF result is shown in Figure 9. Note the
oscillatory behavior of the ACF, clearly indicating that the process is not consistent
with a particle diffusing in a purely viscous fluid. (This remark relates to the earlier
analysis of oscillations that arise in single-mode GLE models, which persist for this
Rouse kernel.)

The ACF in this context is being used as an exploratory tool to gauge the amount
of dependency present in the data before using the maximum likelihood techniques
to fit the model. The ACF gives a proxy here for the longest relaxation time seen
in the data which gives an initial guess for the single-mode model. If no significant
lags were seen, then it is likely that all relaxation times are below the sampling rate
and more frequent observations are necessary to estimate relaxation times. If the
researcher suspects well-separated relaxation times over several orders of magnitude,
then one could use more coarsely sampled data to fit the longest times and after fitting
use a finer grid to fit shorter relaxation times. The ACF can be used to guide these
explorations of widely separated times.

In general, the number of exponential modes that best fit the underlying process
that generated the data is not known. The strategy begins by positing a single expo-
nential to fit the data, from which the ACF produces a rough guess of 0.04 ms for
the relaxation time. Our experience with numerical and experimental data indicates
that fitting the data to a single-mode kernel tends to be quite stable, and this ini-
tial step consistently gives the same results independent of the initial guess for the
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Fig. 9. ACF for velocity approximated by differencing of position data for the discrete AR
process corresponding to a GLE with the 4-mode Rouse kernel of Figure 8.

relaxation time. The estimated parameter values are λ̂1 = 5.519± 0.071(10−2ms) and
ĉ = 1.77 ± 0.003(10−3ms−2). Not surprisingly the estimated value of c is almost ex-
actly four times the true value since the data was generated from a 4-mode model.
(Fitting a single-mode model is essentially the same as fitting a 4-mode model where
all the modes have the same relaxation time, thus yielding a ĉ that is roughly four
times the true value.)

We would like to be able to assess the quality of the fits being performed. One
diagnostic tool for investigating how well the model predicts the data is the ACF of
the residuals. This is shown in Figure 10. If the model has successfully captured all the
dependencies in the data, then we expect the ACF of the residuals to be consistent
with white noise. Note that the first few lags show a significant negative correlation,
indicating that the single-mode model cannot account for all the dependency in the
data.

We proceed to a 2-mode kernel which requires initial guesses for each relaxation
time. If λ̂1 is the estimate for the single-mode case, one reasonable approach is to
use λ̂1 ± λ̂1/2 as the initial guesses for the 2-modes. In this way, each time we add
an additional mode to the model, we split the longest relaxation time and use the
estimates obtained from fitting the previous model as an initial guess for the remaining
relaxation spectra. That is, for an M -mode model, our initial guesses for the λ’s will
consist of the (λ̂1, . . . , λ̂M−2) obtained by fitting an M − 1 model, and for the two
longest relaxation times we use λM−1 = λ̂M−1−(λ̂M−1− λ̂M−2)/2 and λM = λ̂M−1 +
(λ̂M−1 − λ̂M−2)/2. Therefore, for the 2-mode model, we choose initial conditions of
0.0275ms and 0.0825ms for the λ’s and use ĉ from the single-mode model as the initial
condition for c. This produces λ̂1 = 3.023±0.043(10−2ms), λ̂2 = 19.30±0.73(10−2ms),
and ĉ = 0.886± 0.001(10−3ms−2). In this case the estimate for c is roughly twice the
true value.

The ACF for the residuals of the 2-mode fit (not shown) indicates that we have
captured most of the dependencies in the data. Figure 11 shows a plot of the sum of
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Fig. 10. ACF of residuals for fitting a single-mode GLE kernel to data generated from a discrete
AR process with a 4-mode kernel.
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Fig. 11. The sum of squared residuals when fitting kernels with 1–5 modes to 4-mode data.

the squared residuals as a function of the number of modes used to fit the data. Note
that there is a large reduction in the sum of the squared residuals in going from one
to two modes, but there is no evidence of convergence yet.

We next fit a 3-mode kernel. Using the method described above, the initial
guesses for the λ’s (in 10−2ms) are 3.023, 11.0, and 27.0. The estimated values for
the relaxation times (in 10−2ms) are λ̂1 = 2.525 ± 0.060, λ̂2 = 7.020 ± 0.461, and
λ̂3 = 25.50 ± 1.99, and the estimate of c is ĉ = 0.592± 0.001(10−3ms−2).
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Fig. 12. Proof-of-principle: Maximum likelihood recovery of a 4-mode Rouse relaxation spectrum
from numerical time series data. The error bars are symmetric about the estimate, with the open
circles being the true values.

As expected, the estimated value of c is roughly 4/3 the true value. Note that there
is still a significant drop in the sum of the squared residuals (Figure 11). Figure 12
shows results for the estimated values of the relaxation times when a 4-mode kernel
is used. For this case the initial guesses for the λ’s (in 10−2ms) are 2.525, 7.02, 16.0,
and 43.0. Notice that the true λ values all lie within the error bars. For c, we obtain
an estimate of 0.443622± 0.00074(10−3ms−2), which is very close to the true value.

Attempting to fit a 5-mode kernel with initial guesses of λi = 2.322, 4.670, 10.47,
21.0, and 43.0 (in units of (10−2ms), we obtain estimates for the λ’s of 2.179, 3.748,
7.23, 14.947, and 33.897 (in 10−2ms). However, the estimated covariance matrix has
negative values on the diagonal, indicating a problem with the maximization process.
There is also not a very large reduction in the sum of the squared residuals (Fig-
ure 11), which means that the additional parameter does not meaningfully contribute
to explaining the data.

While additional parameters will almost always lead to a decrease in the residual
sum of squares, it is clear in this case that the fit is unreliable since the approximated
covariance matrix is not positive definite. Therefore we conclude that four modes
provide an accurate representation of the data.

Next, we perform simulations to gauge the convergence of the parameter estimates
with increased data and to test the dependency of the fit on changes in the sampling
interval. Figure 13 shows the estimated values of λ3 and λ4 as a function of the
number of data points in the time series. (The fits for the other two relaxation times
are significantly better and omitted for clarity.) The convergence rate appears to be
on the order of n−1/2, consistent with the earlier derivation of the confidence interval.
Figure 14 shows the estimated values of λ3 and λ4 as functions of the sampling time
Δ. The results are similar to those for the Langevin equation (Figure 2). That is,
the method has difficulties estimating the relaxation times if too short or too long a
sampling time is used.

3.4. Direct GLE simulations of MSD and velocity autocorrelations. En-
semble average information for vector Langevin equations can be expressed in quadra-
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Fig. 13. Parameter estimation versus sampling rate for the longest relaxation times λ3 and λ4

in a 4-mode kernel. The error bars are symmetric about the estimate with the open circles being the
true values. The x-axis represents the log of Δ (sampling time).
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Fig. 14. Parameter estimation versus number of observations (in units of 104) for the two
longest relaxation times λ3 and λ4 in a 4-mode kernel. The error bars are symmetric about the
estimate with the open circles being the true values.

ture form by the appropriate averaging of the exact quadrature formula for individual
paths. The full matrix of autocorrelations for a vector Ornstein–Uhlenbeck process is

(3.20) 〈Y (t)Y T (t′)〉 =
∫ t

0

∫ t′

0

ds1ds2δ(s1 − s2)eA(t−s1)KKT eA
T (t′−s2).
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Fig. 15. MSD of the GLE with a 22-mode Zimm kernel. The smallest relaxation time is
0.2885ms, the longest is 29.77ms; the two vertical lines mark the time span between them, over
which a power law of 0.62 fairly well approximates the theoretical Zimm model value of 2

3
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The (1,1) entry of the resulting matrix gives the MSD, and the (2,2) entry gives the
velocity autocorrelation. The practical ramification of this formula is that one can
directly generate statistical properties for a known GLE M -mode diffusive transport
modulus without the need to generate sample paths and then take ensemble averages.
For the special case of a single-mode exponential kernel, the integral representation
can be solved explicitly, which gives the result presented earlier in (3.17), (3.18).

In Figure 8 for the 4-mode Rouse kernel, the MSD is computed two ways: from
averaging of 200 sample paths generated from the GLE model and depicted by (blue)
circles; and then directly from the autocovariance formula (3.20) and depicted by the
(yellow) dashed line. Figure 8 convincingly reproduces the correct MSD power law
behavior of Rouse theory, namely an exponent of 1

2 when fitted over intermediate
times between the relaxation spectra. This comparison provides another benchmark
on the direct simulation tools, both for sample paths and for the autocovariance of
GLE processes.

We now illustrate that the methods are not “mode limited,” by running direct
simulations for beads of the same size and mass as in Figure 8, but with a GLE
diffusive transport modulus specified by a 22-mode Zimm kernel. The model posits
1100 monomers along each polymer chain, which we divide into 22 subunits, which
gives 22 modes and an explicit relaxation spectrum. Figure 15 shows the MSD statis-
tics, again generated both by ensemble averaging of paths and by the ACF (3.20).
The simulations predict an MSD power law scaling exponent of 0.62 when fitted be-
tween the shortest and longest relaxation spectra, which reasonably approximates the
2
3 theoretical value of the Zimm model.

3.5. Comparison with the MW inverse method. The inverse character-
ization framework for the memory kernel proposed in this paper focuses on single
path information in the time domain, which is a complement to the transform space
formulation of Mason and Weitz [10, 11, 12]. We now compare the two approaches
on data generated by the GLE with the 4-mode Rouse kernel above. To make a fair
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Fig. 16. The real (G′(ω)) and imaginary (G′′(ω)) parts of the transform of the GLE memory
kernel, recovered from the same numerical GLE data with a 4-mode Rouse kernel, by the maximum
likelihood and MW methods. The maximum likelihood results correspond to a best 4-mode exponential
kernel fit.

comparison, we simulate an experiment which gathers many bead paths.
In Mason and Weitz’s original contribution [12], the memory kernel is transformed

to frequency space following the standard definitions and notations of linear viscoelas-
ticity [5]. The unilateral Fourier transform of the kernel, recalled below, is assumed to
be proportional to the frequency-dependent shear viscosity function: mξ∗ = 6πaη∗,
which is the generalized Stokes–Einstein relation. Recall that the transformed shear
modulus G∗ is proportional to the transformed viscosity function, G∗ = iωη∗, i.e.,

(3.21) G∗(ω) ≡ iω

∫ ∞

0

η(t)e−iωtdt = G
′
+ iG

′′
.

If we now assume the 4-mode Rouse kernel, the corresponding real and imaginary
parts of G∗ are

(3.22) G′(ω) =
4∑
i=1

G0ω
2λ2
i

1 + ω2λ2
i

, G′′(ω) =
4∑
i=1

G0ωλi
1 + ω2λ2

i

,

where G0 and λi are defined in (3.19).
The “experimental data” consists of 200 paths of 1μm diameter tracer beads,

generated from the GLE algorithm described earlier. First we implement the MW
method. We calculate the MSD from these 200 paths, shown in Figure 8. Next, the
MSD versus t is transformed to the frequency domain, together with the GSER, to
arrive at G∗ (see [10] for details). We note that the MW method is applied only over
the monotone part of the MSD curve in Figure 8, which optimizes the accuracy of the
MW reconstruction of G∗(ω). The results are graphed in Figure 16. Second, we apply
the maximum likelihood method to gain the best 4-mode fit to the path data. G∗ is
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then given by (3.22) with the maximum likelihood estimators, graphed in Figure 16.
The MW method overestimates G′ and G′′ in this frequency range.

If we further wanted to invert G∗(ω) to recover G(t), clearly the maximum like-
lihood method requires no work. From the MW estimate G∗(ω), we refer to [14, 20]
for numerical strategies to estimate G(t), including an exponential fit.

We comment that this comparison is made on data for which our methods are
designed to do well. The real test, on experimental data, remains for future compar-
isons.

4. Conclusions. A time-domain statistical strategy has been developed for pas-
sive microbead rheology which serves two purposes: as an inversion toolkit for recovery
of the diffusive transport modulus in a generalized Langevin equation from experi-
mental time series, and as a direct simulation toolkit for pathogen diffusion of single
particles and statistical correlations if the diffusive transport modulus is known. These
direct and inverse algorithms combine to a general package for anomalous diffusive
transport of pathogens in soft matter, which we anticipate to be complementary to
the MW experimental and theoretical protocol [10, 11, 12]. These tools are presently
being applied to characterization of pulmonary liquids with our colleagues Superfine,
Hill, and Cribb in the Virtual Lung Project at UNC.

We mention another related approach based on fractional Brownian diffusion de-
veloped by Kou, Xie, and coworkers [9, 13]. The approach taken in that work is to
formulate the GLE using fractional Brownian white noise as the stochastic driving
force. A benefit of this formulation is that the number of parameters is limited; the
modeling feature that is distinct from our methods is that the autocovariance function
decays as a specific power law uniformly in time. If MSD experimental data reflects
a uniform power law scaling over the experimental time series, then the fractional
Brownian diffusion model should be strongly considered. The method of fitting relies
on estimating the autocovariance function for velocity and then fitting the parameter-
ized autocovariance to this estimated function. Standard errors may then be obtained
via simulation. The drawbacks include stochastic approximation in the simulation
methods and the difficulty in estimating the autocovariance of the velocity when only
position is observed. Our method overcomes these difficulties but is limited to mod-
els consistent with autocovariance functions which for long lags have an exponential
decay. Our formulation also allows for a greatly simplified simulation method and
a maximum likelihood parameter estimation procedure which may use experimental
data more efficiently.

An open question relates to the range and timescales of power law behavior in
the MSD that are possible for GLE models with the class of M -mode exponential
kernels considered in this paper. So far, we have reproduced the classical Rouse and
Zimm MSD scalings on intermediate timescales between the shortest and longest
relaxation times for kernels with the Rouse and Zimm relaxation spectra. Our pre-
liminary numerical studies show that a wide range of power law behavior is possible
as the relaxation spectrum and the respective weights for each mode are varied, and
recent, unpublished analytical results of Scott McKinley at Duke University confirm
this numerical evidence.

These tools are viewed as a foundation for further extensions of the single-bead
and two-bead models and experiments. The ability to separate local bead-fluid in-
teractions from the bulk viscoelastic modulus, and to identify heterogeneity from
single-particle and two-particle statistical correlations, are key future applications of
these tools.
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Appendix A. The Kalman filter. Similar discussions to the following, based
on [19], may be found in numerous texts [8, 2]. The framework of the Kalman filter
is to take a linear system model and an observation model which depends linearly on
the state of the system. We call this general setup a linear state space model and use
the following notation: The system equation is

(A.1) Yn = BYn−1 + εn,

where εn ∼ N(0, S), and the observation equation is

(A.2) Un = CYn + ξn,

where ξn ∼ N(0, D). Also, note that εn and ξn are independent sequences and inde-
pendent of each other. (Here we have included an error term for Un which is the case
in the standard Kalman filter. In the present paper, we assume no observation error,
and so the D matrix will be zero.)

The goal of the Kalman filter is to calculate the conditional distribution of Yn,
given the observations U1, . . . , Un. The mean of this conditional distribution is an
estimate (which is optimal in certain ways) of Yn. We are estimating the “hidden”
elements of the process by conditioning on the observed elements of this process. For
this procedure to be computationally feasible, a recursive algorithm is necessary. In
other words, we would like to calculate the new conditional distribution of Yn given
U1, . . . , Un using only the conditional distribution of Yn−1 given U1, . . . , Un−1 and a
new observation Un.

As a preliminary, the calculations of the Kalman filter rely on a basic theorem
from multivariate statistical analysis which allows us to calculate the distribution of a
portion of a Gaussian random vector conditioned on the other portion. For a normal
random vector, A,

(A.3) A =
(
A1

A2

)
∼ N

[(
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
,

we have that the distribution of A1, given that A2 = a, is

(A.4) N [μ1 + σ12Σ−1
22 (a− μ2),Σ11 − Σ12Σ−1

22 Σ21].

This also works in reverse—if A2 ∼ N [μ2,Σ22] and the distribution of A1 is given in
(A.4), then the joint distribution is given by (A.3). (We are using the notation N [μ,Σ]
for multivariate normal distribution with mean vector μ and covariance matrix Σ.)

As mentioned, we would like to find a set of recursive equations such that if we had
the new observation Un and the distribution of Yn−1|U1, . . . , Un−1 (which we write as
Yn−1|n−1 throughout), then we can find the distribution Yn|n. This distribution is the
Kalman filter at time n. So, let’s assume that we have the conditional distribution
of Yn−1|n−1, where we call the conditional mean of this random vector Ŷn−1 and the
conditional covariance Pn−1. Now, using (A.1), we can calculate the distribution for
Yn|n−1 which will be

(A.5) Yn|n−1 = N [BŶn−1, BPn−1B
t + S].

For simplicity, we use the notation Rn−1 = BPn−1B
t + S for the covariance matrix.

Combining (A.2) and (A.5) yields

(A.6)
(
Un|n−1

Yn|n−1

)
∼ N

[(
CBŶn−1

BŶn−1

)
,

(
D + CRn−1C

t CRn−1

Rn−1C
t Rn−1

)]
.
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Right now, we need only to condition Yn|n−1 = Yn|(U1, . . . , Un−1) on Un|n−1 =
Un|(U1, . . . , Un−1) to give us Yn|n = Yn|(U1, . . . , Un), which is what we want. Another
application of the theorem gives us that the mean of Yn|n is

(A.7) Ŷn = BŶn +Rn−1C
t(D + CRn−1C

t)−1(Un − CBŶn−1)

and the covariance is

(A.8) Pn = Rn−1 −Rn−1C
t(D + CRn−1C

t)−1CRn−1.

So, we have derived the necessary recursions to take a new observation at time n
and the filter at time n − 1 (i.e., the distribution of Yn−1, given the observations up
to time n− 1) and obtain the value of the filter at time n.

For our application, one element is particularly important—the one-step predic-
tion for the observation process which is the distribution of Un given U1, . . . , Un−1,
i.e., Un|n−1. This is given, however, in the first entry of the combined vector on the
left-hand side of (A.6). Explicitly,

(A.9) Un|n−1 ∼ N [CBŶn−1, D + CRn−1C
t].

This calculation is used in the error-prediction decomposition approach to calculating
the likelihood function.

Appendix B. Asymptotic normality of maximum likelihood estimators.
A key benefit of the maximum likelihood method is the ability to calculate standard
errors on the estimates. In general, one starts with a model that depends on the
parameters Θ, and then maximizes the likelihood function with respect to the model
parameters to obtain the best estimate Θ̂ for the parameters. Under certain conditions,√
N(Θ̂−Θ) converges to a multivariate normal with mean zero and covariance matrix

I−1(Θ), where I(Θ) is the information matrix [8] given as

(B.1) I(Θ) = −E∇2 logL(Θ).

The necessary conditions that need to be satisfied are the following:
1. I−1(Θ) must be positive definite.
2. Θ̂ must be in the interior of the parameter space.
3. logL(Θ) has third-order continuous derivatives in the neighborhood of the

true parameter values Θ.
4. Θ is identifiable. In other words, for each set of data, L(Θ) is a one-to-one

function of Θ.
We approximate I−1(Θ) by finding the Hessian of the logarithm likelihood function
numerically with respect to the parameters evaluated at the maximum.

Appendix C. Evaluation of autocovariance. We discuss how the covariance
matrix S for a GLE with M -mode kernel in (2.17), while (2M + 2) × (2M + 2)
coefficient matrices A and K are defined as in (3.15), can be numerically calculated
accurately and efficiently. The only difficulty is in finding all 2M + 2 eigenvalues of
A; the remaining steps are straightforward.

C.1. Calculation of eigenvalues. For simplicity, we introduce parameters

(C.1) ci =
6πaGi
m

=
6πaηi
mλi

, σi =

√
kBT

m
, κi =

√
2ci
λi
.
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Clearly, M eigenvalues, {−1/λi}Mi=1, are easy to get. The remaining 2M + 2 are
determined by the roots of the polynomial equation

(C.2) Pd(x) = x

⎛
⎝x

M∏
i=1

(
x+

1
λi

)
+

M∑
i=1

ci

M∏
j �=i

(
x+

1
λj

)⎞⎠ = 0.

First we factor out the simple zero eigenvalue associated with the position equation
and then consider the remaining M + 1 eigenvalues by studying the roots of the
polynomial equation

(C.3) P (x) = x

M∏
i=1

(
x+

1
λi

)
+

M∑
i=1

ci

M∏
j �=i

(
x+

1
λj

)
= 0.

If we rewrite the above polynomial (C.3) by dividing it with
∏M
i=1(x+ 1/λi), we

have a new function

(C.4) Q(x) = x+
M∑
i=1

ci
x+ 1/λi

,

which has the same roots as P (x). Recall 0 < λ1 < · · · < λM . Clearly Q(x) changes
sign, and therefore has one zero, in each interval (−1/λi,−1/λi+1). These are eas-
ily found by iteration. This yields M − 1 eigenvalues, denoted {xi}M−1

i=1 , and only
two remain.

The polynomial P (x) of (C.3) has the form

(C.5) P (x) = (x2 + bx+ d)
M−1∏
i=1

(x− xi) = 0,

where d and b are given explicitly from {−1/λi}Mi=1, {xi}M−1
i=1 :

d =
P (0)∏M−1

i=1 (−xi)
=

∑M
i=1 ci

∏M
j �=i

1
λj∏M−1

i=1 (−xi)
=

∑M
i=1 ci

∏M
j �=i

1
λj∏M−1

i=1 |xi|
> 0,

b =

∏M
i=1(1 + 1

λi
)∏M−1

i=1 (1 − xi)
+

∑M
i=1 ci

∏M
j �=i(1 + 1

λj
)∏M−1

i=1 (1 − xi)
− 1 − d > 0.

(C.6)

This completes the calculation of all 2M + 1 eigenvalues, and we note that the last
two roots have negative real part due to b > 0. If the last two roots are complex
conjugates, then the matrix A is diagonalizable only in the complex space.

Similarly, for the matrix As in (2.17), where s is a scalar, all the eigenvalues scale
explicitly with s and the eigenvectors remain the same.

For M = 1, 2, 3, there are analytical formulas for the roots of the polynomial. In
the single-mode case, M = 1, the eigenvalues are
(C.7)

ω1 = − 1
λ
, ω2 = −1

2

(
1
λ

+

√
1
λ2

− 4c1

)
, ω3 = −1

2

(
1
λ
−
√

1
λ2

− 4c1

)
, ω4 = 0,

with easily calculated eigenvectors. The covariance matrix S of (2.17) can thus be
calculated in closed form.

For general M , from (C.5) and (C.6), fast and efficient numerical schemes could
be found for the calculation of eigenvalues and eigenvectors.
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C.2. Calculation of the covariance matrix S. Given this detailed spectral
information for A, we can precompute the covariance matrix, as shown below.

First we assume that the matrix A has full span of eigenvectors R (its inverse
is R−1),

(C.8) A = RΛR−1, A2 = AA = RΛR−1RΛR−1 = RΛ2R−1,

where Λ is a diagonal matrix whose diagonal components are the eigenvalues of A.
By definition,

(C.9) eA =
∞∑
n=0

An

n!
=

∞∑
n=0

RΛnR−1

n!
= R

( ∞∑
n=0

Λn

n!

)
R−1 = ReΛR−1,

where eΛ = eΛ
T

is diagonal and the covariance matrix S can be written as

S = R

(∫ Δ

0

eΛ(�−s)R−1KKT (R−1)T eΛ
T (�−s)ds

)
RT

�−s=u⇐⇒ S = R

(∫ Δ

0

eΛuCeΛudu

)
RT ,

(C.10)

where we define C = (R−1K)(R−1K)T .
Next, we take advantage of the above properties of the matrix A, as follows.

Denoting by eωiu the ith diagonal component of the matrix eΛu, where wi is the ith
eigenvalue of the matrix A and Cij is the ith row and jth column component of the
matrix C, we see (here (•ij)M×M denotes an M -by-M matrix with ith row and jth
column component •ij)

eΛuCeΛu = (Cijewiu)(2M+2)×(2M+2)e
Λu

= (Cije(wi+wj)u)(2M+2)×(2M+2).
(C.11)

So the covariance matrix admits

S = R

(
Cij

∫ Δ

0

e(ωi+ωj)udu

)
RT

= R

(
Cij

e(ωi+ωj)Δ − 1
ωi + ωj

)
RT ,

(C.12)

and after all the eigenvalues ωi of A are determined, the integral form of S can be
precalculated according to the above result, and the integration of the matrix function
can be avoided.

Acknowledgments. The authors acknowledge guidance and productive discus-
sions with several colleagues in the Virtual Lung Project: Ric Boucher, Jeremy Cribb,
Bill Davis, David Hill, Christel Hohenegger, Richard McLaughlin, Michael Rubin-
stein, John Sheehan, and Richard Superfine. The authors also acknowledge valuable
conversations with Dave Weitz, Victor Breedveld, Eric Furst, Jingfang Huang, and
Scott McKinley.



1308 J. FRICKS, L. YAO, T. C. ELSTON, AND M. G. FOREST

REFERENCES

[1] B. J. Berne, J. P. Boon, and S. A. Rice, On the calculation of autocorrelation functions of
dynamical variables, J. Chem. Phys., 45 (1966), pp. 1086–1096.

[2] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed., Springer, New
York, 1991.

[3] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, Cambridge
University Press, Cambridge, UK, 1995.

[4] M. Doi and S. F. Edwards, The Theory of Polymer Physics, Oxford University Press, London,
1986.

[5] J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1994.
[6] G. Gardner, A. C. Harvey, and G. D. A. Phillips, Algorithm AS 154: An algorithm for

exact maximum likelihood estimation of autoregressive-moving average models by means
of Kalman filtering, Appl. Statist., 29 (1980), pp. 311–322.

[7] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, New York,
1986.

[8] A. C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge
University Press, Cambridge, UK, 1989.

[9] S. C. Kou and X. S. Xie, Generalized Langevin equation with fractional Gaussian noise:
Subdiffusion within a single protein molecule, Phys. Rev. Lett., 93 (2004), paper 180603.

[10] T. G. Mason, Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-
Einstein equation, Rheo. Acta, 39 (2000), pp. 371–378.

[11] T. G. Mason, H. Gang, and D. A. Weitz, Diffusing wave spectroscopy measurements of
viscoelasticity of complex fluids, J. Opt. Soc. Amer. A, 14 (1997), pp. 139–149.

[12] T. G. Mason and D. A. Weitz, Optical measurements of the linear viscoelastic moduli of
complex fluids, Phys. Rev. Lett., 74 (1995), pp. 1250–1253.

[13] W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. Sunney Xie, Observation of a power-
law memory kernel for fluctuations within a single protein molecule, Phys. Rev. Lett., 94
(2005), paper 198302.

[14] S. M. F. D. Syed Mustapha and T. N. Phillips, A dynamic nonlinear regression method for
the determination of the discrete relaxation spectrum, J. Phys. D Appl. Phys., 33 (2000),
pp. 1219–1229.

[15] B. Øksendal, Stochastic Differential Equations, Springer, New York, 1998.
[16] S. A. Rice and P. Gray, Statistical Mechanics of Simple Liquids, Wiley, New York, 1965.
[17] M. Rubinstein and R. H. Colby, Polymer Physics, Oxford University Press, London, 2003.
[18] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications with R Ex-

amples, 2nd ed., Springer, New York, 2006.
[19] R. L. Smith, Time Series, course notes, Department of Statistics, University of North Carolina,

Chapel Hill, NC, 1999.
[20] M. J. Solmon and Q. Lu, Rheology and dynamics of particles in viscoelastic media, Current

Opinion in Colloid & Interface Sci., 6 (2001), pp. 430–437.
[21] F. Brochard Wyart and P. G. de Gennes, Viscosity at small scales in polymer melts, Euro.

Phys. J. E, 1 (2000), pp. 93–97.
[22] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, London, 2001.
[23] R. Zwanzig and M. Bixon, Hydrodynamic theory of the velocity correlation function, Phys.

Rev. A, 2 (1970), pp. 2005–2012.



SIAM J. APPL. MATH. c© 2009 Society for Industrial and Applied Mathematics
Vol. 69, No. 5, pp. 1309–1333

DIFFRACTION BY A SEMI-INFINITE INTERFACIAL CRACK
SANDWICHED BETWEEN TWO ISOTROPIC HALF PLANES∗

V. KUBZINA†‡ , A. K. GAUTESEN§ , AND L. JU. FRADKIN†

Abstract. This paper addresses the canonical two dimensional problem of diffraction of the
plane wave by a semi-infinite interfacial crack sandwiched between two isotropic solids. We restrict
ourselves to a ubiquitous case of solids whose contact boundary does not support the Stoneley wave.
Its solution can be used in applications to model diffraction from curved cracks with curvature that
is small compared to a wavelength.
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1. Introduction. Finding a semianalytical solution to the problem of diffrac-
tion by a semi-infinite crack sandwiched between two different solids is a well-known
problem in the mathematical theory of diffraction. In this paper we consider a two
dimensional case involving two different isotropic half planes. Apart from being math-
ematically challenging, diffraction problems of this kind are of interest in ultrasonic
NDE (nondestructive evaluation), particularly because interfacial cracks are often
found in laminated composites. It is well known that ultrasonic inspection of such
cracks is a challenging engineering problem, and detection of crack tip diffraction is
particularly difficult. As a consequence, the defect size can be underestimated. Nev-
ertheless, the advanced phased array transducers offer an improved performance [1],
and models of the underlying diffraction process would allow the NDE inspectors to
establish whether, in a given configuration, the amplitude of the edge diffracted echoes
could exceed the detection threshold [2].

Over the years purely numerical approaches to this kind of problem based on
finite differences, finite elements, or boundary integral techniques proved unreliable,
because it is difficult to take into account the singularity condition at the crack tip and
thus render a solution unique. It is also difficult to keep adjusting numerical schemes
to account for different types of wave interaction [3, 4, 5]. Another well-known line
of attack is to reformulate the problem in terms of a system of functional equations
and to solve those using a numerical Wiener–Hopf factorization technique (see, e.g.,
[6]). So far, this approach has also met with numerous numerical difficulties and has
produced no entirely satisfactory scheme.
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In this paper we follow a semianalytical approach of [7, 8, 9, 10], developed to de-
rive a solution of the elastodynamic equations formulated in terms of displacements,
which it reduces to a system of regular integral equations for their Fourier trans-
forms. We start with the elastodynamic integral equation for the displacement based
on Green’s formula and the extinction theorem for each isotropic half plane and then
use operations of dilatation (or divergence) and rotation (or curl) to separate trans-
verse and longitudinal motions. Since the incident wave can be considered as radiated
by a line load, we represent the two dimensional free space Green’s tensors in terms of
the Hankel function of the first kind of the zeroth order and its derivatives. Using the
boundary conditions, the Fourier transform of the elastodynamic integral equation is
reduced to a system of four functional equations in eight “half unknowns.” Then, the
problem is reformulated in terms of traction and crack opening displacement, both
of which can be decomposed into singular and nonsingular parts. The singular parts
relate to the well-known geometricoelastodynamic (GE) body waves. The nonsin-
gular parts constitute new unknowns. By using a Hilbert-type integral transform,
the functional equations are transformed into four regular integral equations in four
unknowns. In turn, these are solved numerically. In the far field, diffraction body
wave coefficients are obtained. The method can be generalized to model transversely
isotropic media.

2. The problem statement. We consider a two dimensional semi-infinite crack
(see Figure 2.1) sandwiched between two different isotropic media I(j), where super-
script j = 1 corresponds to the medium occupying the “upper” half plane and j = 2
means the “lower” half plane. Let the crack be irradiated by a longitudinal (n = 1) or
transverse (n = 2) plane wave, which is incident from the medium I(m), m = 1 or 2,
and propagates there with the speed c

(m)
n , where m and n are both fixed through-

out the paper. Further, let us assume without loss of generality that the longitudinal
speed c(1)1 in the medium I(1) is greater than the longitudinal speed c(2)1 in the medium
I(2). Let us further introduce a Cartesian base {e1, e2}, with e1 running along the
crack surface and e2 perpendicular to e1 and pointing into the “upper” medium. In
this base, every vector can be presented in terms of the corresponding coordinates, so
that every position vector x = (x1, x2), every displacement vector u = (u1, u2), etc.

�
x2

�
x1crack

�
�

I(2)

I(1)

���

uinc

Fig. 2.1. The problem geometry.

Let u(x) exp(−iωt) be a time harmonic displacement vector in an elastic medium,
where t is time, ω is the angular frequency, and the exponential time factor exp(−iωt)
is understood but suppressed everywhere below. Using the two dimensional Green’s
tensors (see Appendix A) and introducing a fictitious bottom medium that has the
properties of the upper half space, and a fictitious top medium which has the prop-
erties of the bottom half space, the above problem can be recast in the form of a
generalized reciprocity relation [11] or the extinction theorem (by analogy with the
electromagnetic case—see [12]; the detailed derivation is given in [13]; also see Ap-
pendix B). This states that the total displacement for a medium I(j) satisfies the
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integral equation

H [(−1)j+1x2]u
(j)
k (x) = u

inc(j)
k (x) + (−1)j

2∑
i=1

∫ −∞

−∞
[σG(j)

2ik (x1 − y1, x2)u
(j)
i (y1, 0)

+ u
G(j)
ik (x1 − y1, x2)σ

(j)
2i (y1, 0)]dy1, j, k = 1, 2,(2.1)

where uG(j)(x − y) and σG(j)(x − y) are the free space Green’s tensor and Green’s
stress tensor, respectively; σ(j)(x) is the stress tensor corresponding to displacement
u(j)(x); H(x) is the Heaviside step function,

H(x) =
{

1, x ≥ 0,
0, x < 0;(2.2)

and in the medium I(j), j = 1, 2, the plane wave uinc(j)(x), which is incident from
I(m), is

uinc(j)(x) = δmjdn(m)e−ik
(m)
n (pinc

1 x1−(−1)mpinc
2 x2),(2.3)

with δmj—the Kronecker delta, pinc = (pinc1 , pinc2 )—the incoming unit wave vector
with pinc2 > 0, and k

(m)
n = ω/c

(m)
n —a wave number (see, e.g., [11]). The longitudinal

displacement unit vector d1(m) is

d1(m) = (−pinc1 , (−1)mpinc2 ),(2.4)

and when the motions are transverse the displacement unit vector d2(m) is

d2(m) = ((−1)m+1pinc2 ,−pinc1 ).(2.5)

To complete the problem statement we require that on the contact boundary, {(x1, x2) :
x2 = 0, x1 < 0}, the displacement and normal stress components be continuous,

u
(1)
i (x1, 0) = u

(2)
i (x1, 0),(2.6)

σ
(1)
2i (x1, 0) = σ

(2)
2i (x1, 0), x1 < 0, i = 1, 2;

on the crack {(x1, x2) : x2 = 0, x1 > 0} the normal stress components be zero,

σ
(1)
2i (x1, 0) = σ

(2)
2i (x1, 0) = 0, x1 > 0, i = 1, 2;(2.7)

at infinity, the radiation conditions be satisfied in the form of the limiting absorption
principle; and at the crack tip, the mean energy of the diffracted field be bounded. In
combination with (2.1), the last condition amounts to requiring that we have

σ ∼ O(r−1/2±iν0 ),(2.8)

with ν0 > 0 a real bimaterial constant (see, e.g., [14]) and r the distance to the origin
r =

√
x2

1 + x2
2. The condition (2.8) suggests the oscillatory motions near the crack

tip, which is nonphysical. However, this region is often extremely small and in most
cases can be ignored. (For further discussion, see Williams [15], Erdogan [16, 17], and
Rice and Sih [18]; the related static case has been considered in [19]). Below, if not
used as a subscript, i =

√
−1.



1312 V. KUBZINA, A. K. GAUTESEN, AND L. JU. FRADKIN

3. The functional equations for the Fourier transforms of displacements
and stresses in the crack plane. For any field ϕ(y1) let us define the decomposition

ϕ(y1) = ϕ+(y1) + ϕ−(y1),(3.1)

where the superscripts + and − denote functions that vanish for the negative and
positive values of y1, respectively. Let us use these fields to introduce new “half
unknowns,” components of the four dimensional vector v±(y1) given by

v−i (y1) = u
(1)
i (y1, 0) = u

(2)
i (y1, 0), y1 < 0,

v−i+2(y1) = − i

k
(1)
1 μ(1)

σ
(1)
2i (y1, 0) = − i

k
(1)
1 μ(1)

σ
(2)
2i (y1, 0), y1 < 0,

v+
i (y1) = u

(1)
i (y1, 0), y1 > 0,

v+
i+2(y1) = u

(2)
i (y1, 0), y1 > 0, i = 1, 2.(3.2)

Let us make use of operators of dilatation (or divergence) and rotation (or curl)
and denote the dilatation of any tensor φ(j)

ik (x1, x2) by the superscript 1 and the
rotation by the superscript 2, so that we can write

φ
(j)1
i (x) = [φ(j)

i1 (x)],1 +[φ(j)
i2 (x)],2 , φ

(j)2
i (x) = [φ(j)

i2 (x)],1 −[φ(j)
i1 (x)],2 .(3.3)

Applying the dilatation (l = 1) and rotation (l = 2) to (2.1) in the half plane where the
argument of the Heaviside function is negative ((−1)jx2 > 0) and using the boundary
conditions (2.6) and (2.7), the extinction theorem can be rewritten as

ik(m)
n δmjδnle

−ik(m)
n (x1p

inc
1 +(−1)m+1pinc

2 x2)

+ (−1)j
∫ ∞

0

[σG(j)l
1 (x1 − y1, x2)v+

2j−1(y1) + σ
G(j)l
2 (x1 − y1, x2)v+

2j(y1)]dy1

+ (−1)j
∫ 0

−∞
{σG(j)l

1 (x1 − y1, x2)v−1 (y1) + σ
G(j)l
2 (x1 − y1, x2)v−2 (y1)

+ ik
(1)
1 μ(1)[uG(j)l

1 (x1 − y1, x2)v−3 (y1)

+ u
G(j)l
2 (x1 − y1, x2)v−4 (y1)]}dy1 = 0, j, l = 1, 2,(3.4)

or in the matrix form as

∫ ∞

0

A+(x1 − y1, x2)v+(y1)dy1 +
∫ 0

−∞
A−(x1 − y1, x2)v−(y1)dy1

= −ik(m)
n Uinceik

(m)
n x·d1(m)

,(3.5)

where d1(m) is the displacement unit vector of a longitudinal wave defined in (2.4),
Uinc is the four dimensional vector

Uinc = [δ1mδ1n, δ1mδ2n, δ2mδ1n, δ2mδ2n]
T
,(3.6)
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and 4 × 4 matrices A+(x) and A−(x) are

A+(x) =

⎛
⎜⎜⎜⎝

−σG(1)1
1 (x) −σG(1)1

2 (x) 0 0
−σG(1)2

1 (x) −σG(1)2
2 (x) 0 0

0 0 σ
G(2)1
1 (x) σ

G(2)1
2 (x)

0 0 σ
G(2)2
1 (x) σ

G(2)2
2 (x)

⎞
⎟⎟⎟⎠ ,

A−(x) =

⎛
⎜⎜⎜⎝

−σG(1)1
1 (x) −σG(1)1

2 (x) −ik(1)
1 μ(1)u

G(1)1
1 (x) −ik(1)

1 μ(1)u
G(1)1
2 (x)

−σG(1)2
1 (x) −σG(1)2

2 (x) −ik(1)
1 μ(1)u

G(1)2
1 (x) −ik(1)

1 μ(1)u
G(1)2
2 (x)

σ
G(2)1
1 (x) σ

G(2)1
2 (x) ik

(1)
1 μ(1)u

G(2)1
1 (x) ik

(1)
1 μ(1)u

G(2)1
2 (x)

σ
G(2)2
1 (x) σ

G(2)2
2 (x) ik

(1)
1 μ(1)u

G(2)2
1 (x) ik

(1)
1 μ(1)u

G(2)2
2 (x)

⎞
⎟⎟⎟⎠ ,

(3.7)

with dilatations and rotations uG(j)l
i (x) and σG(j)l

i (x) given in Appendix A.
Everywhere below, let the hat ̂ denote the Fourier transform with respect to the

nondimensionalized variable k(1)
1 y1, so that for any function ϕ(y1) we have

ϕ̂(ξ) = k
(1)
1

∫ ∞

−∞
ϕ(y1)eik

(1)
1 ξy1dy1.(3.8)

Let us then take the Fourier transform of (3.5) and evaluate the result on the boundary.
For this purpose, let us multiply (3.5) by exp(ik(1)

1 ξx1), integrate it over x1, and set
x2 = 0. Applying the convolution theorem, we obtain

1

k
(1)
1

[∫ ∞

−∞
A+(x)eik

(1)
1 ξx1dx1

]
v̂+(ξ)

+
1

k
(1)
1

[∫ ∞

−∞
A−(x)eik

(1)
1 ξx1dx1

]
v̂−(ξ) = p(ξ)Uinc,(3.9)

where, using the notation ξinc = κ
(m)
n p1, κ

(m)
n = c

(1)
1 /c

(m)
n , we have

p(ξ) = 2π iδ(ξ − ξinc) = lim
ε→0

(
− 1
ξ − ξinc + iε

+
1

ξ − ξinc − iε

)
.(3.10)

Multiplying the vector equation in (3.9) by −2i and the first and the third scalar
equations there by [κ(1)

2 ]2 and [κ(2)
2 /κ

(2)
1 ]2, respectively, we obtain the system of four

scalar functional equations

Â+(ξ)v̂+(ξ) + Â−(ξ)v̂−(ξ) = p(ξ)vinc,(3.11)

where the vector vinc is such that

vinc = 2i
[
(κ(1))2δ1mδ1n, δ1mδ2n, (κ(2))2δ2mδ1n, δ2mδ2n

]T
(3.12)
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with κ(j) = c
(j)
1 /c

(j)
2 ; and matrices Â+(ξ) and Â−(ξ) in (3.11) are given by

Â+(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2ξ a1(ξ)

γ
(1)
1 (ξ)

0 0

− a1(ξ)

γ
(1)
2 (ξ)

2ξ 0 0

0 0 2ξ − a2(ξ)

γ
(2)
1 (ξ)

0 0 a2(ξ)

γ
(2)
2 (ξ)

2ξ

⎞
⎟⎟⎟⎟⎟⎟⎠
,(3.13)

Â−(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2ξ a1(ξ)

γ
(1)
1 (ξ)

− ξ

γ
(1)
1 (ξ)

−1

− a1(ξ)

γ
(1)
2 (ξ)

2ξ 1 − ξ

γ
(1)
2 (ξ)

2ξ − a2(ξ)

γ
(2)
1 (ξ)

μ ξ

γ
(2)
1 (ξ)

−μ
a2(ξ)

γ
(2)
2 (ξ)

2ξ μ μ ξ

γ
(2)
2 (ξ)

⎞
⎟⎟⎟⎟⎟⎟⎠
,(3.14)

with aj(ξ) = (κ(j)
2 )2 − 2ξ2, γ(j)

i (ξ) =
√

[κ(j)
i ]2 − ξ2, and μ = μ(1)/μ(2).

The dilatation and rotation of the Green’s tensor and Green’s stress tensor in
(3.7) can be expressed in terms of H0(k

(j)
i r), the Hankel function of the first kind of

zero order and its derivatives (see Appendix A). Therefore, the matrices Â±(ξ) have
been evaluated with the help of the following identity:

∫ ∞

−∞
H0(k

(j)
i r)eik

(1)
1 ξx1dx1 =

2

k
(1)
1

1

γ
(j)
i

eik
(1)
1 γ

(j)
i |x2|(3.15)

(see, e.g., [20]). Note that (3.11) involves singularities, which are described in Ap-
pendix C. Using the definition of plus and minus functions together with (3.8), it
is easy to check that v̂+(ξ) and v̂−(ξ) are analytic in the upper and lower halves,
respectively, of the complex ξ-plane.

Let us cast (3.11) in another form through multiplying by the matrix [Â−(ξ)]−1.
Then we obtain the vector functional equation

v̂−(ξ) +B+(ξ)v̂+(ξ) = p(ξ)Tinc,(3.16)

where the vector on the right-hand side is

Tinc = [Â−(ξinc)]−1vinc;(3.17)

the matrix B+(ξ) = [Â−(ξ)]−1Â+(ξ) is given by

B+(ξ) =
μ

S(ξ)
·

(3.18)

⎛
⎜⎜⎝
b21b12 − g1g2 + μR1h2 −(b21g1 + b11g2) b11b22 − g1g2 + R2h1

µ
b21g1 + b11g2

b22g1 + b12g2 b22b11 − g1g2 + μR1h2 −(b22g1 + b12g2) b12b21 − g1g2 + R2h1
µ

− d2
µ

e
µ

d2
µ

− e
µ

− e
µ

− d1
µ

e
µ

d1
µ

⎞
⎟⎟⎠,
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with the Rayleigh functions Rj(ξ), bij , gj, i, j = 1, 2, and the Stoneley function S(ξ)
defined in Appendix C; and

dj(ξ) = R2(ξ)b1j(ξ) + μR1(ξ)b2j(ξ),
e(ξ) = R2(ξ)g1(ξ) − μR1(ξ)g2(ξ), j = 1, 2.(3.19)

In the case under consideration, the equation |Â−(ξ)| = 0 has no solutions (see Ap-
pendix C), and therefore the matrix B+(ξ) is bounded. Equation (3.16) is a vector
functional equation, which has no known analytical solution and is difficult to solve
numerically.

4. The functional equations for nonsingular unknowns. Let us reformu-
late (3.16) as a vector functional equation for nonsingular components of the displace-
ments and stresses in the crack plane. We start by introducing two new unknown
vector functions, the crack opening displacement (COD) uCOD(y1) and t(y1), as

uCOD(y1) = u(1)(y1, 0) − u(2)(y1, 0),

t(y1) =
1

k
(1)
1 μ(1)

σ
(1)
2i (y1, 0).(4.1)

Then using the definition (3.2), their Fourier transforms ûCOD(ξ) and t̂(ξ) may be
expressed in terms of components of the old half unknowns v±(ξ) as

ûCODl (ξ) = v̂+
l (ξ) − v̂+

2+l(ξ),

t̂l(ξ) = iv̂−l+2(ξ), l = 1, 2.(4.2)

The last two equations in (3.16) can be rewritten in terms of the new unknowns
ûCOD(ξ) and t̂(ξ) as

−it̂(ξ) + B̃+(ξ)ûCOD(ξ) = p(ξ)T̃inc,(4.3)

where p(ξ) is defined in (3.10); the matrix B̃+(ξ) and vector T̃inc are bounded and
are

B̃+(ξ) =
1

S(ξ)

(
−d2(ξ) e(ξ)
−e(ξ) −d1(ξ)

)
, T̃inc = (T inc3 , T inc4 )T .(4.4)

The right-hand side of the above equation has two poles, ξinc+ i0 and ξinc− i0, which
lie infinitely close to each other. Let us isolate one of them by introducing

ŝ(ξ) = −it̂(ξ) − 1
ξ − ξinc − i0

T̃inc.(4.5)

Then the second pole ξinc − i0 can be shifted back to the real axis. For this reason,
everywhere below we use ξinc to mean ξinc − i0. Using (4.5), the functional equation
(4.3) can be rewritten as

ŝ(ξ) + B̃+(ξ)ûCOD(ξ) = − 1
ξ − ξinc

T̃inc.(4.6)

The function ûCOD(ξ) is analytic in the upper half plane. Therefore, its domain
contains both Rayleigh poles −ξR(j), j = 1, 2, the incident pole ξ = ξinc, and also
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�
IBM ξ

�
Re ξ

ξinc

�

−1

�

−ξR(1)

�

−ξR(2)

�

(a)

C+

�IBM ξ

�
Re ξ1

�

C−
(b)

Fig. 4.1. The poles and branch cuts of (a) ûCOD(ξ) and (b) ŝ(ξ).

the branch cut C+ (see Figure 4.1(a) and Appendix C). This means that we can
decompose ûCOD(ξ) as follows:

ûCOD(ξ) =
G(ξinc)
G(ξ)

ŵge+(ξ) +
G(ξ)

[ξ + ξR(1)][ξ + ξR(2)]
ŵ+(ξ),(4.7)

where G(ξ) is defined in Appendix D, ŵge+(ξ) has the pole at ξ = ξinc, and ŵ+(ξ) is
a new unknown vector describing the edge diffracted body and surface waves. Note
that as ξ → ∞, the function G(ξ) ∼ ξ, and therefore ŵ+(ξ) behaves as ξûCOD(ξ).

The function ŵge+(ξ) can be chosen to be

ŵge+(ξ) = − 1
ξ − ξinc

B̃−(ξinc)T̃inc

+
1

ξ − ξinc
1

G(ξinc)

4∑
k=1

F+
k (ξ, ξinc)Δ+

k [G(ξ)B̃−(ξ)]|
ξ=ξinc T̃

inc,(4.8)

where the auxiliary functions F+
k (ξ, ζ), k = 1, . . . , 4, are defined in Appendix D; we

have

B̃−(ξ) =
1

R1(ξ)R2(ξ)

(
−d1(ξ) −e(ξ)
e(ξ) −d2(ξ)

)
,(4.9)

and for any function Φ(ξ) we denote by Δ+
k Φ(ξ) the jump of Φ(ξ) over the branch

cut C+
k defined in (D.4) of Appendix D.

Analogously, the function ŝ(ξ) is analytic in the lower half plane, and we can write
the decomposition

ŝ(ξ) = ŵge−(ξ) + ŵ−(ξ),(4.10)

where ŵge−(ξ) is introduced to cancel the extraneous incident pole appearing on the
negative side of the branch cut C− (see Figure 4.1(b)) and ŵ−(ξ) is a new unknown
vector. The function ŵge−(ξ) can be chosen to be

ŵge−(ξ) = − 1
ξ − ξinc

4∑
k=1

F−
k (ξ, ξinc)Δ−

k [B̃+(ξ)]|
ξ=ξinc B̃

−(ξinc)T̃inc,(4.11)

where the auxiliary functions F−
k (ξ, ζ) are defined in Appendix D and Δ−

k Φ(ξ) denotes
a jump of a function Φ(ξ) over the branch cut C−

k defined in (D.4). It can be shown
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that whether or not ξ = ξinc lies close to the branch cut C−, we can always use the
definition (4.11).

Let us substitute decompositions (4.7) and (4.10) into the functional equation
(4.6) to obtain a functional equation for the new unknowns ŵ+(ξ) and ŵ−(ξ),

ŵ−(ξ) +M+(ξ)ŵ+(ξ) = Vinc−(ξ),(4.12)

where the matrix M+(ξ) is given by

M+(ξ) =
G(ξ)

(ξR(1) + ξ)(ξR(2) + ξ)
B̃+(ξ)(4.13)

and the vector Vinc−(ξ) on the right-hand side of (4.12) can be written as

Vinc−(ξ) = − 1
ξ − ξinc

T̃inc − G(ξinc)
G(ξ)

B̃+(ξ)ŵge+(ξ) − ŵge−(ξ).(4.14)

Multiplying (4.12) by the inverse matrix [M+(ξ)]−1, we obtain the functional
equation

ŵ+(ξ) +M−(ξ)ŵ−(ξ) = Vinc+(ξ),(4.15)

where M−(ξ) = [M+(ξ)]−1, so that we have

M−(ξ) =
(ξR(1) + ξ)(ξR(2) + ξ)
G(ξ)R1(ξ)R2(ξ)

(
−d1(ξ) −e(ξ)
e(ξ) −d2(ξ)

)
,(4.16)

and the vector Vinc+(ξ) is

Vinc+(ξ) = M−(ξ)Vinc−(ξ).(4.17)

The functional vector equations (4.12) and (4.15) form a system of four functional
equations in four unknowns.

5. The system of integral equations. Since the vector ŵ+(ξ) introduced in
the decomposition (4.7) has no poles and vanishes at infinity, it can be represented
as a Hilbert transform

ŵ+(ξ) = − 1
2πi

∫ ∞

1

Δw+(ξ′)
ξ′ + ξ

dξ′,(5.1)

where Δw+(ξ) is a jump of ŵ+(ξ) over the branch cut C+ (see Figure 4.1(a)); i.e.,
we have

Δw+(ξ) = ŵ+(−ξ + i0)− ŵ+(−ξ − i0), ξ > 1.(5.2)

Also, the vector ŵ−(ξ) introduced in (4.10) can be represented as

ŵ−(ξ) = − 1
2πi

∫ ∞

1

Δw−(ξ′)
ξ′ − ξ

dξ′,(5.3)

where, for ξ ∈ C−, Δw−(ξ) is a jump of ŵ−(ξ) over the branch cut C−(see Figure
4.1(b)); i.e., we have

Δw−(ξ) = ŵ−(ξ − i0) − ŵ−(ξ + i0), ξ > 1.(5.4)
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Note that ŵ+(ξ) and ŵ−(ξ) have the same branches as v̂+(ξ) and v̂−(ξ), respectively
(see, e.g., [9]).

Let us now substitute (5.1) into (4.15), (5.3) into (4.12), and calculate the jumps
in the resulting equations across the branch cuts C+ and C−, respectively. Then for
ξ > 1 we have

Δw+(ξ) + ΔM−(−ξ)ŵ−(−ξ) = ΔVinc+(ξ),
Δw−(ξ) + ΔM+(ξ)ŵ+(ξ) = ΔVinc−(ξ),(5.5)

where Δ denotes the jump over the cut, ξ ∈ C−, and we use the notation

ΔM±(±ξ) = 2i IBMM±(±ξ), ξ ≥ 1.(5.6)

In view of (3.10), (4.16), (5.2), (5.4), and the definitions of the functions F±
k (ξ, a),

k = 1, . . . , 4 (see Appendix D), the apparent poles ξ = ξR(j) and ξ = ±ξinc in (5.5)
are in fact absent (their residues are zero). Decompositions (4.8) and (4.11) have been
chosen in order to achieve this regularization.

Equation (5.5) can be rewritten as the system of coupled integral equations

Δw+(ξ) − 1
π

IBM [M−(−ξ)]
∫ ∞

1

Δw−(ξ′)
ξ + ξ′ dξ′ = ΔVinc+(ξ),

Δw−(ξ) − 1
π

IBM [M+(ξ)]
∫ ∞

1

Δw+(ξ′)
ξ + ξ′ dξ′ = ΔVinc−(ξ).(5.7)

6. The numerical scheme. As mentioned above, we seek the solution of (5.7)
that allows the tip condition (2.8) to be satisfied, that is, exhibit the asymptotic
behavior

Δw(ξ) → ξ−1/2[D+ cos(ν0 ln ξ) + D− sin(ν0 ln ξ)], ξ → ∞,(6.1)

where ν0 is a bimaterial constant; D± are unknown four dimensional constant vectors,
and Δw(ξ) = (Δw+

1 (ξ),Δw+
2 (ξ),Δw−

1 (ξ),Δw−
2 (ξ)) is the unknown four dimensional

vector function.
Let us rewrite the system of (5.7) as one vector integral equation,

Δw(ξ) − 1
π
M(ξ)

∫ ∞

1

Δw(ξ′)
ξ′ + ξ

dξ′ = ΔVinc(ξ),(6.2)

where we use the notation

ΔVinc(ξ) = (ΔV1
inc+(ξ),ΔV2

inc+(ξ),ΔV1
inc−(ξ),ΔV2

inc−(ξ))T ,

with ΔViinc±(ξ), i = 1, 2, being the right-hand side of (5.5) and M(ξ) being the 4×4
matrix that can be written as

M(ξ) =
(

02 IBM [M−(−ξ)]
IBM [M+(ξ)] 02

)
.(6.3)

Then there exists a constant L2 such that for ξ ≥ L2 the solution Δw(ξ) exhibits the
behavior (6.1) and we can rewrite (6.2) as

Δw(ξ) − 1
π
M(ξ)

∫ L2

1

Δw(ξ′)
ξ′ + ξ

dξ′ − 1
π
M(ξ)[D+I+(ξ) + D−I−(ξ)] = ΔVinc(ξ),(6.4)
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where we use the notation

I+(ξ) =
1
2

(∫ ∞

L2

x−1/2+iν0

x+ ξ
dx+

∫ ∞

L2

x−1/2−iν0

x+ ξ
dx

)
,

I−(ξ) =
1
2i

(∫ ∞

L2

x−1/2+iν0

x+ ξ
dx−

∫ ∞

L2

x−1/2−iν0

x+ ξ
dx

)
.(6.5)

The integral in (6.4) can be approximated using N collocation points ξi, i = 1, N ,
and weights Wi, i = 1, N , so that (6.4) may be approximated by

Δw(ξ) − 1
π
M(ξ)

N∑
i=1

Δw(ξi)
ξi + ξ

Wi −
1
π
M(ξ)[D+I+(ξ) + D−I−(ξ)] = ΔVinc(ξ),(6.6)

which at ξ = ξj , j = 1, N , becomes

Δw(ξj) −
1
π
M(ξj)

N∑
i=1

Δw(ξi)
ξi + ξj

Wi −
1
π
M(ξj)[D+I+(ξj) + D−I−(ξj)] = ΔVinc(ξj),

j = 1, . . . , N.(6.7)

System (6.7) contains 4N equations with 4N+8 unknowns Δwi(ξj), i = 1, 4, j =
1, N , and D±

i , i = 1, 4, and is thus underdetermined. Four extra equations are
provided by the continuity of the solution at the point ξN = L2 and can be written
as

Δw(ξN ) = ξ
−1/2
N

[
D+ cos(ν0 ln ξN ) + D− sin(ν0 ln ξN )

]
.(6.8)

Four more can be supplied by the relation (E.15) (see Appendix E). The resulting
algebraic system of 4N + 8 equations in 4N + 8 unknowns can be written as

MΔw = f ,(6.9)

where the 4N + 8 dimensional vectors are

Δw = (Δw1(ξ1),Δw2(ξ1),Δw3(ξ1),Δw4(ξ1), w1(ξ2), . . . ,
Δw4(ξN ), D+

1 , . . . , D
+
4 , D

−
1 , . . . , D

−
4 ),(6.10)

f = (ΔV inc1 (ξ1), . . . ,ΔV inc4 (ξ1),ΔV inc1 (ξ2), . . . ,ΔV inc4 (ξN ), 0, 0, 0, 0, 0, 0, 0, 0),

and matrix M may be given in a block form as

M =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I4 − M(ξ1)W1
2πξ1

−M(ξ1)W2
π(ξ1+ξ2)

· · · −M(ξ1)WN−1
π(ξ1+ξN−1)

−M(ξ1)WN

π(ξ1+ξN ) MD(ξ1)

−M(ξ2)W1
π(ξ1+ξ2) I4 − M(ξ2)W2

2πξ2
· · · −M(ξ2)WN−1

π(ξ2+ξN−1)
−M(ξ2)WN

π(ξ2+ξN ) MD(ξ2)
...

...
...

...
...

...
−M(ξN )W1
π(ξ1+ξN ) −M(ξN )W2

π(ξ2+ξN ) · · · −M(ξN )WN−1
π(ξN+ξN−1)

I4 − M(ξN )WN

2πξN
MD(ξN )

04 04 · · · 04 I4 MV 1

04 04 · · · 04 04 MV 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(6.11)
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where we use the notation

MD(ξ) = − 1
π
M(ξ)J

(
I+(ξ), I−(ξ)

)
,

MV 1 = −J
(
ξ
−1/2
N cos(ν0 ln ξN ), ξ−1/2

N sin(ν0 ln ξN )ξN )
)
,(6.12)

with matrix J (f1(ξ), f2(ξ)) given by

(6.13)

J (f1(ξ), f2(ξ)) =

⎛
⎜⎜⎝

f1(ξ) f2(ξ) 0 0 0 0 0 0
0 0 f1(ξ) f2(ξ) 0 0 0 0
0 0 0 0 f1(ξ) f2(ξ) 0 0
0 0 0 0 0 0 f1(ξ) f2(ξ)

⎞
⎟⎟⎠ ,

and

MV 2 =

⎛
⎜⎜⎝

I2 −
√

m−
∞

m+
∞
I2 02 02

02 02 I2 −
√

m−
∞

m+
∞
I2

⎞
⎟⎟⎠ .(6.14)

To evaluate integrals I±(ξ) in (6.5), we consider two cases:
• Case 1: ξ ≤ L2. It is easy to see that we can write

x

x+ ξ
=

∞∑
k=0

(−1)k
(
ξ

x

)k
,(6.15)

where the right-hand side is the geometric series with the common ratio −ξ/x
such that |ξ/x| < 1. Therefore, we have

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

∫ ∞

L2

x−3/2±iν0
∞∑
k=0

(−1)k
(
ξ

x

)k
dx.(6.16)

Exchanging in the right-hand side the order of summation and integration
and evaluating the resulting integrals, we obtain

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx = (L2)−1/2±iν0

∞∑
k=0

(−1)k

0.5 + k ∓ iν0

(
ξ

L2

)k
.(6.17)

Substituting (6.17) into (6.5) gives us

I+(ξ) =
1√
L2

{
S1

(
ξ

L2

)
cos(ν0 lnL2) − ν0S2

(
ξ

L2

)
sin(ν0 lnL2)

}
,

I−(ξ) =
1√
L2

{
S1

(
ξ

L2

)
sin(ν0 lnL2) + ν0S2

(
ξ

L2

)
cos(ν0 lnL2)

}
,(6.18)

where we use the notation

S1(ξ) =
∞∑
k=0

(−1)k(0.5 + k)
(0.5 + k)2 + ν2

0

ξk, S2(ξ) =
∞∑
k=0

(−1)k

(0.5 + k)2 + ν2
0

ξk.(6.19)
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Note that, according to the Leibnitz theorem, the alternating series Si(ξ/L2),
i = 1, 2, converge. The difference between the infinite series and partial sum
SiN (ξ/L2) does not exceed the (N + 1)th term. This property can be used
to establish the number of terms necessary to achieve the required accuracy.
The latter can be improved further if instead of a partial sum SiN we use SiN
plus one half of the (N + 1)th term. Then the error in Si(ξ/L2), i = 1, 2, is
O(k−i−1) rather than O(k−i) .

• Case 2: ξ > L2. Let us rewrite each term in (6.5) as

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

∫ ∞

0

x−1/2±iν0

x+ ξ
dx−

∫ L2

0

x−1/2±iν0

x+ ξ
dx.(6.20)

The first integral can be evaluated to give
∫ ∞

0

x−1/2±iν0

x+ ξ
dx =

π

coshπνo
ξ−1/2±iν0(6.21)

(see, e.g., [20]). The integrand of the second term in (6.20) can be represented
as

x−1/2±iν0

x+ ξ
=

∞∑
k=0

x−1/2+k±iν0

ξk+1
.(6.22)

Integrating both sides of (6.22) over ξ ∈ [0, L2] and using (6.21), the integral
(6.20) can be represented as

(6.23)∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

π

coshπνo
ξ−1/2±iν0 − (L2)0.5±iν0

ξ

∞∑
k=0

(−1)k

0.5 + k ± iν0

(
L2

ξ

)k
.

Therefore, (6.5) becomes

I+(ξ) = −
√
L2

ξ

{
S1

(
L2

ξ

)
cos(ν0 lnL2) + ν0S2

(
L2

ξ

)
sin(ν0 lnL2)

}

+
π√

ξ coshπν0
cos(ν0 ln ξ),

I−(ξ) = −
√
L2

ξ

{
S1

(
L2

ξ

)
sin(ν0 lnL2) − ν0S2

(
L2

ξ

)
cos(ν0 lnL2)

}

+
π√

ξ coshπν0
sin(ν0 ln ξ).(6.24)

Note that, similarly to the previous case, according to the Leibnitz theorem,
the alternating series Si(L2/ξ), i = 1, 2, converge, and instead of the partial
sum SiN , we can utilize SiN plus one half of the (N + 1)th term.

The resulting linear system (6.9) can be solved numerically using the LU decom-
position subroutines from the LAPACK library. After the unknowns are evaluated at
the nodes, system (6.6) can be used to extrapolate the solution for any ξ ≥ 1. Note
that in system (6.9) the integrals I±(ξ) are calculated at ξ ≤ L2, and therefore when
solving this system we utilize only (6.18). When extrapolating, (6.24) is used instead.
It is easy to see that, whatever the case, the integrals I±(ξ) are real valued.
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7. The diffraction coefficients.

7.1. The diffraction coefficients for bulk waves. Let us first define the
function

E(k(j)
i r) =

√
i

8π
eik

(j)
i r√
k

(j)
i r

e−ik
(j)
i y1p1 ,(7.1)

where p = (cos θ, sin θ) is a unit vector in the direction of the diffracted wave, with
the angle θ such that cos θ = x1/r and r is the distance to the origin. Let p⊥ be
another unit vector, which is orthogonal to p. It then can be chosen to be p⊥ =
(−p2, p1) = (− sin θ, cos θ). It is easy to check that as k(j)

i r → ∞, the leading term in
the expansion of the argument gives

H0

(
k

(j)
i

√
(x1 − y1)2 + x2

2

)
= H0

(
k

(j)
i

[
r − y1 cos θ +O

(
1
r

)])
(7.2)

≈ H0(k
(j)
i r) ≈ −4iE(k(j)

i r).

In the far field, the Green’s tensor and Green’s stress can be decomposed as

u
G(j)
ik (x1 − y1, x2) = u

G1(j)
ik (x1 − y1, x2) + u

G2(j)
ik (x1 − y1, x2),

σ
G(j)
2ik (x1 − y1, x2) = σ

G1(j)
2ik (x1 − y1, x2) + σ

G2(j)
2ik (x1 − y1, x2),(7.3)

where the superscript i(j) refers to longitudinal (i = 1) or transverse (i = 2) wave in
the medium I(j), and in the far field, as k(j)

i r → ∞, we can use approximations

u
G1(j)
ik (x1 − y1, x2) ≈

[
1
μ(j)

(κ(j))−2piE(k(j)
1 r)

]
pk,

σ
G1(j)
2ik (x1 − y1, x2) ≈ ik

(j)
1

[
(δi2 − 2(κ(j))−2p1p

⊥
i )E(k(j)

1 r)
]
pk,

u
G2(j)
ik (x1 − y1, x2) ≈

[
1
μ(j)

p⊥i E(k(j)
2 r)

]
p⊥k ,

σ
G2(j)
2ik (x1 − y1, x2) ≈ ik

(j)
2

[
(p2p

⊥
i + p1pi)E(k(j)

2 r)
]
p⊥k(7.4)

(see [11], [21], or Appendix A).
To continue, for the scattered field usc(j)(x), the integral representation (2.1) can

be rewritten as

H [(−1)j+1x2]u
sc(j)
k (x) = (−1)j

2∑
i=1

∫ ∞

−∞
[σG(j)

2ik (x1 − y1, x2)u
sc(j)
i (y1, 0)

+ u
G(j)
ik (x1 − y1, x2)σ

(j)sc
2i (y1, 0)]dy1(7.5)

(see, e.g., [11]). Substituting (7.4) into (7.3) and the result into the version of (2.1)
applicable to the scattered field, for 0 < θ < 2π we can write

H(π − θ)utip(j)k ≈ D1(j)(θ)
eik

(j)
1 r√
k

(j)
1 r

pk +D2(j)(θ)
eik

(j)
2 r√
k

(j)
2 r

p⊥k ,
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where the diffraction coefficients for diffracted body waves can be expressed in terms
of the displacement vectors û(j)(ξ), j = 1, 2, and traction vector t̂(ξ) in the following
manner:

D1(1)(θ) = −
√

−i
8π

(κ(1))−2
{
2p1p2û

(1)
1 (−p1) + [(κ(1))2 − 2p2

1]û
(1)
2 (−p1)

+ p1t̂1(−p1) + p2t̂2(−p1)
}
,

D1(2)(θ) =

√
−i
8π

[
κ

(2)
1 {2(κ(2))−2p1p2û

(2)
1 (−κ(2)

1 p1) + [1 − 2(κ(2))−2p2
1]û

(2)
2 (−κ(2)

1 p1)}

+μ(κ(2))−2{p1t̂1(−κ(2)
1 p1) + p2t̂2(−κ(2)

1 p1)}
]
,

D2(1)(θ) = −
√

−i
8π

[
κ(1){[p2

1 − p2
2]û

(1)
1 (−κ(1)

2 p1) + 2p1p2û
(1)
2 (−κ(1)

2 p1)}

− p2v̂
−
3 (−κ(1)

2 p1) + p1v̂
−
4 (−κ(1)

2 p1)
]
,

D2(2)(θ) =

√
−i
8π

[
κ

(2)
2 {[p2

1 − p2
2]û

(2)
1 (−κ(2)

2 p1) + 2p1p2û
(2)
2 (−κ(2)

2 p1)}

+μ{−p2v̂
−
3 (−κ(2)

2 p1) + p1v̂
−
4 (−κ(2)

2 p1)}
]
,(7.6)

where if ŝ(ξ) is known, t̂(ξ) can be found using (4.5). An additional difficulty is
presented by the fact that, for ξ > 1, ŝ(ξ) as defined in (4.10) contains a singular
integral (5.3). Since in (7.6) the arguments of all t̂ components are given in the form
ξ = −κ(j)

i p1, the function that needs evaluating is ŝ(−κ(j)
i p1). When p1 ≥ 0 the

evaluation can be carried out using (4.10), and when p1 ≤ 0 the combination of (4.7)
and (4.6) should be used instead. To calculate the displacement vectors û(j)(ξ), j =
1, 2, we note that the system (3.11) can be rewritten in terms of û(j)(ξ), j = 1, 2, and
t̂(ξ) as

p(ξ)v(j)inc = Â(j)+(ξ)û(j)(ξ) + Â(j)−(ξ)t̂(ξ), j = 1, 2,(7.7)

where Â(j)±(ξ) are 2 × 2 matrices, which form matrices Â±(ξ) in (3.11), so that we
have

Â+(ξ) =

(
Â(1)+(ξ) 0

0 Â(2)+(ξ)

)
, A−(ξ) =

(
Â(1)+(ξ) Â(1)−(ξ)
Â(2)+(ξ) Â(2)−(ξ)

)
,(7.8)

and vectors v(j)inc(ξ) are

v(1)inc(ξ) =
(
vinc1 (ξ)
vinc2 (ξ)

)
, v(2)inc(ξ) =

(
vinc3 (ξ)
vinc4 (ξ)

)
.(7.9)

Therefore, after t̂(ξ) is found, vectors û(j)(ξ), j = 1, 2, can be calculated using (7.7).
Note that since |κ(j)

i p1| ≤ max{κ(j)
i } < ξR(j), matrices Â(j)+(−κ(j)

i p1) are regular.

7.2. The Rayleigh diffraction coefficients. On each of the traction-free sur-
faces (x2 = 0, x1 > 0) the Rayleigh wave can be defined as

uR(j)(y1, 0) = D(j)Rv(j)Reik
R(j)y1 , y1 > 0,(7.10)
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where the so-called Rayleigh diffraction coefficient D(j)R is its amplitude, kR(j) =
k

(1)
1 ξR(j), and the unit vector v(j)R is a nonzero solution of the homogeneous equation

Â+(−ξR(j))v(j)R = 0.(7.11)

It can be shown that the unit vector v(j)R is

v(j)R =

(
−2ξR(j)γ

(j)
2 (ξR(j))

[κ(j)
2 ]2

, (−1)j+1 aj(ξ
R(j))

[κ(j)
2 ]2

)T
.(7.12)

Applying the Fourier transform to (7.10), we obtain

ûR(j)(ξ) =
iD(j)Rv(j)R

ξ + ξR(j)
.(7.13)

Multiplying (7.7) by [Â(j)+(ξ)]−1 gives us

p(ξ)[Â(j)+(ξ)]−1v(j)inc = û(j)(ξ) +
1
Rj
B̂(j)−(ξ)t̂(ξ), j = 1, 2,(7.14)

with a finite matrix

B̂(j)−(ξ) = μj

(
(−1)jbj1(ξ) −gj(ξ)

gj(ξ) (−1)jbj2(ξ)

)
, j = 1, 2.(7.15)

Let us now evaluate the residue of both sides of (7.14) at ξ = −ξR(j). This can
be done by multiplying them by ξ + ξR(j) and finding the limits when ξ → −ξR(j).
By definition of p(ξ), the left-hand side of the resulting equation is zero. The residue
of the displacement vector at the Rayleigh pole ξ = −ξR(j) is

Res
ξ=−ξR(j)

û(j)(ξ) = lim
ξ→−ξR(j)

(ξ + ξR(j))ûR(j)(ξ) = iD(j)Rv(j)R, j = 1, 2.(7.16)

Therefore, (7.14) leads to

iD(j)Rv(j)R +
1

R′
j(−ξR(j))

B̂(j)−(−ξR(j))t̂(−ξR(j)) = 0, j = 1, 2,(7.17)

where R′
j(ξ) is the derivative of the Rayleigh function Rj(ξ). It follows that, for each

medium I(j), j = 1, 2, the respective Rayleigh diffraction coefficient can be expressed
via t̂(ξ) as

D(j)R =
i[B̂(j)−

11 (−ξR(j))t̂1(−ξR(j)) + B̂
(j)−
12 (−ξR(j))t̂2(−ξR(j))]

R′
j(−ξR(j))v(j)R

1

, j = 1, 2.(7.18)

8. Numerical results. We have developed a FORTRAN90 program for com-
puting the diffraction coefficient Di(j)(θ) using (7.6), where the displacements and
tractions are evaluated at ξ = −κ(j)

i cos θ, with θ being an observation angle.
As has been discussed above, û(j)(ξ) and t̂(ξ) are both singular at the GE pole

ξ = ξinc. At the real angles θ = θsh, which satisfy the equation

κ
(j)
i cos(θsh) = −κ(m)

n cos(θinc),(8.1)
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Fig. 8.1. The longitudinal diffraction coefficient in the lower medium. The solid line corre-
sponds to the angle of incidence of θinc = 30o, the dashed line to 50o, and the dotted line to 70o.

Fig. 8.2. The transverse diffraction coefficient in the lower medium. The key is as above.

the estimates of |Di(j)(θ)| (incorrect near these angles) are infinite and the estimates
of Arg[Di(j)(θsh)] experience a π jump. When |κ(m)

n cos(θinc)/κ(j)
i | > 1, (8.1) has no

real valued solutions and Di(j)(θ) are correct estimates, continuous at all observation
angles. The solution of (8.1) is

θsh = π + (−1)j arccos

(
κ

(m)
n

κ
(j)
i

cos(θinc)

)
.(8.2)

When (8.2) defines a real valued angle, it is the shadow boundary of either the reflected
or refracted wave in the incident medium, or either the transmitted longitudinal or
transverse wave in the other medium.

Other special angles, which can be seen on the graphs in this section, are the
so-called critical angles θcr. They describe the boundaries of the regions that support
head waves and correspond to the branch points, that is, satisfy the equation

±κ(l)
k = −κ(j)

i cos θcr, l, k = 1, 2.(8.3)

These critical angles do not depend on the angle of incidence. Again, the approxima-
tion method used in section 7.1 fails in their vicinity, and they show up on the graphs
as small blips.

As an illustration, Figures 8.1–8.4 present diffraction coefficients for a semi-infinite
crack, which is sandwiched between aluminum and steel.

The incident plane wave is a longitudinal wave, incoming from the aluminum half
plane. The amplitudes of the diffraction coefficients are presented on the left and
phases on the right. The model parameters are as follows. In medium 1 (aluminum),
density ρ(1) = 2700 kg/m3, longitudinal speed c

(1)
1 = 6300 m/s, and shear speed

c
(1)
2 = 3100 m/s. In medium 2 (steel), density ρ(2) = 7800 kg/m3, longitudinal speed
c
(2)
1 = 5900 m/s, and shear speed c

(2)
2 = 3200 m/s. We can see the geometrical

shadow boundaries described by (8.2), where the amplitude of the formally evaluated
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Fig. 8.3. The longitudinal diffraction coefficient in the upper medium. The key is as in Fig-
ure 8.1.

Fig. 8.4. The transverse diffraction coefficient in the upper medium. The key is as in Figure 8.1.

Fig. 8.5. Head wave fronts.

diffraction coefficient is infinite and the phase experiences a π jump. Since the critical
angles do not depend on the angle of incidence, the corresponding blips appear at
the same place for all three curves. The corresponding head wave fronts are shown
in Figure 8.5. It can be seen that in the upper medium, the diffracted longitudinal
wave is not affected by head waves. This is due to the fact that in aluminum the
longitudinal speed is greater than in steel.

In Figure 8.1 the critical angle is θ ≈ 200o. The head wave affects D2(2) at
θ ≈ 237.2o, θ ≈ 239.5o, and θ ≈ 328o. In Figure 8.2 only two blips are seen at about
θ ≈ 237o and θ ≈ 303.6o. This is due to the small difference between the first two
critical angles θ ≈ 237.2o and θ ≈ 239.5o. By decreasing both the discretization step
and the interval of observation angles, the critical angles separate. The head wave
affects D2(1) at θ ≈ 60.5o, θ ≈ 119.5, θ ≈ 121.7o, and θ ≈ 165.6o. Again, in Figure 8.4
the critical angles θ ≈ 119.5o and θ ≈ 121.7o lie too close to each other. The overall
conclusion is that for, say, the 30o incidence, the longitudinal tip diffracted waves,
which propagate in the upper medium, can be best detected at observation angles
between 40o and 130o. As the angle of incidence increases, the range of advantageous
observation angles shortens (see Figure 8.3).
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The Rayleigh diffraction coefficients do not depend on the observation angle and
are calculated using (7.18). Note that the Rayleigh speeds for aluminum and steel are
cAl = 2894 m/s and cSt = 2964 m/s, respectively, and the bimaterial constant is ν0 =
0.0330434. For the angle of incidence θinc = 30o, in aluminum D(1)R = −0.1208 −
0.206i, and in steelD(2)R = 0.1428−0.2128i; for θinc = 50o,D(1)R = −0.1004−0.3094i
and D(2)R = 0.1285 − 0.3272i; and for θinc = 70o, D(1)R = −0.0517 − 0.4005i and
D(2)R = 0.0784− 0.4285i.

We finish this section by discussing the code testing. As already mentioned,
the critical angles and positions of the shadow boundaries of reflected and refracted
waves, when calculated independently, agree with the above graphs. We also know
the phase (either π/4 or −3π/4) on those portions of the wave front which are not
occupied by the head waves—these are correct. Another stringent internal test is to
evaluate the left-hand side of (4.6) on the interval ξ ε [−1, 1]. The right-hand side
of this equation is known. The left-hand side has been computed using our code.
The maximum relative error of each component has been found to be 2%, which is
satisfactory. Finally, one could make another check by considering the limiting case of
the two identical half planes: In this case, the off-diagonal terms in (4.4) become zero,
and (4.3) reduces to the equivalent of the decoupled Wiener–Hopf equations for the
crack opening displacements as found in the studies of the isotropic case, e.g., [11].
However, no numerical check of this nature has been conducted, because, when both
half planes are the same, (4.7) contains a dipole instead of a pole, and although
one could use this representation, it would require additional careful programming:
In (4.7) one would have to use the sum of the two poles instead of the product. Even
then, numerical difficulties would still arise for nearly identical top and bottom media.

9. Conclusions. We have developed a semianalytical approach to calculating
diffraction coefficients for a semi-infinite crack sandwiched between two different iso-
tropic media. We have introduced a stable numerical scheme for solving the resulting
system of integral equations, (5.7). Our main achievement has been to produce a
fast computer code, which is applicable to any pair of (sufficiently different) isotropic
materials which do not support the Stoneley wave and are irradiated by a plane wave
incident from either medium. The incident wave can be longitudinal or transverse and
incoming at an arbitrary angle. The absence of the Stoneley wave does not constitute
a serious restriction, since this case is ubiquitous in applications. Nevertheless, we
plan to publish another paper modeling materials where the Stoneley wave is present
too. As an illustration, we have presented plots of diffraction coefficients for a crack
sandwiched between aluminum and steel.

Appendix A. The two dimensional Green’s tensor and Green’s stress
tensor. Since the incident wave can be considered as radiated by a line load, both
the two dimensional Green’s tensor and Green’s stress tensor can be represented in
terms of the Hankel function of the first kind of the zeroth order, H0 ≡ H

(1)
0 , and its

derivatives (see [11], [21]), so that at any observation point x we have

−4iμ(j)u
G(j)
ik (x) =

1

[k(j)
2 ]2

[
−H0(k

(j)
1 r) +H0(k

(j)
2 r)

]
,ik +H0(k

(j)
2 r)δik ,

−4iσG(j)
2ik (x) =

⎧⎨
⎩1 − 2

[
c
(j)
2

c
(j)
1

]2
⎫⎬
⎭
[
H0(k

(j)
1 r)

]
,k δ2i −

2

(k(j)
2 )2

[
H0(k

(j)
1 r) −H0(k

(j)
2 r)

]
,2ik

+
[
H0(k

(j)
2 r)

]
,2 δik +

[
H0(k

(j)
2 r)

]
,i δ2k,(A.1)
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where μ(j), j = 1, 2, is the shear modulus in medium I(j); r is the distance to the
origin; and an index, say k, after the comma refers to differentiation with respect to
the corresponding spatial variable xk. Applying operations of dilatation and rotation
to both sides of (A.1) gives us

4iμ(j)u
G(j)1
i (x) =

[
c
(j)
2

c
(j)
1

]2 [
H0(k

(j)
1 r)

]
,i ,

−4iσG(j)1
i (x) = (k(j)

1 )2

⎧⎨
⎩
⎡
⎣2

(
c
(j)
2

c
(j)
1

)2

− 1

⎤
⎦H0(k

(j)
1 r)δ2i +

2

(k(j)
2 )2

[
H0(k

(j)
1 r)

]
,2i

⎫⎬
⎭ ,

−4iμ(j)u
G(j)2
i (x) =

[
H0(k

(j)
2 r)

]
,1 δ2i −

[
H0(k

(j)
2 r)

]
,2 δ1i,

−4iσG(j)2
i (x) =

[
H0(k

(j)
2 r)

]
,12 δ2i −

[
H0(k

(j)
2 r)

]
,22 δ1i +

[
H0(k

(j)
2 r)

]
,1i .

(A.2)

Appendix B. The extinction theorem. The extinction theorems are easily
proved for finite sources and obstacles using Green’s theorem. Difficulties arise when
the incident waves are plane and obstacles infinite. One approach to dealing with this
complication is to develop methods such as those offered in [22] and references therein
(also see [23]). Below we offer an alternative justification.

Let us focus on the scattered field in the upper plane. Any identity involving the
incident field can be established by direct integration. For simplicity of presentation,
we omit the superscript (1). Then solving the Fourier transform of the equations of
motion for the elastic solid gives

ûsc(ξ, x2) = A(ξ)(−ξ, γ1)T eik1γ1x2 +B(ξ)(γ2, ξ)T eik1γ2x2 , x2 > 0,(B.1)

where A(ξ) and B(ξ) are unknown. The solutions proportional to exp[−ik1γix2], i =
1, 2, are rejected because they do not satisfy the radiation conditions: Either they
are incoming from infinity or else, when we move the branches off the real axis (see
Figure C.1 below) as x2 → ∞, they become unbounded. It follows that on the top
face of the crack, x2 = 0+, we have

ûsc(ξ, 0+) = A(ξ)(−ξ, γ1)T +B(ξ)(γ2, ξ)T .(B.2)

It can easily be verified that a similar formula holds for the traction related vector
t̂sc (see (4.1)),

t̂sc(ξ, 0+) = −i[A(ξ)(2ξγ1, 2ξ2 − κ2
2)
T +B(ξ)(2ξ2 − κ2

2,−2ξγ2)T ].(B.3)

The solution to the Fourier transform of the equations of motion, which is valid in
both half planes, is

(B.4)
ûsc(ξ, x2) = A1(ξ)(−ξ, γ1sgn(x2))T eik1γ1|x2| +B1(ξ)(γ2sgn(x2), ξ)T eik1γ2|x2|, x2 > 0,

where we have

2κ2
2γ1A1(ξ) = −2ξγ1sgn(x2)ûsc1 (ξ, 0+) + (κ2

2 − 2ξ2)ûsc2 (ξ, 0+)

+ i[ξt̂sc1 (ξ, 0+) − γ1sgn(x2)t̂sc2 (ξ, 0+)],

2κ2
2γ2B1(ξ) = (κ2

2 − 2ξ2)ûsc1 (ξ, 0+) + 2ξγ2sgn(x2)ûsc2 (ξ, 0+)

− i[γ2sgn(x2)t̂sc1 (ξ, 0+) + ξt̂sc2 (ξ, 0+)].(B.5)
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Substituting (B.2) and (B.3) into (B.5) yields

(A1(ξ), B1(ξ)) = (A(ξ), B(ξ))H(x2).(B.6)

Thus, the scattered field defined by (B.4) agrees with (B.1) in the upper half plane
and is identically zero in the fictitious half plane x2 < 0. The inverse transform of
(B.4) leads to the extinction theorem (2.1) for the scattered field.

Appendix C. Singularities in (3.11). Let us describe all singularities of
functions that appear in (3.11). First, in view of (3.10), the left-hand side of (3.11)
has simple poles at ξ = ξinc + i0 and ξ = ξinc − i0, which correspond to the incident
and reflected bulk waves, respectively. They give rise to GE bulk waves.

Second, it is easy to check that the determinant of the matrix Â+(ξ), |Â+(ξ)| is
a product of two Rayleigh functions, R1(ξ) and R2(ξ),

Rj(ξ) = a2
j (ξ) + 4ξ2γ(j)

1 (ξ)γ(j)
2 (ξ),(C.1)

where the subscript j = 1, 2 refers to medium I(j) (see, e.g., [21]). Thus, the solutions
ξ = ±ξR(j) of the equation |Â+(ξ)| = 0 are zeros of R1(ξ) and R2(ξ) and can be
shown to be simple (distinct). The zeros ξ = −ξR(j) are known to give rise to the
outgoing Rayleigh surface waves.

It is equally easy to check that |Â−(ξ)| is the well-known Stoneley function

(C.2)
S(ξ) = μ2R1(ξ)h2(ξ) +R2(ξ)h1(ξ) + μ[b11(ξ)b22(ξ) + b21(ξ)b12(ξ) − 2g1(ξ)g2(ξ)]

(see, e.g., [24]), where we use the notation

bj1(ξ) = [κ(j)
2 ]2γ(j)

2 (ξ), bj2(ξ) = [κ(j)
2 ]2γ(j)

1 (ξ),

gj(ξ) = ξ[2γ(j)
1 (ξ)γ(j)

2 (ξ) − aj(ξ)], hj(ξ) = γ
(j)
1 (ξ)γ(j)

2 (ξ) + ξ2, j = 1, 2.(C.3)

In general, the zero of S(ξ) = 0 (which is also simple) can give rise to an outgoing
Stoneley wave. Using Cagniard’s method (see [24]) we have established that for the
set of parameters used in this paper such a solution does not exist, and therefore no
Stoneley surface wave runs between materials under study. We remark in passing
that this situation is common, and Cagniard [24] refers to the Stoneley wave as “a
rather special phenomenon,” meaning that it exists only in narrow ranges of material
parameters.

To continue, both matrices Â±(ξ) involve multivalued radicals γ(j)
i (ξ) defined

below (3.14). In order to render the matrices single valued we introduce the branch
cuts C(j)∓

i , i, j = 1, 2, which run between branch points ±κ(j)
i , defined below (3.9),

and ±∞, respectively. Let us apply the limiting absorption principle and replace κ(j)
i

by κ(j)
i + iε1, ε1 > 0. This shifts the branch cuts away from the real axis as indicated

in Figure C.1, and when performing the inverse Fourier transform, the corresponding
singularities give rise to the waves, which satisfy the radiation condition, that is, are
outgoing to infinity.

The radicals γ(j)
i (ξ) can be factorized so that we have

γ
(j)
i (ξ) = γ

(j)+
i (ξ)γ(j)−

i (ξ),(C.4)
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−κ(j)
i

�

C
(j)+
i

�IBM ξ

�
Re ξκ

(j)
i

�

C
(j)−
i

Fig. C.1. The branch cuts of γ
(j)
i (ξ).

where we use the notation

γ
(j)+
i (ξ) =

√
κ

(j)
i + ξ, γ

(j)−
i (ξ) = γ

(j)+
i (−ξ),(C.5)

and only the cut C(j)+
i is required to render γ(j)+

i (ξ) single-valued. The radical
γ

(j)−
i (ξ) is rendered single-valued by C

(j)−
i . Note that if ξ = −ζ lies on the branch

cut C(j)+
i , the definition implies that ξ lies on the upper side of the cut, so that

ξ = −ζ + i0. It follows that γ(j)+
i (−ζ) is well defined. As ξ tends to −ζ from below

the branch cut, we have

γ
(j)+
i (ξ) → −γ(j)+

i (−ζ) ≡ γ
(j)+
i (−ζ − i0).(C.6)

Note that in the main text we drop a combination of subscript and superscript (1)
1

in the symbol for the longest branch cut C(1)±
1 . To summarize, the known functions

in (3.11) involve two GE poles ξinc ± i0, two Rayleigh poles −ξR(1) and −ξR(2), as
well as two branch cuts C±.

Appendix D. Auxiliary functions and vectors. Let us now describe auxiliary
functions used in the main text. Let four branch points be sorted in order of the
descending moduli, with κ1 = min{κ(j)

i } and κ4 = max{κ(j)
i }, i, j = 1, 2, denoting

the corresponding radicals γ±i (ξ) =
√
κi ± ξ and the respective branch cuts C+

i = {ξ :
ξ ≤ −κi} and C−

i = {ξ : ξ ≥ κi}, i = 1, 2, 3, 4.
For each pair of numbers a �= −κi and ξ, let us introduce the auxiliary functions

H±
i (ξ, a),

H+
i (ξ, a) =

γ+
i (a) − γ+

i (ξ)
2γ+
i (a)

[
a0 − γ+

i (a)
a0 + γ+

i (ξ)

]2n+1

, H−
i (ξ, a) = H+

i (−ξ,−a),(D.1)

where n ≥ 3 and a0 lies far away from the branch cut C+
i . To be specific, let a0 = 1+i.

Then the function H+
i has the following properties:

• It has no poles in ξ.
• The branch cut C+ renders it single-valued.
• For any ξ ∈ C+

i we have

H+
i (ξ + i0, ξ) = 0 and H+

i (ξ − i0, ξ) = 1,(D.2)

where, as the above notation suggests, H+
i (ξ + i0, a) and H+

i (ξ − i0, a) are
values of H+

i (ξ, a) evaluated on the upper and lower sides of C+
i , respectively.

(We recall that, unless stated otherwise, ξ lies on the positive side of the cut.)
• For any ξ ∈ C−

i such that Re ζ  1 we have

H+
i (−ξ + i0, a)−H+

i (−ξ − i0, a) ∼ constant
[γ+
i (−ξ)]2n

.(D.3)
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Let us now define branch cuts

C−
ii+1 = {ξ : κi ≤ ξ ≤ κi+1}, i = 1, 2, 3,

C−
45 = {ξ : ξ ≥ κ4},

C+
ii+1 = {ξ : −κi+1 ≤ ξ ≤ −κi}, i = 1, 2, 3,

C+
45 = {ξ : ξ ≤ −κ4},(D.4)

and introduce the auxiliary functions

F±
i (ξ, a) = H±

i (ξ, a) −H±
i+1(ξ, a), i = 1, 2, 3,

F±
4 (ξ, a) = H±

4 (ξ, a).(D.5)

It is easy to see that each function F±
i (ξ, a) has a branch cut C±

ii+1, i = 1, 2, 3, 4, and
F±
i (ξ, ξ) = 1 on the negative side of its branch cut and 0 everywhere else. Let us

introduce a function G(ξ) as

G(ξ) =
(√

1 + ξ +
√
κ

(1)
2 + ξ

)2

,(D.6)

which is real outside the interval (−κ(1)
2 ,−1) and O(ξ) at infinity.

Appendix E. Auxiliary relationships. Let us determine eight scalar constants
D±
i , i = 1, 2, 3, 4, introduced in (6.1). Let us show that they are linearly dependent,

and therefore that the total number of unknowns can be decreased by four. Let us do
this by analyzing the asymptotic behavior of both sides of (6.2). As ξ → ∞, matrix
M(ξ) →M∞,

M∞ =
(

02 m−
∞I2

m+
∞I2 02

)
,(E.1)

where matrices 02 and I2 denote the zero and identity 2 × 2 matrices, respectively;
m±

∞ are known constants,

m−
∞ = −1

8

{
[κ(1)

2 ]2

[κ(1)
2 ]2 − [κ(1)

1 ]2
+ μ

[κ(2)
2 ]2

[κ(2)
2 ]2 − [κ(2)

1 ]2

}
,

m+
∞ = −8[S∞]−1

(
[κ(1)

2 ]2{[κ(2)
2 ]2 − [κ(2)

1 ]2} + μ[κ(2)
2 ]2{[κ(1)

2 ]2 − [κ(1)
1 ]2}

)
;(E.2)

and we use the notation S∞ = limξ→∞ S(ξ)/ξ2. Using the Stoneley function S(ξ)
defined in (C.2), we find

S∞ = μ2{[κ(1)
2 ]2 − [κ(1)

1 ]2}{[κ(2)
2 ]2 + [κ(2)

1 ]2} + {[κ(1)
2 ]2 + [κ(1)

1 ]2}{[κ(2)
2 ]2 − [κ(2)

1 ]2}
+ 2μ{[κ(1)

2 ]2[κ(2)
2 ]2 + [κ(1)

1 ]2[κ(2)
1 ]2}.(E.3)

The right-hand side of (6.2) decays faster than the left-hand side. It can be shown
that it has the asymptotic behavior

ΔVinc(ξ) → 1
ξ
, ξ → ∞.(E.4)
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The asymptotic solution of (6.2) can be rewritten using (6.1) as

Δw(ξ) = ξ−νW, ν =
1
2
± iν0.(E.5)

Then the Cauchy integral of the latter can be found in [20] to behave as

1
π

∫ ∞

1

Wdζ

ζν(ξ + ζ)
→ β

ξν
W, ξ → ∞,(E.6)

where β = 1/sin νπ. Therefore, using (E.1) and (E.4), as ξ → ∞, the system (6.2)
becomes

1
ξν

(I4 − βM∞)W = 0.(E.7)

The matrix in the above equation must have a zero determinant,

det(I4 − βM∞) =
∣∣∣∣ I2 −βm−

∞I2
−βm+

∞I2 I2

∣∣∣∣ = 1 − β2m+
∞m

−
∞.(E.8)

This determines β, and hence, by its definition, the parameter ν0:

β = 1

sin
(

1
2±iν0

)
π

=
1

cosh(πν0)
=

1√
m+

∞m
−
∞
.(E.9)

Using one of the Dundurs parameters, which can be represented as

βD =
1 − [κ(2)]2 + μ([κ(1)]2 + 1)

μ[κ(2)]2([κ(1)]2 − 1) + [κ(1)]2([κ(2)]2 − 1)
(E.10)

(see [25]), as well as expressions (E.2) for m±
∞, we can write

tanh(πν0) = βD.(E.11)

Now it can be shown that there are two linearly independent vectors W(1) and W(2)

such that (I4 − βM∞)W = 0. They are

W(1) =

⎛
⎜⎜⎝

m
0
1
0

⎞
⎟⎟⎠ , W(2) =

⎛
⎜⎜⎝

0
m
0
1

⎞
⎟⎟⎠ , m =

√
m−

∞
m+

∞
.(E.12)

It follows that as ξ → ∞, the vector Δw behaves as

Δw(ξ) → ξ−1/2

[(
A+

ξiν0
+

A−

ξ−iν0

)
W(1) +

(
B+

ξiν0
+

B−

ξ−iν0

)
W(2)

]
, ξ → ∞.(E.13)

Rewriting the above equation in the form of (6.1) leads us to the following relationship:

D+ = (A+ +A−)W(1) + (B+ +B−)W(2),

D− = −i[(A+ −A−)W(1) + (B+ −B−)W(2)].(E.14)

Substituting (E.12) into (E.14) gives us a simple relationship between the components
of D±,

D±
1 =

√
m−

∞
m+

∞
D±

3 , D±
2 =

√
m−

∞
m+

∞
D±

4 .(E.15)
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DIFFRACTION BY A SEMI-INFINITE INTERFACIAL CRACK
SANDWICHED BETWEEN TWO ISOTROPIC HALF PLANES∗
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Abstract. This paper addresses the canonical two dimensional problem of diffraction of the
plane wave by a semi-infinite interfacial crack sandwiched between two isotropic solids. We restrict
ourselves to a ubiquitous case of solids whose contact boundary does not support the Stoneley wave.
Its solution can be used in applications to model diffraction from curved cracks with curvature that
is small compared to a wavelength.
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1. Introduction. Finding a semianalytical solution to the problem of diffrac-
tion by a semi-infinite crack sandwiched between two different solids is a well-known
problem in the mathematical theory of diffraction. In this paper we consider a two
dimensional case involving two different isotropic half planes. Apart from being math-
ematically challenging, diffraction problems of this kind are of interest in ultrasonic
NDE (nondestructive evaluation), particularly because interfacial cracks are often
found in laminated composites. It is well known that ultrasonic inspection of such
cracks is a challenging engineering problem, and detection of crack tip diffraction is
particularly difficult. As a consequence, the defect size can be underestimated. Nev-
ertheless, the advanced phased array transducers offer an improved performance [1],
and models of the underlying diffraction process would allow the NDE inspectors to
establish whether, in a given configuration, the amplitude of the edge diffracted echoes
could exceed the detection threshold [2].

Over the years purely numerical approaches to this kind of problem based on
finite differences, finite elements, or boundary integral techniques proved unreliable,
because it is difficult to take into account the singularity condition at the crack tip and
thus render a solution unique. It is also difficult to keep adjusting numerical schemes
to account for different types of wave interaction [3, 4, 5]. Another well-known line
of attack is to reformulate the problem in terms of a system of functional equations
and to solve those using a numerical Wiener–Hopf factorization technique (see, e.g.,
[6]). So far, this approach has also met with numerous numerical difficulties and has
produced no entirely satisfactory scheme.
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In this paper we follow a semianalytical approach of [7, 8, 9, 10], developed to de-
rive a solution of the elastodynamic equations formulated in terms of displacements,
which it reduces to a system of regular integral equations for their Fourier trans-
forms. We start with the elastodynamic integral equation for the displacement based
on Green’s formula and the extinction theorem for each isotropic half plane and then
use operations of dilatation (or divergence) and rotation (or curl) to separate trans-
verse and longitudinal motions. Since the incident wave can be considered as radiated
by a line load, we represent the two dimensional free space Green’s tensors in terms of
the Hankel function of the first kind of the zeroth order and its derivatives. Using the
boundary conditions, the Fourier transform of the elastodynamic integral equation is
reduced to a system of four functional equations in eight “half unknowns.” Then, the
problem is reformulated in terms of traction and crack opening displacement, both
of which can be decomposed into singular and nonsingular parts. The singular parts
relate to the well-known geometricoelastodynamic (GE) body waves. The nonsin-
gular parts constitute new unknowns. By using a Hilbert-type integral transform,
the functional equations are transformed into four regular integral equations in four
unknowns. In turn, these are solved numerically. In the far field, diffraction body
wave coefficients are obtained. The method can be generalized to model transversely
isotropic media.

2. The problem statement. We consider a two dimensional semi-infinite crack
(see Figure 2.1) sandwiched between two different isotropic media I(j), where super-
script j = 1 corresponds to the medium occupying the “upper” half plane and j = 2
means the “lower” half plane. Let the crack be irradiated by a longitudinal (n = 1) or
transverse (n = 2) plane wave, which is incident from the medium I(m), m = 1 or 2,
and propagates there with the speed c

(m)
n , where m and n are both fixed through-

out the paper. Further, let us assume without loss of generality that the longitudinal
speed c(1)1 in the medium I(1) is greater than the longitudinal speed c(2)1 in the medium
I(2). Let us further introduce a Cartesian base {e1, e2}, with e1 running along the
crack surface and e2 perpendicular to e1 and pointing into the “upper” medium. In
this base, every vector can be presented in terms of the corresponding coordinates, so
that every position vector x = (x1, x2), every displacement vector u = (u1, u2), etc.

�
x2

�
x1crack

�
�

I(2)

I(1)

���

uinc

Fig. 2.1. The problem geometry.

Let u(x) exp(−iωt) be a time harmonic displacement vector in an elastic medium,
where t is time, ω is the angular frequency, and the exponential time factor exp(−iωt)
is understood but suppressed everywhere below. Using the two dimensional Green’s
tensors (see Appendix A) and introducing a fictitious bottom medium that has the
properties of the upper half space, and a fictitious top medium which has the prop-
erties of the bottom half space, the above problem can be recast in the form of a
generalized reciprocity relation [11] or the extinction theorem (by analogy with the
electromagnetic case—see [12]; the detailed derivation is given in [13]; also see Ap-
pendix B). This states that the total displacement for a medium I(j) satisfies the
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integral equation

H [(−1)j+1x2]u
(j)
k (x) = u

inc(j)
k (x) + (−1)j

2∑
i=1

∫ −∞

−∞
[σG(j)

2ik (x1 − y1, x2)u
(j)
i (y1, 0)

+ u
G(j)
ik (x1 − y1, x2)σ

(j)
2i (y1, 0)]dy1, j, k = 1, 2,(2.1)

where uG(j)(x − y) and σG(j)(x − y) are the free space Green’s tensor and Green’s
stress tensor, respectively; σ(j)(x) is the stress tensor corresponding to displacement
u(j)(x); H(x) is the Heaviside step function,

H(x) =
{

1, x ≥ 0,
0, x < 0;(2.2)

and in the medium I(j), j = 1, 2, the plane wave uinc(j)(x), which is incident from
I(m), is

uinc(j)(x) = δmjdn(m)e−ik
(m)
n (pinc

1 x1−(−1)mpinc
2 x2),(2.3)

with δmj—the Kronecker delta, pinc = (pinc1 , pinc2 )—the incoming unit wave vector
with pinc2 > 0, and k

(m)
n = ω/c

(m)
n —a wave number (see, e.g., [11]). The longitudinal

displacement unit vector d1(m) is

d1(m) = (−pinc1 , (−1)mpinc2 ),(2.4)

and when the motions are transverse the displacement unit vector d2(m) is

d2(m) = ((−1)m+1pinc2 ,−pinc1 ).(2.5)

To complete the problem statement we require that on the contact boundary, {(x1, x2) :
x2 = 0, x1 < 0}, the displacement and normal stress components be continuous,

u
(1)
i (x1, 0) = u

(2)
i (x1, 0),(2.6)

σ
(1)
2i (x1, 0) = σ

(2)
2i (x1, 0), x1 < 0, i = 1, 2;

on the crack {(x1, x2) : x2 = 0, x1 > 0} the normal stress components be zero,

σ
(1)
2i (x1, 0) = σ

(2)
2i (x1, 0) = 0, x1 > 0, i = 1, 2;(2.7)

at infinity, the radiation conditions be satisfied in the form of the limiting absorption
principle; and at the crack tip, the mean energy of the diffracted field be bounded. In
combination with (2.1), the last condition amounts to requiring that we have

σ ∼ O(r−1/2±iν0 ),(2.8)

with ν0 > 0 a real bimaterial constant (see, e.g., [14]) and r the distance to the origin
r =

√
x2

1 + x2
2. The condition (2.8) suggests the oscillatory motions near the crack

tip, which is nonphysical. However, this region is often extremely small and in most
cases can be ignored. (For further discussion, see Williams [15], Erdogan [16, 17], and
Rice and Sih [18]; the related static case has been considered in [19]). Below, if not
used as a subscript, i =

√
−1.
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3. The functional equations for the Fourier transforms of displacements
and stresses in the crack plane. For any field ϕ(y1) let us define the decomposition

ϕ(y1) = ϕ+(y1) + ϕ−(y1),(3.1)

where the superscripts + and − denote functions that vanish for the negative and
positive values of y1, respectively. Let us use these fields to introduce new “half
unknowns,” components of the four dimensional vector v±(y1) given by

v−i (y1) = u
(1)
i (y1, 0) = u

(2)
i (y1, 0), y1 < 0,

v−i+2(y1) = − i

k
(1)
1 μ(1)

σ
(1)
2i (y1, 0) = − i

k
(1)
1 μ(1)

σ
(2)
2i (y1, 0), y1 < 0,

v+
i (y1) = u

(1)
i (y1, 0), y1 > 0,

v+
i+2(y1) = u

(2)
i (y1, 0), y1 > 0, i = 1, 2.(3.2)

Let us make use of operators of dilatation (or divergence) and rotation (or curl)
and denote the dilatation of any tensor φ(j)

ik (x1, x2) by the superscript 1 and the
rotation by the superscript 2, so that we can write

φ
(j)1
i (x) = [φ(j)

i1 (x)],1 +[φ(j)
i2 (x)],2 , φ

(j)2
i (x) = [φ(j)

i2 (x)],1 −[φ(j)
i1 (x)],2 .(3.3)

Applying the dilatation (l = 1) and rotation (l = 2) to (2.1) in the half plane where the
argument of the Heaviside function is negative ((−1)jx2 > 0) and using the boundary
conditions (2.6) and (2.7), the extinction theorem can be rewritten as

ik(m)
n δmjδnle

−ik(m)
n (x1p

inc
1 +(−1)m+1pinc

2 x2)

+ (−1)j
∫ ∞

0

[σG(j)l
1 (x1 − y1, x2)v+

2j−1(y1) + σ
G(j)l
2 (x1 − y1, x2)v+

2j(y1)]dy1

+ (−1)j
∫ 0

−∞
{σG(j)l

1 (x1 − y1, x2)v−1 (y1) + σ
G(j)l
2 (x1 − y1, x2)v−2 (y1)

+ ik
(1)
1 μ(1)[uG(j)l

1 (x1 − y1, x2)v−3 (y1)

+ u
G(j)l
2 (x1 − y1, x2)v−4 (y1)]}dy1 = 0, j, l = 1, 2,(3.4)

or in the matrix form as

∫ ∞

0

A+(x1 − y1, x2)v+(y1)dy1 +
∫ 0

−∞
A−(x1 − y1, x2)v−(y1)dy1

= −ik(m)
n Uinceik

(m)
n x·d1(m)

,(3.5)

where d1(m) is the displacement unit vector of a longitudinal wave defined in (2.4),
Uinc is the four dimensional vector

Uinc = [δ1mδ1n, δ1mδ2n, δ2mδ1n, δ2mδ2n]
T
,(3.6)
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and 4 × 4 matrices A+(x) and A−(x) are

A+(x) =

⎛
⎜⎜⎜⎝

−σG(1)1
1 (x) −σG(1)1

2 (x) 0 0
−σG(1)2

1 (x) −σG(1)2
2 (x) 0 0

0 0 σ
G(2)1
1 (x) σ

G(2)1
2 (x)

0 0 σ
G(2)2
1 (x) σ

G(2)2
2 (x)

⎞
⎟⎟⎟⎠ ,

A−(x) =

⎛
⎜⎜⎜⎝

−σG(1)1
1 (x) −σG(1)1

2 (x) −ik(1)
1 μ(1)u

G(1)1
1 (x) −ik(1)

1 μ(1)u
G(1)1
2 (x)

−σG(1)2
1 (x) −σG(1)2

2 (x) −ik(1)
1 μ(1)u

G(1)2
1 (x) −ik(1)

1 μ(1)u
G(1)2
2 (x)

σ
G(2)1
1 (x) σ

G(2)1
2 (x) ik

(1)
1 μ(1)u

G(2)1
1 (x) ik

(1)
1 μ(1)u

G(2)1
2 (x)

σ
G(2)2
1 (x) σ

G(2)2
2 (x) ik

(1)
1 μ(1)u

G(2)2
1 (x) ik

(1)
1 μ(1)u

G(2)2
2 (x)

⎞
⎟⎟⎟⎠ ,

(3.7)

with dilatations and rotations uG(j)l
i (x) and σG(j)l

i (x) given in Appendix A.
Everywhere below, let the hat ̂ denote the Fourier transform with respect to the

nondimensionalized variable k(1)
1 y1, so that for any function ϕ(y1) we have

ϕ̂(ξ) = k
(1)
1

∫ ∞

−∞
ϕ(y1)eik

(1)
1 ξy1dy1.(3.8)

Let us then take the Fourier transform of (3.5) and evaluate the result on the boundary.
For this purpose, let us multiply (3.5) by exp(ik(1)

1 ξx1), integrate it over x1, and set
x2 = 0. Applying the convolution theorem, we obtain

1

k
(1)
1

[∫ ∞

−∞
A+(x)eik

(1)
1 ξx1dx1

]
v̂+(ξ)

+
1

k
(1)
1

[∫ ∞

−∞
A−(x)eik

(1)
1 ξx1dx1

]
v̂−(ξ) = p(ξ)Uinc,(3.9)

where, using the notation ξinc = κ
(m)
n p1, κ

(m)
n = c

(1)
1 /c

(m)
n , we have

p(ξ) = 2π iδ(ξ − ξinc) = lim
ε→0

(
− 1
ξ − ξinc + iε

+
1

ξ − ξinc − iε

)
.(3.10)

Multiplying the vector equation in (3.9) by −2i and the first and the third scalar
equations there by [κ(1)

2 ]2 and [κ(2)
2 /κ

(2)
1 ]2, respectively, we obtain the system of four

scalar functional equations

Â+(ξ)v̂+(ξ) + Â−(ξ)v̂−(ξ) = p(ξ)vinc,(3.11)

where the vector vinc is such that

vinc = 2i
[
(κ(1))2δ1mδ1n, δ1mδ2n, (κ(2))2δ2mδ1n, δ2mδ2n

]T
(3.12)
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with κ(j) = c
(j)
1 /c

(j)
2 ; and matrices Â+(ξ) and Â−(ξ) in (3.11) are given by

Â+(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2ξ a1(ξ)

γ
(1)
1 (ξ)

0 0

− a1(ξ)

γ
(1)
2 (ξ)

2ξ 0 0

0 0 2ξ − a2(ξ)

γ
(2)
1 (ξ)

0 0 a2(ξ)

γ
(2)
2 (ξ)

2ξ

⎞
⎟⎟⎟⎟⎟⎟⎠
,(3.13)

Â−(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2ξ a1(ξ)

γ
(1)
1 (ξ)

− ξ

γ
(1)
1 (ξ)

−1

− a1(ξ)

γ
(1)
2 (ξ)

2ξ 1 − ξ

γ
(1)
2 (ξ)

2ξ − a2(ξ)

γ
(2)
1 (ξ)

μ ξ

γ
(2)
1 (ξ)

−μ
a2(ξ)

γ
(2)
2 (ξ)

2ξ μ μ ξ

γ
(2)
2 (ξ)

⎞
⎟⎟⎟⎟⎟⎟⎠
,(3.14)

with aj(ξ) = (κ(j)
2 )2 − 2ξ2, γ(j)

i (ξ) =
√

[κ(j)
i ]2 − ξ2, and μ = μ(1)/μ(2).

The dilatation and rotation of the Green’s tensor and Green’s stress tensor in
(3.7) can be expressed in terms of H0(k

(j)
i r), the Hankel function of the first kind of

zero order and its derivatives (see Appendix A). Therefore, the matrices Â±(ξ) have
been evaluated with the help of the following identity:

∫ ∞

−∞
H0(k

(j)
i r)eik

(1)
1 ξx1dx1 =

2

k
(1)
1

1

γ
(j)
i

eik
(1)
1 γ

(j)
i |x2|(3.15)

(see, e.g., [20]). Note that (3.11) involves singularities, which are described in Ap-
pendix C. Using the definition of plus and minus functions together with (3.8), it
is easy to check that v̂+(ξ) and v̂−(ξ) are analytic in the upper and lower halves,
respectively, of the complex ξ-plane.

Let us cast (3.11) in another form through multiplying by the matrix [Â−(ξ)]−1.
Then we obtain the vector functional equation

v̂−(ξ) +B+(ξ)v̂+(ξ) = p(ξ)Tinc,(3.16)

where the vector on the right-hand side is

Tinc = [Â−(ξinc)]−1vinc;(3.17)

the matrix B+(ξ) = [Â−(ξ)]−1Â+(ξ) is given by

B+(ξ) =
μ

S(ξ)
·

(3.18)

⎛
⎜⎜⎝
b21b12 − g1g2 + μR1h2 −(b21g1 + b11g2) b11b22 − g1g2 + R2h1

µ
b21g1 + b11g2

b22g1 + b12g2 b22b11 − g1g2 + μR1h2 −(b22g1 + b12g2) b12b21 − g1g2 + R2h1
µ

− d2
µ

e
µ

d2
µ

− e
µ

− e
µ

− d1
µ

e
µ

d1
µ

⎞
⎟⎟⎠,
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with the Rayleigh functions Rj(ξ), bij , gj, i, j = 1, 2, and the Stoneley function S(ξ)
defined in Appendix C; and

dj(ξ) = R2(ξ)b1j(ξ) + μR1(ξ)b2j(ξ),
e(ξ) = R2(ξ)g1(ξ) − μR1(ξ)g2(ξ), j = 1, 2.(3.19)

In the case under consideration, the equation |Â−(ξ)| = 0 has no solutions (see Ap-
pendix C), and therefore the matrix B+(ξ) is bounded. Equation (3.16) is a vector
functional equation, which has no known analytical solution and is difficult to solve
numerically.

4. The functional equations for nonsingular unknowns. Let us reformu-
late (3.16) as a vector functional equation for nonsingular components of the displace-
ments and stresses in the crack plane. We start by introducing two new unknown
vector functions, the crack opening displacement (COD) uCOD(y1) and t(y1), as

uCOD(y1) = u(1)(y1, 0) − u(2)(y1, 0),

t(y1) =
1

k
(1)
1 μ(1)

σ
(1)
2i (y1, 0).(4.1)

Then using the definition (3.2), their Fourier transforms ûCOD(ξ) and t̂(ξ) may be
expressed in terms of components of the old half unknowns v±(ξ) as

ûCODl (ξ) = v̂+
l (ξ) − v̂+

2+l(ξ),

t̂l(ξ) = iv̂−l+2(ξ), l = 1, 2.(4.2)

The last two equations in (3.16) can be rewritten in terms of the new unknowns
ûCOD(ξ) and t̂(ξ) as

−it̂(ξ) + B̃+(ξ)ûCOD(ξ) = p(ξ)T̃inc,(4.3)

where p(ξ) is defined in (3.10); the matrix B̃+(ξ) and vector T̃inc are bounded and
are

B̃+(ξ) =
1

S(ξ)

(
−d2(ξ) e(ξ)
−e(ξ) −d1(ξ)

)
, T̃inc = (T inc3 , T inc4 )T .(4.4)

The right-hand side of the above equation has two poles, ξinc+ i0 and ξinc− i0, which
lie infinitely close to each other. Let us isolate one of them by introducing

ŝ(ξ) = −it̂(ξ) − 1
ξ − ξinc − i0

T̃inc.(4.5)

Then the second pole ξinc − i0 can be shifted back to the real axis. For this reason,
everywhere below we use ξinc to mean ξinc − i0. Using (4.5), the functional equation
(4.3) can be rewritten as

ŝ(ξ) + B̃+(ξ)ûCOD(ξ) = − 1
ξ − ξinc

T̃inc.(4.6)

The function ûCOD(ξ) is analytic in the upper half plane. Therefore, its domain
contains both Rayleigh poles −ξR(j), j = 1, 2, the incident pole ξ = ξinc, and also
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�
Im ξ

�
Re ξ

ξinc

�

−1

�

−ξR(1)

�

−ξR(2)

�

(a)

C+

�Im ξ

�
Re ξ1

�

C−
(b)

Fig. 4.1. The poles and branch cuts of (a) ûCOD(ξ) and (b) ŝ(ξ).

the branch cut C+ (see Figure 4.1(a) and Appendix C). This means that we can
decompose ûCOD(ξ) as follows:

ûCOD(ξ) =
G(ξinc)
G(ξ)

ŵge+(ξ) +
G(ξ)

[ξ + ξR(1)][ξ + ξR(2)]
ŵ+(ξ),(4.7)

where G(ξ) is defined in Appendix D, ŵge+(ξ) has the pole at ξ = ξinc, and ŵ+(ξ) is
a new unknown vector describing the edge diffracted body and surface waves. Note
that as ξ → ∞, the function G(ξ) ∼ ξ, and therefore ŵ+(ξ) behaves as ξûCOD(ξ).

The function ŵge+(ξ) can be chosen to be

ŵge+(ξ) = − 1
ξ − ξinc

B̃−(ξinc)T̃inc

+
1

ξ − ξinc
1

G(ξinc)

4∑
k=1

F+
k (ξ, ξinc)Δ+

k [G(ξ)B̃−(ξ)]|
ξ=ξinc T̃

inc,(4.8)

where the auxiliary functions F+
k (ξ, ζ), k = 1, . . . , 4, are defined in Appendix D; we

have

B̃−(ξ) =
1

R1(ξ)R2(ξ)

(
−d1(ξ) −e(ξ)
e(ξ) −d2(ξ)

)
,(4.9)

and for any function Φ(ξ) we denote by Δ+
k Φ(ξ) the jump of Φ(ξ) over the branch

cut C+
k defined in (D.4) of Appendix D.

Analogously, the function ŝ(ξ) is analytic in the lower half plane, and we can write
the decomposition

ŝ(ξ) = ŵge−(ξ) + ŵ−(ξ),(4.10)

where ŵge−(ξ) is introduced to cancel the extraneous incident pole appearing on the
negative side of the branch cut C− (see Figure 4.1(b)) and ŵ−(ξ) is a new unknown
vector. The function ŵge−(ξ) can be chosen to be

ŵge−(ξ) = − 1
ξ − ξinc

4∑
k=1

F−
k (ξ, ξinc)Δ−

k [B̃+(ξ)]|
ξ=ξinc B̃

−(ξinc)T̃inc,(4.11)

where the auxiliary functions F−
k (ξ, ζ) are defined in Appendix D and Δ−

k Φ(ξ) denotes
a jump of a function Φ(ξ) over the branch cut C−

k defined in (D.4). It can be shown
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that whether or not ξ = ξinc lies close to the branch cut C−, we can always use the
definition (4.11).

Let us substitute decompositions (4.7) and (4.10) into the functional equation
(4.6) to obtain a functional equation for the new unknowns ŵ+(ξ) and ŵ−(ξ),

ŵ−(ξ) +M+(ξ)ŵ+(ξ) = Vinc−(ξ),(4.12)

where the matrix M+(ξ) is given by

M+(ξ) =
G(ξ)

(ξR(1) + ξ)(ξR(2) + ξ)
B̃+(ξ)(4.13)

and the vector Vinc−(ξ) on the right-hand side of (4.12) can be written as

Vinc−(ξ) = − 1
ξ − ξinc

T̃inc − G(ξinc)
G(ξ)

B̃+(ξ)ŵge+(ξ) − ŵge−(ξ).(4.14)

Multiplying (4.12) by the inverse matrix [M+(ξ)]−1, we obtain the functional
equation

ŵ+(ξ) +M−(ξ)ŵ−(ξ) = Vinc+(ξ),(4.15)

where M−(ξ) = [M+(ξ)]−1, so that we have

M−(ξ) =
(ξR(1) + ξ)(ξR(2) + ξ)
G(ξ)R1(ξ)R2(ξ)

(
−d1(ξ) −e(ξ)
e(ξ) −d2(ξ)

)
,(4.16)

and the vector Vinc+(ξ) is

Vinc+(ξ) = M−(ξ)Vinc−(ξ).(4.17)

The functional vector equations (4.12) and (4.15) form a system of four functional
equations in four unknowns.

5. The system of integral equations. Since the vector ŵ+(ξ) introduced in
the decomposition (4.7) has no poles and vanishes at infinity, it can be represented
as a Hilbert transform

ŵ+(ξ) = − 1
2πi

∫ ∞

1

Δw+(ξ′)
ξ′ + ξ

dξ′,(5.1)

where Δw+(ξ) is a jump of ŵ+(ξ) over the branch cut C+ (see Figure 4.1(a)); i.e.,
we have

Δw+(ξ) = ŵ+(−ξ + i0)− ŵ+(−ξ − i0), ξ > 1.(5.2)

Also, the vector ŵ−(ξ) introduced in (4.10) can be represented as

ŵ−(ξ) = − 1
2πi

∫ ∞

1

Δw−(ξ′)
ξ′ − ξ

dξ′,(5.3)

where, for ξ ∈ C−, Δw−(ξ) is a jump of ŵ−(ξ) over the branch cut C−(see Figure
4.1(b)); i.e., we have

Δw−(ξ) = ŵ−(ξ − i0) − ŵ−(ξ + i0), ξ > 1.(5.4)
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Note that ŵ+(ξ) and ŵ−(ξ) have the same branches as v̂+(ξ) and v̂−(ξ), respectively
(see, e.g., [9]).

Let us now substitute (5.1) into (4.15), (5.3) into (4.12), and calculate the jumps
in the resulting equations across the branch cuts C+ and C−, respectively. Then for
ξ > 1 we have

Δw+(ξ) + ΔM−(−ξ)ŵ−(−ξ) = ΔVinc+(ξ),
Δw−(ξ) + ΔM+(ξ)ŵ+(ξ) = ΔVinc−(ξ),(5.5)

where Δ denotes the jump over the cut, ξ ∈ C−, and we use the notation

ΔM±(±ξ) = 2i ImM±(±ξ), ξ ≥ 1.(5.6)

In view of (3.10), (4.16), (5.2), (5.4), and the definitions of the functions F±
k (ξ, a),

k = 1, . . . , 4 (see Appendix D), the apparent poles ξ = ξR(j) and ξ = ±ξinc in (5.5)
are in fact absent (their residues are zero). Decompositions (4.8) and (4.11) have been
chosen in order to achieve this regularization.

Equation (5.5) can be rewritten as the system of coupled integral equations

Δw+(ξ) − 1
π

Im [M−(−ξ)]
∫ ∞

1

Δw−(ξ′)
ξ + ξ′ dξ′ = ΔVinc+(ξ),

Δw−(ξ) − 1
π

Im [M+(ξ)]
∫ ∞

1

Δw+(ξ′)
ξ + ξ′ dξ′ = ΔVinc−(ξ).(5.7)

6. The numerical scheme. As mentioned above, we seek the solution of (5.7)
that allows the tip condition (2.8) to be satisfied, that is, exhibit the asymptotic
behavior

Δw(ξ) → ξ−1/2[D+ cos(ν0 ln ξ) + D− sin(ν0 ln ξ)], ξ → ∞,(6.1)

where ν0 is a bimaterial constant; D± are unknown four dimensional constant vectors,
and Δw(ξ) = (Δw+

1 (ξ),Δw+
2 (ξ),Δw−

1 (ξ),Δw−
2 (ξ)) is the unknown four dimensional

vector function.
Let us rewrite the system of (5.7) as one vector integral equation,

Δw(ξ) − 1
π
M(ξ)

∫ ∞

1

Δw(ξ′)
ξ′ + ξ

dξ′ = ΔVinc(ξ),(6.2)

where we use the notation

ΔVinc(ξ) = (ΔV1
inc+(ξ),ΔV2

inc+(ξ),ΔV1
inc−(ξ),ΔV2

inc−(ξ))T ,

with ΔViinc±(ξ), i = 1, 2, being the right-hand side of (5.5) and M(ξ) being the 4×4
matrix that can be written as

M(ξ) =
(

02 Im [M−(−ξ)]
Im [M+(ξ)] 02

)
.(6.3)

Then there exists a constant L2 such that for ξ ≥ L2 the solution Δw(ξ) exhibits the
behavior (6.1) and we can rewrite (6.2) as

Δw(ξ) − 1
π
M(ξ)

∫ L2

1

Δw(ξ′)
ξ′ + ξ

dξ′ − 1
π
M(ξ)[D+I+(ξ) + D−I−(ξ)] = ΔVinc(ξ),(6.4)
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where we use the notation

I+(ξ) =
1
2

(∫ ∞

L2

x−1/2+iν0

x+ ξ
dx+

∫ ∞

L2

x−1/2−iν0

x+ ξ
dx

)
,

I−(ξ) =
1
2i

(∫ ∞

L2

x−1/2+iν0

x+ ξ
dx−

∫ ∞

L2

x−1/2−iν0

x+ ξ
dx

)
.(6.5)

The integral in (6.4) can be approximated using N collocation points ξi, i = 1, N ,
and weights Wi, i = 1, N , so that (6.4) may be approximated by

Δw(ξ) − 1
π
M(ξ)

N∑
i=1

Δw(ξi)
ξi + ξ

Wi −
1
π
M(ξ)[D+I+(ξ) + D−I−(ξ)] = ΔVinc(ξ),(6.6)

which at ξ = ξj , j = 1, N , becomes

Δw(ξj) −
1
π
M(ξj)

N∑
i=1

Δw(ξi)
ξi + ξj

Wi −
1
π
M(ξj)[D+I+(ξj) + D−I−(ξj)] = ΔVinc(ξj),

j = 1, . . . , N.(6.7)

System (6.7) contains 4N equations with 4N+8 unknowns Δwi(ξj), i = 1, 4, j =
1, N , and D±

i , i = 1, 4, and is thus underdetermined. Four extra equations are
provided by the continuity of the solution at the point ξN = L2 and can be written
as

Δw(ξN ) = ξ
−1/2
N

[
D+ cos(ν0 ln ξN ) + D− sin(ν0 ln ξN )

]
.(6.8)

Four more can be supplied by the relation (E.15) (see Appendix E). The resulting
algebraic system of 4N + 8 equations in 4N + 8 unknowns can be written as

MΔw = f ,(6.9)

where the 4N + 8 dimensional vectors are

Δw = (Δw1(ξ1),Δw2(ξ1),Δw3(ξ1),Δw4(ξ1), w1(ξ2), . . . ,
Δw4(ξN ), D+

1 , . . . , D
+
4 , D

−
1 , . . . , D

−
4 ),(6.10)

f = (ΔV inc1 (ξ1), . . . ,ΔV inc4 (ξ1),ΔV inc1 (ξ2), . . . ,ΔV inc4 (ξN ), 0, 0, 0, 0, 0, 0, 0, 0),

and matrix M may be given in a block form as

M =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I4 − M(ξ1)W1
2πξ1

−M(ξ1)W2
π(ξ1+ξ2)

· · · −M(ξ1)WN−1
π(ξ1+ξN−1)

−M(ξ1)WN

π(ξ1+ξN ) MD(ξ1)

−M(ξ2)W1
π(ξ1+ξ2) I4 − M(ξ2)W2

2πξ2
· · · −M(ξ2)WN−1

π(ξ2+ξN−1)
−M(ξ2)WN

π(ξ2+ξN ) MD(ξ2)
...

...
...

...
...

...
−M(ξN )W1
π(ξ1+ξN ) −M(ξN )W2

π(ξ2+ξN ) · · · −M(ξN )WN−1
π(ξN+ξN−1)

I4 − M(ξN )WN

2πξN
MD(ξN )

04 04 · · · 04 I4 MV 1

04 04 · · · 04 04 MV 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(6.11)
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where we use the notation

MD(ξ) = − 1
π
M(ξ)J

(
I+(ξ), I−(ξ)

)
,

MV 1 = −J
(
ξ
−1/2
N cos(ν0 ln ξN ), ξ−1/2

N sin(ν0 ln ξN )ξN )
)
,(6.12)

with matrix J (f1(ξ), f2(ξ)) given by

(6.13)

J (f1(ξ), f2(ξ)) =

⎛
⎜⎜⎝

f1(ξ) f2(ξ) 0 0 0 0 0 0
0 0 f1(ξ) f2(ξ) 0 0 0 0
0 0 0 0 f1(ξ) f2(ξ) 0 0
0 0 0 0 0 0 f1(ξ) f2(ξ)

⎞
⎟⎟⎠ ,

and

MV 2 =

⎛
⎜⎜⎝

I2 −
√

m−
∞

m+
∞
I2 02 02

02 02 I2 −
√

m−
∞

m+
∞
I2

⎞
⎟⎟⎠ .(6.14)

To evaluate integrals I±(ξ) in (6.5), we consider two cases:
• Case 1: ξ ≤ L2. It is easy to see that we can write

x

x+ ξ
=

∞∑
k=0

(−1)k
(
ξ

x

)k
,(6.15)

where the right-hand side is the geometric series with the common ratio −ξ/x
such that |ξ/x| < 1. Therefore, we have

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

∫ ∞

L2

x−3/2±iν0
∞∑
k=0

(−1)k
(
ξ

x

)k
dx.(6.16)

Exchanging in the right-hand side the order of summation and integration
and evaluating the resulting integrals, we obtain

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx = (L2)−1/2±iν0

∞∑
k=0

(−1)k

0.5 + k ∓ iν0

(
ξ

L2

)k
.(6.17)

Substituting (6.17) into (6.5) gives us

I+(ξ) =
1√
L2

{
S1

(
ξ

L2

)
cos(ν0 lnL2) − ν0S2

(
ξ

L2

)
sin(ν0 lnL2)

}
,

I−(ξ) =
1√
L2

{
S1

(
ξ

L2

)
sin(ν0 lnL2) + ν0S2

(
ξ

L2

)
cos(ν0 lnL2)

}
,(6.18)

where we use the notation

S1(ξ) =
∞∑
k=0

(−1)k(0.5 + k)
(0.5 + k)2 + ν2

0

ξk, S2(ξ) =
∞∑
k=0

(−1)k

(0.5 + k)2 + ν2
0

ξk.(6.19)
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Note that, according to the Leibnitz theorem, the alternating series Si(ξ/L2),
i = 1, 2, converge. The difference between the infinite series and partial sum
SiN (ξ/L2) does not exceed the (N + 1)th term. This property can be used
to establish the number of terms necessary to achieve the required accuracy.
The latter can be improved further if instead of a partial sum SiN we use SiN
plus one half of the (N + 1)th term. Then the error in Si(ξ/L2), i = 1, 2, is
O(k−i−1) rather than O(k−i) .

• Case 2: ξ > L2. Let us rewrite each term in (6.5) as

∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

∫ ∞

0

x−1/2±iν0

x+ ξ
dx−

∫ L2

0

x−1/2±iν0

x+ ξ
dx.(6.20)

The first integral can be evaluated to give
∫ ∞

0

x−1/2±iν0

x+ ξ
dx =

π

coshπνo
ξ−1/2±iν0(6.21)

(see, e.g., [20]). The integrand of the second term in (6.20) can be represented
as

x−1/2±iν0

x+ ξ
=

∞∑
k=0

x−1/2+k±iν0

ξk+1
.(6.22)

Integrating both sides of (6.22) over ξ ∈ [0, L2] and using (6.21), the integral
(6.20) can be represented as

(6.23)∫ ∞

L2

x−1/2±iν0

x+ ξ
dx =

π

coshπνo
ξ−1/2±iν0 − (L2)0.5±iν0

ξ

∞∑
k=0

(−1)k

0.5 + k ± iν0

(
L2

ξ

)k
.

Therefore, (6.5) becomes

I+(ξ) = −
√
L2

ξ

{
S1

(
L2

ξ

)
cos(ν0 lnL2) + ν0S2

(
L2

ξ

)
sin(ν0 lnL2)

}

+
π√

ξ coshπν0
cos(ν0 ln ξ),

I−(ξ) = −
√
L2

ξ

{
S1

(
L2

ξ

)
sin(ν0 lnL2) − ν0S2

(
L2

ξ

)
cos(ν0 lnL2)

}

+
π√

ξ coshπν0
sin(ν0 ln ξ).(6.24)

Note that, similarly to the previous case, according to the Leibnitz theorem,
the alternating series Si(L2/ξ), i = 1, 2, converge, and instead of the partial
sum SiN , we can utilize SiN plus one half of the (N + 1)th term.

The resulting linear system (6.9) can be solved numerically using the LU decom-
position subroutines from the LAPACK library. After the unknowns are evaluated at
the nodes, system (6.6) can be used to extrapolate the solution for any ξ ≥ 1. Note
that in system (6.9) the integrals I±(ξ) are calculated at ξ ≤ L2, and therefore when
solving this system we utilize only (6.18). When extrapolating, (6.24) is used instead.
It is easy to see that, whatever the case, the integrals I±(ξ) are real valued.
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7. The diffraction coefficients.

7.1. The diffraction coefficients for bulk waves. Let us first define the
function

E(k(j)
i r) =

√
i

8π
eik

(j)
i r√
k

(j)
i r

e−ik
(j)
i y1p1 ,(7.1)

where p = (cos θ, sin θ) is a unit vector in the direction of the diffracted wave, with
the angle θ such that cos θ = x1/r and r is the distance to the origin. Let p⊥ be
another unit vector, which is orthogonal to p. It then can be chosen to be p⊥ =
(−p2, p1) = (− sin θ, cos θ). It is easy to check that as k(j)

i r → ∞, the leading term in
the expansion of the argument gives

H0

(
k

(j)
i

√
(x1 − y1)2 + x2

2

)
= H0

(
k

(j)
i

[
r − y1 cos θ +O

(
1
r

)])
(7.2)

≈ H0(k
(j)
i r) ≈ −4iE(k(j)

i r).

In the far field, the Green’s tensor and Green’s stress can be decomposed as

u
G(j)
ik (x1 − y1, x2) = u

G1(j)
ik (x1 − y1, x2) + u

G2(j)
ik (x1 − y1, x2),

σ
G(j)
2ik (x1 − y1, x2) = σ

G1(j)
2ik (x1 − y1, x2) + σ

G2(j)
2ik (x1 − y1, x2),(7.3)

where the superscript i(j) refers to longitudinal (i = 1) or transverse (i = 2) wave in
the medium I(j), and in the far field, as k(j)

i r → ∞, we can use approximations

u
G1(j)
ik (x1 − y1, x2) ≈

[
1
μ(j)

(κ(j))−2piE(k(j)
1 r)

]
pk,

σ
G1(j)
2ik (x1 − y1, x2) ≈ ik

(j)
1

[
(δi2 − 2(κ(j))−2p1p

⊥
i )E(k(j)

1 r)
]
pk,

u
G2(j)
ik (x1 − y1, x2) ≈

[
1
μ(j)

p⊥i E(k(j)
2 r)

]
p⊥k ,

σ
G2(j)
2ik (x1 − y1, x2) ≈ ik

(j)
2

[
(p2p

⊥
i + p1pi)E(k(j)

2 r)
]
p⊥k(7.4)

(see [11], [21], or Appendix A).
To continue, for the scattered field usc(j)(x), the integral representation (2.1) can

be rewritten as

H [(−1)j+1x2]u
sc(j)
k (x) = (−1)j

2∑
i=1

∫ ∞

−∞
[σG(j)

2ik (x1 − y1, x2)u
sc(j)
i (y1, 0)

+ u
G(j)
ik (x1 − y1, x2)σ

(j)sc
2i (y1, 0)]dy1(7.5)

(see, e.g., [11]). Substituting (7.4) into (7.3) and the result into the version of (2.1)
applicable to the scattered field, for 0 < θ < 2π we can write

H(π − θ)utip(j)k ≈ D1(j)(θ)
eik

(j)
1 r√
k

(j)
1 r

pk +D2(j)(θ)
eik

(j)
2 r√
k

(j)
2 r

p⊥k ,
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where the diffraction coefficients for diffracted body waves can be expressed in terms
of the displacement vectors û(j)(ξ), j = 1, 2, and traction vector t̂(ξ) in the following
manner:

D1(1)(θ) = −
√

−i
8π

(κ(1))−2
{
2p1p2û

(1)
1 (−p1) + [(κ(1))2 − 2p2

1]û
(1)
2 (−p1)

+ p1t̂1(−p1) + p2t̂2(−p1)
}
,

D1(2)(θ) =

√
−i
8π

[
κ

(2)
1 {2(κ(2))−2p1p2û

(2)
1 (−κ(2)

1 p1) + [1 − 2(κ(2))−2p2
1]û

(2)
2 (−κ(2)

1 p1)}

+μ(κ(2))−2{p1t̂1(−κ(2)
1 p1) + p2t̂2(−κ(2)

1 p1)}
]
,

D2(1)(θ) = −
√

−i
8π

[
κ(1){[p2

1 − p2
2]û

(1)
1 (−κ(1)

2 p1) + 2p1p2û
(1)
2 (−κ(1)

2 p1)}

− p2v̂
−
3 (−κ(1)

2 p1) + p1v̂
−
4 (−κ(1)

2 p1)
]
,

D2(2)(θ) =

√
−i
8π

[
κ

(2)
2 {[p2

1 − p2
2]û

(2)
1 (−κ(2)

2 p1) + 2p1p2û
(2)
2 (−κ(2)

2 p1)}

+μ{−p2v̂
−
3 (−κ(2)

2 p1) + p1v̂
−
4 (−κ(2)

2 p1)}
]
,(7.6)

where if ŝ(ξ) is known, t̂(ξ) can be found using (4.5). An additional difficulty is
presented by the fact that, for ξ > 1, ŝ(ξ) as defined in (4.10) contains a singular
integral (5.3). Since in (7.6) the arguments of all t̂ components are given in the form
ξ = −κ(j)

i p1, the function that needs evaluating is ŝ(−κ(j)
i p1). When p1 ≥ 0 the

evaluation can be carried out using (4.10), and when p1 ≤ 0 the combination of (4.7)
and (4.6) should be used instead. To calculate the displacement vectors û(j)(ξ), j =
1, 2, we note that the system (3.11) can be rewritten in terms of û(j)(ξ), j = 1, 2, and
t̂(ξ) as

p(ξ)v(j)inc = Â(j)+(ξ)û(j)(ξ) + Â(j)−(ξ)t̂(ξ), j = 1, 2,(7.7)

where Â(j)±(ξ) are 2 × 2 matrices, which form matrices Â±(ξ) in (3.11), so that we
have

Â+(ξ) =

(
Â(1)+(ξ) 0

0 Â(2)+(ξ)

)
, A−(ξ) =

(
Â(1)+(ξ) Â(1)−(ξ)
Â(2)+(ξ) Â(2)−(ξ)

)
,(7.8)

and vectors v(j)inc(ξ) are

v(1)inc(ξ) =
(
vinc1 (ξ)
vinc2 (ξ)

)
, v(2)inc(ξ) =

(
vinc3 (ξ)
vinc4 (ξ)

)
.(7.9)

Therefore, after t̂(ξ) is found, vectors û(j)(ξ), j = 1, 2, can be calculated using (7.7).
Note that since |κ(j)

i p1| ≤ max{κ(j)
i } < ξR(j), matrices Â(j)+(−κ(j)

i p1) are regular.

7.2. The Rayleigh diffraction coefficients. On each of the traction-free sur-
faces (x2 = 0, x1 > 0) the Rayleigh wave can be defined as

uR(j)(y1, 0) = D(j)Rv(j)Reik
R(j)y1 , y1 > 0,(7.10)
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where the so-called Rayleigh diffraction coefficient D(j)R is its amplitude, kR(j) =
k

(1)
1 ξR(j), and the unit vector v(j)R is a nonzero solution of the homogeneous equation

Â+(−ξR(j))v(j)R = 0.(7.11)

It can be shown that the unit vector v(j)R is

v(j)R =

(
−2ξR(j)γ

(j)
2 (ξR(j))

[κ(j)
2 ]2

, (−1)j+1 aj(ξ
R(j))

[κ(j)
2 ]2

)T
.(7.12)

Applying the Fourier transform to (7.10), we obtain

ûR(j)(ξ) =
iD(j)Rv(j)R

ξ + ξR(j)
.(7.13)

Multiplying (7.7) by [Â(j)+(ξ)]−1 gives us

p(ξ)[Â(j)+(ξ)]−1v(j)inc = û(j)(ξ) +
1
Rj
B̂(j)−(ξ)t̂(ξ), j = 1, 2,(7.14)

with a finite matrix

B̂(j)−(ξ) = μj

(
(−1)jbj1(ξ) −gj(ξ)

gj(ξ) (−1)jbj2(ξ)

)
, j = 1, 2.(7.15)

Let us now evaluate the residue of both sides of (7.14) at ξ = −ξR(j). This can
be done by multiplying them by ξ + ξR(j) and finding the limits when ξ → −ξR(j).
By definition of p(ξ), the left-hand side of the resulting equation is zero. The residue
of the displacement vector at the Rayleigh pole ξ = −ξR(j) is

Res
ξ=−ξR(j)

û(j)(ξ) = lim
ξ→−ξR(j)

(ξ + ξR(j))ûR(j)(ξ) = iD(j)Rv(j)R, j = 1, 2.(7.16)

Therefore, (7.14) leads to

iD(j)Rv(j)R +
1

R′
j(−ξR(j))

B̂(j)−(−ξR(j))t̂(−ξR(j)) = 0, j = 1, 2,(7.17)

where R′
j(ξ) is the derivative of the Rayleigh function Rj(ξ). It follows that, for each

medium I(j), j = 1, 2, the respective Rayleigh diffraction coefficient can be expressed
via t̂(ξ) as

D(j)R =
i[B̂(j)−

11 (−ξR(j))t̂1(−ξR(j)) + B̂
(j)−
12 (−ξR(j))t̂2(−ξR(j))]

R′
j(−ξR(j))v(j)R

1

, j = 1, 2.(7.18)

8. Numerical results. We have developed a FORTRAN90 program for com-
puting the diffraction coefficient Di(j)(θ) using (7.6), where the displacements and
tractions are evaluated at ξ = −κ(j)

i cos θ, with θ being an observation angle.
As has been discussed above, û(j)(ξ) and t̂(ξ) are both singular at the GE pole

ξ = ξinc. At the real angles θ = θsh, which satisfy the equation

κ
(j)
i cos(θsh) = −κ(m)

n cos(θinc),(8.1)
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Fig. 8.1. The longitudinal diffraction coefficient in the lower medium. The solid line corre-
sponds to the angle of incidence of θinc = 30o, the dashed line to 50o, and the dotted line to 70o.

Fig. 8.2. The transverse diffraction coefficient in the lower medium. The key is as above.

the estimates of |Di(j)(θ)| (incorrect near these angles) are infinite and the estimates
of Arg[Di(j)(θsh)] experience a π jump. When |κ(m)

n cos(θinc)/κ(j)
i | > 1, (8.1) has no

real valued solutions and Di(j)(θ) are correct estimates, continuous at all observation
angles. The solution of (8.1) is

θsh = π + (−1)j arccos

(
κ

(m)
n

κ
(j)
i

cos(θinc)

)
.(8.2)

When (8.2) defines a real valued angle, it is the shadow boundary of either the reflected
or refracted wave in the incident medium, or either the transmitted longitudinal or
transverse wave in the other medium.

Other special angles, which can be seen on the graphs in this section, are the
so-called critical angles θcr. They describe the boundaries of the regions that support
head waves and correspond to the branch points, that is, satisfy the equation

±κ(l)
k = −κ(j)

i cos θcr, l, k = 1, 2.(8.3)

These critical angles do not depend on the angle of incidence. Again, the approxima-
tion method used in section 7.1 fails in their vicinity, and they show up on the graphs
as small blips.

As an illustration, Figures 8.1–8.4 present diffraction coefficients for a semi-infinite
crack, which is sandwiched between aluminum and steel.

The incident plane wave is a longitudinal wave, incoming from the aluminum half
plane. The amplitudes of the diffraction coefficients are presented on the left and
phases on the right. The model parameters are as follows. In medium 1 (aluminum),
density ρ(1) = 2700 kg/m3, longitudinal speed c

(1)
1 = 6300 m/s, and shear speed

c
(1)
2 = 3100 m/s. In medium 2 (steel), density ρ(2) = 7800 kg/m3, longitudinal speed
c
(2)
1 = 5900 m/s, and shear speed c

(2)
2 = 3200 m/s. We can see the geometrical

shadow boundaries described by (8.2), where the amplitude of the formally evaluated
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Fig. 8.3. The longitudinal diffraction coefficient in the upper medium. The key is as in Fig-
ure 8.1.

Fig. 8.4. The transverse diffraction coefficient in the upper medium. The key is as in Figure 8.1.

Fig. 8.5. Head wave fronts.

diffraction coefficient is infinite and the phase experiences a π jump. Since the critical
angles do not depend on the angle of incidence, the corresponding blips appear at
the same place for all three curves. The corresponding head wave fronts are shown
in Figure 8.5. It can be seen that in the upper medium, the diffracted longitudinal
wave is not affected by head waves. This is due to the fact that in aluminum the
longitudinal speed is greater than in steel.

In Figure 8.1 the critical angle is θ ≈ 200o. The head wave affects D2(2) at
θ ≈ 237.2o, θ ≈ 239.5o, and θ ≈ 328o. In Figure 8.2 only two blips are seen at about
θ ≈ 237o and θ ≈ 303.6o. This is due to the small difference between the first two
critical angles θ ≈ 237.2o and θ ≈ 239.5o. By decreasing both the discretization step
and the interval of observation angles, the critical angles separate. The head wave
affects D2(1) at θ ≈ 60.5o, θ ≈ 119.5, θ ≈ 121.7o, and θ ≈ 165.6o. Again, in Figure 8.4
the critical angles θ ≈ 119.5o and θ ≈ 121.7o lie too close to each other. The overall
conclusion is that for, say, the 30o incidence, the longitudinal tip diffracted waves,
which propagate in the upper medium, can be best detected at observation angles
between 40o and 130o. As the angle of incidence increases, the range of advantageous
observation angles shortens (see Figure 8.3).
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The Rayleigh diffraction coefficients do not depend on the observation angle and
are calculated using (7.18). Note that the Rayleigh speeds for aluminum and steel are
cAl = 2894 m/s and cSt = 2964 m/s, respectively, and the bimaterial constant is ν0 =
0.0330434. For the angle of incidence θinc = 30o, in aluminum D(1)R = −0.1208 −
0.206i, and in steelD(2)R = 0.1428−0.2128i; for θinc = 50o,D(1)R = −0.1004−0.3094i
and D(2)R = 0.1285 − 0.3272i; and for θinc = 70o, D(1)R = −0.0517 − 0.4005i and
D(2)R = 0.0784− 0.4285i.

We finish this section by discussing the code testing. As already mentioned,
the critical angles and positions of the shadow boundaries of reflected and refracted
waves, when calculated independently, agree with the above graphs. We also know
the phase (either π/4 or −3π/4) on those portions of the wave front which are not
occupied by the head waves—these are correct. Another stringent internal test is to
evaluate the left-hand side of (4.6) on the interval ξ ε [−1, 1]. The right-hand side
of this equation is known. The left-hand side has been computed using our code.
The maximum relative error of each component has been found to be 2%, which is
satisfactory. Finally, one could make another check by considering the limiting case of
the two identical half planes: In this case, the off-diagonal terms in (4.4) become zero,
and (4.3) reduces to the equivalent of the decoupled Wiener–Hopf equations for the
crack opening displacements as found in the studies of the isotropic case, e.g., [11].
However, no numerical check of this nature has been conducted, because, when both
half planes are the same, (4.7) contains a dipole instead of a pole, and although
one could use this representation, it would require additional careful programming:
In (4.7) one would have to use the sum of the two poles instead of the product. Even
then, numerical difficulties would still arise for nearly identical top and bottom media.

9. Conclusions. We have developed a semianalytical approach to calculating
diffraction coefficients for a semi-infinite crack sandwiched between two different iso-
tropic media. We have introduced a stable numerical scheme for solving the resulting
system of integral equations, (5.7). Our main achievement has been to produce a
fast computer code, which is applicable to any pair of (sufficiently different) isotropic
materials which do not support the Stoneley wave and are irradiated by a plane wave
incident from either medium. The incident wave can be longitudinal or transverse and
incoming at an arbitrary angle. The absence of the Stoneley wave does not constitute
a serious restriction, since this case is ubiquitous in applications. Nevertheless, we
plan to publish another paper modeling materials where the Stoneley wave is present
too. As an illustration, we have presented plots of diffraction coefficients for a crack
sandwiched between aluminum and steel.

Appendix A. The two dimensional Green’s tensor and Green’s stress
tensor. Since the incident wave can be considered as radiated by a line load, both
the two dimensional Green’s tensor and Green’s stress tensor can be represented in
terms of the Hankel function of the first kind of the zeroth order, H0 ≡ H

(1)
0 , and its

derivatives (see [11], [21]), so that at any observation point x we have

−4iμ(j)u
G(j)
ik (x) =

1

[k(j)
2 ]2

[
−H0(k

(j)
1 r) +H0(k

(j)
2 r)

]
,ik +H0(k

(j)
2 r)δik ,

−4iσG(j)
2ik (x) =

⎧⎨
⎩1 − 2

[
c
(j)
2

c
(j)
1

]2
⎫⎬
⎭
[
H0(k

(j)
1 r)

]
,k δ2i −

2

(k(j)
2 )2

[
H0(k

(j)
1 r) −H0(k

(j)
2 r)

]
,2ik

+
[
H0(k

(j)
2 r)

]
,2 δik +

[
H0(k

(j)
2 r)

]
,i δ2k,(A.1)
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where μ(j), j = 1, 2, is the shear modulus in medium I(j); r is the distance to the
origin; and an index, say k, after the comma refers to differentiation with respect to
the corresponding spatial variable xk. Applying operations of dilatation and rotation
to both sides of (A.1) gives us

4iμ(j)u
G(j)1
i (x) =

[
c
(j)
2

c
(j)
1

]2 [
H0(k

(j)
1 r)

]
,i ,

−4iσG(j)1
i (x) = (k(j)

1 )2

⎧⎨
⎩
⎡
⎣2

(
c
(j)
2

c
(j)
1

)2

− 1

⎤
⎦H0(k

(j)
1 r)δ2i +

2

(k(j)
2 )2

[
H0(k

(j)
1 r)

]
,2i

⎫⎬
⎭ ,

−4iμ(j)u
G(j)2
i (x) =

[
H0(k

(j)
2 r)

]
,1 δ2i −

[
H0(k

(j)
2 r)

]
,2 δ1i,

−4iσG(j)2
i (x) =

[
H0(k

(j)
2 r)

]
,12 δ2i −

[
H0(k

(j)
2 r)

]
,22 δ1i +

[
H0(k

(j)
2 r)

]
,1i .

(A.2)

Appendix B. The extinction theorem. The extinction theorems are easily
proved for finite sources and obstacles using Green’s theorem. Difficulties arise when
the incident waves are plane and obstacles infinite. One approach to dealing with this
complication is to develop methods such as those offered in [22] and references therein
(also see [23]). Below we offer an alternative justification.

Let us focus on the scattered field in the upper plane. Any identity involving the
incident field can be established by direct integration. For simplicity of presentation,
we omit the superscript (1). Then solving the Fourier transform of the equations of
motion for the elastic solid gives

ûsc(ξ, x2) = A(ξ)(−ξ, γ1)T eik1γ1x2 +B(ξ)(γ2, ξ)T eik1γ2x2 , x2 > 0,(B.1)

where A(ξ) and B(ξ) are unknown. The solutions proportional to exp[−ik1γix2], i =
1, 2, are rejected because they do not satisfy the radiation conditions: Either they
are incoming from infinity or else, when we move the branches off the real axis (see
Figure C.1 below) as x2 → ∞, they become unbounded. It follows that on the top
face of the crack, x2 = 0+, we have

ûsc(ξ, 0+) = A(ξ)(−ξ, γ1)T +B(ξ)(γ2, ξ)T .(B.2)

It can easily be verified that a similar formula holds for the traction related vector
t̂sc (see (4.1)),

t̂sc(ξ, 0+) = −i[A(ξ)(2ξγ1, 2ξ2 − κ2
2)
T +B(ξ)(2ξ2 − κ2

2,−2ξγ2)T ].(B.3)

The solution to the Fourier transform of the equations of motion, which is valid in
both half planes, is

(B.4)
ûsc(ξ, x2) = A1(ξ)(−ξ, γ1sgn(x2))T eik1γ1|x2| +B1(ξ)(γ2sgn(x2), ξ)T eik1γ2|x2|, x2 > 0,

where we have

2κ2
2γ1A1(ξ) = −2ξγ1sgn(x2)ûsc1 (ξ, 0+) + (κ2

2 − 2ξ2)ûsc2 (ξ, 0+)

+ i[ξt̂sc1 (ξ, 0+) − γ1sgn(x2)t̂sc2 (ξ, 0+)],

2κ2
2γ2B1(ξ) = (κ2

2 − 2ξ2)ûsc1 (ξ, 0+) + 2ξγ2sgn(x2)ûsc2 (ξ, 0+)

− i[γ2sgn(x2)t̂sc1 (ξ, 0+) + ξt̂sc2 (ξ, 0+)].(B.5)
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Substituting (B.2) and (B.3) into (B.5) yields

(A1(ξ), B1(ξ)) = (A(ξ), B(ξ))H(x2).(B.6)

Thus, the scattered field defined by (B.4) agrees with (B.1) in the upper half plane
and is identically zero in the fictitious half plane x2 < 0. The inverse transform of
(B.4) leads to the extinction theorem (2.1) for the scattered field.

Appendix C. Singularities in (3.11). Let us describe all singularities of
functions that appear in (3.11). First, in view of (3.10), the left-hand side of (3.11)
has simple poles at ξ = ξinc + i0 and ξ = ξinc − i0, which correspond to the incident
and reflected bulk waves, respectively. They give rise to GE bulk waves.

Second, it is easy to check that the determinant of the matrix Â+(ξ), |Â+(ξ)| is
a product of two Rayleigh functions, R1(ξ) and R2(ξ),

Rj(ξ) = a2
j (ξ) + 4ξ2γ(j)

1 (ξ)γ(j)
2 (ξ),(C.1)

where the subscript j = 1, 2 refers to medium I(j) (see, e.g., [21]). Thus, the solutions
ξ = ±ξR(j) of the equation |Â+(ξ)| = 0 are zeros of R1(ξ) and R2(ξ) and can be
shown to be simple (distinct). The zeros ξ = −ξR(j) are known to give rise to the
outgoing Rayleigh surface waves.

It is equally easy to check that |Â−(ξ)| is the well-known Stoneley function

(C.2)
S(ξ) = μ2R1(ξ)h2(ξ) +R2(ξ)h1(ξ) + μ[b11(ξ)b22(ξ) + b21(ξ)b12(ξ) − 2g1(ξ)g2(ξ)]

(see, e.g., [24]), where we use the notation

bj1(ξ) = [κ(j)
2 ]2γ(j)

2 (ξ), bj2(ξ) = [κ(j)
2 ]2γ(j)

1 (ξ),

gj(ξ) = ξ[2γ(j)
1 (ξ)γ(j)

2 (ξ) − aj(ξ)], hj(ξ) = γ
(j)
1 (ξ)γ(j)

2 (ξ) + ξ2, j = 1, 2.(C.3)

In general, the zero of S(ξ) = 0 (which is also simple) can give rise to an outgoing
Stoneley wave. Using Cagniard’s method (see [24]) we have established that for the
set of parameters used in this paper such a solution does not exist, and therefore no
Stoneley surface wave runs between materials under study. We remark in passing
that this situation is common, and Cagniard [24] refers to the Stoneley wave as “a
rather special phenomenon,” meaning that it exists only in narrow ranges of material
parameters.

To continue, both matrices Â±(ξ) involve multivalued radicals γ(j)
i (ξ) defined

below (3.14). In order to render the matrices single valued we introduce the branch
cuts C(j)∓

i , i, j = 1, 2, which run between branch points ±κ(j)
i , defined below (3.9),

and ±∞, respectively. Let us apply the limiting absorption principle and replace κ(j)
i

by κ(j)
i + iε1, ε1 > 0. This shifts the branch cuts away from the real axis as indicated

in Figure C.1, and when performing the inverse Fourier transform, the corresponding
singularities give rise to the waves, which satisfy the radiation condition, that is, are
outgoing to infinity.

The radicals γ(j)
i (ξ) can be factorized so that we have

γ
(j)
i (ξ) = γ

(j)+
i (ξ)γ(j)−

i (ξ),(C.4)
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−κ(j)
i

�

C
(j)+
i

�Im ξ

�
Re ξκ

(j)
i

�

C
(j)−
i

Fig. C.1. The branch cuts of γ
(j)
i (ξ).

where we use the notation

γ
(j)+
i (ξ) =

√
κ

(j)
i + ξ, γ

(j)−
i (ξ) = γ

(j)+
i (−ξ),(C.5)

and only the cut C(j)+
i is required to render γ(j)+

i (ξ) single-valued. The radical
γ

(j)−
i (ξ) is rendered single-valued by C

(j)−
i . Note that if ξ = −ζ lies on the branch

cut C(j)+
i , the definition implies that ξ lies on the upper side of the cut, so that

ξ = −ζ + i0. It follows that γ(j)+
i (−ζ) is well defined. As ξ tends to −ζ from below

the branch cut, we have

γ
(j)+
i (ξ) → −γ(j)+

i (−ζ) ≡ γ
(j)+
i (−ζ − i0).(C.6)

Note that in the main text we drop a combination of subscript and superscript (1)
1

in the symbol for the longest branch cut C(1)±
1 . To summarize, the known functions

in (3.11) involve two GE poles ξinc ± i0, two Rayleigh poles −ξR(1) and −ξR(2), as
well as two branch cuts C±.

Appendix D. Auxiliary functions and vectors. Let us now describe auxiliary
functions used in the main text. Let four branch points be sorted in order of the
descending moduli, with κ1 = min{κ(j)

i } and κ4 = max{κ(j)
i }, i, j = 1, 2, denoting

the corresponding radicals γ±i (ξ) =
√
κi ± ξ and the respective branch cuts C+

i = {ξ :
ξ ≤ −κi} and C−

i = {ξ : ξ ≥ κi}, i = 1, 2, 3, 4.
For each pair of numbers a �= −κi and ξ, let us introduce the auxiliary functions

H±
i (ξ, a),

H+
i (ξ, a) =

γ+
i (a) − γ+

i (ξ)
2γ+
i (a)

[
a0 − γ+

i (a)
a0 + γ+

i (ξ)

]2n+1

, H−
i (ξ, a) = H+

i (−ξ,−a),(D.1)

where n ≥ 3 and a0 lies far away from the branch cut C+
i . To be specific, let a0 = 1+i.

Then the function H+
i has the following properties:

• It has no poles in ξ.
• The branch cut C+ renders it single-valued.
• For any ξ ∈ C+

i we have

H+
i (ξ + i0, ξ) = 0 and H+

i (ξ − i0, ξ) = 1,(D.2)

where, as the above notation suggests, H+
i (ξ + i0, a) and H+

i (ξ − i0, a) are
values of H+

i (ξ, a) evaluated on the upper and lower sides of C+
i , respectively.

(We recall that, unless stated otherwise, ξ lies on the positive side of the cut.)
• For any ξ ∈ C−

i such that Re ζ  1 we have

H+
i (−ξ + i0, a)−H+

i (−ξ − i0, a) ∼ constant
[γ+
i (−ξ)]2n

.(D.3)
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Let us now define branch cuts

C−
ii+1 = {ξ : κi ≤ ξ ≤ κi+1}, i = 1, 2, 3,

C−
45 = {ξ : ξ ≥ κ4},

C+
ii+1 = {ξ : −κi+1 ≤ ξ ≤ −κi}, i = 1, 2, 3,

C+
45 = {ξ : ξ ≤ −κ4},(D.4)

and introduce the auxiliary functions

F±
i (ξ, a) = H±

i (ξ, a) −H±
i+1(ξ, a), i = 1, 2, 3,

F±
4 (ξ, a) = H±

4 (ξ, a).(D.5)

It is easy to see that each function F±
i (ξ, a) has a branch cut C±

ii+1, i = 1, 2, 3, 4, and
F±
i (ξ, ξ) = 1 on the negative side of its branch cut and 0 everywhere else. Let us

introduce a function G(ξ) as

G(ξ) =
(√

1 + ξ +
√
κ

(1)
2 + ξ

)2

,(D.6)

which is real outside the interval (−κ(1)
2 ,−1) and O(ξ) at infinity.

Appendix E. Auxiliary relationships. Let us determine eight scalar constants
D±
i , i = 1, 2, 3, 4, introduced in (6.1). Let us show that they are linearly dependent,

and therefore that the total number of unknowns can be decreased by four. Let us do
this by analyzing the asymptotic behavior of both sides of (6.2). As ξ → ∞, matrix
M(ξ) →M∞,

M∞ =
(

02 m−
∞I2

m+
∞I2 02

)
,(E.1)

where matrices 02 and I2 denote the zero and identity 2 × 2 matrices, respectively;
m±

∞ are known constants,

m−
∞ = −1

8

{
[κ(1)

2 ]2

[κ(1)
2 ]2 − [κ(1)

1 ]2
+ μ

[κ(2)
2 ]2

[κ(2)
2 ]2 − [κ(2)

1 ]2

}
,

m+
∞ = −8[S∞]−1

(
[κ(1)

2 ]2{[κ(2)
2 ]2 − [κ(2)

1 ]2} + μ[κ(2)
2 ]2{[κ(1)

2 ]2 − [κ(1)
1 ]2}

)
;(E.2)

and we use the notation S∞ = limξ→∞ S(ξ)/ξ2. Using the Stoneley function S(ξ)
defined in (C.2), we find

S∞ = μ2{[κ(1)
2 ]2 − [κ(1)

1 ]2}{[κ(2)
2 ]2 + [κ(2)

1 ]2} + {[κ(1)
2 ]2 + [κ(1)

1 ]2}{[κ(2)
2 ]2 − [κ(2)

1 ]2}
+ 2μ{[κ(1)

2 ]2[κ(2)
2 ]2 + [κ(1)

1 ]2[κ(2)
1 ]2}.(E.3)

The right-hand side of (6.2) decays faster than the left-hand side. It can be shown
that it has the asymptotic behavior

ΔVinc(ξ) → 1
ξ
, ξ → ∞.(E.4)
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The asymptotic solution of (6.2) can be rewritten using (6.1) as

Δw(ξ) = ξ−νW, ν =
1
2
± iν0.(E.5)

Then the Cauchy integral of the latter can be found in [20] to behave as

1
π

∫ ∞

1

Wdζ

ζν(ξ + ζ)
→ β

ξν
W, ξ → ∞,(E.6)

where β = 1/sin νπ. Therefore, using (E.1) and (E.4), as ξ → ∞, the system (6.2)
becomes

1
ξν

(I4 − βM∞)W = 0.(E.7)

The matrix in the above equation must have a zero determinant,

det(I4 − βM∞) =
∣∣∣∣ I2 −βm−

∞I2
−βm+

∞I2 I2

∣∣∣∣ = 1 − β2m+
∞m

−
∞.(E.8)

This determines β, and hence, by its definition, the parameter ν0:

β = 1

sin
(

1
2±iν0

)
π

=
1

cosh(πν0)
=

1√
m+

∞m
−
∞
.(E.9)

Using one of the Dundurs parameters, which can be represented as

βD =
1 − [κ(2)]2 + μ([κ(1)]2 + 1)

μ[κ(2)]2([κ(1)]2 − 1) + [κ(1)]2([κ(2)]2 − 1)
(E.10)

(see [25]), as well as expressions (E.2) for m±
∞, we can write

tanh(πν0) = βD.(E.11)

Now it can be shown that there are two linearly independent vectors W(1) and W(2)

such that (I4 − βM∞)W = 0. They are

W(1) =

⎛
⎜⎜⎝

m
0
1
0

⎞
⎟⎟⎠ , W(2) =

⎛
⎜⎜⎝

0
m
0
1

⎞
⎟⎟⎠ , m =

√
m−

∞
m+

∞
.(E.12)

It follows that as ξ → ∞, the vector Δw behaves as

Δw(ξ) → ξ−1/2

[(
A+

ξiν0
+

A−

ξ−iν0

)
W(1) +

(
B+

ξiν0
+

B−

ξ−iν0

)
W(2)

]
, ξ → ∞.(E.13)

Rewriting the above equation in the form of (6.1) leads us to the following relationship:

D+ = (A+ +A−)W(1) + (B+ +B−)W(2),

D− = −i[(A+ −A−)W(1) + (B+ −B−)W(2)].(E.14)

Substituting (E.12) into (E.14) gives us a simple relationship between the components
of D±,

D±
1 =

√
m−

∞
m+

∞
D±

3 , D±
2 =

√
m−

∞
m+

∞
D±

4 .(E.15)
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ON CENTER SUBSPACE BEHAVIOR IN THIN FILM EQUATIONS∗

V. A. GALAKTIONOV† AND P. J. HARWIN†

Abstract. The large-time behavior of weak nonnegative solutions of the thin film equation
(TFE) with absorption ut = −∇ · (|u|n∇Δu) − |u|p−1u, with parameters n ∈ (0, 3) and p > 1,
is studied. The standard free-boundary problem (FBP) with zero height, zero contact angle, and
zero-flux conditions at the interface and bounded compactly supported initial data is considered.
It is shown that there exists the critical absorption exponent p0 = 1 + n + 4

N
such that, for

p = p0, the asymptotic behavior of solutions u(x, t) for t � 1 is represented by the well-known
source-type solution of the pure TFE absorption, us(x, t) = t−βNF (y), y = x/tβ , with the ex-
ponent β = 1

4+nN
, which is perturbed by a couple of ln t-factors. For n = 1, this behavior is

associated with the center subspace for the rescaled linearized thin film operator and is given by
u(x, t) ∼ (t ln t)−βNF (x/tβ(ln t)−βN/4), with β = 1

4+N
, where F (y) = 1

8(N+2)(N+4)
(a2∗−|y|2)2 and

the constant a∗ > 0 depends on dimension N only. The 2mth-order generalization of such TFEs
with critical absorption is considered, and some local and asymptotic features of changing sign simi-
larity solutions of the Cauchy problem are described. Our study is motivated by the phenomenon of
logarithmically perturbed source-type behavior for the second-order porous medium equation (PME)
with critical absorption ut = ∇ · (un∇u) − up in R

N × R+, p0 = 1 + n+ 2
N

, n ≥ 0, which has been
known since the 1980s.

Key words. quasilinear thin film equation, critical absorption exponent, similarity solutions,
asymptotic behavior

AMS subject classifications. 35K55, 35K65

DOI. 10.1137/060666275

1. Introduction: The model, motivation, and results. Our goal is to de-
scribe some unusual asymptotic phenomena for higher-order quasilinear degenerate
parabolic equations, in which the nonlinear interaction between operators involved
deforms the scaling-invariant structure of solutions for large times. These delicate
cases of asymptotic phenomena, such as logarithmic perturbations of fundamental or
source-type solutions, have been known since the 1980s for quasilinear second-order
reaction-diffusion equations. For semilinear higher-order parabolic equations, those
phenomena can be detected by using spectral theory of non–self-adjoint operators
and semigroup approaches. For quasilinear models, similar asymptotic patterns were
unknown.

In the present paper, we introduce a new quasilinear parabolic model by adding to
the standard thin film operator an extra absorption term. This creates a nonconser-
vative evolution PDE, which enjoys a variety of logarithmically perturbed nonscaling
asymptotics in both the free-boundary and the Cauchy problems. We then fix several
similarities with simpler second-order diffusion-absorption models.

We begin with some physical motivation of such models.

1.1. On general thin film models: A class of conservative and noncon-
servative PDEs. For a long time, modern thin film theory and application dealt
with rather complicated nonlinear models. Typically, such models include the prin-
cipal quasilinear fourth-order operator and several lower-order terms. For instance,
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the Benney equation (1966) describes the nonlinear dynamics of the interface of two-
dimensional liquid films flowing on a fixed inclined plane [2],

(1.1) ut + 2Re
3 (u3)x + ε

[(
8Re2

15 u6 − 2Re
3 cot θ u3

)
ux + Σu3uxxx

]
x

= 0,

where Re is the unit-order Reynolds number of the flow driven by gravity, σ is the
rescaled Weber number (related to surface tension σ), θ is the angle of plane inclination
to the horizontal, and ε = d

λ � 1, with d being the average thickness of the film and
λ the wavelength of the characteristic interfacial disturbances. See [40].

Thin film equations (TFEs) can include nonpower nonlinearities. For instance, in
multidimensional geometry, a typical example is

(1.2) ut + ∇ ·
[(
−Gu3 + BM u2

2P (1+B u)2

)
∇u
]
+ S∇ · (u3∇Δu) = 0,

which describes, in dimensionless form, the dynamics of a film in R3 subject to the
actions of thermocapillary, capillary, and gravity forces. Here, G, M , P , B, and S are
the gravity, Marangoni, Prandtl, Biot, and inverse capillary numbers, respectively.
For more on Marangoni instability in such TFE models, see [38].

The above conservative PDEs preserve the finite mass of thin films. Noncon-
servative TFEs occur for evaporating/condensing films and via other effects [39, 28].
Actually, the first study of the vapor thrust effects in the Rayleigh–Taylor instability
of an evaporating liquid-vapor interface above a hot horizontal wall was performed by
Bankoff in 1961. His stability analysis in 1971 of an evaporating thin liquid film on
a hot inclined wall extended earlier results of Yih (1955, 1963) and Benjamin (1957).
The history and detailed derivation of models of (a) an evaporating thin film and (b)
a condensing thin film can be found in [39, pp. 946–949]. A typical TFE of that type
in one dimension is as follows [39, p. 949]:

(1.3) ut + Ē
u+K + 1

3
1
C̄

(
u3uxxx

)
x

+
{[

A
u + Ē2

D

(
u

u+K

)3 + KM
Pr

(
u

u+K

)2]
ux
}
x

= 0.

Here, the six terms represent, respectively, the rate of volumetric accumulation, the
mass loss, the stabilization capillary, van der Waals, vapor thrust, and thermocapillary
effects. In the second absorption-like term, Ē is the scaled evaporation number and
K is the scaled interfacial thermal resistance that physically represents a temperature
jump from the liquid surface temperature to the uniform temperature of the saturated
vapor. D is a unit-order scaled ratio between the vapor and liquid densities.

Another origin of nonconservative TFEs with more complicated nondivergent op-
erators is the study of flows on a rotating disc (centrifugal spinning as an efficient
mean of coating planar solids with thin films). This gives extra absorption-like, spa-
tially nonautonomous terms in the equations written in radial geometry, e.g., [39,
p. 955]

(1.4)
ut + 2

3E + 1
3r

[
r2u3 + εRe

(
5
12Er

2u4 − 34
105r

2u7
)]

+ ε
3

{
Re
(

2
5r

3u6 − r 1
F 2u

3
)
ur + r 1

C̄
u3
[

1
r (rur)r

]
r

}
r

= 0.

Here E is again the evaporation number, F is the Froude number, and ε = h0
L is a

small parameter. Observe a rather complicated combination of various absorption-
and reaction-like nondivergent terms (with different nonlinear powers u3, u4, and u7)
in the first line of (1.4). Various exact solutions of nonconservative TFEs can be found
in [25, Ch. 3], where more references and a survey on TFE theory are given.
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Modern nonlinear parabolic theory and application to thin film models demand
better understanding of the interaction of various nonlinear terms and operators of
different orders that can create rather complicated spatiotemporal patterns and dissi-
pative structures. We chose one particular but special case of center subspace behavior
that will be shown to have rather robust mathematical significance.

1.2. Basic limit model: The TFE with absorption. We study the large-
time asymptotic behavior of nonnegative solutions of the thin film equation (TFE)
with absorption (for convenience, we also examine solutions of changing sign)

(1.5) ut = −∇ · (|u|n∇Δu) − |u|p−1u,

where n > 0 and p > 1 are fixed exponents. Here we use the simplest second term
which is not a differential operator but is represented by just a power function. Our
main goal is to justify that in the critical case

(1.6) p0 = 1 + n+ 4
N

various solutions of (1.5) exhibit a complicated asymptotic behavior with some loga-
rithmic corrections ln t for t� 1.

We have chosen the nonconservative equation (1.5) for simplicity and for better
presentation of our mathematical tools. We claim that similar phenomena are quite
general and appear also in various conservative models. Actually, the logarithmic
correction ∼ (ln 1

t )
−1/7 in the behavior for large enough t was rigorously observed [27]

for the relaxed conservative thin film model consisting of two operators,

(1.7) ut + (u3uxxx)x + (unuxxx)x = 0, with 0 < n < 3 (u ≥ 0),

where the first term with u3 corresponds to Reynolds’s equation from lubrication the-
ory. It was shown that, for concentrated enough initial data, in a certain intermediate
time-range, the propagation rate is as follows:

(1.8) meas {u(x, t) > 1} ∼
(

t
ln 1

t

) 1
7 ,

where the usual scaling-invariant factor t
1
7 is associated with a standard dimensional

analysis. Here, the log-correction is a result of a delicate interaction of two scaling
invariant operators in (1.7). We believe that (1.8), proved in [27] rigorously, can be
put into a framework of a center manifold calculus (though a justification can be
extremely hard).

Log-corrections were observed for the limit stable Cahn–Hilliard equation [20,
section 5.4]

(1.9) ut = −Δ2u+ Δ(|u|p−1u), with p = 1 + 2
N .

For the semilinear case n = 0 in the TFE (1.5), such logarithmically perturbed asymp-
totic are also well known and admit a rigorous mathematical treatment [22].

Thus, we consider for (1.5) the standard free-boundary problem (FBP) with zero
height, zero contact angle, and zero-flux (conservation of mass) conditions

(1.10) u = ∇u = ν · (un∇Δu) = 0



CENTER SUBSPACE BEHAVIOR 1337

at the singularity surface (interface) Γ0[u], which is the lateral boundary of suppu
with the outward unit normal ν. Bounded, smooth, and compactly supported initial
data

(1.11) u(x, 0) = u0(x) in Γ0[u] ∩ {t = 0}

are added to complete a suitable functional setting of the FBP. As usual, we assume
that these three free-boundary conditions give a correctly specified problem for the
fourth-order parabolic equation, at least for sufficiently smooth and bell-shaped initial
data, e.g., in the radial setting.

Returning to basics of thin film theory, earlier references on derivation of the pure
fourth-order TFE

(1.12) ut = −∇ · (|u|n∇Δu)

and related models can be found in [29, 42], where the first analysis of some self-
similar solutions for n = 1 was performed. Source-type similarity solutions of (1.12)
for arbitrary n were studied in [7] for N = 1 and in [21] for the equation in RN . More
information on similarity and other solutions can be found in [5, 4, 11]. In general,
the TFEs are known to admit nonnegative solutions constructed by special “singular”
parabolic approximations of the degenerate nonlinear coefficients; see the pioneering
paper [3], various extensions in [30, 15, 16, 34, 45], and the references therein. In what
follows we study the asymptotic behavior of sufficiently “strong” weak solutions of the
TFEs, which satisfy necessary regularity and other assumptions; see also the survey
paper [1]. Notice that regularity theory for the TFEs is not fully developed, especially
in the nonradial N -dimensional geometry and for solutions of changing sign, so we
will need to impose extra formal requirements, which are necessary for justifying our
asymptotic approaches.

Let us mention other well-established and related conservative thin film models
with extra lower-order terms describing the dynamics of thin films of viscous fluids
in the presence of two competing forces; see [9]. For N = 1, typical quasilinear TFEs
are

(1.13) ut = −(uuxxx + u3ux)x (u ≥ 0),

and the general equation with power nonlinearities is

(1.14) ut = −(unuxxx)x − (umux)x (u ≥ 0).

We refer the reader to papers [17, 18] and the book [25, Ch. 3] as sources of a large
number of further references and results of TFE theory and application.

In addition, our extra motivation of the TFE model like (1.5) is mathematical and
is associated with the previous investigations of the quasilinear diffusion-absorption
PDEs.

1.3. A mathematical motivation: The PME with critical absorption.
Second-order quasilinear parabolic equations with absorption are well known in com-
bustion theory. A key model is the porous medium equation (PME) with absorption

(1.15) ut = ∇ · (un∇u) − up in R
N × R+ (u ≥ 0),

where n > 0 and p are fixed exponents. A special interest to such equations was moti-
vated by localized similarity solutions introduced by L.K. Martinson and K.B. Pavlov
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at the beginning of the 1970s. Mathematical theory of such PDEs was developed by
A.S. Kalashnikov a few years later; see his survey [31] for the full history. Besides new
phenomena of localization and interface propagation, for more than twenty years, the
PME with absorption (1.15) became a crucial model for determining various asymp-
totic patterns, which can occur for large times t� 1 or close to finite-time extinction
as t → T− (for p < 1). For (1.15), there are a few parameter ranges with different
asymptotics:

p > p0 = 1 + n+ 2
N , p = p0, 1 + n < p < p0, p = 1 + n,

1 < p < 1 + n, p = 1, 1 − n < p < 1, p = 1 − n, p < 1 − n,

etc.; see references and details in [26, Chs. 5, 6].
The most interesting and unusual transitional behavior for (1.15) occurs at the

first critical (or Fujita) absorption exponent

(1.16) p0 = 1 + n+ 2
N .

In this case (see details and references in [26, p. 83]), the asymptotic behavior as
t → ∞ of nonnegative compactly supported solutions of (1.15) is described by the
logarithmically perturbed source-type solution of the pure PME,

(1.17) u(x, t) = (t ln t)−βN [F (x/tβ(ln t)−βn/2) + o(1)], where β = 1
2+nN .

Without the logarithmic factors and the o(1)-term, the right-hand side is indeed the
famous Zel’dovich–Kompaneetz–Barenblatt (ZKB) similarity source-type solution of
the pure PME ut = ∇ · (un∇u), which has the form

(1.18) us(x, t) = t−βNF (y), y = x/tβ , with F (y) =
[
nβ
2 (a2 − |y|2)+

] 1
n ,

where a > 0 is an arbitrary scaling parameter. This explicit solution dates back to the
1950s. In the class of solutions of changing sign, (1.15) admits a countable sequence
of critical exponents, where the patterns contain similar logarithmic time-factors [23].

1.4. Outline of the paper: Logarithmically perturbed patterns for the
TFE with absorption. In section 2 we show that similar logarithmically perturbed
source-type patterns exist for the TFE with absorption (1.5), with the critical expo-
nent (1.6). In this case, the source-type solutions of the TFE (1.12) take the form

(1.19) us(x, t) = t−βNF (y), y = x/tβ, with β = 1
4+nN ,

where F (y) ≥ 0 is a radially symmetric compactly supported solution of the PDE
[7, 21]

(1.20) A(F ) ≡ −∇ · (Fn∇ΔF ) + β∇F · y + βNF = 0.

In the case n = 1, the similarity profile for the FBP is given explicitly,

(1.21) F (y) = c0(a2 − |y|2)2, c0 = 1
8(N+2)(N+4) , a > 0,

and was first constructed in [42]. Figure 1 shows profiles F (y) for N = 1 in four cases
n = 1

4 , 1
2 , 3

4 , and 1. The profiles are normalized by their values at y = 0, so F (0) = 1.
First, for n = 1, relying on the explicit representation (1.21) and good spectral

properties of the corresponding self-adjoint linearized rescaled operator, we show that,
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Fig. 1. The similarity profiles F (y) of (1.20) for N = 1 in four cases n = 1
4
, 1

2
, 3

4
, and 1;

F (0) = 1, μ = F ′′(0).

for p = p0 = 2+ 4
N , the TFE with absorption (1.5) admits asymptotic patterns of the

following form:

(1.22) u(x, t) ∼ (t ln t)−βNF∗(x/tβ(ln t)−βN/4)
(
β = 1

4+N

)
.

Here F∗ is a fixed rescaled profile from the family (1.21) with a uniquely chosen
parameter a = a∗ > 0 that depends on N only. We also present evidence that
similar logarithmic factors can occur for arbitrary n > 0, but this does not lead to
self-adjoint linearized operators and explicit mathematics. On the other hand, for
the semilinear case n = 0, i.e., for the fourth-order parabolic equation written for
solutions of changing sign

(1.23) ut = −Δ2u− |u|p−1u,

the critical behavior like (1.22) is known to occur at the critical exponent p = 1 + 4
N

[22], which is precisely (1.6) with n = 0. In this case, the center manifold analysis also
uses spectral properties of a non–self-adjoint linear operator studied in [13, section 2].

In section 3 we briefly describe the essence of the easier supercritical case p > p0.
Very singular similarity solutions (VSSs) in the subcritical one p ∈ (n+ 1, p0) will be
studied in a forthcoming paper.

In section 4, we explain how the critical asymptotic behavior occurs for the 2mth-
order TFE with absorption

(1.24) ut = (−1)m+1∇ · (un∇Δm−1u) − up, m ≥ 2,

where the critical absorption exponent is

(1.25) p0 = 1 + n+ 2m
N ,

and again n = 1 leads to a simpler self-adjoint case.
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In section 5 we discuss similar local and global asymptotics for the Cauchy prob-
lem admitting maximal regularity solutions of changing sign.

Finally, let us note that (1.6) (and (1.25) for equation (1.24)) is the critical Fujita
exponent of the TFE with source

ut = −∇ · (|u|n∇Δu) + |u|p (n > 0, p > 1);

i.e., for p ∈ (n + 1, p0], all solutions with arbitrarily small initial data u0(x), where∫
u0 > 0, blow up in finite time [24].

2. Rescaled equation and center subspace behavior.

2.1. To the style of the analysis. For convenience of the reader, we must
emphasize from the beginning that all our final conclusions on center subspace be-
haviors detected below are mathematically formal when we deal with the quasilinear
case n > 0. The semilinear case n = 0 is easier and admits a rigorous treatment by
invariant manifold theory [22]. It is then worth mentioning that there is no hope that
such asymptotics can admit a reasonably simple rigorous treatment. We recall that
even for the second-order model (1.15) with n > 0, there is no full center manifold
justification of the main results that were proved by essential use of the maximum
principle and comparison-barrier techniques; see [26, Ch. 4]. Some of the asymptotic
patterns for (1.15) of center subspace type turned out to be very complicated [23]. As
we will show, the main difficulty is not a proper spectral theory of linearized operators
(this is justified in many cases) but a justification of the center subspace behavior as-
sociated with such singular operators. On the other hand, we always clearly indicate
the rigorous steps and split the whole approach into a sequence of standard steps. We
would be very pleased if some of our formal results and discussions would attract the
attention of experts in these areas of differential equations.

Thus, in what follows, we use by implication the following rule:
(i) all conclusions concerning spectral and other properties of self-adjoint singu-

lar elliptic and ordinary differential operators are rigorous (or can be made
rigorous after sometimes technical manipulations; for non–self-adjoint cases
we are not certain, and extra analysis is necessary); and

(ii) further extensions via the above spectral properties to describe the behav-
ior for TFEs close to center subspaces and various matching procedures are
mathematically formal.

2.2. Rescaled equation. We begin with rescaling the PDE (1.5) with the crit-
ical exponent (1.6) according to the time-factors of the source-type solution (1.19),
i.e., by setting

(2.1) u(x, t) = (1 + t)−βNv(y, τ), y = x/(1 + t)β , τ = ln(1 + t),

which leads to the following autonomous rescaled equation in RN × R+:

(2.2) vτ = A(v) − vp,

where A is the operator specified in (1.20). We first need to check that a simple
stabilization as τ → +∞ to a nontrivial stationary solution in (2.2) is not possible.

Proposition 2.1. The stationary equation

(2.3) A(g) − gp = 0
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does not have a nontrivial compactly supported nonnegative solution of the FBP.
Proof. Indeed, integrating (2.3) over supp g yields

∫
gp(y) dy = 0.

This means that the only bounded nonnegative equilibrium for the dynamical
system (2.2) is trivial:

(2.4) g(y) ≡ 0 in R
N .

In order to detect the actual nonstationary asymptotic behavior, we next perform
a second rescaling by introducing the as yet unknown positive function b(τ),

(2.5) v(y, τ) = b(τ)w(ζ, τ), ζ = y/b
n
4 (τ),

to get the following perturbed equation:

(2.6) wτ = A(w) + b′

b Cw − bp−1wp, where Cw ≡ n
4 ∇w · ζ − w.

2.3. Linearization. Roughly speaking, in order to detect the asymptotic be-
havior according to (2.5), we can use the estimate

(2.7) b(τ) ≈ ‖v(·, τ)‖∞ → 0 as τ → ∞,

so that ‖w(·, τ)‖∞ ≈ 1 for τ � 1. On the other hand, in the radial setting, it is
convenient to use b(τ) for the scaling of the support of the solution w(ζ, τ) to get that
it approaches the unit ball B1 as τ → ∞; see below.

We next perform the linearization by setting

(2.8) w(ζ, τ) = F (ζ) + Y (ζ, τ),

where F is a rescaled similarity profile from the family (1.21). Then Y solves the
following rescaled equation:

(2.9) Yτ = A′(F )Y + b′

b CF − bp−1F p + D(Y ) − bp−1[(F + Y )p − F p],

where A′(F )Y is the formal Fréchet derivative of A at F ,

(2.10) A′(F )Y = −∇ · (Fn∇ΔY ) −∇ · (nFn−1Y∇ΔF ) + β∇Y · y + βNY,

and D(Y ) is a higher-order perturbation, which is quadratic in Y → 0 on smooth
functions. Using the elliptic equation (1.20) for F , on integration,

(2.11) Fn∇ΔF = βFy =⇒ A′(F )Y = −∇ · (Fn∇ΔY ) + (1 − n)β∇ · (Y ζ).

2.4. The self-adjoint case n = 1. It follows from (2.11) that n = 1 is a special
case, where the last term vanishes. We fix a = 1 in (1.21), so that the linearized
operator is

(2.12) A′(F )Y = −∇ · (F∇ΔY ) ≡ −c0∇ · ((1 − |ζ|2)∇ΔY ), y ∈ B1 = {|ζ| < 1}.

One can see that it can be written in the form
(2.13)

A′(F )Y = −c0 1
ρ(|ζ|) [Δ(a(|ζ|)ΔY ) + 2NΔY ], where a(|ζ|) = 1 − |ζ|2 = 1

ρ(|ζ|) ,

so, in the topology of L2
ρ(B1), operator (2.12) is symmetric in C∞

0 (B1) with good
coefficients and hence admits self-adjoint extensions. Next, using classical theory
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[10], we specify properties of its unique Friedrichs self-adjoint extension. Its domain
is constructed by completing C∞

0 (B1) in the norm induced by its positive quadratic
form (corresponding to the operator −A′(F ) − c0Δ > 0)

〈Y,W 〉∗ ≡ c0
∫
B1

[aΔYΔW − (2N − 1)∇Y · ∇W ].

The intersection of this Hilbert space with the domain of the maximal adjoint operator
D((A′(F ))∗) = {v ∈ L2

ρ : A′(F )v ∈ L2
ρ} defines the domain of the self-adjoint

extension, which we denote by D(A′(F )) = H4
ρ,0. In particular, for any v ∈ H4

ρ,0,
there holds

v = 0 on ∂B1, and
∫
B1
a(Δv)2 <∞,

so that H4
ρ,0 ⊂ H2

ρ,0. Consider the corresponding eigenvalue problem written in the
form

(2.14) −c0[Δ(a(|ζ|)Δψ) + 2NΔψ] = ρλψ in H4
ρ,0.

Since the embeddings of the corresponding functional spaces H2
a,0 and H1

0 into L2
ρ are

compact [36, p. 63], we have that the spectrum σ(A′(F )) is real and discrete.
For our purposes, it suffices to detect the eigenvalues and eigenfunctions in the

radial (ODE) setting with the single spatial variable r = |ζ| > 0. The extension to
the elliptic setting is performed by using the polar coordinates ζ = (r, σ) in B1,

(2.15) Δ = Δr + 1
r2 Δσ,

where Δσ is the Laplace–Beltrami operator on the unit sphere SN−1 = ∂B1 in RN . Δσ

is a regular operator with a discrete spectrum in L2(SN−1) (each eigenvalue repeated
as many times as its multiplicity),

(2.16) σ(−Δσ) = {νk = k(k +N − 2), k ≥ 0},

and an orthonormal, complete, closed subset {Vk(σ)} of eigenfunctions, which are
homogeneous harmonic kth order polynomials restricted to SN−1. We plug (2.15)
into (2.13), where all the coefficients are radial functions, and use the separation of
variables

(2.17) ψ(r, σ) = R(r)Vk(σ)

to solve the eigenvalue problem (2.14). For each fixed νk, we then arrive at a radial
eigenvalue problem for R, which is similar to that discussed below.

Thus we take k = 0 in (2.17) and consider the radially symmetric eigenvalue
problem (2.14). For N = 1, this problem was studied in [8], where further references
are given. It is not difficult to check that the radial operator A′(F ) has the discrete
spectrum

(2.18) σ(A′(F )) = {λk = c0k(k + 2)(k +N)(k +N + 2), k = 0, 2, 4, . . .},

where each eigenfunction ψ is a (k+2)th-order polynomial,

(2.19) ψk(r) = bk(rk+2 + · · · + dk) (ψk(1) = 0),
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where {bk} are normalization constants, so that the eigenfunction subset {ψk} is
orthonormal in L2

ρ. In particular,

(2.20) ψ0(r) = b0(r2 − 1) > 0, b0 = −
√

N+2
2ωN

(λ0 = 0),

where ωN = 2πN/2

NΓ(N/2) is the volume of the unit ball in RN . Such polynomials are com-
plete and closed in typical weighted Lp-spaces (a standard functional analysis result;
see [13, section 2.3] for details), and this justifies the equality in (2.18). Moreover, we
then can use the eigenfunction expansion with the orthonormal eigenfunction subset
{ψk} to deal with solutions of the corresponding PDE.

We next consider the rescaled equation (2.9), which for n = 1 takes the form

(2.21) Yτ = A′(F )Y + b′

b CF − bp−1F p −∇ · (Y∇ΔY ) − bp−1[(F + Y )p − F p].

We deal with strong radially symmetric solutions of (2.21), where we now choose the
normalization function b(τ) in (2.5) such that

(2.22) suppw(·, τ) = B1 for τ � 1.

According to (2.21), we then need to assume that b(τ) is smooth, at least for large
τ , though this requirement can be weaken by using a weak (integral) form of the
PDE. We now use the converging (in L2

ρ and in the corresponding Sobolev class)
eigenfunction expansion of the radial solution

(2.23) Y (ζ, τ) =
∑
k≥0 ak(τ)ψk(ζ)

to study the corresponding center subspace behavior for the nonlinear operator A.
This part of our asymptotic analysis is formal.

Thus substituting (2.23) into (2.21) and projecting onto ψ0 in L2
ρ, we have that

the first coefficient satisfies the following perturbed ODE:
(2.24)

a′0 = −γ1
b′

b − γ2b
p−1 + . . . , where γ1 = −〈CF, ψ0〉ρ > 0, γ2 = 〈F p, ψ0〉ρ > 0.

We omit in (2.24) the higher-order terms, assuming that, for this type of behavior,
the nonautonomous perturbations are the leading ones. The signs of the coefficients
γ1,2 in (2.24) are essential and are easily checked by integration.

It follows from (2.4) and (2.22) that b(τ) → 0 as τ → ∞, so

b′(τ)
b(τ) is not integrable at τ = ∞.

Therefore, in order to have a uniformly bounded expansion coefficient a0(τ), we need
to suppose that two terms on the right-hand side of (2.24) annul each other asymp-
totically, so that, up to an integrable perturbation,

(2.25) b′

b = −γ2
γ1
bp−1 + . . . for τ � 1.

This gives the following necessary condition for the existence of such behavior:

(2.26) b(τ) = γ∗τ
− 1

p−1 + . . . , where γ∗ =
[ (p−1)γ2

γ1

]− 1
p−1 .

Returning to the original variables {x, t, u}, from (2.26) we obtain the asymptotic
pattern (1.22). The rescaled profile F∗ is uniquely determined from (1.21) with a∗ =
γ
n/4
∗ .
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2.5. Arbitrary n ∈ (0, 3
2
). This non–self-adjoint case is more difficult. Con-

sider the linearized operator (2.11) for n �= 1, where F > 0 is the radial solution of
the ODE (1.20) in B1; see [21] for existence, uniqueness, and asymptotics. Then, for
n < 3

2 [21],

(2.27) F (ζ) ∼ (1 − |ζ|)2 as |ζ| → 1−.

Notice that there exists a one-parameter family of the solutions given by

(2.28) Fa(ζ) = a
4
nF ( ζa ), a > 0.

First, we claim that, for n �= 1, operator (2.11) is not symmetric in L2
ρ for any positive

weight ρ in B1; see the appendix. Second, we have that

(2.29) ψ0(ζ) = d
daFa(ζ)|a=1 ≡ 4

n F −∇F · ζ

is a positive eigenfunction of (2.11) corresponding to λ0 = 0. Observe that, with
respect to the regularity, this eigenfunction well corresponds to that for n = 1; cf.
(2.20). Moreover, it follows that, close to the singular point |ζ| = 1, the radial part
of (2.11) is governed by the singular (at ∂B1) higher-order operator

(2.30) L4Y = −(s2nY ′′′)′, s = 1 − |ζ|,

which is symmetric in a weighted H−1 topology (but we need a result in L2). Solving
the problem L4Y = g with natural conditions at the point s = 1, which is assumed
to be regular, we obtain, up to compact perturbations, that

(2.31) L2Y ≡ −Y ′′ ∼
∫ s
s−2n

∫ s
g ≡ L∗g =⇒ Y ∼ L−1

2 L∗g,

where L−1
2 is a compact operator in L2. It is easy to check that the integral operator

L∗ is bounded in L2 for

(2.32) n < 3
4 ,

and then L−1
2 L∗ is compact in L2 as the product of a compact and a bounded operator.

Therefore, A′(F ) has discrete spectrum in the parameter range (2.32). This is not an
optimal result since, as we have seen, the discreteness of the spectrum remains valid
for n = 1. We use this analysis as a simple illustration of the fact that the spectrum
is usually discrete in the nonsymmetric case.

Thus 0 ∈ σ(A′(F )) is an isolated eigenvalue. There is numerical evidence that the
spectrum is discrete for all n ∈ (0, 3

2 ); see [8], where, moreover, the first six eigenvalues
turned out to be real for N = 1. Possibly this might mean that in a special topology
of sequences as l2 (not related to any of L2

ρ) the linearized operator can be treated
as symmetric and self-adjoint; cf. an example in [13]. For n = 0 in any dimension
N ≥ 1, the whole spectrum is proved to be real. We refer the reader to [13, section
2], where this and other 2mth-order operators were studied in L2

ρ(RN ), i.e., for the
Cauchy (not a free-boundary) problem.

The rest of our study is formal. Once in the radial setting there exists the center
subspace of A′(F ); we are looking for a (formal) center subspace patterns for (2.9)

(2.33) Y (ζ, τ) = a0(τ)ψ0(ζ) + . . . .

We assume center subspace dominance in the behavior, so, as usual, other terms in this
expansion are assumed to be negligible for τ � 1. Substituting (2.33) into (2.9), we
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next find the projection onto the corresponding adjoint eigenfunction ψ∗
0 . In general,

such an analysis becomes rigorous if we establish existence of complete, closed, and
biorthonormal eigenfunction subsets {ψk} and {ψ∗

k}. This is an open problem except
for the case n = 1 above and n = 0 studied in [13]. We do not deal with the adjoint
operator A′∗(F ) in this formal asymptotic analysis. The projection onto ψ∗

0 yields
the perturbed ODE (2.24), where the same coefficients γ1,2 are determined via the
standard dual L2 product, where ψ0 is replaced by ψ∗

0 . This formally leads to the
same asymptotics (2.26).

The range n ∈ [3
2
, 3). The center subspace analysis applies also for larger n’s.

The asymptotics of similarity profiles change at n = 3
2 , where, instead of (2.27),

(2.34) F (ζ) ∼ (1 − |ζ|)2
[

3
4 β| ln(1 − |ζ|)|

] 2
3 as |ζ| → 1;

see [21]. On the other hand, for n ∈ (3
2 , 3),

(2.35) F (ζ) ∼ (1 − |ζ|) 3
n as |ζ| → 1.

This regularity is sufficient for determining the corresponding eigenfunction and the
logarithmic behavior.

For n ≥ 3, the zero contact angle FBP does not provide us with a proper inter-
esting evolution; see [21].

3. On the supercritical parameter range p > p0.

3.1. Exponentially perturbed dynamical system for p > p0. Let us ex-
plain what we expect for p > p0 in (1.5). In terms of the rescaled function

(3.1) u(x, t) = (1 + t)−
N

4+nN v(y, τ), τ = ln(1 + t),

the equation takes the form

(3.2) vτ = −∇ · (vn∇Δv) + 1
4+nN y · ∇v + N

4+nN v − e−γτvp,

where γ = N(p−p0)
4+nN > 0 if p > p0. Therefore, the absorption term −up in (1.5)

generates an exponentially small perturbation in the rescaled equation (3.2). Hence
one can expect the convergence as τ → ∞ to the rescaled similarity profile F in
(1.19) of the limit mass, though the passage to the limit in (3.2) generates a number
of technical difficulties. Here (3.2) is formally an exponentially small perturbation of
the autonomous rescaled TFE

(3.3) vτ = A(v) ≡ −∇ · (vn∇Δv) + 1
4+nN y · ∇v + N

4+nN v.

As usual, we gain an extra advantage in the case n = 1.

3.2. The gradient case n = 1. It is known that, for n = N = 1, the rescaled
TFE (3.3) is a gradient system [12]. Let us construct an “approximate” Lyapunov
function for strong solutions of the FBP in R

N . Namely, we write down (3.2) in the
form

(3.4) vτ = ∇ ·
[
v∇
(
−Δv + 1

2(4+N) |y|2
)]

+ e−γτvp

and multiply in L2(RN ) by (−Δv)−1vτ , where, by definition,

(−Δv)−1w = g if Δvg ≡ ∇ · (v∇g) = −w,
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and g = 0 at the free boundary of v. Then integrating by parts yields the identity

(3.5)
∫
v|∇(−Δv)−1vτ |2 = d

dτ

[
− 1

2

∫
|∇v|2 − 1

2(4+N)

∫
v|y|2

]
+ J,

where J corresponds to the exponentially small term,

(3.6) J = e−γτ
∫
vp(−Δv)−1vτ .

Integrating (3.5) over (0, T ) yields
∫ T
0

∫
v|∇(−Δv)−1vτ |2 + 1

2

∫
|∇v(T )|2 + 1

2(4+N)

∫
v(T )|y|2 ≤ C +

∫ T
0 J,

so that, if the exponential term (3.6) J ∈ L1(R+), this yields extra uniform estimates,
√
v∇(−Δv)−1vτ ∈ L2(R × R+) and ∇v,

√
v|y| ∈ L∞(R+;L2).

Note that, obviously, (3.5) does not imply existence of a Lyapunov function (the
nonautonomous PDE (3.4) is not a gradient system). Anyway, since (3.5) gives a
rather strong estimate of vτ for τ � 1, this makes it possible to pass to the limit
τ → ∞ and establish stabilization to an equilibrium point (see the technique in [26,
pp. 116–117]), which is unique by the obvious mass-monotonicity with time of the
solution.

The symmetry of the Fréchet derivative (2.12) at F looks like a certain “remnant”
of the fact that the original PDE is a gradient system.

4. Center subspace patterns for the 2mth-order TFE. We consider the
2mth-order TFE with absorption (1.24) with the critical absorption (Fujita) exponent
(1.25). The proper setting of a standard “zero contact angle” FBP for the TFE
includes m+ 1 free boundary conditions at the free boundary Γ0 = ∂Ω(t)×R+ (Ω(t)
is the support of u(·, t) at time t > 0),

(4.1) u = ∇u = · · · = ∂m−1u
∂νm−1 = ν · ∇(unΔm−1u) = 0,

where ν is the unit outward normal to ∂Ω(t) that is assumed to be sufficiently smooth.

4.1. Similarity solutions. The similarity solutions of the pure TFE

(4.2) ut = (−1)m+1∇ · (un∇Δm−1u)

take the standard form (1.19) with

(4.3) β = 1
2m+nN .

One can see that the critical exponent (1.25) is precisely the one for which the PDE
(1.24) possesses the same group of scaling transformations. Then the rescaled profile
F satisfies the radial restriction of the 2mth-order elliptic equation

(4.4) A(F ) = (−1)m+1∇ · (Fn∇Δm−1F ) + β∇F · y + βNF = 0.

It seems that, for any m ≥ 3, the questions of existence and uniqueness of a solution
F (y) > 0 in B1 remain open. It is clear that, for large m, a standard approach
to existence based on a multiparametric shooting leads to a complicated geometric
analysis (though some general conclusions in this geometry are likely). We expect that
the approach based on the n-branching (or a continuous homotopy connection with
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n = 0) via the classical theory [43] makes it possible to explain properties solutions, at
least, for small n > 0 by branching from the linear case n = 0 (but, surely, a standard
approach to smooth branching does not apply). For the Cauchy problem, the spectral
and other properties of the corresponding linear operator (4.4) for n = 0 are given in
[13] and can be used to clarify the behavior for small n > 0. For the FBP (4.1), an
extra analysis of the linearized elliptic PDE is necessary.

As usual, the case n = 1 provides us with the explicit solution. Writing the ODE
(4.4) in the radial divergent form (here y is actually |y|)

(yN−1F (Δm−1F )′)′ = (−1)mβ(yNF )′,

on integration we obtain Δm−1F = (−1)m 1
2 βy

2. Integrating this linear ODE 2m− 2
times yields the positive solution in B1

(4.5) F (y) = c0(1 − |y|2)m, where c0 = 1
2

N !!
(2m)!!(2m+N)!! .

4.2. Linearized operator. We next follow the same scheme of the asymptotic
analysis as in section 2. Similar to (2.10), we introduce the linearized operator

A′(F )Y = (−1)m+1∇ · (Fn∇Δm−1Y )(4.6)

+ (−1)m+1∇ · (nFn−1Y∇Δm−1F ) + β∇Y · y + βNY.

Using the ODE (4.4), we have that

(−1)m+1∇ · (nFn−1∇Δm−1F ) = −βnN, (−1)m+1nFn−1∇Δm−1F = −βny,

so (4.6) can be written in the form

(4.7) A′(F )Y = (−1)m+1∇ · (Fn∇Δm−1Y ) + βN(1 − n)y · ∇Y + βN(1 − n)Y,

and we again observe that n = 1 is a special case.

4.3. The self-adjoint case n = 1. Plugging the profile (4.5) into (4.7) yields
the following symmetric form of the operator:

A′(F )Y = c0(−1)m+1∇ · ((1 − |y|2)m∇Δm−1Y )(4.8)

≡ c0(−1)m+1[Dm((1 − |y|2)DmY ) +m(m− 1)NΔm−1Y ],

where Dm denotes Δm/2 for m even and ∇Δ(m−1)/2 for m odd. For instance, for
N = 1 and m = 3, we have

A′(F )Y = c0(1 − y2)2[((1 − y2)Y ′′′)′′′ + 6Y (4)].

Having the symmetric operator (4.8) in C∞
0 , we next determine its self-adjoint ex-

tensions [10]. In particular, there exists the extension with discrete spectrum and
polynomial eigenfunctions in the radial setting (the nonradial case is covered by using
the spherical polynomials as in (2.17)). The eigenvalues λk for the polynomials ψk(y)
given in (2.19) are calculated by using (4.8),

(4.9) λk = −c0(k+2)k . . . [k+2−2(m−2)](k+N +2)(k+N) . . . [k+N −2(m−2)]

for k = 2(m − 3), 2(m − 2), . . . . Using the eigenfunction expansion in terms of a
complete and closed subset of polynomials {ψk} partially justifies the asymptotic
center subspace analysis of the corresponding rescaled equation (2.9), which yields
the same ODE (2.24) and hence the asymptotics (2.26). Here in the critical case
(1.25) we still have 1

p−1 = βN with β given by (4.3). Finally, we arrive at the
asymptotic pattern (1.22), where 4 is replaced by 2m.
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4.4. The general case n �= 1. We do not have such a self-adjoint operator,
but anyway, once F > 0 in B1 is determined, we obtain the radial eigenfunction
ψ0 for λ0 = 0 from the scaling symmetry group (2.28) (the exponent 4

n is replaced
by 2m

n ) of (4.4). We can also guarantee that (4.7) has compact resolvent provided
that n > 0 is not large, so λ0 = 0 is an isolated eigenvalue. The rest of the center
subspace behavior via the expansion (2.33) remains unchanged and leads to similar
logarithmically perturbed asymptotic patterns. A rigorous justification is a hard open
problem.

5. Logarithmically perturbed patterns in the Cauchy problem. The
asymptotic behavior and similarity solutions for the TFE (1.12) or (1.24) posed in
the whole space RN × R+ are less studied in the literature. For n ∈ (0, 3

2 ), in the
Cauchy problem, the solutions exhibiting the “maximal regularity” at the interfaces
are oscillatory and of changing sign. See [17, 18] and the book [25, Ch. 1] for the
correct meaning of the Cauchy problem for TFEs and further examples. For such
solutions, we need to assume that un in (4.1) is replaced by |u|n. Therefore, from now
on, in all the expressions and equations we use the convention that

(5.1)
un, fn, vn, wn, . . . are replaced by |u|n, |f |n, |v|n, |w|n, . . . and

up, fp, vp, wp, . . . are replaced by |u|p−1u, |f |p−1f, |v|p−1v, |w|p−1w, . . . .

We must admit that solutions of changing sign are less relevant for many known
physical applications of TFEs. Nevertheless, for general PDE theory, it is key and of
principal importance to include the Cauchy problem and to show that the basic tech-
niques developed above apply to these much more complicated oscillatory solutions.

The idea of sign changing solutions of TFEs is straightforward. Indeed, the os-
cillatory properties of such solutions are a manifestation of the fact that TFEs (4.2)
are “homotopic,” i.e., can be continuously deformed (e.g., as n → 0) via nonsingular
uniformly parabolic PDEs with analytic coefficients (for details see [18, section 14])
to the linear polyharmonic equation

(5.2) ut = (−1)m+1Δmu in R
N × R+.

By classical parabolic theory (see, e.g., È̆ıdel’man [14]), given initial data u0 ∈ L1,
there exists the unique solution of the Cauchy problem for (5.2) defined by the con-
volution

(5.3) u(x, t) = b(x, t) ∗ u0, b(x, t) = t−
N
2mF (y), y = x/t

1
2m ,

where b(x, t) is the fundamental solution of the operator Dt − (−1)m+1Δm. For any
m ≥ 2, the rescaled kernel F = F (|y|) is oscillatory as y → ∞, so this property of
changing sign is inherited by L1 solutions of (5.2). Assuming a continuous (homo-
topic) deformation of a class of solutions of (1.12) as n → 0+, this confirms that the
TFE admits oscillatory solutions of changing sign at least for not very large n > 0.
Continuity and homotopy concepts are effective for treating the Cauchy problem for
higher-order TFEs; see other examples in [18].

Then the source-type solutions of the TFE take the same form (1.19), where the
radial function F of changing sign solves the ODE (1.20) with the convention (5.1).
We begin with the linear case n = 0, which by continuity is going to describe some
properties of source-type solutions for sufficiently small n > 0.
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5.1. Properties of the rescaled fundamental solution for n = 0. The
linear ODE

(5.4) A(F ) ≡ −Δ2F + 1
4 ∇F · y + N

4 F = 0 in RN

is precisely the elliptic equation for the rescaled kernel F of the fundamental solution in
(5.3). Therefore, the similarity profile F (y) exists and is unique under the assumption

(5.5)
∫
F (y) dy = 1

(in view of existence-uniqueness of the fundamental solution).
Let us next describe an important relation between similarity profiles for the FBP

and the Cauchy problem. Without loss of generality, we consider the case N = 1,
where on integration once (5.4) takes the form

(5.6) F ′′′ = 1
4 Fy.

It is easy to find all decaying profiles corresponding to the Cauchy problem with the
exponential WKBJ asymptotics as y → +∞,

(5.7) F (y) ∼ y−
1
3 eay

4/3
, with a satisfying a3 = 1

4 (3
4 )3.

There exist two complex conjugate roots for exponentially decaying profiles

(5.8) a± = − 3
8 4−

1
3 (1 ± i

√
3) ≡ −c1 ± ic2.

This yields a two-dimensional bundle of oscillatory solutions with the behavior

(5.9) F (y) ∼ y−
1
3 e−c1y

4/3[
A1 cos

(
c2y

4
3
)

+A2 sin
(
c2y

4
3
)]

as y → ∞,

where A1 and A2 are arbitrary constants. The algebraic factor y−1/3 is obtained by
a standard asymptotic WKBJ method. We observe here the periodic behavior with
a single fundamental frequency (a result we will refer to in the TFE analysis below).

Proposition 5.1. For N = 1, the rescaled profile of the Cauchy problem F = F∞
given by (5.4), (5.5) is the limit of FBP similarity profiles on bounded intervals,

(5.10) F∞ = limFk,

where each Fk(y) is defined on interval (−yk, yk),
(5.11) Fk(±yk) = F ′

k(±yk) = 0, and

(5.12) yk =
(
π
c2
k
) 3

4 (1 + o(1)) as k → ∞.

Proof. The geometric aspect of such a property is obvious in view of the os-
cillatory behavior in (5.9). The convergence as k → ∞ follows from straightforward
computations related to the whole exponential bundle including (5.9) and the growing
counterpart

F (y) = y−
1
3 ea0y

4/3
+ · · · , with a0 =

3
4

4−
1
3 .

Then solving the FBP problem (5.11) yields the asymptotic equality cos(c2y
4/3
k +

const) = 0, whence the asymptotics (5.12).
We also expect the following Sturm property be valid:

(5.13) Fk(y) has precisely k zeros on (0, yk).

Such a zero-number property is easily seen for k � 1 but is not obvious for smaller
k’s.
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Fig. 2. The oscillatory Cauchy problem profiles satisfying (5.14). Parameters of shooting are
F ′′(0) = −0.3379890 (n = 0), −0.3414702 (n = 0.2), −0.3490986 (n = 0.5), −0.3697143 (n = 1),
and −0.4052680 (n = 1.5).

5.2. Similarity profiles for n > 0: Existence and uniqueness.
Proposition 5.2. For N = 1 and n ∈ (0, 1), the ODE (1.20), (5.1) in R admits

a unique solution F ∈ C3 of unit mass. The solution F (y) is symmetric, compactly
supported, and oscillatory near finite interfaces at y = ±y0.

Proof. For N = 1 the ODE (1.20) has the form

(5.14) |F |nF ′′′ = βFy, y ∈ R.

Dividing by |F |n and setting |F |−nF = g yields

(5.15) (|g|αg)′′′ = βgy, y ∈ R, α = n
1−n .

Then existence and uniqueness of a compactly supported solution F ∈ C3 for any
n ∈ (0, 1) follow from the results in Bernis and McLeod [6].

For n ∈ [1, 3
2 ) solutions of (5.14) are less regular (see below), so the techniques in

[6] do not apply directly, but we expect that the existence-uniqueness result remains
valid and can be extended further to some interval n ∈ [32 , nh); see below.

In Figure 2 we have shown these similarity profiles for some n > 0 including
the linear case n = 0 leading to the ODE (5.6) for the fundamental rescaled profile.
Here we observe convergence of the fundamental profiles as n→ 0+, which is justified
rigorously if all the zeros are “transversal” and isolated except the last one; see below.

5.3. Oscillatory properties via periodic orbits. We next describe the oscil-
latory properties of such sign changing profiles F (y) near interfaces. We rescale F to
have that

suppF = [−1, 1].

It was shown in [17] that the asymptotic behavior of F (y) satisfying (5.14) near the
interface point y → 1− is given by the expansion

(5.16) F (y) = (1 − y)μφ(s), s = ln(1 − y), μ = 3
n ,
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where, after scaling φ �→ β
1
nφ, the oscillatory component φ satisfies the following

autonomous ODE (we omit exponentially small terms):

(5.17) φ′′′ + 3(μ− 1)φ′′ + (3μ2 − 6μ+ 2)φ′ + μ(μ− 1)(μ− 2)φ+ φ
|φ|n = 0.

Oscillatory periodic orbits: Existence. We are now interested in periodic
solutions φ∗(s) of (5.17), which, according to (5.16), can determine the simplest typical
(and possibly stable and generic) oscillatory behavior of solutions near interfaces when
s = ln(1 − y) → −∞ as y → 1−. There are several classic methods of ODE theory
for establishing existence and multiplicity of periodic solutions of finite-dimensional
dynamical systems. These are various topological techniques, such as rotations of
vector fields, index, and degree theory; see [33, sections 13, 14]. Another approach
is based on branching theory [43, Ch. 6]. In our case, such an n-branching approach
is especially effective since for n = 0 the unique solution F is the rescaled kernel
of the fundamental solution (a rigorous justification of some aspects of branching
for such degenerate equations can be a hard problem). We also mention papers
[44, 35, 32] containing further related references and methods concerning modern
theory of periodic solutions of higher-order nonlinear ODEs. In general, equations
like (5.17) are difficult to study; particularly, the main difficulty is proving uniqueness
of such periodic orbits. Therefore, later on, together with analytic techniques, we will
need also to rely on careful numerical evidence on existence, uniqueness, and stability
of periodic solutions.

It is curious that for n = 1, the unique periodic solution can be detected by a
direct algebraic approach; see [17, section 7.4].

Proposition 5.3. For n = 1, the ODE (5.17) has a unique T -periodic solution,
with

(5.18) T = −2 ln s > θ = 1.9248 . . . ,

where θ = 0.381966 . . . is the unique root on the interval (0, 1) of the cubic equation

(5.19) θ3 − 2θ2 − 2θ + 1 = 0.

Indeed, for n = 1, the nonlinearity in (5.17) is signφ and the ODE is linear in the
positivity and negativity domain of solutions,

φ′′′ + 6φ′′ + 11φ′ + 6φ± 1 = 0,

and so can be solved explicitly. Matching positive and negative branches leads to the
result.

Let us now state the main result concerning periodic orbits of the ODE (5.17).
Theorem 5.4. The ODE (5.17) admits a nontrivial stable periodic solution φ∗(s)

of changing sign for all

(5.20) 0 < n < nh ∈ (3
2 , n+), where n+ = 9

3+
√

3
= 1.9019238 . . . .

Uniqueness of such periodic φ∗(s) in the interval (5.20) is still open.
Proof. For the interval

(5.21) 0 < n < 3
2 ,

the proof of existence is performed in [17, p. 292] by a shooting argument. Numerical
representation of periodic solutions is given therein on page 294; see also [25, p. 143].
We need to point out the main two ingredients of the proof in [17]:



1352 V. A. GALAKTIONOV AND P. J. HARWIN

0 20 40 60 80 100

-10

-5

0

5

10

15

s

φ(
s)

m=2, n=3/2: to global stability of periodic orbit

Fig. 3. Convergence to the stable periodic solutions of (5.17) for n = 3
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for various Cauchy
data posed at s = 0.

(i) it is shown that for exponents (5.21) no orbits of the dynamical system (5.17)
are attracted to infinity as s → +∞; i.e., all orbits stay uniformly bounded;
and

(ii) as a consequence, then (5.17) is a dissipative dynamical system having a
bounded absorbing set.

Dissipative dynamical systems are known to admit periodic solutions in a rather
general setting [33, section 39] provided these are nonautonomous (so the period is
fixed). For the autonomous system (5.17), the proof in [17, section 7.1] was completed
by shooting. Note that, in view of the last term, (5.17) is not a smooth dynamical
system and solutions are not locally C3-smooth. Nevertheless, as local analysis shows
[17, p. 291], at least for n ∈ (0, 2), the nonlinearity is integrable to guarantee local
extensions of solutions through generic “transversal” zeros. This means that the
equivalent integral equation is well-posed and is composed from compact operators in
a certain topology (this is necessary for application of classic methods of branching in
Banach spaces [43, Ch. 7]). We continue to deal with the differential equation, where
the justification of calculus is done by local analysis.

It turns out that both properties (i) and (ii) also remain valid for n = 3
2 , so that

a periodic solution φ∗ also exists and is stable; see Figure 3. For the extension of φ∗
to n > 3

2 , we will use the following crucial stability result.
Proposition 5.5. If the periodic solution φ∗(s) of (5.17) persists for all 3

2 ≤
nh < 3, then it is stable and hyperbolic on this interval.

Proof. Note that, for n ∈ (3
2 , 3), there exist two unstable constant equilibria of

equation (5.17),

(5.22) φ± = ±
[
− 1
μ(μ−1)(μ−2)

] 1
n for n ∈ (3

2 , 3),

and we expect a stable periodic motion in between. Consider the eigenvalue problem
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for the ODE (5.17) linearized about the T -periodic solution φ∗ by setting φ = φ∗ +Y ,

Y ′′′ + 3(μ− 1)Y ′′ + (3μ2 − 6μ+ 2)Y ′ + μ(μ− 1)(μ− 2)Y + (1 − n)|φ∗|−nY = λY.

As usual, assuming that λ ∈ C, multiplying this by the complex conjugate Y in
L2(0, T ), taking the conjugate and multiplying by Y , and summing up both yields
(5.23)

−3(μ− 1)
∫
|Y ′|2 + μ(μ− 1)(μ− 2)

∫
|Y |2 + (1 − n)

∫
|φ∗|−n|Y |2 = λ+λ̄

2

∫
|Y |2.

Since all three terms on the left-hand side of (5.23) are negative for any 3
2 < n < 3,

the result follows. The case n = 3
2 is similar since just the second term vanishes.

Thus, by classic branching theory [43, Ch. 6], stable hyperbolic periodic solutions
are locally extensible relative to the parameter n ≥ 3

2 . In particular, using the hyper-
bolicity of φ∗ for n = 3

2 , we conclude that the periodic solution exists in an interval
n ∈ [32 ,

3
2 + δ) with some δ > 0, and the interval of existence must be open from the

right-hand side.
Finally, let us justify the estimate in (5.20). To this end, we multiply (5.17) by

φ′∗ and integrate over (0, T ) to get for any n ∈ (0, 2)

−
∫
(φ′′∗)2 + (3μ2 − 6μ+ 2)

∫
(φ′∗)

2 = 0,

so that one needs

3μ2 − 6μ+ 2 > 0 =⇒ μ = 3
n > μ+ = 3

n+
= 3+

√
3

3 .

This completes the proof of Theorem 5.4.
On heteroclinic bifurcation. Since the periodic orbit φ∗(s) remains stable and

hyperbolic in the whole interval of existence (5.20), the end point n = nh cannot be any
kind of subcritical saddle-node bifurcation, at which two branches meet each other.
Classic bifurcation and branching theory [33, 43] then suggests that at n = n−

h the
dynamical system (5.17) undergoes a heteroclinic bifurcation when the period increases
without bound (this claim needs further study and a full analytical justification); see
standard scenarios in Perko [41, Ch. 4]. Note that, by Proposition 5.5, the heteroclinic
orbit that occurred remains stable and hyperbolic.

Numerically, nh is given by

(5.24) nh = 1.7598665026 . . . .

Figure 4 shows the formation of the heteroclinic orbit in both limits: as n → n−
h (a)

and n→ n+
h (b). This bifurcation exponent nh plays an important role and shows the

parameter range of n’s, for which many ODE profiles near interfaces are oscillatory,
except those that approach the interface point s = −∞, the stable manifold of the
constant equilibrium (5.22). In the interval (5.21), this manifold of orbits of constant
sign is empty, so that all the orbits near s = −∞ are oscillatory and coincide with
the periodic one φ∗(s + s0), where s0 ∈ R is a parameter of shifting. Indeed, this
also characterizes important oscillatory features of the PDE. Note that some kind of
a “heteroclinic bifurcation” phenomenon also exists for the sixth-order (m = 3) and
higher-order TFEs with more difficult mathematics involved; see [18, section 13] and
[25, pp. 142–147].

On one-dimensional shooting for n ∈ (1, nh). As a key application of the
above oscillation analysis, we have that, according to (5.16), for all n ∈ (0, nh), there
exists a one-dimensional bundle of oscillatory orbits of changing sign

(5.25) F (y) = (1 − y)
3
nφ∗(ln(1 − y) + s0) + . . . ,
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Fig. 4. Formation of a heteroclinic orbit as n → nh.

where s0 ∈ R is an arbitrary parameter of phase shift in the periodic orbit φ∗(s).
Recall that, for the ODE (5.14), we need to shoot just a single symmetry condition
at the origin,

(5.26) F ′(0) = 0 (F (0) �= 0),

so the one-dimensional bundle (5.25) is well suited for this. In view of oscillatory
character of the behavior in (5.25), it is not difficult to prove the existence of such an
s0 to satisfy (5.26), while uniqueness (as expected) remains open.

Further comments about nh. For any n > nh, the behavior in the ODE (5.17)
becomes exponentially unstable, and we did not observe oscillatory or changing sign
patterns. This suggests that precisely above n = nh, the ODE (and the corresponding
PDE) loses its natural similarities with the linear one for n = 0 (though a continuous
homotopic connection is expected to be still available; i.e., some local properties of
solutions dramatically change at nh).

Thus, in the range n ∈ (3
2 , 3), (5.17) possesses the positive constant solution

φ(s) ≡ φ+ given in (5.22). This gives the behavior (2.35), so that, for such solutions,
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formally, the FBP and the Cauchy problem may coincide in the ODE setting. But
this is not the case for all the solutions since for n ∈ (3

2 , nh) there are other oscillatory
profiles with a similar (actually, a bit less) regularity at the interfaces, so that the
Cauchy problem demands oscillatory solutions, while the FBP can admit positive
solutions; for more details see [17, section 9]. In the parameter range n ≥ nh, the
oscillatory behavior is no longer generic, so we expect a certain improvement of the
positivity preserving properties of the TFE, where the Cauchy problem and the FBP
may coincide; see further discussion in [17, section 9.4].

5.4. The TFE with critical absorption p = p0. The formal asymptotics for
the TFE (1.5), (1.6) is now calculated similarly using the center subspace spanned by
the eigenfunction (2.29). Of course, we then do not gain any explicit mathematics or
symmetric operators as for n = 1 in the case of the FBP.

The main ideas of the analysis can be extended to the 2mth-order case, where
many aspects of source-type and general solutions of the Cauchy problem for the
TFEs remain mathematically open. The oscillatory character of solutions near the
interface for m = 3 was studied in [18, section 13]; see also [25, section 3.7] for further
examples for m ≥ 3 and other oscillatory PDEs.

5.5. Supercritical range p > p0. We use the same scaling (3.1) and obtain
the exponentially perturbed rescaled PDE (3.2), which suggests that the solutions
behave as t → ∞ as the source-type solution with a finite positive mass attained at
τ = +∞ (no proof is yet available).

Appendix. The linearized operator is not symmetric when n �= 1. We
prove that, in the FBP setting, the linearized operator (2.11) admits a self-adjoint
extension only when n = 1. Without loss of generality we consider the one-dimensional
case, and we formulate first the following results we are already familiar with.

Proposition A.1. The linearized operator (2.11) in R is symmetric in some
weighted space L2

ρ when n = 1.
Proof. For N = n = 1, the linearized operator is given by

(A.1) A′(f)Y = −(fY ′′′)′ − (Y f ′′′)′ + 1
5 (Y y)′.

For this to be symmetric in L2
ρ with some weight ρ ≥ 0, we require that [37, section

1]

(A.2) A′(f)Y ≡ 1
ρ [(p0Y

′′)′′ − (p1Y
′)′ + p2Y ] .

Expanding the right-hand sides of these equations and comparing coefficients yields
the following system:

Y ′′′′ : −f = p0
ρ ,(A.3)

Y ′′′ : −f ′ = 2p′0
ρ ,(A.4)

Y ′′ : 0 = p′′0 −p1
ρ ,(A.5)

Y ′ : −f ′′′ + 1
5y = − p′1

ρ ,(A.6)

Y : −f ′′′′ + 1
5 = p2

ρ .(A.7)

We know the exact solution of the ODE for f when n = 1 (see (1.21)):

(A.8) f(y) = 1
120 (a2 − y2)2 for y ∈ (−a, a).
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Substituting this into (A.7) yields p2 = 0. Equation (A.6) yields p1 = C, where C
is a constant. Equations (A.3) and (A.4) yield p2

0 = f and ρ = −f−1/2. Equation
(A.5) is thus the consistency condition and is satisfied since it yields p1 = C (since
p′′0 = p1 = C). Thus the linearized operator for the TFE is symmetric if n = 1.

Theorem A.2. For N = 1 and n �= 1, operator (2.11) is not symmetric in L2
ρ

for any weight ρ > 0.
Proof. The ODE for f > 0 for any n > 0 is

(A.9) −(fnf ′′′)′ + 1
n+4 (fy)′ = 0.

The linearized operator (2.11) is given by

(A.10) A′(f)Y = −(fnY ′′′)′ − n(fn−1Y f ′′′)′ + 1
n+4 (Y y)′.

For this to be symmetric, we require identity (A.2) to hold. Comparing coefficients
yields

Y ′′′′ : −fn = p0
ρ ,(A.11)

Y ′′′ : −nfn−1f ′ = 2p′0
ρ ,(A.12)

Y ′′ : 0 = p′′0 −p1
ρ ,(A.13)

Y ′ : −nfn−1f ′′′ + y
n+4 = − p′1

ρ ,(A.14)

Y : −n(n− 1)fn−2f ′′′ − nfn−1f ′′′′ + 1
n+4 .(A.15)

From this

p2
0 = fn, p1 = p′′0 , ρ = −f−n/2, p2 = ρ

[
−n(n− 1)fn−2f ′′′ − nfn−1f ′′′′ + 1

n+4

]
,

and the consistency condition is

(A.16) f
n
2 (f

n
2 )′′′ = −nfn−1f ′′′ + 1

n+4 y.

To see if this coincides with (A.9) for some f , we use a Taylor expansion of f(y)
and check if (A.16) and (A.9) produce the same coefficients for f . To do this we set
f(0) = 1, f ′(0) = f ′′′(0) = 0, and f ′′(0) = b ∈ R \ {0}, differentiate (A.16) and
(A.9) the required number of times, and set y = 0. The expansions coincide up to the
coefficient of y3, but the coefficients of y4 coincide only if

(A.17) b = ±
√

−6n(n2+2n−8)(3n−2)

3n3+6n2−24n .

Since we require b ∈ R \ {0}, we must have n ∈ (−4, 0) ∪ (2
3 , 2). This gives us a

range of values of n, for which the linearized operator may be symmetric. To check
whether it is, we examine the coefficient of y6 for (A.16) and (A.9). If the operator
is symmetric, then the same value of b should be obtained as in the coefficients of y4

for both equations. For the coefficients of y6 to coincide, we require

(A.18) b = 0, or b = ± 2
√

2
√
n(9n3−40n2−188n+464)(3n−2)

9n4−40n3−188n2+464n ,

and since we require b ∈ R \ {0}, we discard b = 0. For this b to coincide with (A.17),
we require n = 2

3 . This contradicts the fact that we must have n ∈ (−4, 0) ∪ (2
3 , 2)

for the linearized operator (2.11) to have a chance of being symmetric and admit
a suitable (Friedrichs) self-adjoint extension. Hence the linearized operator is not
symmetric if n �= 1.
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BURSTING OSCILLATIONS INDUCED BY SMALL NOISE∗

PAWEL HITCZENKO† AND GEORGI S. MEDVEDEV†

Abstract. We consider a model of a square-wave bursting neuron residing in the regime of
tonic spiking. Upon introduction of small stochastic forcing, the model generates irregular bursting.
The statistical properties of the emergent bursting patterns are studied in the present work. In
particular, we identify two principal statistical regimes associated with the noise-induced bursting.
In the first case, type I, bursting oscillations are created mainly due to the fluctuations in the fast
subsystem. In the alternative scenario, type II bursting, the random perturbations in the slow
dynamics play a dominant role. We propose two classes of randomly perturbed slow-fast systems
that realize type I and type II scenarios. For these models, we derive the Poincaré maps. The analysis
of the linearized Poincaré maps of the randomly perturbed systems explains the distributions of the
number of spikes within one burst and reveals their dependence on the small and control parameters
present in the models. The mathematical analysis of the model problems is complemented by the
numerical experiments with a generic Hodgkin–Huxley-type model of a bursting neuron.

Key words. neuronal dynamics, bursting, Hodgkin–Huxley model, slow-fast system, noise,
Poincaré map
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1. Introduction. Differential equation models of excitable cells often include
small random terms to reflect the unresolved or poorly understood aspects of the
problem or to account for intrinsically stochastic factors [1, 8, 9, 10, 15, 16, 32, 41,
39, 43, 46]. In addition, many neuronal models also exhibit multistability [38, 26]. In
systems with multiple stable states, noise may induce transitions between different
attractors in the system dynamics, thus creating qualitatively new dynamical regimes
that are not present in the deterministic system. In the present paper, we study this
situation for a class of square-wave bursting models of excitable cell membranes. This
class includes many conductance-based models of excitable cell membranes. Here we
just mention the model of a pancreatic β-cell [6, 7], models of neurons in various
central pattern generators such as those involved in insect locomotion [20], control of
the heartbeat in a leech [25], and respiration in mammals [4, 5], to name a few. These
models, as well as the underlying biological systems, exhibit characteristic bursting
patterns of the voltage time series: clusters of fast spikes alternating with pronounced
periods of quiescence (Figure 1a). For introduction to bursting, examples, and bibli-
ography, we refer the reader to [26, 31, 37, 38, 44]. The dynamical patterns generated
by the conductance-based models typically depend sensitively on parameters. For
example, models of square-wave bursting neurons often exhibit both bursting and
spiking behaviors for different values of parameters (see Figure 1a,b). In many rele-
vant experiments, the transition from spiking to bursting is achieved by changing the
injected current. In the present paper, we consider a model of a square-wave burst-
ing neuron in the regime of tonic spiking (Figure 1b). We show that a small noise
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Fig. 1. The dynamical patterns generated by a model of of a square-wave bursting neuron (1.1)
and (1.2): (a) periodic bursting and (b) tonic spiking.

can transform spiking patterns into irregular (noise-induced) bursting patterns and
describe two distinct mechanisms for generating noise-induced bursting. In the first
scenario, bursting oscillations are triggered by the fluctuations in the fast subsystem.
We refer to this mechanism as type I bursting. In contrast, the bursting dynamics in
the type II scenario are driven by the random motion along the slow manifold. For
each of these cases, we describe the statistical properties of the emergent bursting
patterns and characterize them in terms of the small and control parameters present
in the model.

Noise-induced phenomena have received considerable attention in the context of
neuronal modeling (see, e.g., [1, 8, 9, 32, 39, 41, 43, 46]). A representative example
is given by a two-dimensional (2D) excitable system perturbed by the white noise of
small intensity [1]. In the presence of noise and under certain general conditions, a
typical trajectory occasionally leaves the basin of attraction (BA) of the stable equilib-
rium and makes a large excursion in the phase plane of the deterministic system before
returning to a small neighborhood of the stable fixed point (Figure 2a). This gives
rise to irregular spiking (Figure 2b). The properties of the noise-induced spiking and
stochastic resonance-type effects arising in the context of the perturbed FitzHugh–
Nagumo model have been considered in [1, 8, 9, 10] (see also [3, 17, 18, 19] for the math-
ematical analysis of more general classes of related phenomena in randomly perturbed
slow-fast systems). In the present paper, we study a related mechanism for irregular
bursting. Specifically, we consider a class of models of square-wave bursting neurons:

ẋ = f(x, y),(1.1)
ẏ = εg(x, y), x = (x1, x2)T ∈ R

2, y ∈ R
1,(1.2)

where f and g are smooth functions and 0 < ε� 1 is a small parameter. We refer to
(1.1), where y is treated as a parameter, as a fast subsystem. It is formally obtained
from (1.1) and (1.2) by setting ε = 0. We assume that the fast subsystem has a family
of stable limit cycles and of stable equilibria for y in a certain interval y ∈ (ysn, ybp)
(see Figure 3a). The additional assumptions on (1.1) and (1.2), which are explained
in section 2, imply that for small ε > 0, system (1.1) and (1.2) has a stable limit cycle,
as shown in Figure 3c. In the presence of noise, a typical trajectory of the randomly
perturbed system will occasionally leave the BA of the limit cycle of the deterministic
system to make an excursion along the curve of equilibria of the degenerate system,
E (see Figure 4a). Thus, in analogy to the 2D FitzHugh–Nagumo model (Figure 2a),
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Fig. 2. (a) A phase-plane trajectory of the randomly perturbed FitzHugh–Nagumo model in an
excitable regime (see [1] for the model description and the parameter values). (b) The time series
corresponding to the phase plot in (a).

noise transforms spiking dynamics into irregular bursting. We refer to the latter
as noise-induced bursting. In both examples above, irregular spiking (Figure 2a) or
bursting patterns (Figure 4a,b) are created due to the escape of a trajectory of the
randomly perturbed system from the BA of a stable fixed point in the case of spiking
or of that of the stable limit cycle in the case of bursting. The statistics of the first
exit times can then be related to the properties of the emergent firing patterns such
as the frequency of spiking or the distribution of the number of spikes within one
burst. Compared to the analysis of the irregular spiking in the randomly perturbed
FitzHugh–Nagumo model (Figure 2), the analysis of the noise-induced bursting faces
several additional challenges due to the fact that in the latter case one has to consider
the exit problem for the trajectories near a stable limit cycle as opposed to those near
a stable equilibrium in the former case. The structure of the BA of the limit cycle
combined with the slow-fast character of the vector field determines the main features
of the resultant bursting patterns. The description of the principal statistical regimes
associated with the noise-induced bursting is the focus of the present paper.

There are general mathematical approaches for analyzing exit problems for stochas-
tic processes generated by randomly perturbed differential equations such as (1.1) and
(1.2): the Wentzell–Freidlin theory of large deviations [19] and the geometric theory
for randomly perturbed slow-fast systems due to Berglund and Gentz [3]. In this
paper we study the vector fields arising in the context of bursting. The specialized
structure of this class of problems allows us to keep the analysis of the present paper
self-contained and avoid using more technical methods, which are necessary for ana-
lyzing more general situations. Our analytical approach is based on the reduction of
a randomly perturbed differential equation model to the Poincaré map and studying
the exit problems for the trajectories of the discrete system. Using maps is quite nat-
ural in the context of bursting due to the intrinsic discreteness of bursting patterns
imposed by the presence of spikes. Reductions to maps have been very useful for
analyzing bursting dynamics in a variety of deterministic models [6, 33, 34, 35, 40].
As follows from the results of the present paper, the first return maps also provide a
very convenient and visual representation for the mechanism underlying noise-induced
bursting. In particular, we show that the distributions of spikes in one burst in many
cases are effectively determined by one-dimensional (1D) linear randomly perturbed
maps. We develop a set of probabilistic techniques for analyzing the dynamics of
randomly perturbed 1D and 2D linear maps such as those arising in the analysis of
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bursting. The special structure of this class of problems, which is motivated by the
applications to bursting, affords a more direct and simpler analysis than the treatment
of more general classes of random linear maps found in the literature [29, 21, 28, 45].

The outline of the paper is as follows. In section 2, we formulate our assumptions
on the deterministic system. We then present the preliminary numerical results, mo-
tivating our formulation of the randomly perturbed models at the end of this section.
Specifically, we distinguish two types of the noise-induced bursting. Type I bursting is
generated due to the fluctuations predominantly in the fast subsystem, while type II
bursting is induced by variability mainly in the slow variable. Accordingly, we intro-
duce two types of models that generate type I and type II bursting patterns. Section 3
develops a set of probabilistic techniques, which will be needed for the analysis of the
first return maps for the randomly perturbed differential equation models. We first
analyze a simple linear map with an attracting slope and small additive Gaussian
perturbations in section 3.2. Due to the simple structure of the map, we obtain very
explicit characterization of the first exit times for this problem. The analysis of this
first relatively simple example provides the guidelines for the more complex cases dealt
with in sections 3.3–3.5. Section 4 contains the definition and the construction of the
Poincaré map for the type I randomly perturbed model introduced in section 2. The
2D Poincaré map is decomposed into two 1D maps for the fast and slow subsystems,
which are constructed in sections 4.2 and 4.3, respectively. In section 4.4, we apply the
results of section 3 to the linearization of the Poincaré map to derive the distributions
of the first exit times. The latter are interpreted as the distributions of the number
of spikes in one burst. In sections 4.5, we outline the modifications necessary to cover
type II models. Since the analysis for type II models closely follows the lines of that
for type I models, we omit most of the details. Finally, the numerical experiments in
section 5 are designed to illustrate our theory.

2. The model. In the present section, we introduce the model to be studied
in the remainder of this paper. We start by formulating our assumptions on the
deterministic model and then describe the random perturbation.

2.1. The deterministic model. We consider slow-fast system (1.1) and (1.2)
in R

3 with one slow variable. The fast subsystem associated with (1.1) and (1.2) is
obtained by sending ε→ 0 in (1.2) and treating y as a parameter:

(2.1) ẋ = f(x, y).

Under the variation of y, the fast subsystem has the bifurcation structure as
shown schematically in Figure 3a. Specifically, we rely on the following assumptions:
(PO) There exists ybp ∈ R such that for each y < ybp, (2.1) has an exponentially

stable limit cycle of period T (y):

(2.2) L(y) = {x = φ(s, y) : 0 ≤ s < T (y)}.

The family of the limit cycles, L =
⋃
y<ybp

L(y), forms a cylinder in R
3

(Figure 3a).
(EQ) There is a branch of asymptotically stable equilibria of (2.1), E = {x = ψ(y) :

y > ysn}, which terminates at a saddle-node bifurcation at y = ysn < ybp
(Figure 3a).

(LS) For each y ∈ R, the ω-limit set of almost all trajectories of (2.1) belongs to
L(y)

⋃
{ψ(y)}.
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Fig. 3. (a) The bifurcation diagram of the fast subsystem (2.1). L denotes a cylinder foliated by
the stable periodic orbits. The lower branch of the parabolic curve E is composed of stable equilibria
of the fast subsystem (see Figure 6b for the plot of a representative phase plane of the fast subsystem
for y ∈ (ysn, ybp)). (b), (c) Periodic trajectories of the full system (1.1) and (1.2) are superimposed
on the bifurcation diagram of the fast subsystem. Assumptions (SE) and (SB) (see the text) result
in a bursting limit cycle (b), while (SS) yields spiking (c).

Remark 2.1. At y = ybp, either L terminates or L(ybp + 0) loses stability. We do
not specify the type of the bifurcation at y = ybp. It may be, for instance, a homoclinic
bifurcation as shown in Figure 3a, or a saddle-node bifurcation of limit cycles [22].
Having specified the assumptions on the bifurcation structure of the fast subsystem,
we turn to the slow dynamics. The geometric theory for singularly perturbed systems
implies the existence of the exponentially stable locally invariant manifolds Eε and
Lε, which are O(ε) close to E

⋂
{(x, y) : y > ysn + δ} and L

⋂
{(x, y) : y < ybp − δ},

respectively, for arbitrary fixed δ > 0 and sufficiently small ε > 0 [14, 27]. Manifolds
Eε and Lε are called slow manifolds. For small ε > 0, the dynamics of (1.1) and (1.2)
on the slow manifolds is approximated by

Lε : ẏ = εG(y), y < ybp − δ,(2.3)
Eε : ẏ = εg(ψ(y), y), y > ysn + δ,(2.4)

where

(2.5) G(y) =
1

T (y)

∫ T (y)

0

g (φ(s), y) ds.

We distinguish two types of the asymptotic behavior of solutions of (1.1) and (1.2):
bursting and spiking (see Figure 1). The following conditions on the slow subsystem
yield bursting.
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For some c > 0 independent of ε,
(SE)

(2.6) g(ψ(y), y) < −c for y > ysn,

(SB)

(2.7) G(y) > c for y < ybp.

Under these assumptions, for sufficiently small ε > 0 a typical trajectory of (1.1)
and (1.2) consists of the alternating segments closely following Lε and Eε and fast
transitions between them (see Figure 3b). For detailed discussions of the geometric
construction of “bursting” periodic orbits, we refer the reader to [31, 37]. To obtain
spiking, we substitute (SB) with
(SS) G(y) has a unique simple zero at y = yc ∈ (ysn, ybp):

(2.8) G(yc) = 0 and G′(yc) < 0.

In this case, the asymptotic behavior of solutions follows from the following theorem
due to Pontryagin and Rodygin.

Theorem 2.2 (see [36]). If ε > 0 is sufficiently small, system (1.1) and (1.2)
has a unique exponentially stable limit cycle Lε(yc) of period T (yc)+O(ε) lying in an
O(ε) neighborhood of L(yc), provided (SS) holds.

Almost all trajectories of (1.1) and (1.2) are attracted by the limit cycle lying in
an O(ε) neighborhood of L(yc). This mode of behavior is called spiking (see Figures
3c and 3b). In the remainder of this paper we assume (SS), in addition to (PO), (EQ),
(LS), and (SE).

2.2. The randomly perturbed models. In this subsection, we provide a
heuristic description of the effects of the random perturbations on the dynamics of
(1.1) and (1.2). To study these effects quantitatively, at the end of this section we
propose two randomly perturbed models.

Suppose the trajectories of (1.1) and (1.2) experience weak stochastic forcing,
such that the perturbed trajectories represent well-defined stochastic processes and
are close to the trajectories of (1.1) and (1.2) on finite intervals of time. Since the
trajectories of the unperturbed system remain in a small neighborhood of L(yc) (pos-
sibly after short transients), we expect that in the presence of noise the trajectories
will occasionally leave the BA of L(yc) and after making a brief excursion along E
will return back to the vicinity of L(yc). Therefore, under random perturbation the
system can exhibit bursting dynamics, while the underlying deterministic system is in
the spiking regime. We refer to this mode of behavior as noise-induced bursting. Our
goal is to describe typical statistical regimes associated with the noise-induced burst-
ing and to relate them to the structure of (1.1) and (1.2) and to the properties of the
stochastic forcing. To illustrate the implications of the structure of the deterministic
vector field for the bursting patterns that it produces under random perturbations,
we refer to the following numerical examples. Note that the BA of L(yc) naturally
extends along the cylinder of periodic orbits L (Figure 3c). The escape from the BA
of L(yc) can be dominated by the fluctuations along L or by those in the transverse
plane. These two possibilities are shown in Figure 4. The trajectory shown in Fig-
ure 4a spends most of the time near L(yc) and leaves its BA due to the fluctuations
in the fast subsystem. We refer to this scenario as type I escape. Alternatively, the
trajectory shown in Figure 4b travels a good deal along L before the escape and exits
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Fig. 4. Noise-induced bursting. (a) A trajectory of the randomly perturbed system is shown
in the phase space of the frozen system (1.1), (1.2) with ε = 0. The trajectory leaves the basin of
L(yc) mainly due to the fluctuations in the fast plane. This is characteristic to type I bursting.
An alternative type II scenario is shown in plot (b), where the fluctuations in the slow direction
dominate in the mechanism of escape from the basin of the stable limit cycle. The trajectory in (b)
samples a wide region of L and leaves a neighborhood of L near the right boundary, y ≈ ybp, while
that in (a) remains near L(yc) most of the time and jumps down near y ≈ yc. The differences
translate into the distinctive features of the generic time series of the bursting patterns generated
via type I or type II mechanisms shown in plots (c) and (d), respectively. Note that the longer burst
in (c) has a typical square-wave form (roughly determined by L(yc)), while the burst shown in (d)
exhibits more variability due to the drifting of the trajectory along L.

from the BA near y = ybp. This mechanism is dominated by the slow dynamics. We
refer to this scenario as type II escape. These mechanisms of escape translate into
distinct features of the resultant bursting patterns. First, note that since in type I
and type II scenarios the transition from spiking to quiescence typically takes place
at y ≈ yc and y ≈ ybp, respectively, by (1.2) and (EQ), the corresponding interburst
intervals are approximately equal to

IBI ≈ ε−1

∫ ysn

ŷ

dy

g (ψ(y), y)
, where

{
ŷ = yc, type I,
ŷ = ybp, type II.

In addition, we expect that the interspike intervals (ISIs) within one burst in type I
scenarios are localized about T (yc), since the trajectory of the randomly perturbed
system in the active phase of bursting spends most of the time near L(yc). In type II
bursting patterns, ISIs are expected to have more variability, since the trajectories
sample a wider range of ISIs during their excursions along L. Perhaps, a more pro-
nounced distinction between these two types of bursting patterns lies in the degree
of the variability of the spikes in one burst. Most of the spikes forming a burst in
type I pattern are generated by (2.1) with y ≈ yc and, therefore, are similar in shape
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(Figure 4c). In contrast, spikes in type II scenarios are subject to more variability
and the bursting patterns typically have a ragged shape (Figure 4d).

To study type I and type II noise-induced bursting patterns it is convenient to
consider two types of models. The type I model incorporates random forcing in the
fast subsystem:

ẋt = f (xt, yt) + σpẇt,(2.9)
ẏt = εg(xt, yt),(2.10)

while in the type II model the slow subsystem is forced:

ẋt = f (xt, yt) ,(2.11)
ẏt = ε (g(xt, yt) + σqẇt) .(2.12)

Here, 0 < σ � 1, p(x, y) =
(
p1(x, y), p2(x, y)

)T and q(x, y) are differentiable func-
tions; ẇt stands for the white noise, i.e., a generalized derivative of the Wiener process.

3. The randomly perturbed maps. In this section, we develop probabilistic
tools needed for the analysis of randomly perturbed systems (2.9)–(2.12). The number
of spikes in one burst is a natural random variable associated with the noise-induced
bursting. It is commonly used in the experimental studies of bursting, and we shall
adopt it for characterizing irregular bursting patterns in this work. In section 4, we
will show that the number of spikes in one burst is represented by a stopping time
(more precisely, the level exceedance time) of a discrete random process, the Poincaré
map of the randomly perturbed system (2.9)–(2.12). In preparation for the analysis
of the linearized Poincaré map in section 4, in the present section we study certain
stochastic linear difference equations. Equations of this form have been considered
in the literature before. The study was initiated by Kesten [29], who considered the
multidimensional case (in which the coefficients of the stochastic equations are random
matrices). Subsequent work focused mostly on the 1D case. We refer the reader to
the papers [21, 45], which contain representative results, examples of applications,
and further references. There is also a review paper [12], unfortunately not easily
accessible. The convergence properties of the solutions that we will need could be
deduced from a general theory of stochastic difference equations. However, the results
in the literature are often stated in the most general form and some of the proofs are
rather involved. We will be dealing with special cases that are much easier to justify.
For this reason, and also to keep the paper self-contained, we will include the proofs
of the needed results.

3.1. Geometric random variables. We begin by recalling the necessary prop-
erties of geometric random variables (RVs). Recall that Y is a geometric RV with
parameter p, 0 < p < 1, if

(3.1) P (Y = k) = p(1 − p)k−1, k ≥ 1.

We refer the reader to [28, Chapter 5] for the review of the properties of geometric
distributions and their applications. In particular, the following characterization of
geometric RVs is classical.

Lemma 3.1. Let Y be an RV with values in the set of positive integers. Y is a
geometric with parameter p, 0 < p < 1, iff

(3.2) P(Y = n) = pP(Y ≥ n), n ≥ 1.
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Lemma 3.1 motivates the following definition.
Definition 3.2. Let Y be a random variable with values in the set of positive

integers and let 0 < p < 1. We say that Y is asymptotically geometric with parameter
p if

(3.3) lim
n→∞

P (Y = n)
P(Y ≥ n)

= p.

3.2. The randomly perturbed map: Additive perturbation. Consider

(3.4) Yn = λYn−1 + ςrn, n ≥ 1,

where r1, r2, . . . are independent identically distributed (IID) copies of the standard
normal RV, and Y0 is a real number. We will use N(μ, η2) notation for a normal RV
with mean μ, variance η2, and probability density function given by

1√
2πη

exp
{
− (x− μ)2

2η2

}
, −∞ < x <∞.

We will also let Z denote a generic N(0, 1) RV and write

Φ(x) :=
1√
2π

∫ x

−∞
e−t

2/2dt

for its distribution function. For a given h > 0, let

τ = inf{k ≥ 1 : Yk > h}.

Theorem 3.3. Let

(3.5) ε ∈ (0, 1), λ = 1 − ε, β2 =
ς2

ε(2 − ε)
, and h− Y0 > 0.

Then for sufficiently small ς > 0, τ is asymptotically geometric RV with parameter

(3.6) p =
1√
2π

β

hΦ(h/β)
exp

{
− h2

2β2

}(
1 +O

( ς
ε

)2
)
.

We precede the proof of the theorem with the following auxiliary.
Lemma 3.4. For n ≥ 1, Yn is a normal RV with

(3.7) E Yn = λnY0 and var Yn =
ς2
(
1 − λ2n

)
1 − λ2

=: β2
n.

In particular,

Yn
d−→ Y

d= N(0, β2),

where d−→ (and d=) denote the convergence (equality) in distribution.
Proof of Lemma 3.4. The statements in (3.7) are verified by a straightforward

calculation. The rest follows, because E Yn → 0 and βn → β.
Proof of Theorem 3.3. Let Y ∗

k = max{Yj : 1 ≤ j ≤ k}, k ≥ 1. Then

P(τ = n+ 1) = P(Yn+1 > h, Y ∗
n ≤ h) = P(Yn+1 > h|Y ∗

n ≤ h)P(Y ∗
n ≤ h)

= P(Yn+1 > h|Yn ≤ h, Yn−1 ≤ h, . . . , Y0 ≤ h)P(τ ≥ n+ 1)
= P(Yn+1 > h|Yn ≤ h)P(τ ≥ n+ 1).(3.8)
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In the last equality, we used the fact that {Yn} is a Markov process which is clear
from (3.4). By (3.8),

(3.9) pn :=
P(τ = n+ 1)
P(τ ≥ n+ 1)

= P (Yn+1 > h |Yn ≤ h ) =
P (Yn+1 > h, Yn ≤ h)

P (Yn ≤ h)
.

In accordance with Definition 3.2, we need to show that {pn} converges and to estimate
the limit. By Lemma 3.4,

P (Yn ≤ h) −→ Φ(h/β), as n→ ∞.

Next, we turn to estimating the numerator in (3.9). We have

Qn := P (Yn+1 > h, Yn ≤ h) = P (λYn + ςrn+1 > h, Yn ≤ h)
→ P (λY + ςZ > h, Y ≤ h) =: Q,

where Z is standard normal, Y is N(0, β2), and both are independent. This follows
from Lemma 3.4 and the fact that rn+1 is N(0, 1) and is independent of Yn. Q is
the probability that a 2D Gaussian vector is in the region [h,∞) × (−∞, h]. There
are several ways of estimating this probability. We take the following, elementary
approach. Let X = h− Y so that X is N

(
h, β2

)
and is independent of Z. Then

Q = P

(
Z >

ε

ς
h+

1 − ε

ς
X,X ≥ 0

)
=

1√
2πβ

∫ ∞

0

P

(
Z >

εh+ (1 − ε)s
ς

)
e

−(s−h)2

2β2 ds.

By the well-known asymptotics (see [13, Chapter VII, Lemma 2 and section 7, Prob-
lem 1])

(3.10) P(Z > u) = 1 − Φ(u) =
1√
2π

e−
u2
2

u

(
1 +O

(
1
u2

))
, u > 0.

Hence, for sufficiently small ς > 0 (ς � ε), we have

(3.11) Q ≈ 1
2π

ς

β

∫ ∞

0

exp
{
− 1

2

(
(εh+(1−ε)s)2

ς2 + (s−h)2

β2

)}
εh+ (1 − ε)s

ds.

Since

(εh+ (1 − ε)s)2

ς2
+

(s− h)2

β2
=

(s− εh)2

ς2
+
h2

β2
,

we obtain

Q ≈ ς

2πβ
exp

{
− h2

2β2

}∫ ∞

0

exp
{
− (s−hε)2

2ς2

}
εh+ (1 − ε)s

ds.

By Laplace’s method [47], for sufficiently small ς > 0 (ς � ε), the last integral is
asymptotic to

√
2π

(hε+ (1 − ε)εh)
√

1/ς2
=

√
2πς

hε(2 − ε)
.



BURSTING OSCILLATIONS INDUCED BY SMALL NOISE 1369

Hence,

Q ≈ ς

2πβ

√
2πς

hε(2 − ε)
exp

{
− h2

2β2

}
=

β√
2πh

exp
{
− h2

2β2

}
.

By the same reasoning the error term from (3.10) is of order

exp
{
− h2

2β2

}
×O

(
1
ε

(
β

h

)3
)
,

which gives (3.6).

3.3. The randomly perturbed map: Random slope. Consider a process

(3.12) Yn = μ(1 + σr1,n)Yn−1 + σr2,n, n ≥ 1,

where (r1,n, r2,n)∞n=1 are IID copies of a 2D random vector (r1, r2). Here, we assume
that (r1, r2) has bivariate normal distribution with mean vector 0 and covariance
matrix Σ2 = [σi,j ], where σi,j = cov(ri, rj), 1 ≤ i, j ≤ 2. We assume that the entries
σi,j are of order 1 in a sense that they do not depend on other parameters. Recall that
the probability density function of a multivariate normal random vector (r1, . . . , rd)
with mean vector 0 and covariance matrix Σ is given by

1√
(2π)ddet(Σ)

exp
{
−1

2
xTΣ−1x

}
, x = (x1, . . . , xd)T ,

and we denote such vectors by N(0,Σ).
For a given h > 0, let

τ = inf{k ≥ 1 : Yk > h}.

Theorem 3.5. Suppose that h and μ ∈ (0, 1) are both of order 1 and σ � 1 so
that the following condition holds:

(3.13) γ := μE|1 + σr1| < 1.

Then τ is asymptotically geometric RV with parameter

(3.14) p =
σ

c
√

2π
e−

c2

2σ2

(
1 +O(σ2)

)
,

where a positive constant c depends on h, μ, and Σ2, but not on σ.
As before, we first establish convergence of {Yn} and characterize the limit. Iter-

ation of (3.12) yields

Yn = μ(1 + σr1,n)Yn−1 + σr2,n = μ(1 + σr1,n) (μ(1 + σr1,n−1)Yn−2 + σr2,n−1) + σr2,n

= · · · = μnY0

n∏
j=1

(1 + σr1,j) + σ

n−1∑
j=0

μjr2,n−j

n∏
�=n−j+1

(1 + σr1,�),

(3.15)

where as usual
∏m
j=k( ∗ ) = 1 if k > m.
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Lemma 3.6.

(3.16) Yn
d−→ Y

d= σ
∞∑
j=0

μjg2,j

j−1∏
�=0

(1 + σg1,�), n→ ∞,

where (g1,j , g2,j), j = 0, 1, 2, . . . , are IID copies of a 2D random vector, which is equal
in distribution to (r1, r2).

Proof of Lemma 3.6. First, we show that Y is well-defined as the series in (3.16)
converges almost surely. To see this, note that the summands

g2,j

j−1∏
�=0

(1 + σg1,�)

are martingale differences with respect to the natural filtration. By triangle inequality,
independence, and (3.13),

E

∣∣∣∣∣∣σ
m∑
j=0

μjg2,j

j−1∏
�=0

(1 + σg1,�)

∣∣∣∣∣∣ ≤ σE|g2|
m∑
j=0

μjE

∣∣∣∣∣
j−1∏
�=0

(1 + σg1,�)

∣∣∣∣∣
= σE|g2|

m∑
j=0

μj (E|1 + σr1|)j =
σE|g2|
1 − γ

(1 − γ(m+1)) ≤ σE|g2|
1 − γ

.

Hence, the partial sums of the right-hand side of (3.16) form an L1-bounded martin-
gale which converges almost surely by the martingale convergence theorem (see, e.g.,
[42]). For every n ≥ 1

σ

n−1∑
j=0

μjr2,n−j

n∏
�=n−j+1

(1 + σr1,�)
d= σ

n−1∑
j=0

μjg2,j

j−1∏
�=0

(1 + σg1,�).

Since the sequence on the right converges almost surely and the almost sure con-
vergence implies convergence in distribution, we infer that the sequence on the left
converges in distribution. To conclude that Yn

d→ Y it is enough to show that the
first term on the right-hand side of (3.15) converges to 0 in probability. But that is
clear since we have

E

∣∣∣∣∣∣Y0μ
n

n∏
j=1

(1 + σr1,j)

∣∣∣∣∣∣ = |Y0|μn
n∏
j=1

E|1 + σr1,j | = |Y0|γn.

Hence, by Markov inequality it goes to 0 in probability.
Proof of Theorem 3.5. The proof follows along the lines of the proof of Theorem

3.3. The main complication in treating the present case is that we know less about
the distribution of Yn than before. Nonetheless, we will argue that for large n

(3.17) pn :=
P(τ = n)
P(τ ≥ n)

= P(μ(1 + σr1,n)Yn−1 + σr2,n > h|Yn−1 ≤ h)

is approximately constant. For this, we rewrite the right-hand side of (3.17) as

P(μ(1 + σr1,n)Yn−1 + σr2,n > h, Yn−1 ≤ h)
P(Yn−1 ≤ h)

,
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and since the denominator converges to P(Y ≤ h) we focus on the numerator. Let
(r1, r2) be a generic vector distributed like (r1,n, r2,n) and independent of Y . Since
for every n ≥ 1, (r1,n, r2,n) is independent of Yn−1, as n→ ∞, we have

(r1,n, r2,n, Yn−1)
d−→ (r1, r2, Y ).

Thus,

P(μ(1 + σr1)Yn−1 + σr2 > h, Yn−1 ≤ h) −→ P(μ(1 + σr1)Y + σr2 > h, Y ≤ h),

which establishes the existence of p = limn→∞ pn.
To estimate p, we first recall that (r1, r2) is bivariate normal iff every linear

combination of r1 and r2 is a normal RV. Hence, conditionally on Y = y, σ(μyr1 +r2)
is N(0, σ2σ2

y) RV, where

(3.18) σ2
y = σ2

22 + μ2y2σ2
11 + 2μyσ12.

Therefore,

P(μ(1 + σr1)Y + σr2 > h, Y ≤ h) = P(σ(μY r1 + r2) > h− μY, Y ≤ h)

=
∫ h

−∞
P

(
Z >

h− μy

σσy

)
dFY (y) =

∫ h

−∞

(
1 − Φ

(
h− μy

σσy

))
dFY (y)

=
(

1 − Φ
(
h− μy0
σσy0

))
P(Y ≤ h),

where −∞ < y0 < h by the mean value theorem. Hence,

p =
P(μ(1 + σr1)Y + σr2 > h, Y ≤ h)

P(Y ≤ h)
= 1 − Φ

(
h− μy0
σσy0

)
.

Let c := c(y0), where

c(x) = ch,μ,Σ2(x) :=
h− μx

σx
=

h− μx√
μ2σ2

11x
2 + 2μσ12x+ σ2

22

.

Then, by (3.10),

p = 1 − Φ
( c
σ

)
=

σ

c
√

2π
e−

c2

2σ2

(
1 +O

(
σ2

c2

))
.

Furthermore, by elementary analysis we see that
• c(x) is increasing on x ∈ (−∞, x∗) and decreasing on x ∈ (x∗,∞), where

x∗ = − σ2
11 + hσ12

μ(hσ2
22 + σ12)

;

• c(−∞) = σ−1
11 , c(h) = (1−μ)h

((μhσ11)2+2μσ12h+σ22)1/2 = (1−μ)h

((μhσ11+σ22)2−2μh(σ11σ22−σ12))1/2 ,
and c(x∗) is given by a quite unwieldy expression that depends on h and Σ2

but not on μ.
In particular, c is bounded away from 0 and ∞, provided μ and h are positive and
μ < 1. This proves (3.14).
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3.4. A 2D randomly perturbed map. In this subsection we consider the
following 2D model:

ξn+1 = μξn (1 + σr1,n+1) + σr2,n+1,(3.19)
ηn+1 = ληn + εσr3,n+1 + εa2ξn,(3.20)

where (r1,n, r2,n, r3,n), n ≥ 1, is a sequence of IID copies of (r1, r2, r3) which, as follows
from a discussion at the beginning of section 4.4, is assumed to be a trivariate normal
random vector N(0,Σ3), with Σ3 = [σi,j ], 1 ≤ i, j ≤ 3, where σi,j = cov(ri, rj) do not
depend on any parameters in (4.44) and (4.45). For positive h1, h2 = O(1), we define

τξ = inf
k≥1

{ξk > h1}, τη = inf
k≥1

{ηk > h2}.

We are interested in τ = min{τξ, τη}. We know the distribution of τξ from Theo-
rem 3.5. As we will show below, under suitable conditions the distribution of τ is
again asymptotically geometric. Moreover, if ε > 0 is small, then τη has practically
no effect on the distribution of τ .

In order to be more precise, let us define

(3.21) An =
[
μ(1 + σr1,n) 0

εa2 λ

]
, Gn =

[
r2,n
εr3,n

]
, and Θn =

[
ξn
ηn

]
.

Then (3.19) and (3.20) are described by

(3.22) Θn+1 = An+1Θn + σGn+1, n ≥ 1.

Theorem 3.7. Let μ, σ, ε ∈ (0, 1) be such that μ is of order 1 and σ � 1 so that
condition (3.13) holds. Assume ε � 1 and set λ = 1 − ε. Suppose further that h1

and h2 are of order 1. Then τ is an approximately geometric RV with parameter p
satisfying

(3.23) p ≈ σ

c
√

2π
e−

c2

2σ2 ,

and where the constant c depends on h1, μ, and Σ3 but not on σ.
The following lemma shows that {Θn} converges in distribution and describes the

limit.
Lemma 3.8.

(3.24) Θn
d−→ X

d= σ

∞∑
k=1

⎛
⎝k−1∏
j=1

Aj

⎞
⎠Gk, n→ ∞,

where An and Gn, n = 1, 2, . . . , are defined in (3.21). Furthermore, this random vector
X satisfies the distributional equation

(3.25) X
d= AX + σG,

where

(3.26) A =
[
μ(1 + σr1) 0

εa2 λ

]
and G =

[
r2
εr3

]
,
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(r1, r2, r3) is N(0,Σ3), andX on the right-hand side of (3.25) is independent of (A,G).
Proof of Lemma 3.8. Note first that each of the sequences (An) and (Gn) consists

of IID random elements. By iterating (3.22), we obtain

Θn = An(An−1Θn−2+σGn−1)+σGn = · · · =

(
n−1∏
k=0

An−k

)
Θ0+σ

n∑
k=1

⎛
⎝n−k−1∏

j=0

An−j

⎞
⎠Gk,

where, as usual, the product is set to be 1 if its index range is empty. We have

n−1∏
k=0

An−k =
[
μn
∏n
k=1(1 + σr1,k) 0

Tn λn

]
,

where

Tn = εa2

n∑
j=1

λn−j
j−1∏
k=1

(μ(1 + σr1,k)).

Set δ = max{λ, μE|1 + σr1|} and note that by (3.13) δ < 1. By triangle inequality
and independence of r1,k’s

E|Tn| ≤ εa2

n∑
j=1

λn−jE

∣∣∣∣∣
j−1∏
k=1

(μ(1 + σr1,k))

∣∣∣∣∣ = εa2

n∑
j=1

λn−j (μE|1 + σr1|)j−1 ≤ εa2nδ
n−1.

Similarly,

μnE

∣∣∣∣∣
n∏
k=1

(1 + σr1,k)

∣∣∣∣∣ = (μE|1 + σr1|)n ≤ δn.

It follows that both components of
(∏n−1

k=0 An−k
)
Θ0 converge to 0 in probability, and

thus this term is negligible.
Since the sequences (An) and (Gn) are IID, for every n ≥ 1 we have

n∑
k=1

⎛
⎝n−k−1∏

j=0

An−j

⎞
⎠Gk

d=
n∑
k=1

⎛
⎝k−1∏
j=1

Aj

⎞
⎠Gk.

By the same argument as above we verify that both components of the sequence of
partial sums on the right-hand side are Cauchy in L1. Hence, the components of the
series

∞∑
k=1

⎛
⎝k−1∏
j=1

Aj

⎞
⎠Gk

converge in probability (and thus in distribution). Therefore, the sequence (Θn)
defined by (3.22) converges in distribution to a random vector X defined in (3.24).
Furthermore, X satisfies the distributional equation (3.25).

Proof of Theorem 3.7. For h = (h1, h2) set Bh := (−∞, h1] × (−∞, h2]. Then

{τ = n} = {Θj ∈ Bh, j < n, Θn /∈ Bh},
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so that

P(τ = n) = P(Θn /∈ Bh|Θj ∈ Bh, j < n)P(Θj ∈ Bh, j < n)
= P(AnΘn−1 + σGn /∈ Bh|Θn−1 ∈ Bh)P(τ ≥ n).

Since Θn converge in distribution to X , we have

pn := P(AnΘn−1 + σGn /∈ Bh|Θn−1 ∈ Bh) =
P(AnΘn−1 + σGn /∈ Bh,Θn−1 ∈ Bh)

P(Θn−1 ∈ Bh)

−→ p :=
P(AX + σG /∈ Bh, X ∈ Bh)

P(X ∈ Bh)
, as n→ ∞.(3.27)

It follows from (3.24) that X is symmetric, so since both h1 and h2 are positive the
denominator is at least 1/2 and does not affect the asymptotics.

To handle the numerator, using (3.26), denoting the components of X by X1 and
X2, and using the notation adopted in (3.18), we see that it is equal to

P((μ(1 + σr1)X1 + σr2, εa2X1 + λX2 + εσr3) /∈ Bh, (X1, X2) ∈ Bh)
= P(μ(1 + σr1)X1 + σr2 > h1, (X1, X2) ∈ Bh)

+ P(εa2X1 + λX2 + εσr3 > h2, (X1, X2) ∈ Bh)
−P(μ(1 + σr1)X1 + σr2 > h1, εa2X1 + λX2 + εσr3 > h2, (X1, X2) ∈ Bh)

= P

(
μX1r1 + r2

σX1

>
h1 − μX1

σσX1

, (X1, X2) ∈ Bh

)

+ P

(
r3 >

h2 − εa2X1 − λX2

εσ
, (X1, X2) ∈ Bh

)

−P

(
μX1r1 + r2

σX1

>
h1 − μX1

σσX1

, r3 >
h2 − εa2X1 − λX2

εσ
, (X1, X2) ∈ Bh

)
.(3.28)

Conditionally on (X1, X2) = (x1, x2),

Z1 :=
μx1r1 + r2

σx1

and Z2 :=
r3
σ33

are N(0, 1) RVs. Hence by letting FX(x1, x2) denote the distribution function of
(X1, X2), we see that the first of the last three probabilities is

(3.29)
∫ h2

−∞

∫ h1

−∞

(
1 − Φ

(
h1 − μx1

σσx1

))
dFX(x1, x2).

Likewise, for the second of these probabilities we get

(3.30)
∫ h2

−∞

∫ h1

−∞

(
1 − Φ

(
h2 − εa2x1 − λx2

εσσ33

))
dFX(x1, x2).

We now note that if ε is of a smaller order than all other parameters (except possibly
σ), then (3.10) implies that (3.30) (and hence also (3.28)) are negligible when com-
pared to (3.29). To analyze the behavior of (3.29) as a function of its parameters,
note that by the mean value theorem the quantity in (3.29) is equal to
(

1 − Φ
(
h1 − μx0

σσx0

))∫ h2

−∞

∫ h1

−∞
dFX(x1, x2) =

(
1 − Φ

(
h1 − μx0

σσx0

))
P(X ∈ Bh)
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for some −∞ < x0 < h. Substituting this into (3.27) (and neglecting the terms that
depend on ε) we see that

p =
P(AX + σG /∈ Bh, X ∈ Bh)

P(X ∈ Bh)
∼ 1 − Φ

(
h1 − μx0

σσx0

)
.

If both 0 < μ < 1 and h1 are of order 1, we are in the same situation as with (3.14).
This shows (3.23).

3.5. Diffusive escape. The exit problems for the stochastic difference equations
analyzed in the previous subsections all feature the geometric escape mechanism. In
the simplest case when the evolution is given by (3.4), the geometric distribution
characterizes the statistics of the times of exit of the trajectories of (3.4) from a certain
neighborhood of the attracting fixed point. In this subsection, we study another
statistical regime associated with the exit problem for (3.4) that is important in
applications: the diffusive regime. The role of the diffusive regime in characterizing the
statistics of the exit times for the trajectories of (3.4) is twofold. First, the geometric
distribution approximates the distribution of the exit times only for sufficiently large
times, i.e., for large n. In this subsection, we show that in the intermediate range
of n, i.e., when n is neither too large nor too small, Yn’s are approximated by the
sums of the IID RVs, and therefore the level exceedance times are distributed as
those for random walks. We refer to this situation as the diffusive regime. Second,
we recall that to justify the geometric distribution in the proof of Theorem 3.3, we
implicitly assumed that the rate of attraction of the fixed point is stronger than the
noise intensity. Specifically, it is easy to see from the proof of Theorem 3.3 that ς
is required to be o(ε), ε = 1 − λ. The analysis in this subsection does not use this
assumption. We show that when the noise is stronger than the attraction of the fixed
point (though both are sufficiently small), the mechanism of escape of the trajectories
from the BA of the fixed point changes from geometric to diffusive. Therefore, we
conclude this section by pointing out some features intrinsic to the diffusive escape.
Specifically, we consider (3.4), for which we define, as before,

(3.31) τ = inf{k ≥ 1 : Yk > h}

for given h > 0. In contrast to the case considered in section 3.2, here we assume

(3.32) ε = O(ςα), α > 0.

In Theorem 3.9 below, we show that in the present situation in the intermediate range
of n, Y ′

ns behave as sums of IID normal RVs. The behavior of the latter is well known
(cf. Lemma 3.11).

Recall that Φ(x) stands for the distribution function of an N(0, 1) RV and denote

(3.33) Ψa(x) = 2
(

1 − Φ
(
a√
x

))
, a > 0.

Note that Ψa(x) is a probability distribution function on R+ (see Figure 5).
Theorem 3.9. Let the evolution of Yn, n = 0, 1, 2, . . . , be given by (3.4). Suppose

that λ = 1 − ε with ε = O (ςα) , α > 0. Then for arbitrary positive β1 and β2 such
that β1 + β2 < 2α/3, for sufficiently small ς > 0,

(3.34) P(τ ≤ n) = Ψa(n)
(
1 + o(1)

)
, a =

h

ς
,

in the range ς−β1 � n� ς
−2α

3 +β2 .
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10 20
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Fig. 5. Probability density function corresponding to the distribution Ψa(y), a = 1. With a
suitable a > 0, Ψa(y) approximates the distribution of the exit times in the diffusive escape.

Remark 3.10. Since β1,2 > 0 are arbitrary, Ψa(n) practically approximates P(τ ≤
n) in the range 1 � n� ε−2/3.

We will need the following auxiliary lemma [11, Theorem 2.2, Chapter III]. It
may be viewed as a quantified version of a reflection principle for random walk (see,
e.g., [42, sections 5.3, 5.4]).

Lemma 3.11. Let X1, X2, . . . be a sequence of independent, symmetric RVs and
set

Sk =
k∑
j=1

Xj and S∗
k = max

1≤j≤k
Sj, j ≥ 1.

Then for any t, u > 0 the following inequalities hold:

(3.35) 2P(Sn ≥ t+ 2u) − 2
n∑
k=1

P(Xk ≥ u) ≤ P(S∗
n ≥ t) ≤ 2P(Sn ≥ t).

Remark 3.12. As was noticed by Kwapień, a bit stronger version of the first
inequality in (3.35) follows from a slight modification of the proof of Proposition 1.3.1
in [30].

Proof of Theorem 3.9. Without loss of generality, we assume that Y0 = 0 (other-
wise, apply the same argument to Yk − Y0). Note that the distributions of τ and Y ∗

k

are linked by the following relation:

P(τ ≤ n) = P(Y ∗
n ≥ h).

Unwinding (3.4) and using Y0 = 0 gives

Yk = ς(λk−1r1 + λk−2r2 + · · · + λrk−1 + rk),

which we write as Sk +Wk, where

(3.36) Sk := ς

k∑
j=1

rj , Wk := ς

k−1∑
j=1

rj(λk−j − 1).
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We will first show that the main contribution to Y ∗
n is from the S∗

n. First, by subad-
ditivity of maxima, for any 0 < h1 < h,

P(Y ∗
n ≥ h) ≤ P(S∗

n +W ∗
n ≥ h) ≤ P(S∗

n ≥ h− h1) + P(W ∗
n ≥ h1)

≤ P(S∗
n ≤ h− h1) + P

(
|Wn|∗ ≥ h1

)
.(3.37)

Further, Yk ≥ Sk − |Wk| so that

P(S∗
n ≥ h+ h1) ≤ P(S∗

n ≥ h+ h1, |Wn|∗ < h1) + P(|Wn|∗ ≥ h1)
≤ P(Y ∗

n ≥ h) + P(|Wn|∗ ≥ h1),

which, when combined with (3.37), means that
(3.38)
P(S∗

n ≥ h+ h1) − P(|Wn|∗ ≥ h1) ≤ P(Y ∗
n ≥ h) ≤ P(S∗

n ≥ h− h1) + P(|Wn|∗ ≥ h1).

First, we estimate P(|Wn|∗ ≥ h1) in (3.38). To this end, we use 1−λj = 1−(1−ε)j ≤ jε
to obtain

var(Wn) = ς2
n−1∑
j=1

(1 − λj)2 ≤ ς2ε2
n3

3
= ς2n

ε2n2

3
.

Consequently, by (3.35) and (3.36), we have

P(|Wn|∗ ≥ h1) ≤ 2P(|Wn| ≥ h1) ≤ 4P(Wn ≥ h1) = 4P

(
Z ≥ h1√

var(Wn)

)

≤ 4P

(
Z ≥ h1

ς
√
n
·
√

3
εn

)
.

Next, we turn to estimating the probabilities involving S∗
n in (3.38). By the second

inequality in (3.35), for every u > 0, we have

(3.39) P(S∗
n ≥ h− h1) ≤ 2P(Sn ≥ h− h1) = 2P

(
Z ≥ h− h1

ς
√
n

)
,

while the first one yields

P(S∗
n ≥ h+ h1) ≥ 2P (Sn ≥ h+ h1 + 2u) − 2

n∑
k=1

P(ςrk ≥ u)

= 2P

(
Z ≥ h+ h1 + 2u

ς
√
n

)
− 2nP

(
Z ≥ u

ς

)
.(3.40)

The combination of (3.38), (3.39), and (3.40) yields

P(Y ∗
n ≥ h) ≥ 2P

(
Z ≥ h+ h1 + 2u

ς
√
n

)
− 2nP

(
Z ≥ u

ς

)
− 4P

(
Z ≥ h1

ς
√
n
·
√

3
εn

)
,

(3.41)

P(Y ∗
n ≥ h) ≤ 2P

(
Z ≥ h− h1

ς
√
n

)
+ 4P

(
Z ≥ h1

ς
√
n
·
√

3
εn

)
.

(3.42)
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To complete the proof, we need to choose h1 and u such that

(3.43)
h1

ς
√
n

= o(1),
u

ς
√
n

= o(1),
ς

u
= o(1), and h−1

1 ςεn3/2 = o(1).

It is straightforward to verify that relations in (3.43) hold with h1 = ς1+
3β

2 and
u = ς1−

β1
2 , β1,2 > 0, β1 + β2 < 2α/3, and n as in (3.34).

4. The Poincaré map. In the present section, we consider the type I model,
i.e., the randomly perturbed system with the stochastic forcing acting via the fast
subsystem (see (2.9) and (2.10)). In the active phase of bursting (when the system
undergoes spiking), the trajectory of the randomly perturbed system remains in the
vicinity of the cylinder foliated by the periodic orbits of the fast subsystems (see
Figure 6a). The time that the trajectory spends near L determines the duration of
the active phase. The goal of this section is to describe the slow dynamics near L. In
particular, we will estimate the distribution of the number of spikes in one burst. To
this end, we introduce a transverse to L cross-section Σ (see Figure 6a) and construct
the first return map. Specifically, we estimate the change in the state of the system
after one cycle of rotation of the trajectory around L. The construction of the first
return map for (2.9) and (2.10) is done in analogy to that for the deterministic models
of bursting (see [34, 31]). However, the treatment of the randomly perturbed system
requires certain modifications. First, we have to resolve the ambiguity in the notion
of the first return time. The latter is due to the fact that generically a trajectory of
the randomly perturbed system makes multiple crossings with Σ during each cycle
around L. We refer the reader to the comments following Theorem 2.3 in [19] for
an explicit example illustrating this effect. For the randomly perturbed system, we
define the time of the first return so that it approaches the first return time of the
underlying deterministic system in the limit of vanishing random perturbation. The
definition of the first return time motivates the definition of the Poincaré map (see
Definition 4.2). In sections 4.1 and 4.2, we use asymptotic expansions to construct
the linear approximation for the Poincaré map of the fast subsystem. Here, we use an
obvious observation that on finite time intervals and for sufficiently small ε > 0, the
slow variable typically remains in an O(ε) neighborhood of its initial value. Therefore,
for finite times the Poincaré map of the fast subsystem captures the dynamics of the
full system. Since we are interested in long-term behavior of the system, to complete
the description of the first return map we also need to track the (small) changes in
the slow variable after each cycle of oscillations. This is done in section 4.3, where
we derive a 1D map for the slow variable. The combination of the 1D Poincaré map
for the fast subsystem and that for the slow variable provides the first return map for
the full problem (2.9) and (2.10). The linear approximation of the 2D map is used
in section 4.4 to estimate the distribution of the number of spikes in one burst for
the type I model. Effectively, the problem is reduced to the exit problem for a 1D
linear randomly perturbed map. For the latter problem, we have already developed
necessary analytical tools in section 3. Finally, in section 4.5, we comment on the
straightforward modifications necessary to extend the analysis of this section to cover
type II models.

4.1. Preliminary transformations. Recall that Σ stands for the transverse
section located as shown schematically in Figure 6a. Let y0 < ybp be outside an O(σ)
neighborhood of ybp, and let x0 =

(
x1

0, x
2
0

)T ∈ Σ be from an O(σ) neighborhood of L.
Consider an initial value problem (IVP) for (2.9) and (2.10) with initial data (x0, y0).
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Fig. 6. (a) Cross-section Σ is used in the construction of the first return map. (b) The phase
plane of the fast subsystem (2.1) for y ∈ (ysn, ybp).

By standard results from the asymptotic theory for randomly perturbed systems [19],
we have the estimate

(4.1) yt = y0 +O(ε),

valid on a finite interval of time t ∈ [0, t̄]. Here and below, for a small parameter ε > 0,
the symbols O(ε) and o(ε) in the asymptotic expansions of the random functions mean
that the corresponding relations hold almost surely (a.s.). Specifically, ψt(ε) = O(ε)
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for t ∈ [t1, t2] means that there exists ε0 > 0 such that

sup
t ∈ [t1, t2]
ε ∈ [0, ε0]

∣∣ε−1ψt(ε)
∣∣ <∞ a.s.

In a similar fashion, we interpret ψt(ε) = o(ε) when ψt(ε) is a random function.
By plugging (4.1) into (2.9), we obtain the following stochastic ODE:

(4.2) dxt = f (xt) dt+ σp(xt)dwt +O(ε),

where f (x) := f (x, y0), p(x) := p (x, y0) , and y0 is fixed. Equation (4.2) with
ε = σ = 0 has an exponentially orbitally stable periodic solution x = φ(t, y0) of
period T (y0):

L(y0) = {x = φ(θ, y0) : θ ∈ [0, T (y0))} (cf. (2.2)).

To simplify the notation, throughout the analysis of the fast subsystem, we will not
explicitly indicate the dependence on y0 when referring to L, φ, and T . At each point
x = φ(θ) ∈ L, we define vectors

(4.3) τ(θ) =
(
f1(x), f2(x)

)T
and ν(θ) = Jf(x), where J =

(
0 −1
1 0

)
,

pointing in the tangential and normal directions, respectively. To study the trajecto-
ries of (4.2) in a small neighborhood of L, it is convenient to rewrite (4.2) in normal
coordinates (θ, ξ) [23]:

(4.4) x = φ(θ) + ξν(θ), θ ∈ [0, T ).

Lemma 4.1. For sufficiently small δ > 0, (4.4) defines a smooth change of
coordinates in

(4.5) Bδ = {x = φ(θ) + ξν(θ) : |ξ| < δ, θ ∈ [0, T )}.

In new coordinates, (4.2) has the form

dθt = (1 + b1(θt)ξt)dt+ σh1(θt, ξt) (1 + b2(θt)ξt) dwt +O(ε, δ2, σ2),(4.6)
dξt = a(θt)ξtdt+ σh2(θt, ξt)dwt +O(ε, δ2, σ2),(4.7)

where smooth functions a(θ), b1(θ), and b2(θ) are T-periodic and

(4.8) 0 < μ := exp

(∫ T

0

a(θ)dθ

)
= exp

(∫ T

0

divf (φ(θ))

)
< 1,

(4.9) h1(θ, ξ) =
〈p, τ〉
〈τ, τ〉 =

p1f1 + p2f2

|f |2
, h2(θ, ξ) =

〈p, ν〉
〈τ, τ〉 =

p2f1 − p1f2

|f |2
.

Proof. The proof of the lemma follows along the lines of the proof of Theorem
VI.1.2 in [23]. Let z = (z1, z2)T := (θ, ξ)T and denote the transformation in (4.4) by

(4.10) x = v(z), z ∈ Bδ.

Note

|Dv(θ, 0)| =
∣∣∣∣ φ

1′(θ) −f2 (φ(θ))
φ2′(θ) f1 (φ(θ))

∣∣∣∣ = |f (φ(θ))|2 �= 0, θ ∈ [0, T ).
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Therefore, for sufficiently small δ > 0, (4.10) defines a smooth invertible transforma-
tion in Bδ. Denote the inverse of v by z = u(x), x ∈ v(Bδ), and note that

(4.11) [Du(x)]−1 = Dv(z), x ∈ v(Bδ).

By Itô’s formula, we have

(4.12) dzt = Du(xt)dxt +O(σ2)dt

and, therefore,

(4.13) Dv(zt)dzt = dxt +O(σ2)dt.

By recalling that z = (θ, ξ) and after plugging (4.2) into (4.13), we obtain
[
dφ(θt)
dθ

+
dν(θt)
dθ

ξt

]
dθt + ν(θt)dξt = (f (φ(θt)) +Df (φ(θt)) ν(θt)ξt +Q(θt, ξt)) dt

+ σpdwt +O(ε, σ2),(4.14)

where

Q(θ, ξ) = f (φ(θ) + ξν(θ)) − f (φ(θ)) −Df (φ(θ)) ν(θ)ξ = O
(
ξ2
)
, |ξ| < δ.

Note that

dφ(θ)
dθ

= f (φ(θ)) = τ(θ), τT (θ)τ(θ) = ν(θ)T ν(θ) = |f (φ(θ))|2 ,(4.15)

dν(θ)
dθ

=
d

dθ
Jf (φ(θ)) = JDf (φ(θ)) f (φ(θ)) .(4.16)

Taking into account (4.15) and (4.16), we project (4.14) onto the subspace spanned
by τ(θt) and after some algebra obtain

(4.17) θ̇t = 1 +
fTQ+ fT [DfJ − JDf ] fξt + σfT pẇt +O(ε)

fTf + fTJDffξt
.

Here and for the rest of the proof, for brevity we use the following notation:

f := f (φ(θt)) , Q := Q(θt, ξt), and ν := ν(θt).

Equation (4.17) can be rewritten as (4.6) with

b1(θt) =
1

|f |2
fT [DfJ − JDf ] f,

b2(θt) =
1

|f |2
fTJDff.

Similarly, by projecting (4.14) onto the subspace spanned by ν(θ) and using (4.15)
and (4.14), we derive

ξ̇t = a(θt)ξt + σh2(θt)ẇt +O
(
δ2
)
,

where

a(θt) =
1

|ν|2
νT
[
Dfν +

dν

dθ

]
− 2νT

|ν|2
dν

dθ
.
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The expression in the square brackets can be simplified as follows:

νT
[
Dfν +

dν

dθ

]
= fT

[
JTDfJ +Df

]
= divf (φ(θ)) |f |2 .

Also,

2νT

|ν|2
dν

dθ
=

2
|f |2

fTJT
d

dθ
Jf =

2
|f |2

fT
d

dθ
f =

1
|f |2

d

dθ
|f |2 =

d

dθ
ln |f (φ(θ))|2 .

Therefore,

(4.18) a(θ) = divf (φ(θ)) − d

dθ
ln |f (φ(θ))|2 .

Equation (4.18) implies (4.8), since the integral over [0, T ] of the last term on the
right-hand side of (4.18) is zero.

4.2. The Poincaré map for the fast subsystem. In the present subsection,
we analyze the trajectories of the randomly perturbed system (4.2) lying close to the
limit cycle L(y0), y0 < ybp. To this end, we consider an IVP for (4.6) and (4.7)
subject to the initial condition

(4.19) θ0 = 0 and |ξ0| < δ.

Throughout this section, we assume (even when it is not stated explicitly) that δ >
0 is sufficiently small. It will be convenient to view the range of θt as R1 rather
than a circle. Equation (4.4) provides the transformation of (θt, ξt) to the Cartesian
coordinates even when θt exceeds T .

We now turn to the construction of the Poincaré map. Condition θ = 0 defines a
transverse cross-section of L(y0), Σ. The trajectory of the deterministic system (4.6)
and (4.7) with σ = 0 returns to Σ in time T + O(ξ0). To define the Poincaré map
for the randomly perturbed system, we also use another transverse cross-section Σ̃,
which is located at an O(1) distance away from Σ. Let (θt, ξt) be the solution of the
IVP (4.6), (4.7), and (4.19) and

T̃ = inf{t > 0 : (θt, ξt) ∈ Σ̃}.

Definition 4.2. By the time of the first return of the trajectory (4.6), (4.7), and
(4.19) to Σ, we call stopping time T such that

(4.20) T = inf{t > T̃ : θt = T }.

The first return map for (4.6), (4.7), and (4.19) is defined as

ξ̄ = P (ξ0), where ξ̄ = ξT .

In the remainder of this subsection, we compute the linear part of the Poincaré
map. In the asymptotic expansions below, we do not indicate the dependence of the
remainder terms on ε > 0. The latter is assumed to be sufficiently small so that it
has no effect on the leading order approximation of the Poincaré map.

The following notation is reserved for four functions, which will appear frequently
in the asymptotic expansions below:

A(t, s) = exp
{∫ t

s

a(u)du
}
, A(t) = A(t, 0),

B(t, s) =
∫ t

s

A(u, s)b1(u)du, B(t) = B(t, 0).
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Lemma 4.3. On a finite time interval t ∈ [0, t̄], 0 < t̄ < ∞, the solution of the
IVP (4.6), (4.7), and (4.19) admits the asymptotic expansion

θt = θ
(0)
t + σθ

(1)
t + O(σ2, ξ20),(4.21)

ξt = ξ
(0)
t + σξ

(1)
t +O(σ2, ξ20).(4.22)

The leading order coefficients are given by

θ
(0)
t = t+ ξ0B(t) +O(ξ20),(4.23)

ξ
(0)
t = ξ0A(t) +O(ξ20).(4.24)

The first order terms are given by the Gaussian diffusion process zt = (θ(1)t , ξ
(1)
t )T:

(4.25) zt =
∫ t

0

U(t, s)h(s)dws +O(ξ0),

where

(4.26) U(t, s) =
(

1 B(t, s)
0 A(t, s)

)
, h(t) := h(t, 0) = (h1(t, 0), h2(t, 0))T .

Proof. The procedure for constructing asymptotic expansions of solutions for a
class of IVP, which includes (4.6), (4.7) and (4.19), can be found in [2, 19]. These
sources also contain the estimates controlling the remainder terms. The coefficients
θ
(0,1)
t and ξ

(0,1)
t are determined as follows. By plugging (4.21) and (4.22) into (4.6)

and (4.7) and extracting the coefficients multiplying different powers of σ, one obtains
IVPs for the functions on the right-hand sides of (4.21) and (4.22). Specifically, for
the leading order terms we have the following IVP:

θ̇
(0)
t = 1 + b1

(
θ
(0)
t

)
ξ
(0)
t ,(4.27)

ξ̇
(0)
t = a

(
θ
(0)
t

)
ξ
(0)
t ,(4.28)

ξ
(0)
0 = ξ0, θ

(0)
0 = 0.(4.29)

To the next order,

żt = Λ(t, ξ0)zt + h
(
θ
(0)
t , ξ

(0)
t

)
ẇs,(4.30)

z0 = 0,(4.31)

where zt =
(
θ
(0)
t , ξ

(1)
t

)T
, h = (h1, h2)T , and

(4.32) Λ(t, ξ0) =

⎛
⎝ b′1

(
θ
(0)
t (ξ0)

)
ξ
(0)
t (ξ0) b1

(
θ
(0)
t (ξ0)

)

a′
(
θ
(0)
t (ξ0)

)
ξ
(0)
t (ξ0) a

(
θ
(0)
t (ξ0)

)
⎞
⎠ .

Here, we explicitly indicated the dependence of the leading order coefficients on ξ0 and
used a prime to denote the differentiation with respect to θ. Formulae (4.23)–(4.26)
in the statement of the lemma follow from (4.27)–(4.32). The details can be found in
the appendix to this paper.

Next, we calculate the time of the first return.
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Lemma 4.4. The time of the first return is given by

(4.33) T = T (0) + σT (1) + o(σ) +O(ξ20),

where

T (0) = T − ξ0B(T ) +O(ξ20),(4.34)

T (1) = −σθ(1)T = −σ
∫ T

0

[h1(u) +B(T , u)h2(u)] dwu.(4.35)

Proof. From the definition of the first return time, (4.21), and (4.23), we have

(4.36) T + ξ0B(T ) + σθ
(1)
T + O(σ2, ξ20) = T a.s.

Thus,

(4.37) lim
σ→0

T = T (0)(ξ0) a.s.,

where T (0)(ξ0) is found from the following equation:

(4.38) T (0)(ξ0) + ξ0B
(
T (0)(ξ0)

)
+O(ξ20 ) = T .

Equation (4.38) implies (4.34). Furthermore, the combination of (4.34), (4.36), and
(4.37) yields (4.35).

Lemma 4.5. The first return map is given by the

(4.39) ξ̄ = μξ (1 + σr1) + σr2 + o(σ) +O(ξ20 ),

where Gaussian RVs r1,2 are given by

(4.40) r1 = −a(0)
∫ T

0

[h1(u) +B(T , u)h2(u)] dwu, r2 =
∫ T

0

A(T , u)h2(u)dwu.

Proof. From (4.22), (4.24)–(4.26), and (4.33), we have

ξ̄ = ξT = ξ0A(T ) + σ

∫ T

0

A(T, s)h2(s)dws +O(σ2, ξ20)

= ξ0A(T ) + σr2 +O(σ2, ξ20),(4.41)

where r2 is defined in (4.40). The first term on the right-hand side of (4.41) can be
rewritten as follows:

A(T ) = A(T )A(T + σT (1), T ) + o(σ) +O(ξ0) = μ exp
(
σa(0)T (1)

)
+ o(σ)

= μ
(
1 − σa(0)θ(1)T

)
+ o(σ) +O(ξ0).(4.42)

Finally, we extract the expression for θ(1)T from (4.25) and (4.26):

(4.43) θ
(1)
T =

∫ T

0

[h1(u) +B(T , u)h2(u)] dwu.

Equations (4.41)–(4.43) yield (4.39) and (4.40).
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Remark 4.6. We close this section by observing that, as follows from (4.40), RVs
r1 and r2 are stochastic integrals of different deterministic functions, say f(t) and
g(t), with respect to the same Brownian motion over the interval [0, T ]. Consequently,
their joint distribution is bivariate normal with 0 mean vector and a covariance matrix
whose diagonal entries are

∫ T

0

f2(t)dt and
∫ T

0

g2(t)dt,

and whose off-diagonal entry is
∫ T

0

f(t)g(t)dt.

This is perhaps easiest to see by using Riemann representation of a stochastic integral
(see, e.g., [42, Proposition 7.6]), basic properties of Brownian motion, and the fact that
a random vector is multivariate normal iff any linear combination of its components
is a normal RV.

4.3. The first return map for the slow variable. Our next goal is to estimate
the change of the slow variable, yt, after one cycle of oscillations of the fast subsystem
for the following initial conditions:

(4.44) 0 < ybp − y0 = O(1), x0 = φ(0) + ξ0ν(0) ∈ Σ, and |ξ0| < δ.

We denote the first return map for y by

ȳ = P (y, ξ0), where P (y0, ξ0) = yT ,

and T is the first return time of the fast subsystem (see Definition 4.2).
Lemma 4.7. The first return map for y has the following form:

(4.45) P (y, ξ) = y + εG(y) + εσr3 + εaξ + o(εσ),

where

(4.46) G(y) =
∫ T

0

g (φ(s), y) ds

and r3 = N (0, O(1)) and a is a constant independent of σ and ε.
Remark 4.8. Recall that T and φ(·) are functions of slow variable y (see (2.2)).

To avoid using cumbersome notation we continue to suppress the dependence on y.
Proof of Lemma 4.7. By (2.10),

(4.47) yT = y0 + ε

∫ T

0

g(xs, y0)ds+O(ε2),

where xs satisfies IVP (4.6), (4.7), and (4.19). Let x = φ(θ) + ξν(θ) and denote

(4.48) g̃(θ, ξ, y) := g(x, y), g0(s) = g̃(s, 0), g1(s) =
∂g̃

∂θ
(s, 0), and g2(s) =

∂g̃

∂ξ
(s, 0).

Using (4.48), we rewrite (4.47) as

(4.49) yT = y0 + ε

∫ T

0

g̃(θ(0)s + σθ(1)s , ξ(0)s + σξ(1)) +O(εσ2).
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Using the Taylor expansion for g̃ in (4.49) and (4.21), (4.22) and (4.33), from (4.49)
we derive

yT = y0 + ε

∫ T

0

{
g0(s) + g1(s)

[
ξ0B(s) + σθ(1)s

]
+ g2(s)

[
ξ0A(s) + σξ(1)s

]}
ds

+
∫ T −ξ0B(T )−σθ(1)T

T
g0(s)ds+ o(εσ) +O(εξ20).(4.50)

We approximate the last integral on the right-hand side of (4.50) by

(4.51)
∫ T −ξ0B(T )−σθ(1)T

T
g0(s)ds = −g0(0)

[
ξ0B(T ) + σθ(1)

]
+ o(σ, ξ0).

The combination of (4.50) and (4.51) implies (4.45) with

a =
∫ T

0

[g1(s)B(s) + g2(s)A(s)] ds− g0(0)B(T ),(4.52)

r3 =
∫ T

0

[
g1(s)θ(1)s + g2(s)ξ(1)s

]
ds.(4.53)

4.4. The exit problem. In this subsection, we first combine the return maps
derived for the slow and fast subsystems to obtain the Poincaré map for the full 3D
system. Next, we approximate the Poincaré map and the BA of the limit cycle L(yc)
and characterize the distribution of the exit times for the approximate problem. This
distribution is then related to the distribution of the number of spikes within bursting
episodes. To approximate the Poincaré map we linearize it around the stable fixed
point of the deterministic map corresponding to the limit cycle L(yc). Aside from the
systematic derivation of the Poincaré map in the previous subsections, we offer no
rigorous justification for substituting the nonlinear Poincaré map with its linear part
in the analysis of the exit problem. While in general such approximation may not be
accurate, we believe that for the present problem the analysis of the linearized system
captures the statistics of the first exit times well for the following reason. In models
of square-wave bursting the limit cycle generating spiking is often located close to the
boundary of its BA (see Figure 6b for a representative example). Therefore, before
the trajectories leave the BA, they remain in a small neighborhood of the limit cycle,
where the linear part of the vector field governs the dynamics. After these preliminary
remarks, we turn to the derivation of the approximate problem and its analysis.

Lemmas 4.5 and 4.7 yield the asymptotic formulae for the first return map of the
randomly perturbed system (2.9) and (2.10) in the normal coordinates (4.4):

ξn+1 = μξn (1 + σr1,n) + σr2,n + o(σ),(4.54)
yn+1 = yn + εG(yn) + εσr3,n + εaξn + o(εσ), n = 0, 1, 2, . . . ,(4.55)

where (ξ0, y0) are given in (4.44) and the expressions for a and ri,n, i = 1, 2, 3, are
are given in (4.40), (4.52), and (4.53). Recall that by (SS) (see section 2), G(y) has a
simple zero at y = yc and λ := −G′(yc) > 0. Thus, (0, yc) is an attracting fixed point
of the unperturbed map (4.54) and (4.55) with σ = 0. The linearization of (4.54) and
(4.55) about (0, yc) yields

ξn+1 = μξn (1 + σr̃1,n) + σr̃2,n,(4.56)
ηn+1 = ληn + εσr̃3,n + εa2ξn, n = 0, 1, 2, . . . ,(4.57)
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where η = y − yc, 0 < λ = 1 − εa1, and 0 < μ < 1. The distributions of the
RVs ri,n, i = 1, 2, 3, depend on yn, as both the upper bound of integration T and
the integrands in (4.40) and (4.53) are smooth functions of y. The stochastic terms
r̃i,n, i = 1, 2, 3, in the linearized system are obtained by evaluating the expressions for
r̃i,n, i = 1, 2, 3, in (4.40) and (4.53) at y = yc. Thus, (r̃1,n, r̃2,n, r̃3,n) are IID copies
of an N (0,Σ3), where the entries of Σ3 are O(1) in a sense that they do not depend
on any other parameters. Further, we approximate the BA of L(yc) by a cylindrical
shell, so that in the (ξ, η) coordinate plane, it projects to Π :=

[
− h̃ξ, hξ

]
×
[
− h̃η, hη

]
for some h̃ξ,η > hξ,η > 0 independent of σ > 0. Each iteration of the Poincaré map
corresponds to a spike within a burst. The burst terminates when the trajectory leaves
the BA of L(yc). Assuming that the linearization (4.56) and (4.57) and Π provide
suitable approximations for the Poincaré map and the BA of L(yc), respectively,
the distribution of the number of spikes in one burst can be approximated by the
distribution of the first exit times for the trajectories of (4.56) and (4.57) from Π:

(4.58) τ = min{τξ, τη},

where

τξ = inf
n>0

{ξn > hξ} and τη = inf
n>0

{ηn > hη}.

We are now in a position to apply the results of section 3 to describe the distribution
of (4.58). By Theorem 3.7, the distribution of τ is asymptotically geometric with
parameter

(4.59) p ≈ σ

C
√

2π
e−

C
σ2

for some C > 0 independent of ε and σ. In the proof of Theorem 3.7, we studied a
class of 2D randomly perturbed maps that includes (4.56) and (4.57). However, the
distribution of τ is effectively determined by the first equation (4.56), i.e., by the 1D
first return map of the fast subsystem. This can be seen by observing that according
to the approximations given at the end of the proof of Theorem 3.7 (see the arguments
following (3.30)) if ε > 0 is sufficiently small, then τξ � τη and τ ∼ τξ. Thus, in type I
models the distribution of spikes in one burst is effectively determined by the 1D first
return map for the fast subsystem (4.56). In particular, the statistics of the number
of spikes in one burst does not depend on the relaxation parameter ε > 0, provided
the latter is sufficiently small.

4.5. Type II model. The derivation of the Poincaré map for the type II models
differs from the analysis in sections 4.1–4.4 for type I models only in some minor
details. In this subsection, we comment on the necessary modifications and state the
final result. Recall that in contrast to type I models, in (2.11) and (2.12), stochastic
forcing enters the slow equation. As before, the initial condition is given by (4.44).
On finite time intervals, solutions of the IVP for (2.11) and (2.12) admit the following
asymptotic expansions:

xt = x
(0)
t + εσx

(1)
t +O

(
(εσ)2

)
,(4.60)

yt = y
(0)
t + εσy

(1)
t +O

(
(εσ)2

)
,(4.61)

where the first order corrections x(1)
t and y

(1)
t are Gaussian processes (cf. Theorem

2.2 in [19]). Using (4.60) and (4.61), we obtain the leading order approximation of
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the fast subsystem:

(4.62) ẋt = f(xt, y0) + εσ
∂f(x(0)

t , y0)
∂y

y
(1)
t + o(εσ).

From this point, the derivation of the Poincaré map follows along the same lines as
described in detail for type I models in sections 4.1–4.4. We omit any further details
and state the final result, the linear approximation of the Poincaré map for the present
case:

ξn+1 = μξn (1 + εσr̃1,n) + εσr̃2,n,(4.63)
ηn+1 = ληn + εσr̃3,n + εa2ξn, n = 0, 1, 2, . . . .(4.64)

As in the previous case, we are interested in the distribution of the first exit time
τ (see (4.58)). To estimate the latter, we use the same argument as in the previous
subsection. This time the system is described by

(4.65) Θn+1 = An+1Θn + σεGn+1, n ≥ 1,

where An is as before and Gn =
[ r2,n
r3,n

]
. The presence of the factor ε in both compo-

nents of Gn leads to the following expression for the numerator of p (see (3.27)):

P

(
μX1r1 + r2

σX1

>
h1 − μX1

εσσX1

, r3 >
h2 − a2X1

σ
+
λ(h2 −X2)

εσ
, (X1, X2) ∈ Bh

)
.

This expression decays very fast as a function of h2 − X2, and since X2 has heavy
tails it is approximated (up to inessential polynomial factors) by

P

(
μX1r1 + r2

σX1

>
h1 − μX1

εσσX1

, r3 >
h2 − a2X1

σ
, (X1, X2) ∈ Bh

)
.

We are now in the analogous situation to that encountered in (3.28), except that
the small parameter ε > 0 appears in the denominator of the other variable. As a
consequence, this time we obtain that τξ � τη for small ε > 0. Therefore, in contrast
to type I models, the escape of a trajectory of (2.11) and (2.12) from A is dominated
by the slow subsystem, i.e., τ = τη.

5. Numerical example. In the present section, we illustrate the statistical
regimes identified in this study with numerical simulations of a conductance-based
model of a neuron in the presence of noise. To this end, we use a three-variable model
of a bursting neuron introduced by Izhikevich [26]. The model dynamics is driven by
the interplay of the three ionic currents: persistent sodium, INaP , the delayed rectifier,
IK , a slow potassium M -current, IKM , and a passive leak current, IL. The follow-
ing system of three differential equations describes the dynamics of the membrane
potential, v, and two gating variables, n and y:

Cv̇ = F (v, n, y),(5.1)
τnṅ = n∞(v) − n,(5.2)
τy ẏ = y∞(v) − y,(5.3)

where F (v, n, y) = −gNaPm∞(v)(v − ENaP ) − gKn(v − EK) − gKMy(v − EK) −
gL(v − EL) + I; gs and Es, are the maximal conductance and the reversal potential
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Fig. 7. The histograms for the number of spikes in one burst. The histograms computed for the
type I model in (a) and type II in (b) are normalized to approximate the corresponding PDFs. The
tails of both functions are well approximated by the exponential densities with parameters 0.0067 and
0.0125, respectively. In (b) the exponential distribution already gives a very good approximation for
the number of spikes exceeding 10. The region of exponential behavior in (a) starts around n ∼ 100.
In (a), we also plotted in solid line the shifted diffusive density Ψa(x − 25), a ≈ 10.8. Although it
is hard to claim a quantitative fit of the diffusive density and the data, the qualitative similarity
between the diffusive pdf Ψa(x) and the peak in the data in the range n ∼ 50− 100 is apparent. The
values of parameters are C = 1

(
μFcm−2

)
; gNA = 20, gK = 10, gKM = 5, gL = 8

(
mScm−2

)
;

ENa = 60, EK = −90, EL = −80 (mV ); am = −20, an = −25, ay = −10 (mV ); bm = 15, bn = 5,
by = 5; τn = 0.152, τy = 20

(
ms−1

)
, I = 5pA, and σ = 1.

of Is, s ∈ {NaP,K,KM,L}, respectively; and I is the applied current. The time
constants τn and τy determine the rates of activation in the populations ofK and KM
channels. The steady-state functions are defined by s∞(v) =

(
1 + exp(as−v

bs
)
)−1

, s ∈
{m,n, y} . The parameter values are given in the caption of Figure 7. This completes
the description of the deterministic model. The random perturbation is used in the
form of white noise, σẇt, and is added to the first equation (5.1) for the type I model
or to the third one (5.3) for the type II model. After suitable rescaling, these models
can be put in the nondimensional form (2.9), (2.10) or (2.11), (2.12). The separation
of the timescales in the nondimesional models (i.e., small ε > 0) is the result of the
presence of the disparate time constants τh � τn in the original model (see caption
of Figure 7).

The parameters of the deterministic system are chosen so that it has a limit cycle
located as shown in Figure 3c. In the presence of small noise the system generates
bursting. In each numerical experiment, we integrated the randomly perturbed sys-
tem using the Euler–Maruyama method [24] until it generated 5,000 bursts. We used
these data to estimate the probability density for the number of spikes within one
burst. In Figure 7, we plot the histograms for the number of spikes in one burst for
type I and type II models. The histograms in Figure 7 are scaled to approximate the
probability density function (PDF) for the number of spikes in one burst. Both PDFs
shown in Figure 7a,b have distinct exponential tails as expected for the asymptotically
geometric RVs. Note that the distribution in Figure 7a fits well with the geometric
distribution for N > 100, while in Figure 7b the geometric distribution fits the data
almost on the entire domain N > 10. In addition, the peak in the histogram in Fig-
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ure 7a is reminiscent of the PDF characteristic for the diffusive escape (see Figure 5).
For comparison, we plotted a slightly shifted diffusive PDF, Ψa(x), a = 10.8, in Fig-
ure 7a. Matching the data and Ψa is a delicate matter, because it is not clear how
wide the range of n is, to which the estimates of Theorem 3.9 apply. Nonetheless, the
qualitative similarity of the peak in the histogram in the range n ∼ 50− 100 and the
diffusive PDF is apparent. We repeated these numerical experiments for a few other
sets of parameters and found qualitatively similar results.

Collecting the statistical data shown in Figure 7 requires integrating the system
over very long intervals of time, for which it would be hard to justify the accuracy
of the Euler–Maruyama method. However, capturing the statistical features of the
dynamical patterns does not require having an accurate solution on the entire interval
of time, because they are determined by the discrete dynamics of the first return map.
The iterations of the latter are expected to be insensitive to the numerical noise, as
suggested by the analysis of the randomly perturbed maps in section 3. Therefore, we
only need to have accurate numerical solutions on the time intervals comparable with
the typical periods of the fast oscillations. This is easy to achieve with the Euler–
Maruyama method. We repeated these numerical experiments using the second order
Runge–Kutta method and obtained very similar results. These informal arguments
form the rationale for using the above numerical scheme. The rigorous justification
of the numerics is beyond the scope of this paper.

Appendix. In this appendix, we provide the details of the derivation of (4.23)–
(4.26), which were omitted in the main part of the paper.

To derive (4.23) and (4.24), we first note that θ(0)t is a monotonic function on
[0, t̄], provided δ > 0 is sufficiently small. Thus,

dξ(0)

dθ(0)
= a(θ(0))ξ(0) +O(ξ20)

and

(A.1) ξ(0)(θ(0)) = ξ0A(θ(0)) +O(ξ20).

By plugging (A.1) into (4.27), we have

(A.2) θ̇
(0)
t = 1 + b1(θ

(0)
t )ξ0A(θ(0)).

By Gronwall’s inequality,

(A.3) θ
(0)
t = ψt +O(ξ20), t ∈ [0, t̄],

where ψt solves

(A.4) ψ̇
(0)
t = 1 + ξ0b1(t)A(t), ψ0 = 0.

The combination of (A.1), (A.3), and (A.4) implies (4.24).
We next turn to IVP (4.30), (4.31), and (4.24). Let U(t, ξ0) denote the principal

matrix solution of the homogeneous system

(A.5) żt = Λ(t, ξ0)zt.

Then the solution of (4.30) and (4.31) is given by

(A.6) zt =
∫ t

0

U(t, s, ξ0)h
(
θ(0)s , ξ(0)s

)
dws =

∫ t

0

U(t, s)h (s, 0) dws +O(ξ0), t ∈ [0, t̄],
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where

(A.7) U(t, s, ξ0) = U(t, ξ0)U−1(s, ξ0) and U(t, s) = U(t, s, 0).

Finally, by integrating (A.5) with ξ0 = 0 and appropriate initial conditions, one
computes

(A.8) U(t, 0) =
(

1 B(t)
0 A(t)

)
.

The expression for U(t, s) in (4.26) follows from (A.7) and (A.8).
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DERIVATION OF A CONTINUUM MODEL FOR THE
LONG-RANGE ELASTIC INTERACTION ON STEPPED

EPITAXIAL SURFACES IN 2 + 1 DIMENSIONS∗

HAOYUN XU† AND YANG XIANG†

Abstract. In heteroepitaxy, the mismatch of lattice constants in the crystal film and the
substrate causes a misfit stress in the bulk of the film, driving the self-organization of the film surface
into various nanostructures. Below roughening transition temperature, the epitaxial surface consists
of terraces separated by atomic-height steps, and the misfit results in a long-range elastic interaction
between surface steps. In this case, the surface morphology is determined by the motion of the
steps, and the widely used continuum models for surface evolution above the roughening transition
temperature do not apply directly. In this paper, we present a continuum model for this long-range
elastic interaction on a stepped heteroepitaxial surface in 2+1 dimensions. The continuum model is
derived rigorously by taking the continuum limit from the discrete model for the interaction between
steps, thus incorporating the discrete features of the stepped surface.

Key words. epitaxial growth, misfit, steps, continuum model, elasticity
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1. Introduction. The study of stress-driven morphological evolution of surfaces
in epitaxial growth has attracted extensive interest recently. These stress-driven self-
assembled nanostructures exhibit novel electronic and optical properties, which have
various potential applications in semiconductor industry [33, 9, 10, 29]. Many contin-
uum models can be found in the literature on surface morphological evolution under
elastic effects [2, 11, 43, 42, 8, 52, 4, 53, 41, 10, 54, 50]. In these models, the surfaces
are modeled as continuously changed profiles without discrete structures, and thus
they work only for surfaces above the roughening transition temperature.

Below the roughening transition temperature, a crystal surface forms facets and
steps, thus the continuum approaches mentioned above do not apply directly. In
the step-flow model, a stepped surface changes its morphology by lateral motion of
steps [3, 33, 29, 24, 1]. For an unstrained film, a step can be viewed as a force dipole
on the film surface. The elastic dipole interaction force decays as 1/r3 for two parallel
straight steps with distance r. A step on the surface of a strained film (in heteroepi-
taxy) can be approximated by a force monopole. The elastic monopole interaction
force decays as 1/r for two parallel straight steps with distance r. Expansions with
higher order terms for the elastic effects of surface steps were obtained in [37, 44, 20].

The force dipole effect between steps on unstrained epitaxial surfaces is relatively
well modeled in the frameworks of both the discrete step dynamics and the continuum
theory [24, 21, 31, 35, 33, 16, 32, 29, 26, 27, 28, 25]. In the framework of the continuum
theory, it is well known that the elastic effect on such a stepped surface is quite
different from that on a surface above roughening transition temperature, due to the
discrete structures on the stepped surface.
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Several models can be found in the literature on the long-range force monopole in-
teraction on heteroepitaxial surfaces with straight and parallel steps (1+1 dimensional
models). Alerhand et al. [1] studied the spontaneous formation of stress domains on
crystal surfaces. Tersoff et al. [47, 23] described the step bunching phenomenon by a
step dynamics model accounting for the attractive force monopole interaction due to
misfit stress and the repulsive force dipole interaction. Duport et al. [5, 6] proposed
models that take into account the force monopole and force dipole interactions as well
as the elastic interaction between adatoms and steps and the effect of the Schwoebel
barrier. Kaganer and Ploog [18] studied the energy of a strained stepped surface
including the force dipole and force monopole effects of the steps and the interaction
between them. Shenoy and Freund [39] obtained a continuum model based on con-
tinuum variational principles. Besides the force dipole and force monopole effects of
the steps, they also showed that the dependence of the step line energy on the sign of
the misfit strain may lead to nucleation of steps without energy barrier. Even though
the discrete features of the step line energy and force dipole interaction between steps
were included in these continuum models [18, 39], for the long-range elastic interaction
due to misfit, the traditional expression above the roughening transition temperature
was directly used. Xiang [49] and Xiang and E [51] derived a continuum model rigor-
ously by taking the continuum limit of the discrete step dynamics models of Tersoff
et al. [47, 23] and Duport et al. [5, 6]. For the misfit elastic effect, in addition to the
widely used integral expression above the roughening transition temperature, there is
another term incorporating the discrete features of the stepped surface in their contin-
uum model. This additional term is crucial in modeling the step bunching instability
on stepped surfaces [51].

A few models for crystal surfaces in 2 + 1 dimensions accounting for the force
monopole elastic effect of curved steps have also been proposed. Tersoff and Pehlke [46]
analyzed step undulation instability of a stepped Si(001) surface which is subject to a
force monopole effect at the steps, and their results agree well with the experimental
observations obtained by Tromp and Reuter [48]. Houchmandzadeh and Misbah [15]
studied the force dipole and force monopole elastic interactions between modulated
steps. Kukta and Bhattacharya [19] proposed a 2 + 1 step-flow model that accounts
for both the elastic effects and terrace diffusion. Léonard and Tersoff [22] compared
the different instability modes of a stepped surface under stress for both permeable
and impermeable steps. Shenoy [38] studied the growth of epitaxial nanowires by con-
trolled coarsening of strained islands. Haußer, Jabbour, and Voigt [12] proposed a
step-flow model for the heteroepitaxial growth of strained, substitutional, binary alloy
films with phase segregation. These models are all within the framework of discrete
step dynamics. Within the continuum framework, Kaganer and Ploog [18] investi-
gated the energetics of strained axially symmetric cone-shaped stepped surfaces; Ra-
masubramaniam and Shenoy [36] generalized the 1 + 1 dimensional continuum model
of Shenoy and Freund [39] to 2 + 1 dimensions. However, continuum expressions
above the roughening transition temperature were directly used in these continuum
models. Still lacking is a continuum theory that accounts for the long-range elastic
effect and the discrete features for a strained epitaxial film with a stepped surface in
2 + 1 dimensions, as the continuum equation proposed in [49, 51] for a surface with
straight steps in 1 + 1 dimensions.

In this paper, we present such a continuum model for the long-range elastic inter-
action on the stepped surface of a strained film in 2 + 1 dimensions. The continuum
model is derived from the discrete model based on the BCF theory [3] that incorpo-
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rates the processes of adatom diffusion on the terraces and attachment-detachment
of adatoms to the steps [3, 33]. The continuum model is derived under the condition
that the lattice constant and the average distance between adjacent steps are very
small compared with the length unit of the continuum model, and thus there are
many steps contained in a unit area of the domain of the continuum model. The
derived continuum model contains new terms representing the contribution to the
step line energy from this long-range elastic interaction, in addition to the traditional
continuum expression for the surface above the roughening transition temperature.
We focus on derivation in this paper. Validation of the model and simulation results
using the model will be presented elsewhere [55].

The rest of this paper is organized as follows. In section 2, we briefly review the
elastic effects on epitaxial surfaces and currently available continuum models for them.
In section 3, we give the discrete model for the long-range elastic interaction on the
stepped surface of a strained film. In section 4, we present the details of the derivation
of the continuum model for the long-range elastic interaction on a stepped surface by
taking the continuum limit from the discrete model. The results are summarized and
discussion is made in section 5.

2. Currently available continuum models for epitaxial surfaces under
elastic effects. In this section, we briefly review the elastic effects on epitaxial sur-
faces and currently available continuum models for them. More details can be found
in the books and reviews [33, 10, 9, 29] and other references in this section.

In heteroepitaxial growth, the misfit of the lattice constants is defined by

ε0 =
af − a

a
,(2.1)

where af and a are the lattice constants of the film and the substrate, respectively.
This misfit results in strain and stress fields in the film and the substrate. For an
isotropic film with flat surface and infinite substrate, there is a constant stress field
in the bulk of the film. When the height of the film is in the z direction, the nonzero
components of the stress tensor in the film are

σxx = σyy = σ0 =
2G(1 + ν)ε0

1 − ν
,(2.2)

when the film and the substrate have the same shear modulus G and Poisson’s ratio
ν.

Above the roughening transition temperature, the surface can be modeled as a
continuously changed profile without discrete structures on it; see Figure 2.1. Without
the deposition flux, the surface morphological evolution due to surface diffusion is
given by [30]

∂h

∂t
= (1 + |∇h|2) 1

2∇s · (Ds∇sμ),(2.3)

where h = h(x, y) is the height of the surface, ∇s is the surface gradient operator, Ds

is the surface diffusion coefficient, μ is the total chemical potential,

μ = μ0 + μm,(2.4)

μ0 is the chemical potential due to the surface energy, and μm is the chemical potential
due to the elastic energy.
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Fig. 2.1. The film undergoes a stress due to the misfit in heteroepitaxy.

The chemical potential due to the surface energy μ0 is given by [30, 13]

μ0 = γκ,(2.5)

where γ is the surface energy density, κ = κ1 + κ2, κ1 and κ2 are the two principal
values of the curvature of the surface.

The chemical potential due to the elastic energy μm is given by the elastic energy
density on the surface [2, 11, 43]. For a nonflat surface, the chemical potential μm
has to be obtained by solving an elasticity system in the film and the substrate.
For a film with slightly modulated surface subject to the misfit stress, the elasticity
system is approximately equivalent to that in a film with flat surface and subject to
a traction [2, 11, 43, 42, 8, 33, 10, 9]

T = σ0(hx, hy, 0)(2.6)

on its surface. In this case, μm is given by [17]

μm(x, y) = − (1 − ν)σ2
0

2πG

∫ ∞

−∞

∫ ∞

−∞

(x− ξ)hx(ξ, η) + (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2

dξdη,(2.7)

when the surface h(x, y) is defined in the whole two-dimensional space.
Below the roughening transition temperature, an epitaxial surface consists of

atomic-height steps and atomic flat terraces; see Figure 2.2. The surface changes its
morphology by motion, nucleation, and annihilation of steps. The evolution equation
is given by [21, 31, 35, 16, 18, 49, 39, 51, 36, 38, 26, 27, 28, 25]

∂h

∂t
= ∇ · (D0∇μ),(2.8)

where D0 is the mobility. The mobility D0 depends on the adatom diffusion on
the terraces and attachment-detachment of adatoms along the steps. Derivations of
this mobility from the BCF models [3] can be found for surfaces with straight steps
in [49, 51], for conical surfaces with circular steps in [16, 18, 27], and for general
stepped surfaces in 2 + 1 dimensions in [25].
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Step
Terrace

Fig. 2.2. A stepped epitaxial surface.

The total chemical potential μ on a misfit-strained stepped surface can be written
as

μ = μs + μd + μ̂m.(2.9)

The first term μs is the chemical potential due to the step line energy

μs = −∇ ·
(
g1

∇h
|∇h|

)
=
δEline

δh
,(2.10)

where

Eline =
∫ ∞

−∞

∫ ∞

−∞
g1|∇h|dxdy(2.11)

is the step line energy, and g1 is the step line energy density. The second term μd is
the chemical potential due to the interaction between steps in unstrained films which
can be approximated by force dipole interaction

μd = −∇ · ( g3|∇h|∇h) =
δEdipole

δh
,(2.12)

where

Edipole =
∫ ∞

−∞

∫ ∞

−∞

g3
3
|∇h|3dxdy(2.13)

is the energy due to the force dipole interaction, and g3 is the strength of this inter-
action.

The last term, μ̂m, in the above total chemical potential expression is the contri-
bution of the long-range elastic interaction due to the misfit. The chemical potential
for this long-range elastic interaction above the roughening transition temperature
given in (2.7) was directly used for a surface with straight steps in [39], for a conical
surface with circular steps in [18], and for a stepped surface in 2+1 dimensions in [36].

Xiang [49] and Xiang and E [51] derived a continuum model for epitaxial surfaces
with straight steps rigorously by taking the continuum limit of the discrete models of
steps [47, 23, 5, 6]. Their result for the force monopole and dipole elastic effects of
steps is

(2.14) μ̂(x) = − (1 − ν)σ2
0

πG

∫ ∞

−∞

h′(ξ)
x− ξ

dξ − (1 − ν)σ2
0a

2πG
hxx(x)
|hx(x)|



1398 HAOYUN XU AND YANG XIANG

for a monotonic surface. The first term in (2.14) is the same as the chemical potential
above the roughening transition temperature given in (2.7) in 1 + 1 dimensions. The
second term is the correction due to the discrete step-terrace structure of the surface.
This continuum model of the chemical potential is also the variation of an elastic
energy:

(2.15) Emisfit = − (1 − ν)σ2
0

2πG

∫ ∞

−∞

(
h(x)

∫ ∞

−∞

h′(ξ)
x− ξ

dξ + a|hx| log |hx|
)
dx.

In this paper, we shall generalize this work to epitaxial surfaces with curved steps in
2 + 1 dimensions.

3. Discrete model for the elastic interaction between steps due to mis-
fit. In this section, we give the discrete model for the chemical potential of a stepped
surface due to the misfit-induced long-range elastic interaction in 2 + 1 dimensions.
Following [1, 46, 5, 6, 15, 47, 23, 33, 19, 18, 22, 29, 38], this chemical potential can
be obtained by considering the surface height h(x, y) as a mathematical step function
whose jump at a step is the lattice constant a in the continuum model (2.7). We as-
sume that the steps {γj}, j = . . . ,−2,−1, 0, 1, 2, . . . , are smooth plane curves. Using
the relation

(3.1) ∇h = −a
∑
j

δ(γj)nj

in (2.7), where δ(γj) is the one-dimensional Dirac delta function in the normal direc-
tion nj of γj , the chemical potential at a point X on step γn is

(3.2) μ̂m(X) = μ̂int
m (X) + μ̂self

m (X),

with

(3.3) μ̂int
m (X) =

(1 − ν)σ2
0a

2πG

⎛
⎝∑
j �=n

∫
γj

(X − X1) · n j(X1)
‖X− X1‖3

dl

⎞
⎠

and

(3.4) μ̂self
m (X) =

(1 − ν)σ2
0a

2πG

(∫ ∞

−∞
δ(ω) dω

∫
γω

(X − X1) · nω(X1)
‖X− X1‖3

dl

)
,

where X1 is a point that varies along the curves in these line integrals, the curve
γω = {X0 + ωnn(X0) : X0 ∈ γn}, and nω is its unit normal vector. Note that there
are two possible directions for the normal vector of a step. In (3.1) and throughout
this paper, we choose the normal direction of a step to be the direction in which the
surface height h is decreasing.

The delta function δ(ω) in the chemical potential due to the self-interaction
μ̂self
m (X) has to be regularized to avoid nonphysical singularity. (The same nota-

tion is used for simplicity.) The width of the regularization of δ(ω), which reflects the
detailed structure of the step and can be determined from atomistic calculations, is of
the order of the lattice constant a. The regularization or cut-off is commonly used to
remove nonphysical singularities in the models of steps [1, 19, 22, 29, 38] or other line
defects such as dislocations [14]. We also assume that the regularized delta function
δ(ω) has compact support and δ(−ω) = δ(ω).
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Suppose that the step γn is parameterized by its arclength s, and the unit normal
vector at a point X1(s) ∈ γn

(3.5) nn(X1) = (−y′(s), x′(s))

is in the direction in which the surface is decreasing. The curve γω can also be
parameterized by s (no longer arclength) as

(3.6) (xω(s) , yω(s)) = (x(s) − ωy′(s) , y(s) + ωx′(s)),

and its tangent vector and normal vector (not normalized) are

(3.7) (x′ω(s) , y′ω(s)) = (1 − κ(s)ω)(x′(s) , y′(s))

and

(3.8) (−y′ω(s) , x′ω(s)) = (1 − κ(s)ω)(−y′(s) , x′(s)),

respectively, where κ(s) is the curvature of γn at point X1(s). Note that (x′′(s) , y′′(s))
= κ(s)(−y′(s) , x′(s)). Thus we can rewrite the chemical potential due to the self-
interaction in (3.4) as

μ̂self
m (X) =

(1 − ν)σ2
0a

2πG

∫ ∞

−∞
δ(ω) dω

∫
γn

(1 − κ(X1)ω)
(X − X1 − ωnn(X1)) · nn(X1)

‖X − X1 − ωnn(X1)‖3
dl.

(3.9)

4. Derivation of the continuum model. Although (3.2)–(3.4) give an exact
expression for the misfit-induced long-range elastic interaction on a stepped surface,
in the framework of a continuum model, the stepped surface is often described by a
smooth profile without resolving the details of the steps; see the surfaces z = h(x, y) in
Figure 4.1. In this section, we will derive a continuum model for the long-range elastic
interaction on such a surface from the discrete model given by (3.2)–(3.4) by letting
the lattice constant a→ 0. Similarly to the derivation for surfaces with straight steps
in [49, 51], we will find the continuum approximation by considering the difference
between this discrete model and the continuum expression on a surface without steps
given by (2.7).

Fig. 4.1. A stepped surface described by a smooth profile z = h(x, y).
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4.1. Assumptions. We assume that in the length unit of the continuum model,
the lattice constant a � 1, which means that there are many steps in a unit area of
the domain of the continuum model, and the curvature radius of the steps is O(1).
The surface in the continuum model is a smooth profile h(x, y), and a step γn with
height hn is described by the contour line γn = {(x, y)|h(x, y) = hn}; see Figure
4.1. We assume that h(x, y) has up to fourth order bounded partial derivatives,
and |∇h(x, y)| > c0, where c0 > 0 is a constant. When the domain size is infinity, we
assume that the integral expression in (2.7) converges, the line integrals in the discrete
model in (3.3) and (3.4) converge absolutely, and the summation in the discrete model
in (3.3) converges. Without loss of generality, the whole xy plane is used as the domain
in our derivation.

4.2. Integral expression reformulated. In this subsection, we rewrite the
integral expression given by (2.7) using parameter z and the parameter of the contour
line

(4.1) γz = {(x, y)|h(x, y) = z}

for the surface z = h(x, y). From the assumptions of h(x, y) given above, the contour
line γz is smooth, with unit normal vector

n z(x, y) = − ∇h(x, y)
|∇h(x, y)|(4.2)

and bounded curvature

κ(x, y) = ∇ ·
(

∇h(x, y)
|∇h(x, y)|

)
(4.3)

for (x, y) ∈ γz.
Using the new parameters, the integral expression (2.7) for the chemical potential

at a point (x, y) on step γn, i.e., h(x, y) = hn, can be rewritten as

μm(x, y) = − (1− ν)σ2
0

2πG

∫ ∞

−∞
dz

∫
γz

(x− ξ)hx(ξ, η)+ (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2

1√
h2
x(ξ, η)+h2

y(ξ, η)
dl

=
(1 − ν)σ2

0

2πG

∫ ∞

−∞
dz

∫
γz

(X − X1) · n z(X1)
ρ3

dl,(4.4)

where ρ =
√

(x− ξ)2 + (y − η)2, X1 = (ξ, η) varies along γz, and X = (x, y).
Using the above formulation for the integral expression, the discrete formula-

tion (3.2)–(3.4) can be roughly considered as a numerical discretization for the outer
integral with respect to z of the integral expression. Since the inner integral in (4.4),

J(z) =
∫
γz

(X − X1) · nz(X1)
ρ3

dl,(4.5)

is singular when z = hn = h(x, y), here we derive the asymptotic behavior of this
singularity as z → hn, which will be used later to find the difference between the
discrete and integral expressions accurately. The derivation method is similar to that
for the asymptotic behavior of vortices in the Ginzburg–Landau equation [7, 34].

Suppose that X0 is the point on γz such that the point X lies on the normal
direction (positive or negative) of γz at X0. Let (tz, nz) be the Frenet coordinates
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at X0, where tz is the unit tangent vector of γz, and nz is the unit normal vector
of γz defined in (4.2). Let s be a shifted arclength of γz such that X0 = γz(0), and
let κz(s) be the curvature along γz. If κz = κz(0) is the curvature of γz at X0 and
κ′z = κ′z(0), a point X1 on γz near X0 has the representation X1 = α(s)tz + β(s)nz,
where α(s) = s− 1

6κ
2
zs

3 + · · · and β(s) = 1
2κ

2
zs

2 + 1
6κ

′
zs

3 + · · · , and X = dnz. Thus
d is the signed distance from point X to the curve γz. We will find the asymptotic
behavior of the integral J(z) in (4.5) as d → 0. Note that the signed distance d can
be expressed in terms of z near hn:

d = − z − hn√
h2
x(X0) + h2

y(X0)
+O((z − hn)2), z → hn,(4.6)

whose proof can be found in Appendix A. (Note that the notation is different in
Appendix A. The points X0 and X here are the points X and P in Appendix A,
respectively. See Figure A.1.)

We first divide the integral in (4.5) into two parts: J(z) = J1(z) + J2(z) with

J1(z) =
∫
γ1

z

(X − X1) · nz(X1)
ρ3

dl, J2(z) =
∫
γ2

z

(X − X1) · nz(X1)
ρ3

dl,(4.7)

where γ1
z is the segment of γz for s ∈ [−1, 1], γ2

z = γz − γ1
z , and nz(X1) = −β′(s)tz +

α′(s)nz. Using the expansions of α(s) and β(s) and change of variable s = λ|d| [34],
we have

J1(z) =
∫ 1

−1

α(s)β′(s) − α′(s)β(s) + α′(s)d
[α2(s) + (β(s) − d)2]3/2

ds

=
∫ 1

−1

d+ 1
2κzs

2 +O(s3 + s2d)
(s2 + d2 − dκzs2)3/2[1 +O(s2 + sd)]

ds

=
∫ 1

−1

d+ 1
2κzs

2 +O(s2d+ sd2)
(s2 + d2 − dκzs2)3/2

ds+O(1)

=
∫ |d|−1

−|d|−1

d|d| + 1
2d

2|d|κzλ2 +O(λ2d4 + λd4)
(λ2d2 + d2 − d3κzλ2)3/2

dλ +O(1)

=
∫ |d|−1

−|d|−1

1 + 1
2dκzλ

2 +O(λ2d2 + λd2)
d(λ2 + 1 − dκzλ2)3/2

dλ+O(1)

= −κz log |d| + 2
d

+O(1)

= −κ log |d| + 2
d

+O(1),(4.8)

as d→ 0, where κ is the curvature of the step γn at X. Since J2(z) = O(1), we have

J(z) = −κ log |d| + 2
d

+O(1), d→ 0.(4.9)

This asymptotic behavior holds uniformly when z → hn due to the smoothness as-
sumption of the surface h(x, y) and the convergence of the line integral.



1402 HAOYUN XU AND YANG XIANG

Using (4.6) and (4.9), and X = X0 +O(z − hn), we have the asymptotic approx-
imation of line integral in (4.5):

J(z) = −κ log |z − hn| −
2
√
h2
x(X) + h2

y(X)

z − hn
+O(1), z → hn.(4.10)

4.3. Difference between the discrete model and the continuum expres-
sion. When the continuum expression μm(x, y) is written in the form in (4.4), the
discrete model μ̂m(x, y) given by (3.2)–(3.4) can be regarded as a numerical scheme
of this continuum expression. Thus, the continuum expression with the leading order
error terms of this numerical scheme will give an accurate continuum approximation
of the discrete model. The error of this numerical scheme can be found using the
following theorem, whose proof is given in Appendix B.

Theorem 4.1. Suppose that interval [a, b] is divided into m subintervals with
Δx = (b − a)/m, xj = a + (j − 1)Δx, j = 1, . . . ,m + 1. Let G(x) = g1(x) log |x −
t|+ g2(x)/(x− t) + g3(x) with t = xj0 for some j0, where g1(x), g2(x), and g3(x) are
twice continuously differentiable functions. Then

∫ b

a

G(x) dx = Δx

⎛
⎝G(a) +G(b)

2
+

∑
2≤j≤m,j �=j0

G(xj)

⎞
⎠

+
∫ t+Δx

2

t−Δx
2

G(x) dx − (log π − 1)g1(t)Δx +O(Δx2).(4.11)

Using this theorem for G(z) = (1−ν)σ2
0

2πG J(z), where J(z) is given by (4.5) with
the asymptotic behavior as z → hn given by (4.10), and the discretization z = hj ,
j = . . . ,−1, 0, 1, 2, . . . , we have, as a→ 0,

μm(x, y) = μ̂int
m (x, y)

+
(1 − ν)σ2

0

2πG

(∫ hn+ a
2

hn− a
2

(∫
γz

(X − X1) · n z(X1)
ρ3

dl

)
dz + (log π − 1)κa

)

+O(a2),(4.12)

or

μ̂m(x, y) = μ̂int
m (x, y) + μ̂self

m (x, y)

= μm(x, y) + μ̂self
m (x, y) − μself

m (x, y) − (1 − ν)σ2
0

2πG
(log π − 1)κa+O(a2),(4.13)

where

μself
m (x, y) =

(1 − ν)σ2
0

2πG

∫ hn+ a
2

hn− a
2

(∫
γz

(X − X1) · n z(X1)
ρ3

dl

)
dz.(4.14)

Now, to find the continuum approximation of μ̂m(x, y), it remains to find the
difference between the self-interaction in the discrete model μ̂self

m (x, y), given by (3.4),
and μself

m (x, y), given by (4.14), which can be explained as the self-interaction in the
continuum model.

In order to find the difference between μ̂self
m (x, y) and μself

m (x, y), similar to μ̂self
m (x, y)

given by (3.9), we also rewrite the inner integral in μself
m (x, y) as an integral along γn.



CONTINUUM MODEL FOR LONG-RANGE ELASTIC INTERACTION 1403

When the lattice constant a is very small compared with the minimum radius of
curvature of contour lines of h, which exists due to the uniform boundedness of the
curvature, the contour line γz when z ∈ [hn − a

2 , hn + a
2 ] can be written as

γz = {X1 + d(X1, ω)nn(X1) : X1 ∈ γn},(4.15)

where ω = z − hn, nn(X1) is the unit normal vector of γn at the point X1 on γn,
and d(X1, ω) is the signed distance between a point X1 on γn and a point P on the
nearby contour line γz such that PX1 is parallel to the normal direction of γn at X1.

Suppose that γn is parameterized by its arclength s: X1 = (x(s), y(s)) ∈ γn,
with unit tangent vector tn(X1) = (x′(s), y′(s)) and unit normal vector nn(X1) =
(−y′(s), x′(s)). Then γz can also be parameterized by s (no longer arclength) as

(x̂ω(s), ŷω(s)) = (x(s) − d(s, ω)y′(s) , y(s) + d(s, ω)x′(s)),(4.16)

where d(s, ω) = d(X1, ω)|X1=(x(s),y(s)) is the signed distance from the point P to the
point X1 which is positive in the direction of nn(X1). The tangent and normal vectors
of γz (not normalized) are

(x̂′ω(s), ŷ′ω(s)) = (1 − κ(s)d(s, ω))(x′(s) , y′(s)) + ds(s, ω)(−y′(s) , x′(s))(4.17)

and

(−ŷ′ω(s), x̂′ω(s)) = (1 − κ(s)d(s, ω))(−y′(s) , x′(s)) − ds(s, ω)(x′(s) , y′(s)),(4.18)

respectively, where κ(s) is curvature of γn at (x(s), y(s)), and ds(s, ω) = ∂
∂sd(s, ω).

Hence, μself
m (x, y) defined in (4.14) can be written as

(4.19)

μself
m (x, y) =

(1 − ν)σ2
0

2πG

∫ a
2

−a
2

(∫
γn

(X − X1 − d(X1, ω)nn(X1)) · ñn(X1)
‖X− X1 − d(X1, ω)nn(X1)‖3

dl

)
dω,

where

ñn(X1) = (1 − κ(X1)d(X1, ω))nn(X1) − ds(X1, ω)tn(X1).(4.20)

4.4. Difference between µ̂self
m (x, y) and µself

m (x, y). Now we want to find
the asymptotic approximation, up to O(a), of the difference between μ̂self

m (x, y) given
by (3.9) and μself

m (x, y) given by (4.19). We use a shifted arclength parameter s for
γn with X = γn(0). When X1 ∈ γn is close to X,

X1 = X +
(
s− κ2s3

6

)
t +

(
κs2

2
+
κ′s3

6

)
n +O(s4),(4.21)

where t and n are unit tangent and normal vectors of γn at X, respectively, κ =
κ(s)|s=0 is the curvature of γn at X, and κ′ = dκ(s)

ds |s=0.
Let γAn be the segment of γn with s ∈ [−a 1

4 , a
1
4 ] and γBn = γn − γAn . Due to the

smoothness assumptions of h, we have

‖X− X1‖2 ≥ 1
2
a

1
2 , X1 ∈ γBn ,(4.22)
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when a is small enough compared with the minimum radius of the curvature of γn.
Thus when ω = O(a), for X1 ∈ γBn , we have

‖X− X1 − ωnn(X1)‖3

= (‖X − X1‖2 − 2ω(X− X1) · nn(X1) + ω2)3/2

= ‖X− X1‖3

(
1 − 2ω

(X− X1) · nn(X1)
‖X− X1‖2

+
ω2

‖X− X1‖2

)3/2

= ‖X− X1‖3(1 +O(a
3
4 )).(4.23)

Using (4.22) and (4.23), when ω = O(a), we have

(4.24)∫
γB

n

(1 − κ(X1)ω)
(X − X1 − ωnn(X1)) · nn(X1)

‖X− X1 − ωnn(X1)‖3
dl=

∫
γB

n

(X− X1) · nn(X1)
‖X− X1‖3

dl+O(a
1
4 ),

which implies that when the inner line integral is along γBn in μ̂self
m (x, y) given by (3.9),

we have

a

∫ ∞

−∞
δ(ω)dω

∫
γB

n

(1 − κ(X1)ω)
(X − X1 − ωnn(X1)) · nn(X1)

‖X− X1 − ωnn(X1)‖3
dl

= a

∫
γB

n

(X − X1) · nn(X1)
‖X− X1‖3

dl +O(a
5
4 ),(4.25)

when the delta function δ(ω) has compact support with a width of O(a).
Now we consider μself

m (x, y) given by (4.19) when the inner line integral is along
γBn . First, it is shown in Appendix A that when ω is small,

(4.26)

d(X1, ω) = − ω

(h2
x + h2

y)1/2
+
h2
xhxx + 2hxhyhxy + h2

yhyy

2 (h2
x + h2

y)5/2
ω2

∣∣∣∣∣
X1=(x(s),y(s))

+O(ω3).

Thus we have

ds(X1, ω) =
hx(x′hxx + y′hxy) + hy(x′hxy + y′hyy)

(h2
x + h2

y)3/2
ω

∣∣∣∣∣
X1=(x(s),y(s))

+O(ω2)(4.27)

and

‖ñn(X1)‖ = 1 +O(ω),(4.28)

where ñn(X1) is given by (4.20).
Using (4.22) and (4.26), when ω = O(a), for X1 ∈ γBn , we have

‖X− X1 − d(X1, ω)nn(X1)‖3 = ‖X− X1‖3(1 +O(a
3
4 )).(4.29)

Thus when ω = O(a), for X1 ∈ γBn , using (4.28) and (4.29), we have

(4.30)∫
γB

n

(X − X1 − d(X1, ω)nn(X1)) · ñn(X1)
‖X − X1 − d(X1, ω)nn(X1)‖3

dl =
∫
γB

n

(X − X1) · nn(X1)
‖X− X1‖3

dl +O(a
1
4 ),
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which implies
∫ a

2

− a
2

dω

∫
γB

n

(X − X1 − d(X1, ω)nn(X1)) · ñn(X1)
‖X− X1 − d(X1, ω)nn(X1)‖3

dl

= a

∫
γB

n

(X − X1) · nn(X1)
‖X− X1‖3

dl +O(a
5
4 ).(4.31)

Next, we consider μ̂self
m (x, y) in (3.9) and μself

m (x, y) in (4.19) when the inner line
integrals are along γAn . When X1 ∈ γAn , X1 can be written as (4.21), and the unit
tangent vector, unit normal vector, and curvature at X1 are

tn(X1) =
(

1 − κ2s2

2

)
t +

(
κs+

κ′s2

2

)
n +O(s3),(4.32)

nn(X1) =
(
−κs− κ′s2

2

)
t +

(
1 − κ2s2

2

)
n +O(s3),(4.33)

and

κ(X1) = κ+O(s),(4.34)

respectively, for s ∈ [−a 1
4 , a

1
4 ].

When s ∈ [−a 1
4 , a

1
4 ], ω = O(a), and a is small enough, using (4.21), (4.32)–(4.34),

the integrand in (3.9) can be written as

(1 − κ(X1)ω)
(X − X1 − ωnn(X1)) · nn(X1)

‖X− X1 − ωnn(X1)‖3

=
κs2/2 − ω + κω2 +O(s3 + ωs2 + ω2s)

[s2 + ω2 − κωs2 +O(s4 + ωs3)]3/2

=
κs2/2 − ω + κω2

(s2 + ω2)3/2
−

3
2κω

2s2

(s2 + ω2)5/2
+O(1).(4.35)

Hence, when X1 ∈ γAn , the integral in μ̂self
m (x, y) given by (3.9) can be written as

(1 − ν)σ2
0a

2πG

∫ ∞

−∞
δ(ω) dω

∫
γA

n

(1 − κ(X1)ω)
(X − X1 − ωnn(X1)) · nn(X1)

‖X− X1 − ωnn(X1)‖3
dl(4.36)

=
(1 − ν)σ2

0a

2πG

∫ ∞

−∞
δ(ω)dω

∫ a
1
4

−a
1
4

[
κs2/2 − ω + κω2

(s2 + ω2)3/2
−

3
2κω

2s2

(s2 + ω2)5/2

]
ds+O(a

5
4 )

=
(1 − ν)σ2

0a

2πG

∫ ∞

−∞
κδ(ω)(log a

1
4 + log 2 − log |ω|)dω +O(a

5
4 )

=
(1 − ν)σ2

0a

2πG
κ(log 2a

1
4 − log rc) +O(a

5
4 ),

when the regularized delta function δ(ω) has compact support with a width of O(a)
and δ(−ω) = δ(ω), where rc is a parameter depending on the core of the step repre-
sented by the regularized delta function δ(ω):

log rc =
∫ ∞

−∞
δ(ω) log |ω| dω.(4.37)
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The inner integral with respect to s in (4.36) is calculated using change of variable
s = |ω|λ.

Now we consider μself
m (x, y) given by (4.19) when the inner line integral is along

γAn . First, from (4.26) and (4.27), we have

d(X1, ω) = β1ω + β2ω
2 + β3ωs+O(ω(s2 + ω2)),(4.38)

ds(X1, ω) = β3ω +O(ω2 + ωs),(4.39)

where

β1 = − 1
(h2
x + h2

y)1/2
,(4.40)

β2 =
h2
xhxx + 2hxhyhxy + h2

yhyy

2 (h2
x + h2

y)5/2
,(4.41)

β3 =
hx(x′hxx + y′hxy) + hy(x′hxy + y′hyy)

(h2
x + h2

y)3/2
,(4.42)

in which all partial derivatives are values at X = (x, y).
Hence, when s ∈ [−a 1

4 , a
1
4 ], ω = O(a), and a is small enough, using (4.20), (4.21),

(4.32)–(4.34), (4.38), and (4.39), the integrand in (4.19) can be written as

(4.43)
(X − X1 − d(X1, ω)nn(X1)) · ñn(X1)

‖X− X1 − d(X1, ω)nn(X1)‖3

=
−β1ω + (κβ2

1 − β2)ω2 + κs2/2
(s2 + β2

1ω
2)3/2

+
3
2β1ω(−β1κωs

2 + 2β1β3ω
2s+ 2β1β2ω

3)
(s2 + β2

1ω
2)5/2

+O(1).

Using this expansion and change of variable s = |β1ω|λ, when X1 ∈ γAn , the integral
in μself

m (x, y) given by (4.19) can be written as

(1 − ν)σ2
0

2πG

∫ a
2

− a
2

dω

∫
γA

n

(X − X1 − d(X1, ω)nn(X1)) · ñn(X1)
‖X − X1 − d(X1, ω)nn(X1)‖3

dl

=
(1 − ν)σ2

0

2πG

∫ a
2

− a
2

dω

∫ a
1
4

−a
1
4

[
−β1ω + (κβ2

1 − β2)ω2 + κs2/2
(s2 + β2

1ω
2)3/2

+
3
2β1ω(−β1κωs

2 + 2β1β3ω
2s+ 2β1β2ω

3)
(s2 + β2

1ω
2)5/2

]
ds+O(a

5
4 )

=
(1 − ν)σ2

0a

2πG

⎡
⎣κ
⎛
⎝log 2a

1
4 + 1 + log

2
√
h2
x + h2

y

a

⎞
⎠

+
h2
xhxx + 2hxhyhxy + h2

yhyy

(h2
x + h2

y)3/2

⎤
⎦+O(a

5
4 ).(4.44)

Using (4.25), (4.31), (4.36), and (4.44), we have

μ̂self
m (x, y) − μself

m (x, y)

=
(1 − ν)σ2

0a

2πG

⎡
⎣κ
⎛
⎝−1 + log

a

2rc
√
h2
x + h2

y

⎞
⎠−

h2
xhxx + 2hxhyhxy + h2

yhyy

(h2
x + h2

y)3/2

⎤
⎦+O(a

5
4 ).

(4.45)
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4.5. The continuum model for a stepped surface. Using (2.7), (4.3), (4.13),
and (4.45), we have the continuum model for the long-range elastic interaction on a
stepped surface in heteroepitaxy:

(4.46)
μ̂m(x, y)

= μm(x, y) +
(1 − ν)σ2

0a

2πG

⎛
⎝κ log

a

2πrc
√
h2
x + h2

y

−
h2
xhxx + 2hxhyhxy + h2

yhyy

(h2
x + h2

y)3/2

⎞
⎠

+O(a
5
4 )

≈ − (1 − ν)σ2
0

2πG

∫ ∞

−∞

∫ ∞

−∞

(x− ξ)hx(ξ, η) + (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2

dξdη

− (1 − ν)σ2
0a

2πG

[
∇ ·
(

∇h
|∇h|

)
log

2πrc|∇h|
a

+
∇hD2h∇Th

|∇h|3

]
,

where D2h is the Hessian matrix of h(x, y), and ∇hD2h∇Th = h2
xhxx + 2hxhyhxy +

h2
yhyy. In this continuum expression, the integral term over the whole domain of the

surface is the same as the expression of the misfit-induced elastic interaction above
the roughening transition temperature, and the two additional terms incorporate the
discrete feature of the stepped surface. It is easy to verify that this continuum model
is reduced to the 1 + 1 dimensional model for a surface with straight steps given by
(2.14) [49, 51].

In particular, for an axisymmetric conical mound-like stepped surface h(r) with
h′(r) < 0, where r is the radial coordinate, the result becomes

μ̂m(r) =
(1 − ν)σ2

0

πG

∫ ∞

0

(
E(m)
r̂ − r

+
K(m)
r̂ + r

)
h′(r̂) dr̂

+
(1 − ν)σ2

0a

2πG

(
1
r

log
2πrc|h′(r)|

a
+
h′′(r)
h′(r)

)
+O(a2),(4.47)

where K(m) =
∫ π

2
0

dθ√
1−m sin2 θ

and E(m) =
∫ π

2
0

√
1 −m sin2 θ dθ are the complete

elliptic integrals of the first and second kind, respectively, with m = 4r̂r
(r̂+r)2 .

The derived continuum expression of chemical potential given by (4.46) can be
written as the variation of an elastic energy

μ̂m(x, y) =
δEmisfit

δh
,(4.48)

where

Emisfit = − (1 − ν)σ2
0

4πG

∫ ∞

−∞

∫ ∞

−∞
h(x, y)(4.49)

·
[∫ ∞

−∞

∫ ∞

−∞

(x− ξ)hx(ξ, η) + (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2

dξdη

]
dxdy

+
(1 − ν)σ2

0a

2πG

∫ ∞

−∞

∫ ∞

−∞
|∇h| log

2πrc|∇h|
ea

dxdy.
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The first term in this expression is the traditional expression of the misfit elastic
energy above the roughening transition temperature on surfaces with small amplitude
modulation. The second term is new, which is the contribution to the step line
energy from the force monopole interaction, and which gives the two local terms in
the chemical potential in (4.46).

It is easy to verify that this misfit elastic energy is reduced to that in the 1 + 1
dimensional continuum model for surfaces with straight steps given by (2.15) [49, 51].
Note that in the 1 + 1 model, the term of |hx| with constant coefficient in the total
energy, i.e., the step line energy with constant density, plays no role in the surface
morphology evolution when the surface is monotonic; thus this kind of term does not
appear in the 1 + 1 model in (2.15).

The total misfit elastic energy of a surface consisting of a uniform step train has
also been calculated using the discrete model [1], whose density is

(4.50) emisfit = − (1 − ν)σ2
0a

2

2πGl
log

l

πr0
,

where l is the distance between two adjacent steps, and r0 is a cut-off distance. In
this case, using the relation |h′(x)| = a/l, our model (4.49) gives the misfit elastic
energy density

(4.51) emisfit = − (1 − ν)σ2
0a

2

2πGl
log

el

2πrc
,

which agrees with the result of the discrete model. (Note that the values of the cut-off
distance are different in these two models.)

Finally, using (2.8), (2.9), (2.10), (2.12), and (4.46), we have the morphological
evolution equation of a stepped surface:

∂h

∂t
= ∇ ·

{
D0∇

[
−∇ ·

(
g1

∇h
|∇h| + g3|∇h|∇h

)

− (1 − ν)σ2
0

2πG

∫ ∞

−∞

∫ ∞

−∞

(x− ξ)hx(ξ, η) + (y − η)hy(ξ, η)
[(x− ξ)2 + (y − η)2]3/2

dξdη

− (1 − ν)σ2
0a

2πG
∇ ·
(

∇h
|∇h|

)
log
(

2πrc|∇h|
a

)
− (1 − ν)σ2

0a

2πG
∇hD2h∇Th

|∇h|3

]}
.(4.52)

The first two terms in this equation containing parameters g1 and g3 are due to the step
line energy without misfit and the force dipole interaction between steps, respectively.
The last three terms come from the long-range force monopole interaction due to the
misfit stress.

For the special case of an axisymmetric conical stepped surface h(r) with
h′(r) < 0, the equation can be written as

∂h

∂t
= ∇ ·

{
D0∇

[
g1
r

+
g3h

′2

r
+ 2g3h′h′′ +

(1 − ν)σ2
0

πG

∫ ∞

0

(
E(m)
r̂ − r

+
K(m)
r̂ + r

)
h′(r̂) dr̂

+
(1 − ν)σ2

0a

2πGr
log

2πrc|h′|
a

+
(1 − ν)σ2

0a

2πG
h′′

h′

]}
.(4.53)
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5. Conclusion and discussion. In this paper, we have presented a continuum
model for the long-range elastic interaction on a stepped heteroepitaxial surface in
2 + 1 dimensions. The continuum model is derived rigorously by taking the contin-
uum limit from the discrete model for the interaction between steps. Compared with
the integral expression above the roughening transition temperature, our model has
additional terms that incorporate the discrete features of the stepped surface.

Our continuum model has a singularity when |∇h(x, y)| = 0, which happens at a
place where there is no step such as the top of a mound or a valley. This is consistent
with our assumption in the derivation that |∇h(x, y)| > c0, where c0 > 0 is a constant.
In fact, any continuum model containing step line energy becomes singular when
|∇h(x, y)| = 0 [21, 31, 35, 16, 39, 36, 26, 27, 28, 25] and may not describe the physics
accurately at such places [35]. A continuum model that addresses this problem was
given in [28]. A numerical treatment for this singularity can be found in [45, 39, 36].

Our continuum model is reduced to the 1+1 dimensional continuum model in [49,
51] for a surface with straight steps. The energy for a surface with straight steps
obtained using our model, which comes entirely from the two new terms, agrees with
the result using the discrete model [1], which indicates the importance of these terms.
Our model can be used to study the morphological instabilities of stepped surfaces
under elastic effects. Such results, including linear instability analysis and numerical
simulations in the nonlinear regime, as well as comparisons of our results with those
of the discrete model, will be reported in a forthcoming paper [55].

Future work may also include the incorporation of the anisotropic mobility [25],
the stress-dependent step line energy [39], the step line energy due to the interaction
between the force monopole and dipole effects [18], or multispecies epitaxy [12].

Appendix A. Distance in the normal direction of a contour line of the
surface h. Suppose that X = (x, y) is a point on the contour line of the surface
h: γ = {(ξ, η) : h(ξ, η) = hn}. Let P = (u, v) be a point such that XP is parallel
to the normal direction of γ at X and h(u, v) = z; see Figure A.1. We want to find
the signed distance between points P and X, which is positive in the direction of
−∇h(x, y), when z is close to hn.

d

n=−∇ h(x,y)/|∇ h(x,y)|

X=(x,y)
P=(u,v)

h(u,v)=z

h(x,y)=h
n

γ={(ξ,η): h(ξ,η)=h
n
}

Fig. A.1. Distance in the xy plane in the normal direction of a contour line of the surface h.
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Considering (u, v) as a function of z, we have

h(u(z), v(z)) = z.(A.1)

Since XP is parallel to the normal direction of γ at X, we have

u(z) − x

v(z) − y
=
h0
x

h0
y

.(A.2)

Here and throughout Appendix A, for simplicity of notation, we use the notation h0
x

for hx(x, y) and hx for hx(u, v), and the same applies for other partial derivatives of
h.

Differentiating these two equations with respect to z, we can solve for uz(z) and
vz(z):

uz(z) =
h0
x

h0
xhx + h0

yhy
,(A.3)

vz(z) =
h0
y

h0
xhx + h0

yhy
.(A.4)

Differentiating these derivatives with respect to z, we have

uzz(z) = −
(h0
x)

2[hxxuz(z) + hxyvz(z)] + h0
xh

0
y[hxyuz(z) + hyyvz(z)]

(h0
xhx + h0

yhy)2
,(A.5)

vzz(z) = −
h0
xh

0
y[hxxuz(z) + hxyvz(z)] + (h0

y)
2[hxyuz(z) + hyyvz(z)]

(h0
xhx + h0

yhy)2
.(A.6)

Since (u, v) → (x, y) as z → hn, we have

uz(hn) =
h0
x

(h0
x)2 + (h0

y)2
,(A.7)

vz(hn) =
h0
y

(h0
x)2 + (h0

y)2
,(A.8)

and

uzz(hn) = −
h0
x[(h0

x)2h0
xx + 2h0

xh
0
yh

0
xy + (h0

y)2h0
yy]

[(h0
x)2 + (h0

y)2]3
,(A.9)

vzz(hn) = −
h0
y[(h0

x)2h0
xx + 2h0

xh
0
yh

0
xy + (h0

y)2h0
yy]

[(h0
x)2 + (h0

y)2]3
.(A.10)

The signed distance from the point P to the point X, which is positive (or nega-
tive) if XP is in the positive (or negative) direction of −∇h(x, y), is given by

d = −
(u− x)h0

x + (v − y)h0
y√

(h0
x)2 + (h0

y)2
.(A.11)
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Using (A.7)–(A.10) and Taylor expansions of u at x and v at y up to second order of
z − hn, we have

(A.12)

d = − z − hn
[(h0

x)2 + (h0
y)2]1/2

+
(h0
x)

2h0
xx + 2h0

xh
0
yh

0
xy + (h0

y)
2h0
yy

2[(h0
x)2 + (h0

y)2]5/2
(z − hn)2 +O((z − hn)3)

as z → hn.

Appendix B. Proof of Theorem 4.1. In this appendix, we give the proof
of Theorem 4.1 on the error estimate of the trapezoidal rule for the integral of some
singular function. We will use the following theorems, whose proofs can be found in
Sidi and Israeli [40] or the references therein.

In the theorems below, interval [a, b] is divided into m subintervals with Δx =
(b− a)/m, xj = a+ (j − 1)Δx, j = 1, . . . ,m+ 1. It is assumed that g(x) is 2N times
continuously differentiable on [a, b] throughout Appendix B.

Theorem B.1 (Euler–Maclaurin formula).

∫ b

a

g(x) dx = Δx

⎛
⎝g(a) + g(b)

2
+

m∑
j=2

g(xj)

⎞
⎠

+
N−1∑
k=1

B2k

(2k)!
[g(2k−1)(a) − g(2k−1)(b)]Δx2k +O(Δx2N ),(B.1)

where Bk’s are the Bernoulli numbers.
Theorem B.2 (Sidi and Israeli [40]). Let G(x) = g(x)/(x − t) with t = xj0 for

some j0. Then

∫ b

a

G(x) dx = Δx

⎛
⎝G(a) +G(b)

2
+

∑
2≤j≤m,j �=j0

G(xj)

⎞
⎠+ Δxg′(t)

+
N−1∑
k=1

B2k

(2k)!
[G(2k−1)(a) −G(2k−1)(b)]Δx2k +O(Δx2N ),(B.2)

where Bk’s are the Bernoulli numbers.
Theorem B.3 (Sidi and Israeli [40]). Let G(x) = g(x) log |x− t| with t = xj0 for

some j0. Then

∫ b

a

G(x) dx = Δx

⎛
⎝G(a) +G(b)

2
+

∑
2≤j≤m,j �=j0

G(xj)

⎞
⎠+ g(t) log(Δx)Δx

+
N−1∑
k=1

B2k

(2k)!
[G(2k−1)(a) −G(2k−1)(b)]Δx2k

+2
N−1∑
k=0

ζ′(−2k)
(2k)!

g(2k)(t)Δx2k+1 +O(Δx2N ),(B.3)

where Bk’s are the Bernoulli numbers and ζ(τ) is the Riemann zeta function.
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Proof of Theorem 4.1. Using the above theorems, we have
∫ b

a

G(x) dx − Δx

⎛
⎝G(a) +G(b)

2
+

∑
2≤j≤m,j �=j0

G(xj)

⎞
⎠

= g1(t)Δx log(Δx) − log(2π)g1(t)Δx+ g′2(t)Δx + g3(t)Δx+O(Δx2).(B.4)

On the other hand,∫ t+Δx
2

t−Δx
2

G(x) dx

=
∫ t+Δx

2

t−Δx
2

[
g1(x) log |x− t| + g2(x)

x− t
+ g3(x)

]
dx

=
∫ t+Δx

2

t−Δx
2

[
(g1(t) + g′1(t)(x − t) +O((x − t)2)) log |x− t|

+
g2(t) + g′2(t)(x − t) +O((x − t)2)

x− t
+ g3(t) +O(x − t)

]
dx

=
∫ t+Δx

2

t−Δx
2

[g1(t) log |x− t| + g′2(t) + g3(t)] dx +O(Δx2)

= g1(t)Δx log(Δx) − (1 + log 2)g1(t)Δx+ g′2(t)Δx + g3(t)Δx+O(Δx2).(B.5)

A combination of these two equations gives the theorem.
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VOLTAGE AND CURRENT SPECTRA FOR MATRIX POWER
CONVERTERS∗

STEPHEN M. COX† AND STEPHEN C. CREAGH†

Abstract. Matrix power converters are used for transforming one alternating-current power
supply to another, with different peak voltage and frequency. There are three input lines, with
sinusoidally varying voltages which are 120◦ out of phase one from another, and the output is to be
delivered as a similar three-phase supply. The matrix converter switches rapidly, to connect each
output line in sequence to each of the input lines in an attempt to synthesize the prescribed output
voltages. The switching is carried out at high frequency and it is of practical importance to know
the frequency spectra of the output voltages and of the input and output currents. We determine in
this paper these spectra using a new method, which has significant advantages over the prior default
method (a multiple Fourier series technique), leading to a considerably more direct calculation. In
particular, the determination of the input current spectrum is feasible here, whereas it would be a
significantly more daunting procedure using the prior method instead.

Key words. matrix power converter, power electronics, Fourier spectrum
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1. Introduction. In electrical and electronic engineering, there are many ap-
plications in which it is necessary to convert a power supply from one voltage and
frequency to another. Particular examples arise in aeronautical and marine applica-
tions, since there are increasingly many electrically powered devices aboard aircraft
and ships, all with separate demands in terms of power supplies. The field of power
conversion, while of great economic importance, thus poses particular technological
challenges in aircraft in particular, where it is clearly highly desirable that power
conversion be achieved without recourse to heavy bulk energy storage elements.

In modern solid-state power converters, the need for intermediate energy storage
is avoided, because the output voltage is generated by rapidly switching between
multiple input voltages (see, for example, [7]). The aim is that the low-frequency
components of the output synthesize a prescribed waveform, while the high-frequency
components related to the switching are ultimately filtered out.

In this paper, we describe a compact means of determining the voltage and current
spectra for one such application of particular technological significance: the matrix
power converter [12]. This is a device which aims to convert an alternating-current
power supply at one voltage and frequency to a second at a different voltage and
frequency. Applications of matrix converters include adjustable-speed drives, where
the speed of the motor is governed by the frequency of its power supply. A significant
benefit of the approach outlined in this paper is that we are able to give explicit
and detailed descriptions of input currents, which are considerably more complex
and difficult to determine than the output voltages and currents which have been
predominantly studied in the past.
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The matrix converter switching frequency greatly exceeds the input and output
frequencies. The way in which its switching takes place is termed its modulation
strategy here, and there are many such strategies adopted in practice, of which a
comparatively simple variant is comprehensively analyzed in this paper. The matrix
converter successively connects, via switches, each output line to each of the input
lines, according to the modulation strategy. Thus the voltage on any given output line
comprises short segments of the three input sinusoidal waveforms; it contains both low-
frequency contributions (from the input voltages) and high-frequency contributions
(from the switching). It is the spectrum of the output voltages and currents that we
compute here, along with the more involved calculation for the corresponding currents
drawn from the input lines.

In digital implementations, the input voltages are measured (sampled) at high
frequency, at the start of each switching period. Then after each sample a calculation
must be done to determine the corresponding switching times to achieve the desired
output. This leads to so-called regular or uniform sampling of the input to deter-
mine the modulation strategy. The delay between sampling and switching results
in undesirable distortion in the form of unintended low-frequency components in the
output [5]; it also affects the high-frequency part of the spectrum, but this is not so
serious provided that the low-pass filtering still effectively removes such components.

Although less relevant to the power converter application, an alternative sampling
technique is also analyzed here: so-called natural sampling, which is widely used in,
for example, audio applications [3, 6, 8]. In natural sampling, an analogue device com-
pares one of the input voltages with some reference waveform and switches whenever
the two become (instantaneously) equal. The lack of delays in natural sampling leads
to a more accurate spectrum for the audio component of the output [7]; a comparison
between the spectra for regular and natural sampling allows us to determine what
aspects of the former spectrum are due to associated digital implementation effects.

In the engineering literature, spectra for switching devices are generally computed
by a multiple Fourier series method usually ascribed to Black [3], but acknowledged
to go at least as far back as Bennett [2] (see, for example, [4]). The method involves
introducing separate independent variables representing time scaled by each of the
input, output, and switching frequencies, then writing the required quantities as mul-
tiple Fourier series, in terms of each of these variables separately. The corresponding
Fourier coefficients are then computed. Finally, the answer is specialized to the phys-
ical case, in which the separate time variables are recognized to be constant multiples
of one another. The method is simplest for natural sampling, but can be modified for
regular sampling, although it is more algebraically involved in that case.

The major content of this paper is the development of more direct methods than
Black’s for determining the output voltage, output current, and input current spectra.
The methods contained herein can be used for regular and natural sampling, although
the order in which various steps are applied is different in the two cases if the greatest
efficiency is to be achieved. However, in contrast to Black’s method, neither calcula-
tion is intrinsically more algebraically cumbersome than the other. Furthermore, our
analysis, although presented here for the matrix converter problem, is in fact read-
ily adaptable to any other switching problem for which Black’s method is the usual
default, for example the modeling of class-D audio amplifiers [6].

In section 2 we outline some notation and describe model calculations (given
for both regular and natural sampling), which form the building blocks for many of
the subsequent calculations. The output voltages are then computed, using these
building-block solutions, for both types of sampling. In section 3 we introduce further
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notation and calculate the output and input currents, for general output impedances,
illustrating our results in section 4. In section 5 we show how to derive more rapidly
convergent solutions when the form of the output impedances is known (it is often
the case that the output loads may be approximated by a resistor and an inductor
in series, for example), considerably reducing the computation time. Our conclusions
are given in section 6. In the appendix, we illustrate how the results in this paper
may be extended to a more complicated modulation strategy.

2. Calculation of output voltages. We begin by calculating the spectra of
output voltages in a matrix converter. Some of the main ideas of this simpler calcu-
lation recur in the more involved calculation for input currents and it is useful to set
out the main features and establish notation in the simpler context.

2.1. Notation for voltages. In an idealized matrix converter [12] (see Fig-
ure 2.1), there are three input voltages, which we label

(2.1) vA(t) = eiω0t, vB(t) = ei(ω0t+2π/3), vC(t) = ei(ω0t+4π/3),

where ω0 is the input frequency and voltages are scaled to give unit peak input
voltages. Of course, the physical voltages are the real parts of the expressions given
in (2.1). It will be convenient to write these collectively as a vector

vin(t) =

⎛
⎜⎝

vA(t)

vB(t)

vC(t)

⎞
⎟⎠ = eiω0t

⎛
⎜⎝

1
p

p2

⎞
⎟⎠ , where p = e2πi/3.

Three output voltages, denoted va(t), vb(t), and vc(t) and written in the vector form,

vout(t) =

⎛
⎜⎝

va(t)

vb(t)
vc(t)

⎞
⎟⎠ ,

C

B

A

a b c

converter

matrix

load a

load b

load c

n

N

Fig. 2.1. Diagram of a matrix converter. Three input lines (A, B, and C) each supply sinu-
soidal voltages, each 120◦ out of phase with any other. There are loads on each of the output lines
(a, b, and c). The neutral point of the input lines is denoted by N and that of the output lines by n;
these neutral points are assumed to be connected to one another, and to be at a nominal zero volts.
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are obtained by sampling the input voltages during intervals which repeat quasiperi-
odically, according to the modulation strategy. We scale time so that the switching
period is unity (hence the switching frequency is 2π), and consider a simple form of
switching pattern such that each output, labeled o = a, b, c, is of the form [9]

(2.2) vo(t) =

⎧⎨
⎩

vA(t) for n < t < n+ αon,

vB(t) for n+ αon < t < n+ βon,

vC(t) for n+ βon < t < n+ 1

(more sophisticated switching strategies can also be analyzed using the methods de-
scribed in this paper; these are discussed briefly in the appendix). An important
assumption in our analysis will be that the switching frequency is much larger than
the input frequency: 2π � ω0. This is certainly the case in practical implementations,
to allow the high-frequency switching components to be filtered without affecting the
desired low-frequency components.

We encode the relationships in (2.2) using a switching matrix

M(t) =

⎛
⎜⎝

F aA(t) F aB(t) F aC(t)

F bA(t) F bB(t) F bC(t)

F cA(t) F cB(t) F cC(t)

⎞
⎟⎠ ,

whose elements are either 0 or 1 at any given instant, according to which input and
output lines are connected. Then

(2.3) vout(t) = M(t)vin(t).

For example,

(2.4) F aA(t) =
∞∑

n=−∞
ψn,n+αa

n
(t),

where the step function ψt1,t2 is defined by

ψt1,t2(t) =
{

1 if t1 < t < t2,
0 otherwise,

and similar expressions can be written for the other elements of M(t), using (2.2).

2.2. A model calculation for the case of uniform sampling. Before de-
scribing the full calculation of the three-phase output voltages it is useful to outline a
model calculation which illustrates the essence of our approach in a somewhat simpler
setting. We consider a function,

(2.5) F (t) =
∞∑

n=−∞
ψn+αn,n+βn(t),

which samples a unit input voltage over the quasiperiodically repeating intervals

n+ αn < t < n+ βn.

In the case of uniform sampling, we assume that the switching times are determined
by sampling the continuous functions

(2.6) α(τ) = μα + λα cos(Ωτ + δ0) and β(τ) = μβ + λβ cos (Ωτ + δ0 + δ1)
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at the evenly spaced times τ = n [1, 9, 10]. In other words,

(2.7) αn = α(n) and βn = β(n).

Note that the matrix product in (2.3) consists of sums of functions of the form (2.5),
modulated by the harmonic function eiω0t.

Adopting the convention that the Fourier transform is written as

F̂ (ω) =
∫ ∞

−∞
e−iωtF (t) dt,

and noting that the Fourier transform of the step function ψt1,t2(t) is

ψ̂t1,t2(ω) =
e−iωt2 − e−iωt1

−iω
,

we find

F̂ (ω) =
∞∑

n=−∞
e−inωψ̂αn,βn(ω) =

∞∑
n=−∞

e−inω e−iωβn − e−iωαn

−iω
.

We now make use of the identity [11]

(2.8) e−iz cos θ =
∞∑

m=−∞
Jm(z)(−i)meimθ,

so that

e−iωβn − e−iωαn

−iω
=

∞∑
m=−∞

Xm(ω)einmΩ+imδ0 ,

where, using (2.6), we find

(2.9) Xm(ω) =
(−i)m

−iω
(
e−iωμβ+imδ1Jm (ωλβ) − e−iωμαJm (ωλα)

)
.

It is useful to record the following limiting values:

(2.10) Xm(0) =

⎧⎨
⎩

μβ − μα when m = 0,
1
2

(
emiδ1λβ − λα

)
when m = ±1,

0 otherwise.

Then, using the Poisson summation formula in the form

∞∑
n=−∞

ein(ω−mΩ) = 2π
∞∑

n=−∞
δ(ω −mΩ − 2πn),

we find that

F̂ (ω) =
∞∑

n=−∞

∞∑
m=−∞

Xm(ω) e−in(ω−mΩ)+imδ0

= 2π
∞∑

n=−∞

∞∑
m=−∞

Xm(ωnm)emiδ0δ(ω − ωnm),(2.11)
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where we denote

(2.12) ωnm = 2πn+mΩ.

The result (2.11) can alternatively be written in the time domain as

(2.13) F (t) =
∞∑

n=−∞

∞∑
m=−∞

Xm(ωnm)eiωnmt+imδ0 .

We therefore find that the spectrum of the function F (t) is confined to integer
combinations of the switching frequency 2π and the modulation frequency Ω (cf. [3]).
Furthermore, the frequencies of particular practical interest are those with n = 0
(those with n �= 0 will be filtered out), and it is easily verified that in the limit
Ω � 2π the dominant frequencies with n = 0 are ω00 = 0 and ω0±1 = ±Ω. It will
later prove useful to denote by F0(t) the terms in (2.13) for n = 0; summing over m
the contributions to F (t) with n = 0 is then easily seen to give

(2.14) F0(t) ≡
∞∑

m=−∞
Xm(ω0m)eiω0mt+imδ0 = β(t) − α(t) +O(Ω).

By comparing (2.14) with (2.6), we see that the n = 0 contribution F0(t) is thus, with
errors of order Ω, a sinusoidal signal with frequency Ω, plus a constant signal.

2.3. Output voltages in the case of uniform sampling. The model calcula-
tion in section 2.2 can now be used as the basis for a more complete description of the
output voltages. We begin by describing more explicitly the switching conventions in
(2.2). These are designed to generate output voltages

(2.15) vout
ref (t) =

⎛
⎜⎝

varef(t)

vbref(t)
vcref(t)

⎞
⎟⎠ = qeiω1t

⎛
⎜⎝

1
p

p2

⎞
⎟⎠ ,

where ω1 is the output frequency and q is the output amplitude. The subscript “ref”
indicates that the corresponding quantity is the intended, reference state; the actual
output voltage will generally approximate this reference value in its low-frequency
spectrum, but also contain slight low-frequency distortion terms and significant high-
frequency components. The matching of the low-frequency terms in vout(t) and
vout

ref (t) is achieved by letting αon and βon in (2.2) oscillate with an appropriate fre-
quency that is much smaller than the switching frequency.

We focus on the simplest Venturini switching [1, 9, 10], in which, for each output
o = a, b, or c, the times αon and βon are obtained by sampling smooth functions as in
(2.6) and (2.7), with

(2.16) αo(τ) = 1
3 + 2

3q cos(Ωτ + δo), βo(τ) = 2
3 + 2

3q cos(Ωτ + δo − π
3 ).

Here,

Ω ≡ ω1 − ω0

is the difference between output and input frequencies and

δa = 0, δb = 2
3π, and δc = 4

3π.
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The coefficients in (2.16) were originally derived by attempting to generate the correct
low-frequency components in the output voltages, in the limit Ω → 0.

We now adapt the model calculation in section 2.2 to describe the output voltages.
Note that (2.3) indicates that any given output voltage can be written as

vo(t) = eiω0t
∞∑

n=−∞
ψn,n+αo

n
(t) + pψn+αo

n,n+βo
n
(t) + p2ψn+βo

n,n+1(t)

=
(
F oA(t) + pF oB(t) + p2F oC(t)

)
eiω0t, o = a, b, c,

where

F oA(t) =
∞∑

n=−∞
ψn,n+αo

n
(t),

F oB(t) =
∞∑

n=−∞
ψn+αo

n,n+βo
n
(t),(2.17)

F oC(t) =
∞∑

n=−∞
ψn+βo

n,n+1(t)

are all particular cases of the function F (t) described in section 2.2. Repeating the
calculations there, we find that F oA(t), F oB(t), and F oC(t) have Fourier transforms

(2.18) F̂ oi(ω) = 2π
∞∑

n=−∞

∞∑
m=−∞

X i
m(ωnm)emiδo

δ(ω − ωnm), i = A,B,C,

where

XA
m(ω) =

(−i)m

−iω

[
e−iω/3Jm

(
2
3qω

)
− δm0

]
,

XB
m(ω) =

(−i)m

−iω

[
e−2iω/3−imπ/3 − e−iω/3

]
Jm
(

2
3qω

)
,(2.19)

XC
m(ω) =

(−i)m

−iω

[
e−iωδm0 − e−2iω/3−imπ/3Jm

(
2
3qω

)]
;

here δ0m is the Kronecker δ. Note that the quantities X i
m(ω) do not depend on the

output line.
The transformed output voltages are given by

v̂o(ω) = F̂ oA(ω − ω0) + pF̂ oB(ω − ω0) + p2F̂ oC(ω − ω0),

which can then be written as

v̂o(ω) = 2π
∞∑

n=−∞

∞∑
m=−∞

eimδo

Vnmδ(ω − Ωnm),

where we denote

Vnm = XA
m(ωnm) + pXB

m(ωnm) + p2XC
m(ωnm)

and

Ωnm = ω0 + ωnm = ω0 + 2πn+mΩ.
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The corresponding expression in the time domain gives us the key result of this section,
that the output voltages may be written as

(2.20) vo(t) =
∞∑

n=−∞

∞∑
m=−∞

VnmeiΩnmt+imδo

.

Note that the amplitudes Vnm are common to all three output lines; the differences
between the three output voltages result from the different values of δo for o = a, b, c
in (2.20).

The most physically interesting part of the result is

(2.21) vo0(t) ≡
∞∑

m=−∞
V0meiΩ0mt+imδo

=
1∑

m=−1

V0meiΩ0mt+imδo

+O(Ω).

In analogy with (2.10), we find the limiting cases

X i
0(0) = 1

3 , i = A,B,C

and

(2.22) XA
±1(0) = 1

3q, XB
±1(0) = 1

3q(e
∓iπ/3 − 1), XC

±1(0) = − 1
3qe

∓iπ/3,

and these can be used to show that the rightmost sum in (2.21) approximately returns
the voltages required in (2.15), so that

(2.23) vo0(t) = voref(t) +O(Ω).

The O(Ω) error results from the discrete sampling of the input voltages used to com-
pute the modulation strategy with regular sampling. It can be eliminated by changing
the modulation strategy to natural sampling, which is now described.

2.4. A model calculation for the case of natural sampling. We now turn
to the case of natural sampling. Here, in contrast to regular sampling, the input
voltages are monitored continuously, and switching takes place at the instants when
these voltages become equal to some other reference voltage. Because of the need
to continuously monitor the input voltages, such sampling is generally implemented
using analogue electronics. The key additional algebraic complication associated with
natural sampling is that the switching times satisfy implicit equations. To analyze
natural sampling, then, we consider once again the model sum in (2.5) except that
the switching times are chosen to satisfy conditions

(2.24) αn = A(n+ αn) and βn = B(n+ βn),

where A(t) = μα + λα cos(Ωt+ δ0) and B(t) = μβ + λβ cos (Ωt+ δ0 + δ1).
We note that, according to (2.24), we may consider αn and βn to be irregular

samples of the continuous functions A(t) and B(t). However, to make analytical
headway with our approach, it is preferable instead to regard αn and βn as being
obtained by regularly sampling continuous functions α(τ) and β(τ) as in (2.7). Now,
however, it is the functions A(t) and B(t) that are prescribed explicitly while the
functions α(τ) and β(τ) are determined implicitly by

α(τ) = A(τ + α(τ)) and β(τ) = B(τ + β(τ)),
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which are continuous versions of (2.24).
In the case of natural sampling, the output spectrum is best calculated by per-

forming Poisson resummation before taking the Fourier transform of the function F (t).
Using the version

(2.25)
∞∑

n=−∞
f(n) =

∞∑
n=−∞

∫ ∞

−∞
e2πniτf(τ) dτ

of Poisson resummation on expression (2.5) for F (t), we find that

(2.26) F (t) =
∞∑

n=−∞

∫ ∞

−∞
e2πniτψτ+α(τ),τ+β(τ)(t) dτ =

∞∑
n=−∞

∫ τA(t)

τB(t)

e2πniτ dτ,

where τB(t) and τA(t) are, respectively, the values of τ at which the step function
ψτ+α(τ),τ+β(τ)(t) switches on and then off again for fixed t. These switching times
satisfy the conditions t = τA + α(τA) and t = τB + β(τB), which can be rearranged
to give

τA(t) = t− α(τA) = t−A(t) and τB(t) = t− β(τB) = t−B(t).

We therefore have

(2.27) F (t) =
∞∑

n=−∞

∫ t−A(t)

t−B(t)

e2πniτ dτ =
∞∑

n=−∞
e2πnit Fn(t),

where

(2.28) Fn(t) =
∫ −A(t)

−B(t)

e2πniτ dτ =

⎧⎨
⎩

B(t) −A(t) if n = 0,

e−2πniB(t) − e−2πniA(t)

−2πni
otherwise.

Equation (2.8) now gives

F (t) =
∞∑

n=−∞

∞∑
m=−∞

Xm(2πn) eiωnmt+imδo

,

where Xm(ω) has been defined in (2.9) and, in the special case n = 0, we may use
(2.10); ωnm has been defined in (2.12). The Fourier transform is

(2.29) F̂ (ω) = 2π
∞∑

n=−∞

∞∑
m=−∞

Xm(2πn) emiδo

δ(ω − ωnm).

These results are similar to those given in section 2.2 for the case of uniform sam-
pling, except that the amplitude functions Xm are evaluated at different values of the
argument (2πn here, rather than ωnm for uniform sampling). This difference has a
dramatic effect on the terms with n = 0, however, which collectively contribute

F0(t) =
∞∑

m=−∞
Xm(0) eiω0mt+imδo

= B(t) −A(t)

to the sum (see also (2.28)). This is the natural-sampling analogue of (2.14) and it is
exact, which means that the only low frequencies present in F (t) are those present in
the prescribed functions A(t) and B(t) (cf. [3, 6, 8]).
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2.5. Output voltages in the case of natural sampling. We now adapt the
model calculation in section 2.4 to the case of three-phase output voltages produced
by naturally sampling input voltages as in (2.2). The difference from the calculation
in section 2.3 is that here the switching times are determined implicitly by equations
of the form

αon = Ao(n+ αon) and βon = Bo(n+ βon),

where

(2.30) Ao(τ) = 1
3 + 2

3q cos(Ωτ + δo), Bo(τ) = 2
3 + 2

3q cos(Ωτ + δo − π
3 ),

rather than being given directly as in (2.16).
There is nothing fundamentally new in the calculation here that has not already

been covered in sections 2.3 and 2.4 so we simply present the main results. The output
voltages can be given in the form

(2.31) vo(t) =
∞∑

n=−∞

∞∑
m=−∞

ṼnmeiΩnmt+imδo

,

which is similar to (2.20), except that in the expression

Ṽnm = XA
m(2πn) + pXB

m(2πn) + p2XC
m(2πn),

the arguments of the functions X i
m (which are once again given by (2.19)) are 2πn

instead of ωnm. The part of vo(t) of most physical interest is the contribution from
terms with n = 0; this contribution can be written, using (2.10),

(2.32) vo0(t) =
1∑

m=−1

(
XA
m(0) + pXB

m(0) + p2XC
m(0)

)
eiΩ0mt+imδo

= qeiω1t+iδo

.

Remarkably, this result coincides exactly with the desired form in (2.15). We empha-
size that the result vo0(t) = voref(t) is exact for natural sampling (cf. the corresponding
result (2.23) for uniform sampling, where there are errors of order Ω). In other con-
texts, this exact capture of some reference output is well known [3, 6, 7, 8].

3. Input and output currents. We now turn our attention to the currents in
the system. The output currents are readily determined from the output voltages,
provided that the output impedances are known (for simplicity, we suppose that
the output neutral is connected to the supply neutral—see Figure 2.1). In order to
construct the input currents, however, we must examine how the modulation strategy
assigns the output currents to each input line; we are thus led to consider two separate
discrete sampling processes, and the Fourier transform is as a result more complex
to analyze. We note that in practice the input currents are monitored to provide
a diagnostic of the system, and thus a knowledge of their spectrum is of particular
practical utility.

The general discussion below applies equally to either regular or natural sampling.
In section 3.4 below, we specialize the analysis to the two cases separately.

3.1. Notation for currents. We begin by setting out notation, building on
the discussion in section 2.1. We adopt similar conventions for the input and output
currents, writing
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iin(t) = (iA, iB, iC)T and iout(t) = (ia, ib, ic)T ,

where the superscript T denotes the transpose, and we note that current conserva-
tion means that these are connected by the transpose of the switching matrix [12],
according to

(3.1) iin(t) = M(t)T iout(t).

A central goal in this paper is to compute the spectrum of the input currents in terms
of the input voltages, and there are two elements to this calculation: summing over
the windows of time in which the input voltage is sampled as a simple harmonic, and
calculating the contributions from individual windows within that sum.

The summation is a double sum arising from the combined matrix products in
(2.3) and (3.1) and is described explicitly below. We first describe in general terms
the contribution of an individual element in this sum.

3.2. Loading the output: Currents associated with individual input
pulses. Let

(3.2) vt3,t4(t) = ψt3,t4(t)e
iω0t

represent an output voltage obtained by sampling a harmonic input voltage eiω0t over
the window t3 < t < t4. Let the output be connected to a load described by the
impedance Z(ω), so that in the frequency domain the output current is

ı̂t3,t4(ω) =
1

Z(ω)
v̂t3,t4(ω) =

1
Z(ω)

ψ̂t3,t4(ω − ω0).

We describe the corresponding relation in the time domain using an admittance op-
erator Y , such that it3,t4(t) = Y vt3,t4(t). This will describe an output current that
switches on at t = t3, is driven harmonically in the window t3 < t < t4, and decays
as a transient thereafter, when t4 < t < ∞. If a given input line connects to the
output in question during the window t1 < t < t2, then we denote the corresponding
contribution to that input current by

(3.3) it1,t2,t3,t4(t) = ψt1,t2(t)it3,t4(t) = ψt1,t2(t)Y vt3,t4(t).

The corresponding relation in the frequency domain is

(3.4) ı̂t1,t2,t3,t4(ω) =
1
2π
ψ̂t1,t2(ω) ∗ ı̂t3,t4(ω) =

1
2π
ψ̂t1,t2(ω) ∗

[
1

Z(ω)
v̂t3,t4(ω)

]
,

where ∗ denotes convolution.

3.3. Loading the output: Total currents. Net input currents are obtained
by summing individual contributions of the form (3.4), as governed by the matrix
products in (2.3) and (3.1). We now outline details and notation for this process. Let
the output voltages and currents be related by

(3.5) iout(t) = Yvout(t),

where Y is the diagonal matrix of admittance operators

Y =

⎛
⎜⎝

Y a 0 0

0 Y b 0
0 0 Y c

⎞
⎟⎠ ≡ diag(Y a, Y b, Y c),
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and where the diagonal elements are specific to each output. In Fourier representation,
the admittance operator is represented by the simple diagonal matrix

Y(ω) = diag(Za(ω)−1, Zb(ω)−1, Zc(ω)−1)

of output-specific admittances. Combining (3.5) with (2.3) and (3.1), we may write

iin(t) = M(t)TYM(t)vin(t).

Let us denote by

Q(t) = M(t)TYM(t)eiω0t

the combined operator relating the input currents to the (known) input voltages, so
that

(3.6) iin(t) = Q(t)

⎛
⎜⎝

1
p

p2

⎞
⎟⎠ .

A typical element of Q(t) can be written as a simple sum over outputs. Specifically,

(3.7) Qij(t) =
∑

o=a,b,c

F oi(t)Y oF oj(t)eiω0t,

where the row index i = A,B,C and the column index j = A,B,C are labels of inputs.
Each switching element F oi(t) is, in fact, a train of step-functions, as illustrated in
(2.4). This allows us to write more explicitly, for example,

(3.8) QBB(t) =
∑

o=a,b,c

∞∑
m=−∞

∞∑
n=−∞

ψm+αo
m,m+βo

m
(t)Y oψn+αo

n,n+βo
n
(t)eiω0t.

Note that the individual terms in this sum are of the form given in (3.3), with
t1 = m+αom, t2 = m+βom, t3 = n+αon, and t4 = n+βon. Other entries in the matrix
Q(t) can be written similarly, except that alternative combinations of switching times
are substituted for t1, t2, t3, and t4.

In the frequency domain, a typical element of the matrix Q̂(ω) can be written, in
analogy with (3.7),

(3.9) Q̂ij(ω) =
1
2π

∑
o=a,b,c

F̂ oi(ω) ∗
[

1
Zo(ω)

F̂ oj(ω − ω0)
]
.

3.4. Direct calculation of input currents. We now outline a direct calcula-
tion of the input currents, for regular or natural sampling, using (3.8) and (3.9),
respectively, as a basis. Nothing is assumed here about the form of the output
impedances and the method is very general. More efficient, but less general, methods
are described later, for specific forms of the output impedances. The difference be-
tween the two sets of calculations derives from whether we perform the convolution
integral in (3.9) before or after the double sum over switching times. In this section,
the sum is performed first and the convolution after.



VOLTAGE AND CURRENT SPECTRA FOR POWER CONVERTERS 1427

3.4.1. Regular sampling. We first describe the calculation for regular sam-
pling. For the contribution Q̂ij(ω), as described by (3.9), we first write

Q̂ij(ω) =
∑

o=a,b,c

Q̂o,ij(ω),

where

(3.10) Q̂o,ij(ω) =
1
2π
F̂ oi(ω) ∗

[
1

Zo(ω)
F̂ oj(ω − ω0)

]
,

and the function F̂ oi(ω) has been defined in (2.17). In this expression the function

F̂ oi(ω) = 2π
∞∑

n=−∞

∞∑
m=−∞

X i
m(ωnm)emiδo

δ(ω − ωmn)

is convolved with

1
Zo(ω)

F̂ oj(ω − ω0) = 2π
∞∑

n=−∞

∞∑
m=−∞

Xj
m(ωnm)emiδo

Zo(ω0 + ωmn)
δ(ω − ω0 − ωmn),

and the result is a quadruple sum

Q̂o,ij(ω) = 2π
∑
klnm

W o,ij
klnmδ(ω − ω0 − ωkl − ωnm),

where

W o,ij
klnm = X i

l (ωkl)X
j
m(ωnm)

[
ei(l+m)δo

Zo(ω0 + ωnm)

]

and, in the sum, the indices k, l, n, and m run independently from −∞ to ∞. The
output-dependent parts (to be summed over later) have been isolated within square
brackets in this expression. Using the fact that ωkl+ωnm = ωk+n,l+m, this result can
alternatively be stated in the time domain as

Qo,ij(t) =
∑
klnm

W o,ij
klnmei(ω0+ωk+n,l+m)t.

It is convenient to group terms in this sum with a common frequency, giving

(3.11) Qo,ij(t) =
∑
NM

Qo,ij
NMeiΩNM t,

where ΩNM = ω0 + ωNM = ω0 + 2πN +MΩ and

(3.12) Qo,ij
NM =

∑
nm

W o,ij
N−n,M−m,n,m.

In this result, the amplitude Qo,ij
NM of a term with a given frequency ΩNM is expressed

as a double sum. Finally, we note that, according to (3.6), the total current in an
input labeled by the superscript i can be obtained from the results above using

(3.13) ii(t) =
∑

o=a,b,c

Qo,iA(t) + pQo,iB(t) + p2Qo,iC(t).

Although these formulas for the input currents seem rather unwieldy, we may
already note the potentially diagnostically useful result that, if all outputs have equal
impedance, then the sum over outputs produces a factor

∑
o eM iδo

= 1 + e2πM i/3 +
e4πM i/3, which vanishes unless M is a multiple of 3. Hence, in this special case, the
frequencies ΩNM = ω0 + 2πN +MΩ appear only where M is a multiple of 3.
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3.4.2. Natural sampling. We may readily adapt the expressions derived in
the previous section to the case of natural sampling, without repeating the entire
calculation. To do so, we simply note, from (2.18) and (2.29), that the only material
difference in the natural sampling case lies in the arguments of the functions X i

m used
in the definitions of F̂ oi(ω). Hence the input currents are still given by an expression
of the form (3.13), with Qo,ij given by (3.11); however, Qo,ij

NM is now given by

(3.14) Qo,ij
NM =

∑
nm

X i
M−m(2π(N − n))Xj

m(2πn)
[

eiMδo

Zo(ω0 + ωnm)

]
,

rather than by (3.12). It is interesting to note that in the case of input currents, unlike
in the cases of output voltages and currents, natural sampling does not produce a clean
single harmonic when the high-frequency terms with N �= 0 are filtered out.

4. Results for the voltage and current spectra. In this section we illustrate
the results above for the output voltage and input current spectra. Recalling that the
switching frequency has been scaled to 2π, we choose parameter values as follows:

(4.1) ω0 = 1
20 × 2π, ω1 = 1

25 × 2π, q = 0.4.

The corresponding output voltage spectrum is independent of the output loads, and is
shown in Figure 4.1, for regular and natural sampling. The primary feature of note is
the exact reproduction of the low-frequency (n = 0) part of the voltage spectrum for
natural sampling and, in contrast, the significant low-frequency distortion introduced
by regular sampling.
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Fig. 4.1. Spectrum of the output voltages, for parameter values (4.1). Upper plot: regular
sampling. Lower plot: natural sampling. Note the significant low-frequency distortion of the regularly
sampled case.
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Fig. 4.2. Spectrum of the input currents in line A with regular sampling, for parameter values
(4.1). Upper plot: balanced loads, with (4.3). Lower plot: unbalanced loads, with (4.4). Spectra for
input lines B and C are similar.

To determine the input currents, we must specify the output loads, which will
each comprise a resistor and an inductor in series, so that

(4.2) Zo(ω) = Ro + iωLo, o = a, b, or c.

We consider two cases. In the first, all output lines offer equal impedance, with

(4.3) Ra = Rb = Rc = 5Ω, La = Lb = Lc = 5mH;

in the second, the output impedances are unbalanced, and we take

(4.4) Ra = Rb = Rc = 5Ω, La = Lb = 5mH, Lc = 0mH.

From Figure 4.2 we see that the frequency spectrum for the input current is sparser for
the balanced load. In fact, as argued above, the spectrum is confined to frequencies
of the form ω0 + 2πn+mΩ, where m is a multiple of 3; for the unbalanced load, by
contrast, all frequencies of the form ω0 + 2πn+mΩ are present.

5. More efficient calculation of the input spectrum. The results of sec-
tion 3 provide expressions for the input and output currents, and thus solve the
problem posed at the start of this paper. However, each coefficient in the input cur-
rent spectrum requires the evaluation of a doubly infinite sum, as in (3.12) and (3.14).
Furthermore, these sums converge rather slowly. So we now describe a more efficient
means of obtaining the input current spectrum for specific output impedances. It
differs from the calculation in section 3 by taking advantage of the known impedances
to perform the convolution integrals in (3.9) before the sum over switching times is
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evaluated. A consequence is that each Fourier coefficient will then require calculation
of only a single infinite sum.

The explicit calculations outlined are for the case where each output load takes the
form of a resistor and an inductor in series, so that the corresponding impedances are
given by (4.2). The various complex impedances need not be equal between outputs
a, b, and c. We shall discuss later how this method may be extended to the case of
more general forms for the output impedances.

5.1. Illustration of transfer matrix calculation for purely resistive loads.
We begin by considering purely resistive loads, with Lo = 0. Although such loads
are of limited practical interest, they are nevertheless useful to illustrate the following
transfer matrix method. For a purely resistive load, the admittances of the three
output lines are simply the constants Y o = 1/Ro. This case is thus considerably
easier to analyze than that of general impedance because a step output voltage of
the sort described in section 3.2 produces an output current only while the voltage is
switched on. Then, for example, the terms in the sum (3.7) vanish unless n = m and
we find that the diagonal terms in Q take the form

(5.1) Qii(t) =
∑

o=a,b,c

1
Ro

F oi(t)eiω0t, i = A, B, or C.

Note that the functions F oi(t) have been defined in (2.17). The off-diagonal terms in
Q necessarily vanish for resistive loads. To see this, consider, for example,

(5.2) QAB(t) =
∑

o=a,b,c

∑
m,n

1
Ro

ψm,m+αo
m

(t)ψn+αo
n,n+βo

n
(t).

It is clear that the intervals (m,m+αom) and (n+αon, n+βon) never overlap and hence
QAB = 0. A similar consideration shows that all other off-diagonal terms are zero.

The three input currents are then, using the results and notation of sections 2.3
and 2.5,

iA(t) = QAA(t) =
∑
nm

YmX
A
m(xnm)eiΩnmt,

iB(t) = pQBB(t) =
∑
nm

pYmX
B
m(xnm)eiΩnmt,

iC(t) = p2QCC(t) =
∑
nm

p2YmX
C
m(xnm)eiΩnmt,

where xnm = ωnm for regular sampling, and xnm = 2πn for natural sampling. Here

Ym =
∑

o=a,b,c

eimδo

Ro

is an effective total output admittance, common to all three inputs.
These two simplifying elements of the matrix Q (namely that Q is a diagonal

matrix, and that the diagonal elements are given by a single sum, as in (5.1)) follow
from there being a purely resistive load. The key points are that an output voltage
pulse produces a proportional output current pulse, and that after the voltage pulse
the corresponding current drops immediately to zero.
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5.2. Frequency domain calculation for series resistor/inductor loads.
We now consider the case of more general loads, with inductive as well as resistive
elements, with output impedances given by (4.2). In this case, the double sum in
(3.9) does not collapse to a single sum as it did in the purely resistive case and the
calculation is more complex.

Before summing the series, let us consider in more detail the structure of the
summand, whose general form is given in (3.4). For an inductive load with impedance
Z = R + iωL = iL(ω − iγ), where γ = R/L is the decay rate of transients in the
current, we can write (3.4) more explicitly as

ı̂t1,t2,t3,t4(ω) =
1

2πi

∫ ∞

−∞

(e−i(ω−ω′)t2 − e−i(ω−ω′)t1)(e−i(ω′−ω0)t4 − e−i(ω′−ω0)t3)
L(ω′ − ω)(ω′ − iγ)(ω′ − ω0)

dω′,

having substituted the explicit forms for ψ̂t1,t2(ω) and ψ̂t3,t4(ω) in the convolution in-
tegral. This is conveniently evaluated using the residue calculus. The denominator in
the integrand has three zeroes, two on the real axis and one on the positive imaginary
axis. The zeroes on the real axis are canceled by zeroes in the numerator and do not
lead to poles in the total integrand. Since the integrand is analytic on the real axis,
we may move the contour slightly off the real axis before beginning the calculation
proper and the manner in which we do this will not affect the final result. This obser-
vation is relevant because we will evaluate the integral by expanding the numerator
and considering terms individually. Although these individual terms have poles on
the real axis, if we have deformed the contour away from these poles beforehand, the
individual integrals are well defined. Furthermore, any contributions made by the
poles on the real axis through the residue calculus must combine consistently and be
independent of the initial contour deformation. The integral is therefore controlled
by the pole at ω′ = iγ. There are three cases to consider.

Case 1. Window t1, t2 precedes window t3, t4.
In this case, where t1 < t2 < t3 < t4, every term in the expanded numerator

(e−i(ω−ω′)t2 − e−i(ω−ω′)t1)(e−i(ω′−ω0)t4 − e−i(ω′−ω0)t3)

= e−iωt2+iω0t4+iω′(t2−t4) − e−iωt2+iω0t3+iω′(t2−t3)

− e−iωt1+iω0t4+iω′(t1−t4) + e−iωt1+iω0t3+iω′(t1−t3)(5.3)

decays exponentially as ω′ descends into the lower-half plane. The contour of inte-
gration can therefore be pushed downwards and, because there are no poles in the
lower-half plane, the integral must vanish. We therefore necessarily have

(5.4) ı̂t1,t2,t3,t4(ω) = 0

in this case. Note that in the case of more complicated load impedances, causality
demands that all of the zeroes of Z(ω′) lie in the upper-half plane and the result
(5.4) still holds. The result is obvious in the time domain because a driving voltage
confined to the window (t3, t4) produces no current for t < t3, and any sampling
window confined to this range must produce a null result.

Case 2. Window t1, t2 follows window t3, t4.
In this case, t3 < t4 < t1 < t2. Let us assume that the integration contour has
been moved slightly above the real axis before the calculation for individual terms in
expansion (5.3) begins. Then, all of the terms on the right of (5.3) are exponentially
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decaying into the upper-half plane and we push the contour upwards, picking up a
contribution only from the pole at ω′ = iγ. This yields

ı̂t1,t2,t3,t4(ω) =
(e−i(ω−iγ)t2 − e−i(ω−iγ)t1)(ei(ω0−iγ)t4 − ei(ω0−iγ)t3)

L(ω − iγ)(ω0 − iγ)

=
1
L

(
e−i(ω−iγ)t2 − e−i(ω−iγ)t1

−i(ω − iγ)

)(
ei(ω0−iγ)t4 − ei(ω0−iγ)t3

i(ω0 − iγ)

)

=
1
L
ψ̂t1,t2(ω − iγ)ψ̂t3,t4(−ω0 + iγ).(5.5)

For more general load impedances, there would be a sum of such contributions, each
term corresponding to a zero of Z(ω′), or equivalently a decay rate of the system,
weighted by residues of 1/Z(ω′).

Case 3. Window t1, t2 coincides with window t3, t4.
In this case, t1 = t3 < t2 = t4. The calculation here is somewhat more complicated
and requires a more careful consideration of the poles on the real axis. We forgo the
details here and simply quote the result:

ı̂t1,t2,t3,t4(ω) =
1

iL(ω0 − iγ)

(
e−i(ω−ω0)t2 − e−i(ω−ω0)t1

−i(ω − ω0)

)

− ei(ω0−iγ)t1

iL(ω0 − iγ)

(
e−i(ω−iγ)t2 − e−i(ω−iγ)t1

−i(ω − iγ)

)

=
1

Z(ω0)

[
ψ̂t1,t2(ω − ω0) − ei(ω0−iγ)t1ψ̂t1,t2(ω − iγ)

]
,(5.6)

which is obtained by summing the contributions from the various poles for each of
the terms in (5.3) and following some further algebraic manipulation.

So far we have established the forms of the individual terms in (3.9). It remains
to perform the double sum over switching times in that equation. Once again we
concentrate initially on the element Q̂BB(ω) and indicate later how the calculation
is altered for other elements. In this case, the summands in (3.9) are of the form
ı̂t1,t2,t3,t4(ω), as calculated above, with t1 = m + αom, t2 = m + βom, t3 = n + αon,
t4 = n+ βon, and with loads that are output-specific. Let us denote by

(5.7) γo = Ro/Lo

the decay rate of transients associated with output o. In view of (5.4), the summands
vanish if n < m, so let us set n = m + r for r = 0, 1, 2, . . . , and separate (3.9) into
“diagonal” and “off-diagonal” contributions:

Q̂BB(ω) = Q̂BBdiag(ω) + Q̂BBoffdiag(ω),

where

Q̂BBdiag(ω) =
∑

o=a,b,c

∞∑
n=−∞

ı̂n+αo
n,n+βo

n,n+αo
n,n+βo

n
(ω)

and

Q̂BBoffdiag(ω) =
∑

o=a,b,c

∞∑
r=1

∞∑
n=−∞

ı̂n+r+αo
n+r,n+r+βo

n+r,n+αo
n,n+βo

n
(ω).
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The diagonal contribution accounts for the terms with r = 0 and corresponds to the
case of coinciding windows given in (5.6). We expect these terms to dominate the total
sum and so describe them first. We start with regular sampling (natural sampling is
discussed at the end of this section). Then using the notation of section 2.3, we write

∞∑
n=−∞

ψ̂t1,t2(ω − ω0) =
∞∑

n=−∞
ψ̂n+αo

n,n+βo
n
(ω − ω0) = F̂ oB(ω − ω0)

= 2π
∑
nm

XB
m(ωnm)emiδo

δ(ω − Ωnm),

recalling that Ωnm = ω0 + ωnm = ω0 + 2πn+mΩ. A similar calculation shows that

∞∑
n=−∞

ei(ω0−iγo)t1 ψ̂t1,t2(ω − iγo) =
∞∑

n=−∞
ei(ω0−iγo)(n+αo

n)ψ̂n+αo
n,n+βo

n
(ω − iγo)

=
∞∑

n=−∞
e−in(ω−ω0) ei(ω0−iγo)αo

n ψ̂αo
n,β

o
n
(ω − iγo)

= 2π
∑
nm

Y Bm (ωnm,−ω0 + iγo)eimδo

δ(ω − Ωnm),

where

(5.8) Y Bm (ω, ω′) ≡
∞∑

k=−∞
XB
k (ω − ω′)CBm−k(ω

′)

and

CBm(ω) = e−iω/3(−i)mJm
(

2
3qω

)
.

Note that the expression defining Y Bm (ω, ω′) can be summed using Graf’s theorem [11].
However, leaving the definition of Y Bm (ω, ω′) as a sum, as done here, has the advantage
of admitting easier generalization to other diagonal terms and being simpler to write.
We can therefore write

Q̂BBdiag(ω) = 2π
∑

o=a,b,c

Do,B
nm eimδo

δ(ω − Ωnm),

where

Do,B
nm =

1
Zo(ω0)

(
XB
m(ωnm) − Y Bm (ωnm,−ω0 + iγo)

)
.

There are similar diagonal contributions to Q̂AA and Q̂CC , except that CAk (ω) and
CCk (ω) have the alternative forms

CAm(ω) = δm0, CCm(ω) = e−2iω/3−imπ/3(−i)mJm
(

2
3qω

)
.

We next discuss off-diagonal contributions. In this case the summands are of the
form given in (5.5) and
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Q̂BBnondiag(ω) =
∑

o=a,b,c

∞∑
r=1

∞∑
n=−∞

1
Lo
ψ̂t1,t2(ω − iγo)ψ̂t3,t4(−ω0 + iγo)

=
∑

o=a,b,c

∞∑
r=1

∞∑
n=−∞

1
Lo

e−in(ω−ω0)−ir(ω−iγo)

× ψ̂αo
n+r,β

o
n+r

(ω − iγo)ψ̂αo
n,β

o
n
(−ω0 + iγo)

= 2π
∑

o=a,b,c

∑
nm

Ao,BBnm eimδo

δ(ω − Ωnm),(5.9)

where (after some manipulation)

Ao,BBnm =
1
Lo
UBBm (ωnm,−ω0 + iγo)

and

UBBm (ω, ω′) =
∞∑

k=−∞
G1(ω − ω′ − kΩ)XB

k (ω − ω′)XB
m−k(ω

′)

and

G1(ω) =
∞∑
r=1

e−irω =
1

eiω − 1
.

The off-diagonal contributions to Q̂AA and Q̂CC are of the same form, with appro-
priate replacements for XB

m.
If we now consider elements Q̂ij(ω) with i �= j, we find that the appropriate

intervals (t1, t2) and (t3, t4) never overlap and all summands are of the form given in
(5.5). The calculation is very similar to that for Q̂BBoffdiag(ω) except that, when i > j,
the sum over r starts from r = 0 rather than r = 1 (here we adopt the convention
that C > B > A). The result is the following generalization of (5.9):

(5.10) Q̂ij(ω) = 2π
∑

o=a,b,c

∑
nm

Ao,ijnm eimδo

δ(ω − Ωnm),

where

Ao,ijnm =
1
Lo
U ijm(ωnm,−ω0 + iγo)

and

(5.11) U ijm(ω, ω′) =
∞∑

k=−∞
Gij(ω − ω′ − kΩ)X i

k(ω − ω′)Xj
m−k(ω

′)

and

Gij(ω) =

{
eiωG1(ω) if i > j,

G1(ω) if i < j.

Again, the sum defining U ijm(ω, ω′) can be expressed alternatively using Graf’s theorem
but the form given is simpler to write. Note that if we set i = j, then (5.10) also
describes the off-diagonal part of Q̂ii, if we take Gii(ω) = G1(ω).
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The current in the input labeled by the subscript i is (cf. (3.13))

(5.12) ii(t) = QiA(t) + pQiB(t) + p2QiC(t),

where

Qij(t) =
∑

o=a,b,c

∑
nm

(
Do,i
nmδij +Ao,ijnm

)
eimδo

eiΩnmt.

Thus, from (5.12), the coefficient of each frequency component in the input current
ii(t) requires (aside from sums over the three output lines) only a single infinite sum
for computing each of the the terms Do,i

nm and Ao,ijnm , as in (5.8) and (5.11).
Finally, we note also that a similar calculation is possible in the case of natural

sampling. The answer in that case is similar, the main difference being that the func-
tions X i

m, Y im, and U ijm take different arguments when they are used in the calculation
of the amplitudes Do,i

nm and Ao,ijnm (compare (2.20) with (2.31), for example).

6. Conclusions. We have shown how to compute the output voltage spectrum,
and the output and input current spectra for an idealized matrix power converter, for
general output loads. Our method provides a rather more direct alternative to the
usual approach of Black’s multiple Fourier series [2, 3], and appears to be the first
published calculation of the full spectrum. The mathematical expressions involved in
the present calculations are considerably more compact than would be the equivalent
expressions using Black’s method. Despite its greater directness, however, our method
still requires calculations that are rather algebraically involved. We have shown how
reasonable assumptions about the form of the output loads—for example, if they are
all series resistor-inductor loads—can be used for deriving more rapidly convergent
expressions for the input currents (which are of particular significance since they
provide an easily monitored diagnostic of the system). We note that the calculation
in this paper can be adapted relatively easily to more general output impedances.

One potential practical upshot of our work is the following. In applications such as
aeronautics, there are strict regulations regarding acceptable levels of the electromag-
netic interference generated by high-frequency switching applications such as matrix
converters. This paper provides, apparently for the first time, analytical expressions
for the full frequency spectrum of voltages and currents. We therefore expect the for-
mulas derived herein, and appropriate extensions of the methodology to more general
cases (for example, a wider range of output impedances) to allow engineers to design
matrix converters to satisfy mandatory restrictions on power quality without wasteful
overspecification of the associated filters.

In the appendix, we illustrate how similar techniques can be adapted to more
general switching protocols for the matrix converter. However, these introduce new
frequencies into the spectrum, so the calculation is more involved.

The Fourier transform/Poisson resummation techniques applied here (with a judi-
cious choice of the order in which the elements of the technique are applied, according
to whether regular or natural sampling is used) may also be applied to other switching
problems. Notable examples are the class-D audio amplifier, for which an analysis
such as that given in this paper would lead to considerably more compact derivations
of the spectrum than previously given [3, 8], and DC–AC converters (inverters) [7].

Appendix. The modulation strategies considered in the main text are the sim-
plest possible; in practice, more complicated strategies are used. Many of these will
be amenable to a treatment similar to that described in this paper, but with increased
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algebraic complexity. In this appendix we illustrate some of the necessary modifica-
tions by calculating the output voltage spectrum for natural sampling using a hybrid
Venturini modulation strategy. In this case, the switching times are determined by

Ao(τ) = 1
3 + 2

3q [θ cos((ω1 − ω0)τ + δo) + (1 − θ) cos((ω1 + ω0)τ + δo)] ,

Bo(τ) = 2
3 + 2

3q
[
θ cos((ω1 − ω0)τ + δo − π

3 ) + (1 − θ) cos((ω1 + ω0)τ + δo + π
3 )
]
,

where 0 ≤ θ ≤ 1, rather than by (2.30). Notice that the case θ = 1 recovers (2.30).
The case θ = 1/2 proves particularly straightforward to implement in practice [12].

The calculation of F oi(t) is now rather more involved, since

e−2πniAo(t) = e−2πni/3
∞∑

m=−∞

∞∑
m′=−∞

Cmm′ei(m(ω1−ω0)+m
′(ω1+ω0))t

and

e−2πniBo(t) = e−4πni/3
∞∑

m=−∞

∞∑
m′=−∞

Cmm′ei(m(ω1−ω0)+m
′(ω1+ω0))tei(m′−m)π/3,

where

Cmm′ = (−i)m+m′
Jm(4

3nπqθ)Jm′(4
3nπq(1 − θ))ei(m+m′)δo

.

Thus, in general, these quantities now involve additional frequencies beyond those
present for the simpler case θ = 1.

Writing the output voltages as

vo(t) =
∑
nmm′

Ṽnmm′ei(2πn+ω0+m(ω1−ω0)+m′(ω1+ω0))tei(m+m′)δo

,

we have

(A.1) Ṽnmm′ = XA
mm′(2πn) + pXB

mm′(2πn) + p2XC
mm′(2πn),

where

XA
mm′(ω) =

(−i)m+m′

−iω

[
e−iω/3Jm(2

3qωθ)Jm′(2
3qω(1 − θ)) − δm0δm′0

]
,

XB
mm′(ω) =

(−i)m+m′

−iω

[
e−2iω/3+i(m′−m)π/3 − e−iω/3

]
Jm(2

3qωθ)Jm′(2
3qω(1 − θ)),

XC
mm′(ω) =

(−i)m+m′

−iω

[
e−iωδm0δm′0 − e−2iω/3+i(m′−m)π/3Jm(2

3qωθ)Jm′(2
3qω(1 − θ))

]
.

Special consideration needs to be given to the values of X i
mm′(0). We find that

X i
mm′(0) = 0 for i = A, B, or C, except in the following cases:

X i
00(0) = 1

3 , i = A, B, or C

and

XA
0±1(0) = 1

3q(1−θ), XB
0±1(0) = 1

3q(1−θ)(e
±iπ/3−1), XC

0±1(0) = − 1
3q(1−θ)e

±iπ/3
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and

XA
±10(0) = 1

3qθ, XB
±10(0) = 1

3qθ(e
∓iπ/3 − 1), XC

±10(0) = − 1
3qθe

∓iπ/3.

It then follows from (A.1) that for the contribution to the output voltages with n = 0
we have Ṽ00−1 = q(1 − θ) and Ṽ010 = qθ, with Ṽ0mm′ = 0 for all other choices of m
and m′. Thus the corresponding contribution to the output voltages is

vo0(t) = qθeiω1t+iδo

+ q(1 − θ)e−iω1t−iδo

.

Hence the physical output voltage, given by the real part of this expression, is, as for
the simpler modulation strategy of section 2.5, exactly the intended reference voltage
voref(t). A similar calculation can be undertaken for uniform sampling but is not
described here.
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Abstract. A double layer Green’s tensor for linear elasticity in half space is computed. Traction
free conditions on the surface are imposed making this Green’s tensor relevant in geophysics for
modeling displacements caused by slips on faults. Past attempts at computing related Green’s tensors
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1. Introduction. Inside a linear elastic region Ω with Lamé coefficients λ > 0
and μ > 0, a displacement field u satisfies the equation

μΔu+ (λ+ μ)∇div u = 0 in Ω(1)

or alternatively

divσ = 0 in Ω,(2)

where the stress tensor is given by

σij(u) = λdiv u δij + μ(∂iuj + ∂jui).

We will use the following notation for stress vectors in the normal direction n through-
out this paper:

Tnu = σ(u)n.

The natural basis for R3 will be denoted by (e1, e2, e3). If Ω is unbounded, a finite
energy condition for displacements is required:

∫
Ω

σ(u) : ε(u) <∞,(3)

where we have used the strain tensor εij(u) = 1
2 (∂iuj + ∂jui) and the dot product

between two 3 × 3 matrices A and B defined by A : B = tr(ATB). If Ω is the whole
space R3, it is known since Kelvin that the tensor

Gij(x, y) =
1

8πμ(λ+ 2μ)
((λ + μ)∂xi r∂xj r + (λ+ 3μ)δij)

1
r
,(4)
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where r =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, satisfies Green’s problem

μΔG+ (λ+ μ)∇divG = −I3δy in R
3,(5)

where I3 is the 3 × 3 identity matrix. In addition G decays at infinity and has finite
energy away from the singularity at x = y,

∫
R3\B(y,1)

σ(G(x, y)) : ε(G(x, y))dx <∞.(6)

Let Γ be a bounded fault or cut in the space R3. It is possible to use tensor G to find
an integral representation for displacement fields in R

3 that are continuous across Γ
and whose stress vector has a given discontinuity (sometimes called jump) across Γ;
see [5].

We are interested in this paper in elastic displacement fields in the half space
x3 < 0, denoted by R3−, that are traction free on the surface x3 = 0, satisfy some
discontinuity condition across a bounded surface Γ in R3−, and decay at infinity while
having finite energy. Such displacement fields u can be expressed as integrals on Γ
involving Green’s tensor M which satisfies

μΔM + (λ + μ)∇divM = −I3δy in R
3−,(7)

Te3M = 0 on the surface x3 = 0,(8)

M decays at infinity and
∫

R3−\B(y,1)

σ(M(x, y)) : ε(M(x, y))dx <∞.(9)

Mindlin was the first to compute a tensor of this type; see [4]. Sheu performed an
analogous computation in the anisotropic case; see [7]. In that same paper he was
able to reconstruct displacement fields produced by the 1999 Jiji, Taiwan earthquake
using his new Green’s tensor.

If u is a finite energy elastic displacement field in the half space R3− that has
zero traction on the surface x3 = 0 and satisfies some discontinuity condition across
a bounded surface Γ in R3−, then u can be expressed as the integral over Γ of M
against some density which solves an adequate boundary integral equation. These
equations on Γ were studied by Martin, Päivärinta, and Rempel in [3].

It might be costly and nontrivial to solve the boundary integral equations dis-
cussed in [3]. However, this can be avoided altogether in some cases. Assume that we
want to solve for a (finite energy, decaying at infinity) displacement field u such that

μΔu+ (λ+ μ)∇div u = 0 in R
3− \ Γ,(10)

Te3u = 0 on the surface x3 = 0,(11)
u is continuous across Γ,(12)

[Tnu] = f is a given jump across Γ;(13)

then u is given by the integral formula

u =
1
2

∫
Γ

Mf.(14)

Note that the free space analogue of problem (10), (12), and (13) is given by the field
u = 1

2

∫
Γ
Gf (see [5]), and from there integral formula (14) is easily conceived in half
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space. Let us now examine the adjoint problem to (10)–(13), namely, solving for a
(finite energy, decaying at infinity) displacement field u such that

μΔu+ (λ+ μ)∇div u = 0 in R
3− \ Γ,(15)

Te3u = 0 on the surface x3 = 0,(16)
Tnu is continuous across Γ,(17)

[u] = g is a given jump across Γ.(18)

We know from [5] that the free space analogue of this problem has the solution u =
1
2

∫
Γ
(Tn(y)G)T g, where, as previously, G is Kelvin’s Green’s tensor and Tn(y) is the

stress vector in the y dependent normal direction n(y). The main result of this
paper is to find Green’s tensor H such that problem (15)–(18) has the solution u =
1
2

∫
Γ
Hg for any smooth tangential vector field on Γ, g. Note that some authors have

incorrectly thought that H could be simply given by (Tn(y)M)T ; this is not true for
the operators Te3(x) and (Tn(y)·)T do not commute when applied to Mindlin’s Green’s
tensor M . We verified this using a symbolic computer software. Actually, this lack of
a commutativity property can be understood on simple examples. We discuss three
such simple examples in this paper. Steketee was the first author to offer a correct
approach on how to compute Green’s tensor H ; see [6]. Interestingly, he was able to
give a full solution only in Fourier space, and he was able to complete his computation
in section 7 of his paper [6] in only one particular case.

We now outline the contents of this paper. In section 2 we present our method for
computing Green’s tensor H . We do not provide any explicit calculations. They are
a good order of magnitude more complex than those of Mindlin’s because we have to
start from the derivative of Kelvin’s tensor. It was actually possible for us to perform
this calculation thanks to the use of a symbolic calculus software. We indicate the
form of the final solution in the appendix. In effect, we are able to provide relatively
concise formulas for H only on the surface x3 = 0. For x3 < 0, the simplest form
for H is too lengthy to appear in this paper. Note, however, that this formula for
H is still malleable using a symbolic calculus software, and it can then be turned
into any computer language code. We also demonstrate in section 2 how our Green’s
tensor relates to two-dimensional (2D) linear elasticity in a half plane. Assuming
that displacements occur only in one direction, we are able to recover Green’s scalar
function in the lower half plane with zero Neumann condition on the surface. In
section 3 we explain why under some decay and growth condition, at infinity and
near singular points, our Green’s tensor is unique, and we use this uniqueness result
to verify our (long!) calculation for H . We also include in section 3 a paragraph aimed
at understanding why past attempts at computing Green’s tensor H were erroneous
and why discrepancies were not picked up on numerical data. In section 4 we use our
tensor H for the explicit numerical computation of surface displacement fields due to a
slip on a crack, or fault, beneath the surface. We note that the exact solution given by
u = 1

2

∫
Γ
Hg might require a costly computation, which is undesirable in applications

where such a direct computation would have to be iterated a large number of times.
We found a way to obtain an approximate field u(x1, x2, 0) based on asymptotics that
just assume that (x1, x2) is some distance away from the fault Γ. We also evaluate in
section 4 the error incurred in making that approximation. We then discuss in that
same section an interesting symmetry property, valid for deep faults.

2. Assembling Green’s tensor H. We start from the well-known Kelvin
Green’s tensor G given by (4). Let n(y) be a y dependent normal direction. We
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define a double layer potential by setting

G̃(x, y, n) = (Tn(y)G(x, y))T .(19)

2.1. The image method. The image method consists of combining G̃(x, y, n)
with terms from

(Tn(y)G(x, y))T ,

where n = (n1, n2,−n3) and y = (y1, y2,−y3), in such a way to obtain vanishing
traction on the plane x3 = 0, along the x1 and x2 directions. More precisely, set

˜̃Gij(x, y) = G̃ij(x, y, n) + G̃ij(x, y, n) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 2,
˜̃Gi3(x, y) = G̃i3(x, y, n) − G̃i3(x, y, n) for 1 ≤ i ≤ 3.

If g is a smooth vector field on Γ, then u(x) = 1
2

∫
Γ

˜̃G(x, y)g(y) satisfies (15), (17), and
(18), has finite elastic energy, and decays at infinity. However, (16) is only partially
satisfied; only the first two components of Te3u are zero at x3 = 0. Consequently, to
find Green’s function H , we need to solve three Boussinesq problems with data

−Fj := Te3(x)
˜̃G3j(x, y)|x3=0, j = 1, 2, 3,(20)

to compensate for the nonzero Te3u · e3 term on the surface x3 = 0.

2.2. A Fourier method for solving Boussinesq problems. We find it most
efficient to follow the method outlined by Steketee [6]. Recall the definition of Boussi-
nesq half space elasticity problems: find v of finite elastic energy in R3− such that

μΔv + (λ+ μ)∇div v = 0 in R
3−,(21)

Te3u · ei = 0 on the surface x3 = 0, i = 1, 2,(22)
Te3u · e3 = −F on the surface x3 = 0.(23)

The solution to (21)–(23) can be sought in terms of a Galerkin vector (0, 0, γ), where
γ is biharmonic in the lower plane x3 < 0. Indeed, if a displacement field v is in the
form

v =
(
−α∂1∂3γ, −α∂2∂3γ,

[
(1 − α)∂3∂3 + ∂2

1 + ∂2
2

]
γ
)
, where α =

λ+ μ

λ+ 2μ
,(24)

then it satisfies (21). Note that 1
2 < α < 1. The stress vector Te3v simplifies as

σ13(v) = μ∂1(Δ − 2α∂3∂3)γ,
σ23(v) = μ∂2(Δ − 2α∂3∂3)γ,
σ33(v) = ∂3((λ(1 − α) + 2μ)Δ − 2αμ∂3∂3)γ.

Starting from the problem

Δ2γ = 0 in x3 < 0,(25)
σ13(v) = σ23(v) = 0 on x3 = 0,(26)

σ33(v) = −F on x3 = 0,(27)
γ is bounded as x3 → −∞,(28)
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we perform a Fourier transform of γ in the first two variables only. A long calculation
leads to

γ̂(ξ, x3) =
(
−1

2
(−1 + 2α)
|ξ|3απ3

+
x3

π2|ξ|2

)
F̂

1
8 (μ+ λ) (α− 1)

e2π |ξ|x3 ,(29)

where Fourier transforms are given by

F̂ (ξ1, ξ2) =
∫∫

e2πi(x1ξ1+x2ξ2)F (x1, x2)dx1dx2.

v̂ can be now found according to formula (24). Finally, applying an inverse Fourier
transform to v̂ will give a finite energy, decaying at infinity, vector field v which
satisfies the elasticity equations in R3− and whose stress vector at the surface x3 = 0
satisfies (26) and (27).

2.3. The Boussinesq solution in our case. Can the vector field v defined
in the previous paragraph be given in a closed form? The answer is yes if F is
the force coming from adding to Kelvin’s tensor its image above the plane x3 = 0
and computing, for each column, the resulting vertical traction at x3 = 0; this will
yield Mindlin’s tensor. In our case the forcing term F is given by (20); this case
involves more terms, of higher degree, compared to those appearing in the derivation
of Mindlin’s solution. Steketee was able to carry out such a computation in section 7
of his paper [6] in only one particular case. At the time of his work, symbolic algebra
software was not available, and this greatly limited investigators’ ability to manipulate
large expressions. Going back to our work, let us give, for illustration, the expression
of F1, the forcing term for the first Boussinesq problem that we need to solve. F1 is
the ratio of(

(2μ+ λ)μ2x1
4 +

(
(μ+ 2λ)μ2x2

2 − y3
2 (13λ+ 11μ)μ2

)
x1

2 + (λ− μ)μ2x2
4

+ y3
2 (μ+ 2λ)μ2x2

2 + y3
4 (2μ+ λ)μ2

)
n1

+
(
3μ3x2x1

3 +
(
3μ3x2

3 − 3 y32 (4μ+ 5λ)μ2x2

)
x1

)
n2

+
(
−3 y3 (μ+ λ)μ2x1

3 +
(
−3 y3 (μ+ λ)μ2x2

2 + 12 y33 (μ+ λ)μ2
)
x1

)
n3

to (
x1

2 + x2
2 + y3

2
)7/2

π μ (2μ+ λ) .

To compute v given by (24)–(29), for F = Fj , j = 1, 2, 3, we first computed the Fourier
transform F̂ , which we multiplied by adequate terms to find γ̂ according to formula
(29). We then proceeded to compute the inverse Fourier transform of γ̂, from which
the expression for v, solution to (21)–(23), follows from (24). Corresponding double
integrals were evaluated in polar coordinates. A symbolic calculation software had to
be used due to the length and complexity of the expressions involved. Of particular
importance for polar angle integration was the use of the following integrals:∫ 2π

0

eiz cos θ cos pθdθ = (i)p2πJp(z),(30)

where p is an integer and Jp is the Bessel function of the first kind of order p. This
formula can be derived from formula (9.1.21) in [1]. As to integration in radius, a
formula for∫ ∞

0

Jq(2πρr)ρp

(ρ2 + y2
3)

7
2
dρ, p = 1, . . . , 5, q = 0, . . . , 4 y3 < 0, r > 0,(31)
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was needed. For compuation of inverse Fourier transforms the following was also
needed∫ ∞

0

e2πrx3Jp(2πρr)rqdr p = 0, . . . , 4 q = 0, . . . , 2, x3 < 0, ρ > 0,(32)

Closed forms for (31), (32), albeit intricate, can be computed. The final expression
for H is intricate and involves many terms. We discuss it in the appendix.

2.4. Symmetry properties. We first notice that Green’s tensor H depends on
x1, y1, x2, and y2 only through x1 − y1 and x2 − y2.

2.4.1. Switching the first two coordinates. Let (t1, t2, t3) be a vector in R3.
Denote by u = (u1, u2, u3) the vector H(t1, t2, t3). (u1, u2, u3) is a function of x1−y1,
x2 − y2, x3 ≤ 0, y3 ≤ 0, (n1, n2, n3), (t1, t2, t3), λ > 0, and μ > 0. The following
relations hold:

u1(x1 − y1, x2 − y2, n1, n2, t1, t2) = u2(x2 − y2, x1 − y1, n2, n1, t2, t1),(33)
u3(x1 − y1, x2 − y2, n1, n2, t1, t2) = u3(x2 − y2, x1 − y1, n2, n1, t2, t1).(34)

Physically, they express that the first and the second coordinate play the same role
for the displacement vector Ht.

2.4.2. Switching the normal vector n and the source vector t. Compu-
tations indicate that the coordinates of Ht depend on the normal vector n and on t
only through

n1t1, n2t2, n3t3, n1t2 + n2t1, n1t3 + n3t1, n2t3 + n3t2,

and, consequently,

u(n, t) = u(−n,−t),(35)

and

u(n, t) = u

(
t

|t| , n|t|
)
.(36)

Symmetry property (35) corresponds to reversing the orientation on the fault Γ. Sym-
metry property (36) expresses that the displacements caused by a concentrated slip
of vector t, on an infinitesimal fault of normal vector n, are the same as the dis-
placements caused by a concentrated slip of vector n|t|, on an infinitesimal fault of
normal vector t/|t|. We will give in a subsequent section another interpretation of
this symmetry property valid for deeper faults of finite size.

2.5. Relation to 2D elasticity. Two dimensional scalar elasticity is the limit
model of general elasticity as boundary conditions are constant along a given direction,
say, x2, and displacements take place only in the x2 direction. We assume here that
the fault Γ introduced earlier is linear and infinite in the x2 direction; thus, a normal
vector to Γ satisfies n2 = 0. We then integrate the vector He2 in x2 in the range
(−∞,∞). A long computation leads, after simplification, to the vector

⎛
⎝0,

(x1 − y1)
(
x3

2 + y3
2 + (x1 − y1)

2
)
n1 + y3

(
x3

2 − y3
2 − (x1 − y1)

2
)
n3

π ((x1 − y1)2 + (x3 − y3)2) ((x1 − y1)2 + (x3 + y3)2)
, 0

⎞
⎠ .(37)
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Next, we show that this is in agreement with the 2D model. It is known that

g(x1, y1, x3, y3)

= −1
4

ln
(
(x1 − y1)

2 + (x3 − y3)
2
)

π
− 1

4

ln
(
(x1 − y1)

2 + (x3 + y3)
2
)

π

is the half plane x3 < 0 Green’s function for the 2D Laplacian in the x1, x3 coordinates
that satisfies the zero Neumann condition ∂x3g = 0 at x3 = 0. Note that ∂x3∂y1g and
∂x3∂y3g are also zero at x3 = 0. Computing

∂y1g n1 + ∂y3g n3,

we find exactly the second coordinate of the vector given in (37).
Remark. The scalar operators ∂x3 , ∂y1 , and ∂y3 do commute. However, we wish to

emphasize that, in 3D elasticity, the argument cannot be as simple since the traction
operators Te3(x) and (Tej(y)·)T are not commutative.

3. Verification. We were able to devise a way of verifying our long computation
resulting in a closed form for the tensor H .

3.1. A uniqueness theorem.
Theorem 3.1. There is a unique tensor A(x, y), for x and y in R3−, whose

entries are measurable functions in (x, y) and which satisfies the following equations:

μΔxA(x, y) + (λ+ μ)∇xdiv xA(x, y) = 0 in R
3− if x �= y,(38)

Te3(x)A(x, y) = 0 on the surface x3 = 0 if y3 < 0,(39)

|A(x, y)| ≤ C

|x| as y is fixed and |x| → ∞,(40)

|∇xA(x, y)| ≤ C

|x|2 as y is fixed and |x| → ∞,(41)

|A(x, y) − G̃(x, y, n)| ≤ C as y is fixed and x→ y,(42)
|∇x(A(x, y) − G̃(x, y, n))| ≤ C as y is fixed and x→ y,(43)

where C is a constant independent of x and G̃ is defined by (19).
Proof. It is clear that our Green’s tensor H(x, y) satisfies conditions (38)–(43).

To show uniqueness, assume that A1 and A2 satisfy (38)–(43) and set A = A1 −A2.
Then as A(x, y) and ∇xA(x, y) are bounded for x and y, x �= y, in R3−, A satisfies
the elasticity equations everywhere in R3−. Next, if Aj is the jth column of A, let
BR be the subset of R3 defined by {x : |x| ≤ R and x3 ≤ 0}. Applying conditions
(38)–(41) and integrating by parts,

∫
BR

ε
(
Aj
)

: σ
(
Aj
)

=
∫
∂BR

Tn
(
Aj
)
Aj .

Applying boundary condition (39) and decay at infinity (40)–(41), we find that
∫

R3−
ε
(
Aj
)

: σ
(
Aj
)

= 0.

Aj is then a rigid displacement which, due to the imposed decay at infinity, must be
zero.
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3.2. Application to verifying our calculation for the tensor H. Equations
(38) and (39) were verified directly. Conditions (40) and (41) are satisfied with an
additional order of magnitude for H , that is,

|H(x, y)| ≤ C

|x|2 as y is fixed and |x| → ∞,

|∇xH(x, y)| ≤ C

|x|3 as y is fixed and |x| → ∞.

More precisely, each entry of H(x, y) is asymptotically equivalent as |x| → ∞, to the
ratio of some homogeneous polynomial of degree 11 in x1, x2, x3,

√
x2

1 + x2
2,

and
√
x2

1 + x2
2 + x2

3 to (x2
1 + x2

2)
3(x2

1 + x2
2 + x2

3)
7
2 .

H also satisfies conditions (42) and (43); they express that H(x, y) and G̃(x, y, n)
have the same type of singularity as y approaches x.

3.3. The problem with past attempts at finding Green’s tensor H. Some
authors have incorrectly thought that H could be simply given by (Tn(y)M)T ; this
is not true for the operators Te3(x) and (Tn(y)·)T do not commute when applied to
Mindlin’s Green’s tensor M . We verified this fact using a symbolic computer software;
note, however, that this lack of a commutativity property can be understood on simple
examples. We discuss such simple examples below.

Example 1. For the vector v(x, y) = (0, 0, x1y3), Te3(x)v = (μy3, 0, 0). Let A
be the 3 × 3 matrix (v, v, v); that is, each column of A is v. The first column of
(Te3(y)Te3(x)A)T is computed to be equal to (μ2, μ2, μ2), while the first column of
Te3(x)(Te3(y)A)T is (0, 0, 0).

Example 2. The following vector field has zero traction derivative in x at the
surface x3 = 0:

v(x, y) =

(
− (2μ+ λ) (x1 − y1)

2

λ
, 0, (x1 − y1) (x3 − y3) + (x1 − y1) (x3 + y3)

)
.

In other words, calculations indicate that Te3(x)v = (0, 0, 0) at x3 = 0. Let A
be the 3 × 3 matrix (v, v, v). A computation indicates that Te3(x)A does not de-
pend on y. Accordingly, (Te3(y)Te3(x)A)T is zero. The first column of (Te3(y)A)T is
(−2μx3,−2μx3,−2μx3), and, thus, the first column of Te3(x)(Te3(y)A)T is (−2μ2,−2μ2,
−2μ(2μ+ λ)).

Example 3. We computed Mindlin’s tensor, following a method that proceeds
along the same lines as those sketched earlier in this present paper for the calculation
of our Green’s tensor H : we started from Kelvin’s tensor G, which we reflected about
the plane x3 = 0, and finally three Boussinesq problems had to be solved. The case of
Mindlin’s tensor is computationally less intensive, as it involves terms of smaller degree
than that of terms involved in the computation of Green’s tensor H . Nevertheless, we
found it worthwhile to utilize a symbolic computation software for two reasons: first,
this certainly reduces chances of obtaining a wrong result; and, second, it makes it
more convenient for verifying the final answer. Verification was made by validating
elasticity equations, and decay at infinity, and order of growth near singularities and
checking traction free boundary conditions.

In the end we found that although Te3(x)M(x, y) is zero at x3 = 0, Te3(x)
(Te3(y)M(x, y))T is not zero at x3 = 0, whereas previously M(x, y) was Mindlin’s
tensor. The reason why this was not picked up in previous studies in natural sciences
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may lie in the following observation: M(x, y) is homogeneous in (x, y) of degree −1,
and, consequently, Te3(x)(Te3(y)M(x, y))T is homogeneous in (x, y) of degree −3. If
this tensor is evaluated for y3 at some depth d beneath the surface x3 = 0, the error
in surface traction Te3(x)(Te3(y)M(x, y))T decays as d−3, which is one order of magni-
tude smaller than displacements on the surface. In other words, using Te3(y)M(x, y)
for computing surface displacements due to a slip on a fault may lead to gross dis-
crepancies, only if that fault is shallow and for those surface points close enough to
the fault.

4. Application: Computations of displacement fields caused by a slip
along a fault. In this section we use Green’s tensor H introduced in this paper to
compute displacement fields u due to a slip on a fault Γ, in the half space x3 < 0, with
traction free conditions on the surface x3 = 0. In other words, u satisfies (15)–(18).
This equation for u plays an important role in geophysics models. It may be used in the
study of quasi-static displacements near a fault during a “silent earthquake” episode.
Accounts of silent earthquakes in subduction zones near Japan [12] and New Zealand,
Alaska, and Mexico [13, 11] were recently reported in the literature. This equation
for u may also be used to study the nucleation phase (occurring after destabilization
of faults and before the onset of seismic waves) for dynamically active faults. The
earthquake nucleation phase, which precedes dynamic rupture, was uncovered by
detailed seismological observations [14, 16] and identified in laboratory experiments
[15, 17].

Typical length scales attached to faults observed in nature range from 0 to 100
kilometers for depth and 1 to 100 kilometers for length. During destabilization, slip
on faults are on the order of 1 to 100 meters. Accordingly, in all numerical simulations
in this section, we choose one kilometer to be the unit length for spatial coordinates,
while surface displacements are given in meters. The Lamé coefficients are set to be
λ = μ = 1, a common choice in geophysics. This choice of λ and μ is not necessary
for our computations to run faster or more accurately. It was rather made in order
to facilitate comparisons to other pieces of work.

4.1. Exact field in two numerical examples. Recall that the displacement
field u due to a slip g on a fault Γ, in the half space x3 < 0, with traction free
conditions on the surface x3 = 0, that is, the solution to problem (15)–(18), can be
expressed as u = 1

2

∫
Γ
Hg. We compute in this section the displacement u on the

surface x3 = 0 using this integral formula in two examples.
These two examples involve the same fault geometry: Γ is contained in the plane

normal to the vector (1, 0, 1) and is bounded by an ellipse centered at (0, 0,−2). In
local coordinates the ellipse has the equation ỹ12+(ỹ2/5)2 = 1, where local coordinates
are related to the original coordinates by

y =

⎛
⎝ s 0 s

0 1 0
−s 0 s

⎞
⎠ ỹ +

⎛
⎝ 0

0
−2

⎞
⎠ , s =

1√
2
.(44)

A sketch of this cross section appears in Figure 1.
In the first example slip occurs only in the e2 direction. In local coordinates

the slip was picked to be g = C1

√
1 − ỹ1

2 − (ỹ2/5)2e2, where the constant C1 was
adjusted in such a way that the total slip

∫
Γ g be of norm 1; see Figure 2 for a plot

of resulting surface displacements. We wish to emphasize that this choice of slip g
is not arbitrary; it corresponds to the expected dominant profile of slip occurring
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Fig. 1. A cross section of the fault Γ involved in the first two numerical examples. The cross
section is in the plane x2 = 0. The small axis of the ellipse appears as the line segment in the cross
section plane.
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Fig. 2. Computed surface displacement for the elliptic geometry and slip in the e2 di-
rection considered in the first example. In local coordinates the slip was picked to be g =

C1

√
1 − ỹ1

2 − (ỹ2/5)2e2, where the constant C1 was adjusted in such a way that the total slip∫
Γ g be of norm 1. The e1 and e2 components of u(x1, x2) are represented as a planar vector field

using arrows, while the e3 component is sketched on the same graph using a color contour map.

during the destabilization process of a fault. A complete theory for that process has
been studied in the 2D case; see [2], [8], [9]. In the 3D case a complete theory is still
being investigated, but analysis of relevant hypersingular operators suggests that slip
occurring during the destabilization process of a fault decays toward the edge of the
fault as the square root of the distance to this edge.

In the second example the slip does not have constant direction and is picked to
be, in local coordinates, g = C2(−2m3/2,m1/2, 2m3/2), where m = 1 − ỹ1

2 − (ỹ2/5)2

and the constant C2 was adjusted, as previously, in such a way that the total slip
∫
Γ
g

still be of norm 1; see Figure 3 for a plot of resulting surface displacements.

4.2. Approximate field. Solving (15)–(18) by integrating u = 1
2

∫
Γ
Hg might

be costly in number of operations, which is undesirable in applications where such a
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Fig. 3. Computed surface displacements in the second example. The geometry of the fault is
the same as in the first example; however, the slip does not in this case have constant direction and
is picked to be, in local coordinates, g = C2(−2m3/2, m1/2, 2m3/2), where m = 1 − (ỹ1/5)2 − ỹ2

2

and the constant C2 was adjusted in such a way that the total slip
∫
Γ g be of norm 1.

direct computation would have to be iterated a large number of times. We found a way
to obtain a reasonable approximation to the field u(x1, x2, 0) based on asymptotics
that just assume that (x1, x2) is some distance away from the fault Γ. Suppose that
the fault Γ is centered at the point (a, b, c) where c < 0. To obtain a simpler formula
for the surface displacement u(x1, x2, 0) we now assume that either the surface point
(x1, x2) is far enough from (a, b) or |c| is large enough. Thus, we may write

H(x1, x2, 0, y1, y2, y3) = H(x1 − y1, x2 − y2, 0, 0, 0, y3)

= H(x1 − a, x2 − b, 0, 0, 0, c) +O

(
1

(x2
1 + x2

2 + c2)3/2

)

as long as (y1, y2, y3) remains on the fault Γ. From there, integrating over Γ,

u(x1, x2, 0) � H(x1 − a, x2 − b, 0, 0, 0, c)
1
2

∫
Γ

g(y1, y2, y3)dy.(45)

Setting (t1, t2, t3) = 1
2

∫
Γ g(y1, y2, y3)dy, we obtain

u(x1, x2, 0) � H(x1 − a, x2 − b, 0, 0, 0, c)(t1, t2, t3).(46)

The vector t := (t1, t2, t3) can be interpreted as half the average slip on Γ times the
area of Γ. We will call 2t the total slip on Γ.

We now proceed to demonstrate numerically the accuracy of approximation (46).
We plot the relative L2 error incurred in making the approximation (46) against
depth for three different geometries in Figure 4. The L2 error was computed on the
surface x3 = 0 in a square [−10, 10]× [−10, 10]. In each case the fault was contained
in the plane normal to the vector (1, 0, 1) and passing through the center (0, 0, c),
where |c| is the depth. Depth ranged from 2 to 20 in these numerical runs. Slip
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Fig. 4. The relative L2 error incurred by making the approximation (46) plotted against depth
for the three different fault geometries discussed in section 4.2.

was set to occur in the e2 direction. Total slip was computed in order to apply
formula (46). The plus markers correspond to a square geometry for Γ with edges of
length 2. In local coordinates (ỹ1, ỹ2) centered on the fault, the slip was picked to be√

(1 − |ỹ1|)(1 − |ỹ2|). Local coordinates are now related to the original coordinates
by

y =

⎛
⎝ s 0 s

0 1 0
−s 0 s

⎞
⎠ ỹ +

⎛
⎝ 0

0
c

⎞
⎠ , s =

1√
2
.

The star markers correspond to Γ being a circle of radius 1. In local coordinates the
slip was picked to be

√
1 − ỹ1

2 − ỹ2
2. The circular markers correspond to an elliptic

geometry for Γ. The equation of the ellipse was picked to be, in local coordinates,

ỹ1
2 + (ỹ2/5)2 = 1. In local coordinates the slip was picked to be

√
1 − ỹ1

2 − (ỹ2/5)2.
The largest error is found for the most shallow faults, that is, for |c| = 2, and ranges
from 12 to 19%, depending on geometry. We sketched the exact and approximated
fields for faults at depth 2 in the elliptic geometry case in Figures 2 and 5. It appears
that even at that shallow depth the exact and approximated profiles exhibit very
similar patterns.

4.3. A symmetry property for deeper faults. Denote by ũ the approximate
surface displacement obtained by application of asymptotic formula (46). Accordingly,
ũ = Ht. The coordinates of Ht are given in the appendix. Recall that symmetry
property (35) corresponds to reversing the orientation on the fault Γ. A consequence
of symmetry property (36) is that, for deeper faults, a total slip t on a planar fault
Γ of normal vector n produces approximately the same surface displacements as in
the “reversed case” of a total slip n|t| on a planar fault Γ of normal vector t/|t|. Of
course, this equivalence does not hold for shallow faults at surface points close to the
fault.

Due to the expression for H(x1 − a, x2 − b, 0, 0, 0, c) it turns out that u(x1, x2) is
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Fig. 5. Approximate surface displacement for the elliptic geometry from Figure 4 at depth 2.
The approximation was obtained by applying formula (46). The computed exact field is sketched in
Figure 2.

a function that depends on n and t only through s0, s1, s2, s3, and s4 defined by

s0 := n1t1 + n2t2,(47)
s1 := n2t3 + n3t2,(48)
s2 := n1t3 + n3t1,(49)
s3 := n1t2 + n2t1,(50)
s4 := n1t1 − n2t2.(51)

Thus, one might wonder whether additional symmetries akin to (36) hold. The follow-
ing proposition explains in detail how s0, s1, s2, s3, and s4 relate to n and t if n and t
are perpendicular. Note that, in the destabilization process of faults, previous studies
have shown that the slip is tangential to the fault, so n and t are indeed perpendicular
in that case.

Proposition 4.1. Assume that n = (n1, n2, n3) and t = (t1, t2, t3) are two
orthogonal vectors in space such that |n| = 1 and |t| �= 0. Given s0, s1, s2, s3, and s4
defined by (47)–(51) exactly four different pairs (n, t) can be reconstructed. If (ñ, t̃) is
one reconstructed pair, the other three are (−ñ,−t̃), ( t̃|t̃| , ñ|t̃|), and (− t̃

|t̃| ,−ñ|t̃|).
Proof. Form the matrix

D =

⎛
⎝ 2n1t1 s3 s2

s3 2n2t2 s1
s2 s1 2n3t3

⎞
⎠ ,

and notice that D = ntT + tnT . Denote t′ = t/|t| and D′ = D/|t| = nt′T + t′nT . Since
n and t′ are orthogonal of norm 1, we have that D′t′ = n and D′n = t′ from where it
follows that D′(n − t′) = −(n− t′) and D′(n+ t′) = n + t′. We conclude that n− t′

and n + t′ are eigenvectors for D for the respective eigenvalues −|t| and |t|. Notice
also that n× t is an eigenvector for the eigenvalue 0.

To reconstruct n and t, asD is real symmetric and has zero trace and determinant,
we may denote by −α, 0, α (with α > 0) the eigenvalues of D.
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To find a pair (n, t) from the symmetric matrix D we have to find two vectors v1
and v2 of norm

√
2 such that Dv1 = −αv1 and Dv2 = αv2. As D is symmetric v1

and v2 are orthogonal. If we then set n = v1−v2
2 , t′ = v1+v2

2 , and t = αt′, it is clear
that the coordinates of (n, t) will satisfy (47)–(51) and so will the coordinates of the
other pairs (−n,−t), ( t|t| , n|t|), and (− t

|t| ,−n|t|).
Finally, we show that these are the only four solutions. This is because a basis

for the eigenspace attached to the eigenvalue −α containing vectors of length
√

2 can
only be given by either v1 or −v1, and a basis for the eigenspace attached to the
eigenvalue α containing vectors of length

√
2 can only be given by either v2 or −v2;

this gives a total number of four combinations.
Remark. Assume that s0, s1, s2, s3, and s4 are any five real numbers. Can we find

two orthogonal vectors n and t such that |n| = 1 and (47)–(51) are satisfied? Forming
the matrix

E =

⎛
⎝ s0 + s4 s3 s2

s3 s0 − s4 s1
s2 s1 −2s0

⎞
⎠

this is possible if and only if det(E) = 0. Indeed, the condition det(E) = 0 is
necessary since E(n × t) = 0. Conversely, as E is real and symmetric and its trace
is zero, if det(E) = 0, the eigenvalues of E must be −α, 0, α for some α > 0 unless
s0 = s1 = s2 = s3 = s4 = 0, in which case E = 0. The assertion then follows from
the previous proposition.

To illustrate numerically the symmetry property, we computed the surface dis-
placements u(x1, x2) arising from the slip on the fault Γ of equation ỹ12 +(ỹ2/5)2 = 1,
in local coordinates, at depth c = −2 and normal to the vector ( 1√

2
, 0, 1√

2
), where

new and original coordinates are again related by (44). We imposed on that fault the
slip C1(−2m3/2,m1/2, 2m3/2), where m = 1− ỹ1

2 − (ỹ2/5)2, in local coordinates, and
the constant C1 was computed such that the norm of the total slip 2t was 1. The
computed profile appears in Figure 3.

Next, we proceeded to find the surface displacements for a reversed geometry,
that is, the surface displacements u′(x1, x2) arising from the slip on the fault Γ of
equation ỹ12 + (ỹ2/5)2 = 1, in local coordinates, at depth c = −2 and normal to the
vector t with imposed slip C2((m/2)1/2 +2m3/2)(1, 0, 1), where m = 1− ỹ12−(ỹ2/5)2,
in local coordinates, and the constant C2 was computed such that the norm of the
total slip was 1. The computed profile for u′(x1, x2) appears in Figure 6.

We also computed the surface displacements u′′(x1, x2) obtained by application
of asymptotic formula (46). The computed profile for u′′(x1, x2) appears in Figure 7.

Finally, we compared relative differences in the L2 norm for u, u′, and u′′ where
the surface domain of integration is [−10, 10] × [−10, 10]. For example, the relative

difference of u to u′ is
√∫

|u− u′|2/
∫
|u|2, where all integrals are over [−10, 10] ×

[−10, 10]. We computed these relative differences for two depths c = −2 and c = −20,
and we placed them in Table 1.

5. Conclusion. We have computed in this paper a double layer Green’s tensor
for linear elasticity in half space, with traction free conditions on the surface. Our
approach starts from Kelvin’s free space tensor: we first took a traction derivative, and
then we made a long calculation whose goal was to derive additional terms accounting
for the traction free boundary condition. We indicated the form of the final solution
in the appendix. In effect, we are able to provide relatively concise formulas for H
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Fig. 6. Surface displacements u′(x1, x2) arising from the slip on the fault Γ of equation ỹ1
2 +

(ỹ2/5)2 = 1, in local coordinates, at depth c = −2 and normal to the vector t with imposed slip
C2((m/2)1/2 + 2m3/2)(1, 0, 1), where m = 1 − (ỹ1/5)2 − ỹ2

2, in local coordinates, and the constant
C2 is a computed constant ensuring that the norm of the total slip be 1. We observe that the
displacement pattern is similar to the one plotted in Figure 3.
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Fig. 7. Surface displacements u′′(x1, x2) obtained by application of asymptotic formula (46) to
either the case relative to Figure 3 or to the case relative to Figure 6.

only on the surface x3 = 0. For x3 < 0, the simplest form for H is too lengthy, but
still manageable on a computer system.

We also showed that simply starting from Mindlin’s half space tensor and then
taking a traction derivative leads to an incorrect result: the traction free condition on
the surface is lost. This is due to the fact that traction operators do not commute.
We illustrated this lack of commutativity on simple examples.

We demonstrated how our Green’s tensor relates to 2D linear elasticity in a half
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Table 1

Relative differences in the L2 norm for u, u′, and u′′ where the domain of integration is

[−10, 10] × [−10, 10]. For example, the relative difference of u to u′ is
√∫ |u − u′|2/

∫ |u|2, where

all integrals are over [−10, 10] × [−10, 10]. We computed these relative differences for two depths
c = −2 and c = −20.

u to u′ u to u′′ u′ to u′′

c = −2 .1814 .1741 .1738
c = −20 .002265 .002103 .001984

plane. That case reduces to recovering Green’s scalar function in the lower half plane
with zero Neumann condition on the surface. We also explained why under some
decay and growth condition our Green’s tensor is unique, and we use this uniqueness
result to verify our calculation for H . Finally, we used our tensor H for the explicit
numerical computation of surface displacement fields due to a slip on a crack, or fault,
beneath the surface. As the exact solution might require an intensive computation,
we found a way to obtain an approximate field u(x1, x2, 0) based on asymptotics
assuming only that (x1, x2) is some distance away from the fault Γ. This led to a
discussion on an interesting symmetry property, valid for deeper faults.

The half space setting considered in this paper plays an important role in geo-
physics, where the traction free plane at the boundary models the surface of the Earth.
This geometry may also be helpful in material science at adequate length scales. We
have shown in this paper the expression in closed form for H on the surface and its
use for efficiently approximating surface fields due to a slip on the fault. In another
paper we will demonstrate how one can take advantage of those approximate closed
form expressions for surface displacements, in order to solve the fault inverse problem:
given a surface displacement field u, can one recover the fault and the slip that gave
rise to u? We provide a positive answer to a regularized version of that problem. Our
recovery method combines algebraic manipulations on the approximate closed form
expressions for surface displacements to minimization techniques; see [10].

6. Appendix. Instead of giving formulas for each entry of the matrix H , it is
advantageous to write out formulas for the coordinates H t, where t is the vector
(t1, t2, t3). We only present in this appendix formulas at x3 = 0; the idea is to give
a feel for the different terms involved. The complete formula for x3 < 0 is best left
within a computer code.

It proves convenient to introduce polar surface coordinates.

6.1. If (x1 − y1)2 + (x2 − y2)2 = 0. The three coordinates of H t are then,
respectively,

0,

0,

−μ(n1t1 + n2t2) + 6(λ+ μ)n3t3
4πy32 (λ+ μ)

.

6.2. If (x1 − y1)2 + (x2 − y2)2 > 0. We set

ρ =
√

(x1 − y1)2 + (x2 − y2)2,

d =
√
ρ2 + y2

3 ,
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c =
x1 − y1

ρ
,

s =
x2 − y2

ρ
.

The first coordinate of H t is the ratio of

αn1t1 + βn2t2 + γn3t3 + δ(n1t2 + n2t1) + ε(n1t3 + n3t1) + ζ(n2t3 + n3t2)(52)

to

(λ + μ)π ρ3d5,(53)

where, setting

A =
(
y3dρ

4 +
(

5
2
y3

4 + 2 y33d

)
ρ2 + y3

6 + y3
5d

)
μ ,

α, β, γ, δ, γ, ε, and ζ are given by

α

c
= −A

(
4 c2 − 3

)
+
(

3
2
λ c2 + μ

)
ρ6 − 1

2
μ
(
15 c2 − 11

)
y3

2ρ4,

β

c
= A

(
4 c2 − 3

)
− 3

2
λ
(
c2 − 1

)
ρ6 +

3
2
μ
(
5 c2 − 4

)
y3

2ρ4,

γ

c
=

3
2

(λ+ μ)y32ρ4,

δ

s
= −A

(
4 c2 − 1

)
+
(

3
2
λ c2 +

1
2
μ

)
ρ6 − 1

2
μ
(
15 c2 − 4

)
y3

2ρ4,

ε = −3
2
ρ5y3c

2(λ+ μ),

ζ = −3
2

(λ+ μ)csy3ρ5.

The second coordinate of H t is also in the form of a ratio of (52) to (53), where this
time α, β, γ, δ, γ, ε, and ζ are given by

α

s
= −A

(
4 c2 − 1

)
+

3
2
λ c2ρ6 − 3

2
(
5 c2 − 1

)
μ y3

2ρ4,

β

s
= A

(
4 c2 − 1

)
+
(

3
2
λ+ μ− 3

2
λ c2

)
ρ6 +

1
2
μ
(
−4 + 15 c2

)
y3

2ρ4,

γ

s
=

3
2

(λ+ μ)y32ρ4,

δ

c
= A

(
4 c2 − 3

)
+
(

3
2
λ+

1
2
μ− 3

2
λ c2

)
ρ6 +

1
2
μ
(
15 c2 − 11

)
y3

2ρ4,

ε = −3
2

(λ+ μ)csy3ρ5,

ζ =
3
2
ρ5y3

(
c2 − 1

)
(λ+ μ).
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Setting

B =
(

1
2
dρ5 + dy3

2ρ3 +
(

1
2
y3

5 +
1
2
y3

4d

)
ρ

)
μ ,

the third coordinate of H t is also in the form of a ratio of (52) to (53), where this
time α, β, γ, δ, γ, ε, and ζ are given by

α = −B
(
−1 + 2 c2

)
+
(
−3μ c2 − 3

2
λ c2 + μ

)
y3ρ

5 − 1
2
μ
(
5 c2 − 3

)
y3

3ρ3,

β = B
(
−1 + 2 c2

)
+
(
−2μ+

3
2
λ c2 − 3

2
λ+ 3μ c2

)
y3ρ

5 +
1
2
μ
(
−2 + 5 c2

)
y3

3ρ3,

γ = −3
2

(λ+ μ)y33ρ3,

δ

sc
=
((

−3
2
λ− 3μ

)
y3 − dμ

)
ρ5 +

(
−5

2
μ y3

3 − 2 dμ y32

)
ρ3 +

(
−dμ y34 − μ y3

5
)
ρ,

ε

c
=

3
2

(λ+ μ)y32ρ4,

ζ

s
=

3
2

(λ+ μ)y32ρ4.

Remark. Denote by (u1, u2, u3) the coordinates of Ht, whose expressions were
given above. From (33) and (34) the following symmetry properties must hold:

u1(s, c, n1, n2, t1, t2) = u2(c, s, n2, n1, t2, t1),
u3(s, c, n1, n2, t1, t2) = u3(c, s, n2, n1, t2, t1).

These symmetry properties can be directly verified from the previous formulas using
that s2 + c2 = 1.
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A TWO-DIMENSIONAL DIFFUSION APPROXIMATION FOR A
LOSS MODEL WITH TRUNK RESERVATION∗

CHARLES KNESSL† AND JOHN A. MORRISON‡

Abstract. We consider a loss model with C servers, and arriving customers are split into two
classes. Of the C servers, R may be used only by the high priority class. Thus if a high priority
customer sees all C servers occupied, then that customer is lost, while a low priority customer is lost
if ≥ C −R servers are occupied. Assuming Poisson arrivals of both customer types and exponential
service, we study the problem asymptotically, with C → ∞ and the arrival rates comparably large.
We assume that the total load is roughly equal to the number of servers, and we obtain a two-
dimensional diffusion equation satisfied by the joint steady state probability distribution of the
numbers of servers occupied by the two customer classes. We analyze this equation by a combination
of analytic and numerical methods. Our singular perturbation analysis makes certain assumptions
about not only the forms of various asymptotic expansions but also the asymptotic matching between
different scales.

Key words. asymptotics, diffusion, trunk reservation
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1. Introduction. We consider the following queueing model. There are C
servers and two customer types. The high (resp., low) priority customers arrive ac-
cording to a Poisson process of rate λ (resp., ν). The service times for the high and
low priority customers are all exponentially distributed, with respective means 1 and
1/κ. Of the C servers, R are reserved for the high priority customers. If a high prior-
ity customer arrives to see all C servers occupied, that customer is lost (or blocked).
If a low priority customer arrives to see at least C − R servers occupied, then that
customer is lost.

This model is referred to as “trunk reservation.” The concept of trunk reserva-
tion is of fundamental importance in circuit-switched networks. On any link of the
network, which has a fixed number of circuits, some of the circuits may be reserved
for the primary traffic, which is offered directly to the link. Secondary traffic, which
is rerouted because of a busy link on its direct route, is accepted on an alternate link
only if there is an unreserved link available.

In our notation, the servers are circuits, high priority customers are primary calls,
and low priority customers are secondary calls. A circuit is held for the duration of
the call. An arriving call is blocked and lost if a circuit is not available on any of the
links on its route.

This model is a priority queue and a loss model. Variants and various aspects of
trunk reservation models have been investigated by many authors, including Mitra,
Gibbens, and Huang [8], [9], Mitra and Gibbens [7], Hunt and Laws [2], and Roberts
[14], [15]. In [7], [8], [9] the authors considered symmetric loss networks with trunk
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reservation and dynamic routing. They analyze in detail the case of a single queue (or
link) and use the results to obtain approximations for more complicated loss networks.
Optimization and control policies for related models are considered in [2]. In [14] and
[15] the author obtains analytical approximations to the blocking probabilities for the
two customer types, based on a certain approximate recurrence. Having a thorough
understanding of a single queue is important since then fixed point approximations
can be used to study more general loss networks; see Kelly [3], [4].

The total load from the two customer types is defined as λ+ν/κ. This represents
the number of customers that would, on average, be in the system if the number of
servers were infinite. If the total load exceeds the number of servers (λ + ν/κ > C),
then we are in the “overloaded” case, while if λ+ν/κ < C, we are in the “underloaded”
case. Important in applications is the case of “critical loading” where λ + ν/κ ≈ C.
Here the system’s capacity is roughly equal to the load.

We consider the asymptotic limit where C → ∞ and the arrival rates λ and
ν → ∞, at the same rate as C. Furthermore we assume that the number R of
reserved trunks is O(1) and that C − (λ + ν/κ) = O(

√
C), so we are in the critical

loading case.
We will pay particular attention to computing the blocking probabilities for both

the primary and secondary traffic. In a loss model such as this, these give the proba-
bility that a phone call is lost on the link.

Previous asymptotic analyses of this model are due to Morrison [10] and the
present authors [5], [12], [13]. However, in [10], [12], and [13] the analyses assume
that the arrival rate of one traffic type is asymptotically greater than the other traffic
type. This leads to some mathematical simplifications, namely, that one needs to
solve parabolic rather than elliptic PDEs in the heavy traffic limit. Here we treat
the more difficult case where the arrival rates of the two traffic types are comparably
large. In [5] we considered the same model as in the present paper, with arrival rates
of the same order, but for underloaded and overloaded links rather than a critically
loaded one. This again led to much simpler mathematical problems.

We assume that both arrival rates and both service rates are of comparable magni-
tude, and we obtain a two-dimensional diffusion equation satisfied by the joint steady
state probability distribution in this asymptotic limit. We derive this by using sin-
gular perturbation methods, and obtaining the appropriate boundary condition for
this diffusion equation involves the analysis of the two different scales, i.e., ranges of
(n1, n2). The analysis makes certain assumptions about not only the forms of various
asymptotic expansions but also the asymptotic matching between the two scales. We
then analyze the diffusion equation by a semi-analytic, seminumerical approach. This
employs the classic technique of separation of variables, but satisfying the boundary
condition is done numerically.

The paper is organized as follows. In section 2 we formulate the mathematical
problem and introduce the asymptotic limit. In section 3 we obtain the diffusion
equation and the boundary condition. We use analytic methods in section 4 to convert
the problem into determining an infinite sequence of constants, and these we obtain
numerically in section 5. In section 6 we give a brief summary.

2. Statement of the problem. We let N1(t) (resp., N2(t)) denote the num-
ber of servers occupied by primary (resp., secondary) customers. The steady state
distribution will be denoted by

(2.1) p(n1, n2) = lim
t→∞

Prob[N1(t) = n1, N2(t) = n2].
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It satisfies the difference equation

(2.2) [λI{n1+n2+1�C}+νI{n1+n2+1�C−R}+n1+κn2]p(n1, n2)
= λI{n1 �1}p(n1−1, n2)

+ νI{n1+n2 �C−R}I{n2�1}p(n1, n2−1)
+ I{n1+n2+1�C}(n1+1)p(n1+1, n2)
+ κI{n1+n2+1�C}I{n2+1�C−R}(n2+1)p(n1, n2+1)

for n1 � 0, 0 � n2 � C −R, n1 + n2 � C. Here I{A} is the indicator function on the
event A.

We also have the normalization condition

(2.3)
C−R∑
n2=0

C−n2∑
n1=0

p(n1, n2) = 1.

Of particular interest are the blocking probabilities, defined by

(2.4) B1 =
C∑

n1=R

p(n1, C − n1), B2 =
R∑
�=0

C−R+�∑
n1=�

p(n1, C −R+ �− n1).

The use of indicator functions allows us to write the problem as the single equation
(2.2), and this form is useful for programming the numerical or symbolic solutions.
But, the form (2.2) somewhat obscures the structure of the equation(s). We note that

(λ+ n1 + κn2)p(n1, n2) = λp(n1 − 1, n2)(2.5)
+ (n1 + 1)p(n1 + 1, n2)
+ κ(n2 + 1)p(n1, n2 + 1)

in the discrete oblique strip where 0 < n2 < C −R and C −R < n1 + n2 < C, and

(λ+ ν + n1 + κn2)p(n1, n2) = λp(n1 − 1, n2) + νp(n1, n2 − 1)(2.6)
+ (n1 + 1)p(n1 + 1, n2)
+ κ(n2 + 1)p(n1, n2 + 1)

in the discrete triangle 0 < n1 + n2 < C −R. By analogy to PDEs we can view (2.5)
as a parabolic problem (since the equation involves only first order differences in n2),
coupled to an elliptic problem (2.6), with an interface along n1 + n2 = C − R. If
n1 + n2 = C, we have (n1 + κn2)p(n1, n2) = λp(n1 − 1, n2) which expresses the loss
of primary customers. The loss of secondary customers is evident in (2.5) due to the
absence of the term νp(n1, n2 − 1).

We consider the asymptotic limit where C, λ, ν → ∞ with R, κ = O(1). We
introduce the new parameters σ and ρ, with

(2.7) C −R =
λ

κ
σ, ν + κλ = ρλ.

Note that σ and ρ are to be O(1). We consider only p(n1, n2) for those ranges of n1

and n2, where most of the probability mass accumulates, in this asymptotic limit.
Now we introduce the heavy traffic assumption that ρ ∼ σ, with δ defined by

(2.8) ρ− σ =
δ√
λ
,
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where δ = O(1) and −∞ < δ <∞. Note that with (2.8) C −R− (λ+ ν/κ) = O(
√
λ)

so that the total load (λ + ν/κ) is roughly balanced by the total number of servers.
Most of the mass will occur where n1 ∼ λ and n1 + n2 ∼ C. More precisely, we
introduce (x, y) with

(2.9) n1 = λ+ x
√
λ, n2 =

(σ
κ
− 1
)
λ− (x + y)

√
λ

and note also that n1 + n2 = C −R − y
√
λ.

On the (x, y) scale we define

(2.10) p(n1, n2) = P(x, y;λ)

and for y > 0 we obtain from (2.2) or (2.6)
{
λ(2 + 2σ − 2κ) +

√
λ [(1 − κ)x− κy + δ]

}
P(x, y;λ)(2.11)

= λP
(
x− 1√

λ
, y +

1√
λ

;λ
)

+
[
(σ − κ)λ+

√
λδ
]
P
(
x, y +

1√
λ

;λ
)

+
(
λ+

√
λx+ 1

)
P
(
x+

1√
λ
, y − 1√

λ
;λ
)

+
[
(σ − κ)λ− κ

√
λ(x+ y) + κ

]
P
(
x, y − 1√

λ
;λ
)
.

In order to understand the boundary behavior of P near y = 0, we must also analyze
(2.2) on another scale, namely, on the (x, �) scale, where

(2.12) n1 + n2 − (C −R) = �, −∞ < � � R.

Note that the expansion for y > 0 may cease to be valid when y becomes small, and
thus we include � < 0 in (2.12).

Then we set

(2.13) p(n1, n2) = p�(x) = P(x, y;λ)

and from (2.2) we obtain
[
λI{� � R− 1} + [λ(σ − κ) + δ

√
λ]I{� � −1}(2.14)

+ λ− λκ+ λσ +
√
λ(1 − κ)x+ �κ

]
p�(x)

= λp�−1

(
x− 1√

λ

)
+ [λ(σ − κ) +

√
λδ]I{� � 0}p�−1(x)

+ I{� � R− 1}(λ+ x
√
λ+ 1)p�+1

(
x+

1√
λ

)

+ I{� � R− 1}
[
λ(σ − κ) −

√
λκx+ κ(�+ 1)

]
p�+1(x).

Here � � R and we note that

(2.15) � = −y
√
λ.
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Note that some of the indicator functions in (2.2) were replaced by 1, since the local
scaling (2.9) corresponds to (n1, n2) ≈ (λ,C−λ). However, the boundary n1+n2 = C
(� = R) and interface n1 +n2 = C−R (� = 0) do play key roles in the analysis. In the
next section we analyze (2.11) and (2.14) asymptotically, ultimately obtaining a two-
dimensional diffusion equation, with an appropriate boundary condition along y = 0.

3. Diffusion approximation. We rewrite (2.11) as

(3.1) λ [P(x− ε, y + ε;λ) − P(x, y;λ)]

+
[
(σ − κ)λ+ δ

√
λ
]
[P(x, y + ε;λ) − P(x, y;λ)]

+
(
λ+

√
λx
)

[P(x+ ε, y − ε;λ) − P(x, y;λ)] + P(x+ ε, y − ε;λ)

+
[
(σ − κ)λ− κ(x+ y)

√
λ
]
[P(x, y − ε;λ) − P(x, y;λ)]

+ κP(x, y − ε;λ) = 0,

where ε = 1/
√
λ→ 0+ and y > 0. We assume an expansion of the form

(3.2) P(x, y;λ) =
1
λ

[
P(x, y) +

1√
λ
P(1)(x, y) +O

(
λ−1

)]
.

Here the first factor of 1/λ is suggested by the scaling (2.9), with which we expect
that the normalizing sum (2.3) will be replaced asymptotically by a double integral
over x and y.

Expanding (3.1) for ε→ 0 and using (3.2) we find that to leading order (O(ε) =
O(1/

√
λ)) the equation holds automatically, and at O(ε2) = O(1/λ) we obtain

(3.3) Pxx − 2Pxy + (1 + σ − κ)Pyy + xPx + [δ − x+ κ(x+ y)]Py + (κ+ 1)P = 0.

This is a second order elliptic PDE that applies over the half-plane y > 0,−∞ < x <
∞. We note that σ > κ, since σ ∼ ρ and ρ = κ + ν/λ > κ. If we change variables
from (x, y) to (ξ, η) with

(3.4) x = ξ, x+ y = η, P(x, y) = P (ξ, η),

we obtain from (3.3)

(3.5) Pξξ + (σ − κ)Pηη + ξPξ + (δ + κη)Pη + (κ+ 1)P = 0,

which applies for η > ξ and −∞ < ξ < ∞. Now, (3.5) is a separable PDE, but it
applies over an oblique half-plane. At certain times we will use (3.5), while at other
times (3.3) will prove more convenient.

We need a boundary condition along y = 0 for (3.3), or along ξ = η for (3.5). To
this end we must carefully consider the problem on the (x, �) scale, where the interface
condition(s) (� = 0 in (2.14)) play a role. We assume that on this scale we have the
expansion

(3.6) p�(x) =
1
λ

[
p
(0)
� (x) +

1√
λ
p
(1)
� (x) +O(λ−1)

]
.

For R � 2 and 1 � � � R− 1 we use (3.6) in (2.14). In this range I{� � −1} = 0
and I{� � R− 1} = 1, and to leading order (2.14) gives

(3.7) (2 + σ − κ)p(0)
� (x) = p

(0)
�−1(x) + (1 + σ − κ)p(0)

�+1(x), 1 � � � R− 1.
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When � = R, using (3.6) in (2.14) leads to

(3.8) (1 + σ − κ)p(0)
R (x) = p

(0)
R−1(x).

Setting

(3.9) a =
1

1 + σ − κ
< 1,

the most general solution to (3.7) and (3.8) is

(3.10) p
(0)
� (x) = a�F0(x), 0 � � � R,

where F0 is at this point undetermined.
At the next order of the expansion of (2.14) using (3.6) we obtain, for 1 � � �

R− 1,

(3.11) (2 + σ − κ)p(1)
� (x) + (1 − κ)xp(0)

� (x)

= p
(1)
�−1(x) −

d

dx
p
(0)
�−1(x) + p

(1)
�+1(x) +

d

dx
p
(0)
�+1(x) + xp

(0)
�+1(x)

+ (σ − κ)p(1)
�+1(x) − κxp

(0)
�+1(x).

By using (3.10) we can rearrange (3.11) to

(3.12) p
(1)
�−1(x) − (2 + σ − κ)p(1)

� (x) + (1 + σ − κ)p(1)
�+1(x)

= a�−1(1 − a) [a(1 − κ)xF0(x) + (1 + a)F ′
0(x)] .

The most general solution to the difference equation (3.12) is of the form

(3.13) p
(1)
� (x) = a�

{
p
(1)
0 (x) − � [a(1 − κ)xF0(x) + (1 + a)F ′

0(x)]
}

+ (a� − 1)H1(x), 0 � � � R.

Here we used a(1 + σ − κ) = 1. When � = R, (2.14) with (3.6) yields at the second
order

(3.14) (1 + σ − κ)p(1)
R (x) + (1 − κ)xp(0)

R (x) = p
(1)
R−1(x) −

d

dx
p
(0)
R−1(x).

Using (3.10) and (3.13) in (3.14), we obtain

(3.15) H1(x) = −a
R+1

1 − a
F ′

0(x).

We have thus obtained two terms in the expansion (3.6) for � � 0, up to the functions
F0(x) = p

(0)
0 (x) and p(1)

0 (x). We have thus far assumed that R � 2, but we shall show
that (3.10) holds if R = 1 also.

Now consider (2.14) for R � 1 and � � 0. In this case the expansion (3.6) leads
to

(3.16) [2 + σ − κ+ (σ − κ)I{� � −1}] p(0)
� (x)

= (1 + σ − κ)
[
p
(0)
�−1(x) + p

(0)
�+1(x)

]
, � � 0,
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so that

(3.17) 2p(0)
� (x) = p

(0)
�−1(x) + p

(0)
�+1(x), � � −1,

and

(3.18) (2 + σ − κ)p(0)
0 (x) = (1 + σ − κ)

[
p
(0)
−1(x) + p

(0)
1 (x)

]
.

The general solution to (3.17) is F0(x) + �G0(x), where F0 is as in (3.10). But then
(3.18), with p(0)

1 = aF0, shows that

p
(0)
−1 = [(2 + σ − κ)F0 − F0] a = F0,

so that G0 = 0 and hence

(3.19) p
(0)
� (x) = F0(x), � � 0.

At the next order in using (3.6) in (2.14) we obtain, for � � −1,

(3.20) (1 + σ − κ)
[
2p(1)
� (x) − p

(1)
�−1(x) − p

(1)
�+1(x)

]

= δ
[
p
(0)
�−1(x) − p

(0)
� (x)

]
+ (1 − κ)x

[
p
(0)
�+1(x) − p

(0)
� (x)

]

+
d

dx

[
p
(0)
�+1(x) − p

(0)
�−1(x)

]
,

and � = 0 leads to

(3.21) (2+σ−κ)p(1)
0 (x)−(1+σ−κ)

[
p
(1)
−1(x)+p

(1)
1 (x)

]

= (1−κ)x
[
p
(0)
1 (x)−p(0)

0 (x)
]

+δp(0)
−1(x)+

d

dx

[
p
(0)
1 (x)−p(0)

−1(x)
]
.

In view of (3.19), the right-hand side of (3.20) vanishes so that

(3.22) p
(1)
� (x) = F1(x) + �G1(x), � � 0.

We use (3.10) and (3.13) with � = 1, (3.15), and p
(0)
0 = p

(0)
−1 = F0 in (3.21). With

(3.22), after some calculation this yields, for R � 2,

(3.23) (1 + σ − κ)G1(x) = [δ − (1 − κ)x]F0(x) −
(
2 − aR

)
F ′

0(x).

If R = 1 and � = 1, (2.14) yields to leading order

(3.24) (1 + σ − κ)p(0)
1 (x) = p

(0)
0 (x)

and at the next order

(3.25) (1 + σ − κ)p(1)
1 (x) + (1 − κ)xp(0)

1 (x) = p
(1)
0 (x) − d

dx
p
(0)
0 (x).

But (3.24) shows that p(0)
1 (x) = ap

(0)
0 (x) so that (3.10) remains valid when R = 1,

and (3.25) becomes

(3.26) (1 + σ − κ)p(1)
1 (x) = p

(1)
0 (x) − F ′

0(x) − a(1 − κ)xF0(x).
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Using (3.13) and (3.15) we see that (3.26) is the same as (3.13) with � = 1, so (3.13)
remains valid also when R = 1. It follows that (3.23) is also true if R = 1.

We now compare expansions (3.2) and (3.6). Setting y = −�/
√
λ in (3.2) leads to

(3.27)
1
λ

{
P(x, 0) +

1√
λ

[
P(1)(x, 0) − �Py(x, 0)

]
+O(λ−1)

}
.

If this is to agree with (3.6) for � < 0, we must have, in view of (3.19) and (3.22),

(3.28) P(x, 0) = F0(x),

(3.29) P(1)(x, 0) = F1(x),

and

(3.30) G1(x) = −Py(x, 0).

But then (3.23), (3.28), and (3.30) yield

(3.31) (1 + σ − κ)Py(x, 0) =
(
2 − aR

)
Px(x, 0) + [(1 − κ)x− δ]P(x, 0).

This is the boundary condition that we sought for the leading term in (3.2). Calculat-
ing F1 and P(1) would require computing further terms in the expansions. In terms
of (ξ, η), (3.31) becomes

(3.32) (1 + σ − κ)Pη(ξ, ξ) +
(
aR − 2

)
[Pξ(ξ, ξ) + Pη(ξ, ξ)] = [(1 − κ)ξ − δ]P (ξ, ξ).

To summarize, we have formulated the problem for the leading term in (3.2) as
the PDE (3.3) and the boundary condition (BC) (3.31). Alternately, in terms of ξ
and η we have the PDE (3.5) and BC (3.32). Using the Euler–MacLaurin formula we
can show that the normalization condition in (2.3) becomes, to leading order,

(3.33)
∫ ∞

−∞

∫ ∞

0

P(x, y) dy dx = 1

or

(3.34)
∫ ∞

−∞

∫ ∞

ξ

P (ξ, η) dη dξ = 1.

We note that the fact that p(n1, n2) has a different form on the (x, �) scale for � > 0
would affect the O(1/

√
λ) correction to the normalization.

Finally, we briefly discuss the cases R = 0 and R → ∞. When R = 0 there are
no reserved trunks, and then we have the exact product form solution

(3.35) p(n1, n2) = C0
λn1 (ν/κ)n2

n1!n2!
,

where C0 is a normalizing constant. By using in (3.35) the heavy traffic scaling in
(2.8), and also using (2.7) and (2.9), we obtain after some calculation

(3.36) p(n1, n2) ∼ (const.)e−x
2/2 exp

[
− (κ(x+ y) + δ)2

2κ(σ − κ)

]
.
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While our derivation of (3.3) and (3.31) assumed that R � 1, a similar analysis shows
that in fact the diffusion approximation holds also if R = 0. In this case we replace the
coefficient 2 − aR in (3.31) by 1. Then we can easily verify that (3.36) satisfies the
PDE (3.3) and the BC (3.31). Thus our analysis is certainly consistent with the exact
product form solution if R = 0.

Now consider R → ∞ with σ and κ fixed, so that a is fixed and C → ∞. If
R → ∞, we can replace 2 − aR in (3.31) by 2, and (3.32) becomes

(3.37) 2Pξ +
(

2 − 1
a

)
Pη + [ξ(1 − κ) − δ]P = 0, ξ = η.

We define

(3.38) P̃ (ξ) =
∫ ∞

ξ

P (ξ, η) dη =
∫ ∞

0

P(ξ, y) dy.

By integrating (3.3) from y = 0 to y = ∞, setting x = ξ, and using (3.31), we get

(3.39) P̃ ′′(ξ) + ξP̃ ′(ξ) + P̃ (ξ) = 0

so that

(3.40) P̃ (ξ) =
1√
2π
e−ξ

2/2.

Here we also used (3.34) for R = ∞. This shows that if R = ∞, the lowest order
asymptotic approximation to the marginal density is exactly Gaussian. But, the
structure of the two-dimensional density P (ξ, η) seems much more complicated. The
explicit solutions for R = 0 and R = ∞ can be used as useful checks on any numerical
method for solving this boundary value problem.

4. Modal expansions. We consider (3.5) and (3.32). The PDE (3.5) admits
solutions of the separable form

(4.1) P (ξ, η) = f(ξ)g(η).

Using (4.1) in (3.5), dividing by fg, and rearranging terms yields

(4.2) −
[
f ′′(ξ)
f(ξ)

+ ξ
f ′(ξ)
f(ξ)

+ 1
]

= (σ − κ)
g′′(η)
g(η)

+ (δ + κη)
g′(η)
g(η)

+ κ.

Since the left-hand side of (4.2) depends only on ξ and the right-hand side only on η,
both must be constant. We call this separation constant μ, and then

(4.3) f ′′(ξ) + ξf ′(ξ) + (μ+ 1)f(ξ) = 0,

(4.4) (σ − κ)g′′(η) + (δ + κη)g′(η) + (κ− μ)g(η) = 0.

Both of these ODEs are parabolic cylinder equations [6].
We expect P to have rapid decay as |ξ| and/or |η| → ∞ with η � ξ. By choosing

μ = r = 0, 1, 2, . . . the solution to (4.3) has Gaussian decay as ξ → ±∞, with

(4.5) f(ξ) = e−ξ
2/4Dr(ξ) = e−ξ

2/2Her(ξ),
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where He is the Hermite polynomial [6]. With μ = r we can require the solution of
(4.4) to decay as η → +∞, and then

(4.6) g(η) = exp
[
− (δ + κη)2

4κ(σ − κ)

]
D−r/κ

(
δ + κη√
κ(σ − κ)

)
.

We note that, since η � ξ, we have ξ → −∞ whenever η → −∞. By linear super-
position and the completeness of the Hermite polynomials we argue that a general
solution to (3.5) is

(4.7) P (ξ, η) = e−ξ
2/4 exp

[
− (δ + κη)2

4κ(σ − κ)

] ∞∑
r=0

A(r)Dr(ξ)D−r/κ

(
δ + κη√
κ(σ − κ)

)
.

The constants A(r) must be determined by the boundary condition (3.32). A crude
but effective numerical method is to truncate the sum in (4.7) at some r = Nmax and
require that (3.32) hold at ξ = η for some discrete set of points ξj . The totality of
these points should suffice to determine A(r) for 0 � r � Nmax. We employ such a
method in section 5.

Our choice of having f(ξ) decay as ξ → ±∞ was somewhat arbitrary, as we could
also require that g(η) have Gaussian decay as η → ±∞. Then g(η) would involve
Hermite polynomials, which forces μ = −pκ for p = 0, 1, 2, . . . , and thus

(4.8) g(η) = exp
[
− (δ + κη)2

4κ(σ − κ)

]
Dp

(
δ + κη√
κ(σ − κ)

)
.

The solution to (4.3) that decays as ξ → −∞ is

(4.9) f(ξ) = e−ξ
2/4D−pκ(−ξ).

Again using linear superposition we argue that another form of the general solution
to (3.5) is

(4.10) P (ξ, η) = e−ξ
2/4 exp

[
− (δ + κη)2

4κ(σ − κ)

] ∞∑
p=0

C(p)D−pκ(−ξ)Dp

(
δ + κη√
κ(σ − κ)

)
.

Here C(p) must be determined by the BC in (3.32).
We next discuss the normalization (3.34) and the blocking probabilities in (2.4).

Let us define

(4.11) ω0(y) =
∫ ∞

−∞
P(x, y) dx =

∫ ∞

−∞
P (ξ, y + ξ) dξ

so that the normalization (3.33) or (3.34) yields

(4.12)
∫ ∞

0

ω0(y) dy = 1.

Using (2.4) with the scaling in (2.9) and (2.15), and also using (3.6), (3.10), and (3.28),
we find that the blocking probabilities are, to leading order, given by

B1 ∼ 1√
λ

∫ ∞

−∞
p
(0)
R (x) dx =

aR√
λ

∫ ∞

−∞
P(x, 0) dx(4.13)

=
1√
λ
aRω0(0)
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and

B2 ∼ 1√
λ

∫ ∞

−∞

R∑
�=0

p
(0)
� (x) dx =

1 − aR+1

√
λ(1 − a)

∫ ∞

−∞
P(x, 0) dx(4.14)

=
1√
λ

1 − aR+1

1 − a
ω0(0).

Using properties of parabolic cylinder functions in [6], we show in the appendix
that, for r � 0,

(4.15)
∫ ∞

0

∫ ∞

−∞
e−x

2/4Dr(x) exp
[
− (δ+κ(x+y))2

4κ(σ−κ)

]
D−r/κ

(
δ+κ(x+y)√
κ(σ−κ)

)
dx dy

=
√

2π(−1)r
(√

κ

σ

)r−1(√
1− κ

σ

)1−r/κ
exp

(
− δ2

4σκ

)
Dr−1−r/k

(
δ√
σκ

)
.

Then if we define α(r) from

(4.16) α(r)=
√

2π(−1)r
(√

κ

σ

)r (√
1 − κ

σ

)1−r/κ
exp
(
− δ2

4σκ

)
A(r)

and use the expansion (4.7) for P (ξ, η) = P(x, x+y), the normalization (4.12) becomes

(4.17)
√
κ

σ
=

∞∑
r=0

α(r)Dr−1−r/κ

(
δ√
σκ

)
.

Similarly we show in the appendix that

(4.18) ω0(0) =
∞∑
r=0

α(r)Dr−r/κ

(
δ√
σκ

)
.

If instead of using (4.7) we use (4.10), then the analogous results are

(4.19)
√
κ

σ
=

∞∑
p=0

γ(p)Dp−1−pκ

(
δ√
σκ

)
,

where

(4.20) γ(p) =
√

2π
(√

σ

κ

)pκ(√
1 − κ

σ

)p+1

exp
(
− δ2

4σκ

)
C(p)

and

(4.21) ω0(0) =
∞∑
p=0

γ(p)Dp−pκ

(
δ√
σκ

)
.

We comment that if R = 0, retaining only the r = 0 term in (4.7) or the p = 0
term in (4.10) regains the exact solution in (3.36).
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5. Numerical studies. We consider now the numerical solution of (3.5), with
(3.32) and (3.34). We use the C-mode expansion in (4.10), which proved numerically
superior to the A-mode expansion in (4.7).

The basic method is as follows. We impose on (4.10) (or (4.7)) the boundary
condition (3.32). First, we truncate the sum in (4.10) at p = Nmax (or (4.7) at
r = Nmax) so we approximate P (ξ, η) using the first Nmax + 1 modes. Then we
require (3.32) to hold along η = ξ = u for certain discrete points ξj . For example, we
choose some interval [u0 −AA, u0 +AA] centered at u0 and require (3.32) to hold at
the points

(5.1) u = u0 +AA
N

N0
; N = −N0,−N0 + 1, . . . ,−2,−1, 1, 2, . . . , N0 − 1, N0.

Here we omit u = u0 and instead impose the normalization (3.34) in the form (4.20)
(or (4.17)), with the sum again truncated at p = Nmax (or r = Nmax). Using (5.1)
yields 2N0 equations, and thus the Nmax + 1 coefficients in (4.10) satisfy 2N0 + 1
equations. If Nmax = 2N0, we obtain an inhomogeneous linear system that should
uniquely determine (an approximation to) the C(p) for 0 � p � Nmax. But, we have
found that this approach leads to numerical instabilities. Instead we use an approach
similar to that in [11] based on the method of least squares. Here we take a relatively
small Nmax and a much larger N0, so that the points in (5.1) densely fill the interval
u ∈ [u0−AA, u0+AA], and obtain the least squares approximate solution to the linear
system. Then we increase N0 to get convergence of the first few C(p) as N0 → ∞
for this fixed value of Nmax. We increase Nmax and repeat the procedure. Thus if
we write C(p) = C(p;N0, Nmax), we first get convergence as N0 → ∞, and then as
Nmax → ∞, for the first few coefficients in (4.10).

Our studies show that P (u, u) is a unimodal function with very thin tails, which
corresponds to the boundary values of the two-dimensional density P (ξ, η). We choose
u0 to be close to where P (u, u) is peaked, and we have found that taking AA = 5 is
more than sufficient to capture the left and right tails of P (u, u). We have found that
a good way of checking the numerical convergence of our method is to plot P (u, u)
for a given Nmax, and then for Nmax + 5 (using 5 additional modes), and see if the
graphs coincide.

To illustrate the numerical method we first take a = .5, κ = 2, δ = .01, and R = 3
(thus σ = 3). In Table 1 we used u0 = 1 and AA = 5, and we give the first three
coefficients (C(0), C(1), C(2)) in (4.10) for various values of Nmax. We start with
Nmax = 4 (5 modes) and increase this in increments of 5. We also give the values of
B0

1 and B0
2 , where

(5.2) B0
1 = aRω0(0), B0

2 =
1 − aR+1

1 − a
ω0(0),

and ω0(0) is computed using (4.21) and (4.20), with the sum truncated at p = Nmax.
It follows that B0

j /
√
λ should be an approximation to the blocking probabilities Bj

for j = 1, 2. For each Nmax we increased N0 until we got convergence of C(p) and B0
j .

We started with Nmax = 4 and N0 = 35, so we used a least squares approximation to
a system of 71 equations in 5 unknowns.

In Table 1 we consider 5, 10, 15, 20, and 25 modes. We see that the convergence
of C(0) with increasing Nmax is quite rapid, but the coefficient C(2) of the third mode
is converging much more slowly. However, the B0

j converge very rapidly. In Figure 1
we plot the curve P (u, u) for −4 � u � 6. Here we used Nmax + 1 modes in (4.10)
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Table 1

δ = .01, a = .5, κ = 2, R = 3.

Nmax C(0) C(1) C(2) B0
1 B0

2
4 .261 .272 −.0328 .102 1.53
9 .248 .301 −.115 .103 1.55
14 .246 .311 −.164 .103 1.55
19 .246 .315 −.189 .103 1.55
24 .245 .316 −.201 .103 1.55

0

0.1

0.2

0.3

0.4

P(u,u)

–4 –2 2 4 6

u

Fig. 1. A sketch of the curve P (u, u) for −4 ≤ u ≤ 6 when δ = .01.

and set ξ = η = u. Like the B0
j the graph converges quite rapidly with Nmax, and we

get indistinguishable curves using 15 or 25 modes. The graph shows that P (u, u) has
very thin tails. Our results also show that the maximum value of P (u, u) is about
.438 and this occurs at u ∼= .723. In Figures 2 and 3 we plot the “surface” P (u, v)
obtained from (4.10) with the sum truncated at p = Nmax. This also is quite robust
and does not change much with increasing Nmax. In Figure 2 we view the surface
from the direction u = v > 0 in the (u, v) plane, while Figure 3 uses Θ = −15◦, where
u =

√
u2 + v2 cos(Θ), v =

√
u2 + v2 sin(Θ).

In Table 2, and Figures 4, 5, and 6 we use δ = −3.5, retaining the other parameter
values. Note that as δ → −∞ we are moving out of the critically loaded case into the
underloaded case (we have, by (2.7) and (2.8), C − R = λ + ν/κ−

√
λδ/κ). We use

u0 = 2 and plot P (u, u) for u ∈ (−3, 7). Figure 4 shows that decreasing δ from .01
to −3.5 tends to make the maximum of P (u, u) much smaller (< .09) and shifts the
peak to the right. The surface P (u, v) is given in Figures 5 and 6, from the same two
perspectives as in Figures 2 and 3. We see that now P (u, v) has an interior maximum
in the range v > u. From Table 2 we see that the blocking coefficients B0

j are now
smaller, which is related to the fact that there is less mass near the boundary u = v.
Table 2 also shows that the coefficient C(0) associated with the first C-mode has a
much larger numerical value than C(1) or C(2), suggesting that retaining only the
p = 0 term in (4.10) may yield a reasonable approximation. For δ → −∞ we can
give an asymptotic argument, by using asymptotic matching to the underloaded case,
that the solution to (3.5) should be a product of two Gaussians, as in (3.36).
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Table 2

δ = −3.5, a = .5, κ = 2, R = 3.

Nmax C(0) C(1) C(2) B0
1 B0

2
4 .236 .00990 −.00667 .0165 .248
9 .229 .0171 −.0152 .0178 .268
14 .228 .0200 −.0216 .0179 .269
19 .227 .0214 −.0253 .0181 .272
24 .227 .0218 −.0273 .0181 .271

Table 3

δ = 3.5, a = .5, κ = 2, R = 3.

Nmax C(0) C(1) C(2) B0
1 B0

2
4 .623 1.54 9.44 .244 3.67
9 .312 2.17 4.96 .258 3.87
14 .313 2.14 5.24 .258 3.87
19 .312 2.14 5.17 .258 3.87
24 .312 2.14 5.15 .258 3.87

Table 4

δ = .01, a = .5, κ = 2, R = 3.

C λ ν
√
λB1 B0

1

√
λB2 B0

2
10 4.666 4.688 .0470 .103 .884 1.55
20 11.33 11.36 .0719 .103 1.07 1.55
30 18.00 18.04 .0812 .103 1.15 1.55
40 24.66 24.71 .0861 .103 1.20 1.55
50 31.33 31.38 .0891 .103 1.24 1.55
60 38.00 38.06 .0912 .103 1.27 1.55
70 44.66 44.73 .0926 .103 1.29 1.55

Next we consider a fairly large positive value of δ. Table 3 and Figures 7, 8, and 9,
have δ = +3.5 (again with a = .5, κ = 2, R = 3). Compared to the other two cases,
now the coefficients C(p) increase in value with p. The convergence as Nmax increases
is similar to the other cases, and the blocking coefficients B0

j converge quickly. In the
figures we use u0 = 0 and −5 � u, v � 5. Now P (u, u) has the maximum value of
about .994 at u ∼= .227. Figures 8 and 9 show that the two-dimensional density is
now quite concentrated near the boundary u = v. Note that δ → +∞ corresponds to
going from the critically loaded case to the overloaded case. For the latter we showed
in [5] that p(n1, n2) is concentrated, where � = n1 + n2 − (C −R) = O(1).

Up to now we have discussed the numerical solution of the diffusion equation, but
not how accurate an approximation it is for the original discrete model. In Table 4
we consider the exact numerical values of the blocking probabilities, as computed
by solving (2.2) and (2.3), and compare these to those obtained from the diffusion
approximation. We compare

√
λBj (cf. (2.4)) to B0

j (cf. (5.2)). To compute B0
j we

need to input the parameters a, κ, R, and δ. From these we can get λ and ν from

(5.3) λ =
κ

σ
(C −R) =

κ

a−1 − 1 + κ
(C −R),

(5.4) ρ = σ +
δ√
λ
,

and

(5.5) ν = (ρ− κ)λ =
a−1 − 1 + δ/

√
λ

a−1 − 1 + κ
κ(C −R).
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Fig. 2. A sketch of the surface P (u, v) from the direction u = v when δ = .01.
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Fig. 3. A sketch of the surface P (u, v) from a different perspective when δ = .01.

0

0.02

0.04

0.06

0.08

P(u,u)

–2 2 4 6

u

Fig. 4. A sketch of the curve P (u, u) for −3 ≤ u ≤ 7 when δ = −3.5.
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Fig. 5. A sketch of the surface P (u, v) from the direction u = v when δ = −3.5.
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Fig. 6. A sketch of the surface P (u, v) from a different perspective when δ = −3.5.
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Fig. 7. A sketch of the curve P (u, u) for −5 ≤ u ≤ 5 when δ = 3.5.
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Fig. 8. A sketch of the surface P (u, v) from the direction u = v when δ = 3.5.
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Fig. 9. A sketch of the surface P (u, v) from a different perspective when δ = 3.5.

Then we input κ, R, C and λ, ν to solve the discrete linear system (2.2) numerically.
Table 4 compares, for various C, the numerical values of

√
λBj to B0

j (which are
independent of C and λ). We see that

√
λBj do appear to be converging as C → ∞,

but fairly slowly. The results are certainly consistent with the O(1/
√
λ) correction

terms in, e.g., (3.2). We could in theory obtain the problem satisfied by the correction
term to the diffusion approximation and analyze it numerically.

To summarize, the numerical method based on the C-modes does efficiently yield
the blocking coefficients B0

j , and determines the density P (u, v), including P (u, u),
for ranges where there is significant mass. The method does have some problems with
the tails, but here an asymptotic approach may be more appropriate.

6. Conclusion. To summarize, we have analyzed a trunk reservation model in
the limit of rapid arrivals for both high and low priority customer classes, a large
number of servers or circuits, and a critical load condition in which the arrivals are
roughly balanced by the number of circuits. Using a semi-analytic and seminumerical
approach we derived and analyzed a two-dimensional PDE that describes the joint
distribution of the numbers of circuits in use by both the high and low priority cus-
tomers. Particular attention was paid to the blocking probabilities, which are both
O(1/

√
λ) in this asymptotic limit.

This model may represent a single node in a circuit-switched network. However,
the analysis of such a network depends on its topology, the capacities of its links
and the offered traffic rates, and holding times between different pairs of origin and
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destination nodes. Consequently, it is not possible to say what our asymptotic results
imply about the behavior of the network without a numerical analysis using fixed
point approximations. This is beyond the scope of our paper.

Appendix. We will derive (4.17)–(4.19), using properties of the parabolic cylin-
der functions [6]. First, we use the property

(A.1) e−z
2/4Dμ(z) = − d

dz

[
e−z

2/4Dμ−1(z)
]
,

and note that Dν(z) → 0 as z → ∞, to obtain

(A.2)
∫ ∞

0

exp
[
− (δ + κ(x+ y))2

4κ(σ − κ)

]
Dμ

(
δ + κ(x+ y)√

κ(σ − κ)

)
dy

=
√
σ

κ
− 1 exp

[
− (δ + κx)2

4κ(σ − κ)

]
Dμ−1

(
δ + κx√
κ(σ − κ)

)
.

To evaluate ω0(0) and the normalization condition (4.12) from (4.7) and (4.11), it will
suffice, in view of (A.2), to consider the definite integral

(A.3) Im =
∫ ∞

−∞
e−x

2/4Dm(x) exp
[
−1

4
(a+ bx)2

]
D−ρ(a+ bx) dx

for b > 0 and m a nonnegative integer.
The term corresponding to p = 0 in the expansion (4.10) is equivalent to the term

corresponding to r = 0 in (4.7). Hence we may restrict our attention to p > 0 in
(4.10). If we let a+ bx = −ξ in (A.3), we obtain

(A.4)
∫ ∞

−∞
e−ξ

2/4D−ρ(−ξ) exp
[
− (a+ ξ)2

4b2

]
Dm

(
a+ ξ

b

)
dξ=(−1)mbIm.

Hence it will suffice to consider Im for the expansion (4.10) also. But,

(A.5) e−z
2/4

∞∑
m=0

Dm(z)
tm

m!
= exp

[
−1

2
(z − t)2

]
.

Hence, from (A.4), after some algebra, it follows that

(A.6)

∞∑
m=0

(−1)mIm
tm

m!
=

1
b
exp
[
− (a−bt)2

2(1+b2)

]

·
∫ ∞

−∞
eξ

2/4D−ρ(ξ)exp

{
−1+b2

2b2

[
ξ− a−bt

1+b2

]2}
dξ,

where we have replaced ξ by −ξ.
Now by page 886 in [1],

(A.7)
∫ ∞

−∞
exp
[
− (x− y)2

2μ

]
ex

2/4Dν(x) dx

=
√

2πμ(
√

1 − μ)ν exp
[

y2

4(1 − μ)

]
Dν

(
y√

1 − μ

)
, 0 < μ < 1.
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(There is a factor
√

2πλ missing from the corresponding result in [6].) From (A.6)
and (A.7), with μ = b2/(1 + b2) and y = (a− bt)/(1 + b2), we obtain

(A.8)
∞∑
m=0

(−1)mIm
tm

m!
=

√
2π

(
√

1+b2)1−ρ
exp
[
− (a−bt)2

4(1+b2)

]
D−ρ

(
a−bt√
1+b2

)
.

But,

(A.9) Dν(x+ y) = exp
(
xy

2
+
y2

4

) ∞∑
m=0

(−y)m
m!

Dm+ν(x).

It follows from (A.8) and (A.9) that

(A.10) Im =
√

2π(−b)m

(
√

1 + b2)m+1−ρ
exp

[
− a2

4(1 + b2)

]
Dm−ρ

(
a√

1 + b2

)
.

In (A.3), for the expansion (4.7), we take a = δ/
√
κ(σ − κ), b =

√
κ/(σ − κ), and

m = r � 0, and we take ρ = 1+ r/κ for the evaluation of the normalization condition
(4.12) and ρ = r/κ for the evaluation of ω0(0). The former choice of ρ, with the help
of (A.2) and (A.10), leads to (4.15), and hence to (4.17), where α(r) is defined by
(4.16). The latter choice of ρ leads to (4.18). For the expansion (4.10) we use (A.4),
and in (A.3) we take a = δ/κ, b =

√
(σ − κ)/κ, and ρ = pκ, and we take m = p− 1,

p > 0 for the evaluation of the normalization condition (4.12) and m = p � 0 for the
evaluation of ω0(0). The former choice of m, with the help of (A.2) and (A.10), leads
to (4.19), where γ(p) is defined by (4.20). The term corresponding to p = 0 in (4.10)
is equivalent to that corresponding to r = 0 in (4.7), as pointed out previously. The
latter choice of m leads to (4.21).
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Abstract. We model an electrified droplet spreading on a solid surface. The model aims to seek a
drop shape that minimizes its total energy (capillary, electrostatic, and gravitational). We derive the
equations and the shape gradient; then we detail the shape optimization algorithm and present some
numerical results. Up to a critical applied voltage value, the computed angles fit the predictions of
Lippman’s equation (plane capacitor approximation). Then, when increasing the voltage, we observe
an overestimate of the Lippman prediction. Numerical computations of the curvature show that it
remains constant everywhere except in the vicinity of the contact point, where it increases sharply.

Key words. shape optimal, design, electrowetting, contact point, energy minimization, curva-
ture
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1. Introduction. Electrowetting can be defined as a tool for spreading liquid
droplets (e.g., water) on hydrophobic solid surfaces (e.g., polymer film). This is quite
a recent technique (see [1]) which holds very attractive properties for manipulation
of tiny liquid volumes, as is done, for example, in biotechnologies. The principle of
electrowetting is to apply an electric field between the conductor liquid droplet and
the solid surface in order to change the droplet spreading on the surface. Given the
liquid volume, the main feature for describing the droplet is the wetting angle.

Several articles discuss the experimental aspects of electrowetting and present
some analytical analysis; see, e.g., [1], [21], [2], and the references therein. One
property of electrowetting still poorly understood by physicists is the contact angle
saturation. Several mechanisms for explaining it were proposed in [21], [22], [17],
[20]. When increasing the applied electric voltage, the liquid droplet spreads onto the
solid and the wetting angle decreases. Nevertheless, this is true only if the value of
the applied voltage is less than a certain critical value. Up to this critical value, the
contact angle can be derived from the Lippman equation using the plane capacitor
approximation. For higher values, one observes a saturation of the wetting angle and
for even higher values, instabilities of the contact line liquid-solid-gas can appear. A
few hypotheses have been made to explain the saturation phenomenon. Let us cite,
for example, the air ionization (see [21]) or electrostatic effects near the wetting line
(see [4]). This limiting phenomenon is still under investigation and the full modeling
of electrowetting remains an open problem. In other respects, the authors of [5] show
that the contact angle does not depend on the potential. It remains equal to the
static Young angle (obtained when the potential is null). Also, they observe that the
curvature near the contact line increases while the potential increases.
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In this study, we present a mathematical approach for modeling and numerically
computing the drop shape, given an applied voltage. The model is based on the
shape optimal design methods; see, e.g., [6], [11]. We seek the drop shape (a free
surface) such that it minimizes its total energy. The total energy is the sum of the
capillary energy, the gravitational energy, and the electrostatic energy. Our numerical
modeling is general in the sense that we do not make any assumption on the drop
shape. The equations are fully solved and the shape is defined in a general family of
surfaces. We assume that the drop shape is steady state and remains two-dimensional
(2D) axisymmetric but the method remains valid for three-dimensional (3D) shapes
as well. Of course, in the 3D case, the implementation is much more complex and
time-consuming than in the present 2D axisymmetric case. This 2D axisymmetric
assumption is valid for applied voltages up to the value leading to the instabilities
mentioned above.

We obtain numerical results which are consistent with the plane capacitor approx-
imation (Lippman’s equation) only for low voltages. For higher voltages, we observe
an overestimate of the Lippman predictions. Nevertheless, with the present model, we
do not retrieve the wetting angle saturation but instead a deviation from Lippman’s
predictions of the shape of the drop. In other respects, we focus on the curvature val-
ues of the droplet interface. The computed curvature is constant everywhere except
in the vicinity of the contact point. If we refine the surface representation near the
contact line, we will observe an increase of the curvature—we noticed this behavior
for all potentials applied.

The paper is organized as follows. In section 2, we present the electrowetting pro-
cess and the plane capacitor approximation. In section 3, we derive our mathematical
model. It is a shape inverse problem—we seek the drop shape such that it minimizes
its total energy. The energy depends on the electric field, which is the solution of the
external partial differential equation. The liquid volume is given and constant; it is
considered an equality constraint. Finally, the problem consists in finding a min-max
solution (saddle point) of an augmented Lagrangian (see [8]). Numerically, the solu-
tion is computed using Uzawa’s algorithm and a quasi Newton optimization algorithm
(BFGS). In section 4, we define the mathematical framework of shape optimization,
and we derive the shape derivative of the augmented Lagrangian (the continuous gra-
dient; see Theorem 4.1). In section 5, we detail the discretization of the equations
and the shape derivative. The partial differential equation is solved using a standard
linear P1-Lagrange finite element method. The shape parameters and the shape de-
formation basis are defined; then the shape gradient and the optimization parameters
are deduced from section 4. The full optimization process is presented in section 6.
It has been implemented in C++. The code uses a public finite element library and
a public mesh generator with automatic mesh refinement. In section 7, we present
the algorithm we use to compute the droplet curvatures. It is based on a local least
square approximation of the control points (second order Bezier approximation). In
section 8, we present the numerical results.

2. Electrowetting process. Let us consider the electrowetting process pre-
sented in Figure 2.1. We denote by σLS , σSG, and σLG the surface tension coefficients
of the liquid-solid interface, solid-gas interface, and liquid-gas interface, respectively.
We denote by θ the wetting angle.

When the applied electrical potential u0 is null, Young’s equation gives

cos(θ0) =
σSG − σLS

σLG
,
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Fig. 2.1. Electrowetting process.

where θ0 is the wetting angle at u0 = 0.
Under the assumption that the system behaves as a plane capacitor with negligible

boundary effects, the drop shape obeys the Young equation with the surface tension
coefficient modified as follows (see [1]):

σLS(u0) = σLS − ε0ε1
2e

u2
0,

where e is the insulator thickness and ε0 and ε1 are the dielectric constants.
Also, we have (see [1])

cos(θ) = cos(θ0) +
ε0ε1

2σLG e
u2

0.

This last equation is also called Lippman’s equation.
Let us note that this law predicts total spreading when the potential increases.

However, if u0 is greater than a critical value ucr, physicists observe a locking phe-
nomenon limiting the spreading of the droplet on the polymer film. Such experiments
are studied in [1], [21], [2].

The aim of the present study is to model and numerically compute the liquid
drop shape for u0 lower than the critical value ucr. These computations include the
wetting angle θ and the curvature κ of the liquid surface.

3. Mathematical modeling. We model the electrowetting process described
in the previous section as a shape inverse problem.

Assumptions.
(i) The applied electrical potential u0 is continuous.
(ii) The liquid drop is a perfect conductor.
(iii) The drop geometry is 2D axisymmetric.
(iv) Electrostatic effects are negligible far away from the drop.
(v) For u0 = 0, the liquid partially wets the polymer (the spreading coefficient is

negative).
Notation (see Figure 3.1). We denote by u(x) the electrical potential at point x,

ω0 the liquid drop, ω1 the polymer domain, ω2 the artificially bounded gas domain,
and γext its external boundary. The external boundary γext is supposed to be located
far enough from the liquid drop.
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Fig. 3.1. 2D axisymmetric droplet (shaded gray). Domains and boundaries notations.

We denote by γLS , γSG, and γLG the liquid-solid interface, solid-gas interface,
and liquid-gas interface, respectively. We set ω = ω1 ∪ ω2 ∪ γSG. We have ∂ω0 =
γLz ∪ γLG ∪ γLS and ∂ω = γ0 ∪ γSz ∪ γLG ∪ γGz ∪ γext, with γz = γGz ∪ γLz ∪ γSz.
We set B = ω0 ∪ ω ∪ γLG ∪ γLS. The liquid domain ω0 will be variable; on the other
hand, the domain B is given and fixed.

The questions we will answer numerically are the following. Given the electrical
potential u0,

• What is the drop shape?
• What is the wetting angle value θ?
• What is the curvature κ value of the drop surface?

The shape inverse formulation. We model this steady-state free surface problem
as a shape inverse problem. We follow the approach presented in [4].

The total energy E is the sum of the gravitational energy, the capillary energy,
and the electrostatic energy. In the 3D case, its expression is the following (see, e.g.,
[2]):

Eω0 = Egravω0
+ Ecapω0

+ Eelecω0
;

with the gravitational energy:

Egrav = ρ g

∫
ω

zdx;

with the capillary balance energy:

Ecap =
∫
γLS

(σLS − σGS)ds+
∫
γLG

σLGds;

and the electrostatic energy:

Eelec = −1
2

∫
ω

ε|∇u|2dx,

where ρ is the liquid density, g is the gravity constant, ε = εi in ωi, i = 1, 2, and εi is
the relative dielectric permittivity of ωi; i.e., ε0εi, i = 1, 2 is the polymer and the gas
permittivity, respectively.
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The shape inverse formulation is as follows:
{

Find ω�0 such that
Eω�

0
= min

(ω0;
∫

ω0
dx=vol)

Eω0 ,

where vol is the given drop volume.
We set ui = u|ωi , i = 1, 2. Then, the potential ui is the solution of the equation

(3.1) −div(εi∇ui) = 0 in ωi, i = 1, 2,

with the following Dirichlet boundary conditions:

(3.2)

⎧⎨
⎩

u1 = u0 on γLG,
u2 = u0 on γLS,
u2 = 0 on γ0.

On the solid-gas interface, we have the transmission boundary conditions

(3.3)
{

u1 = u2 on γSG,
ε1∇u1n1 = −ε2∇u2n2 on γSG.

On the artificial boundary γext = γ1
ext ∪ γ2

ext, we impose

(3.4) εi∇uini = 0 on γiext, i = 1, 2.

Therefore, the present mathematical problem is a shape optimal control problem
for a system governed by a linear steady-state partial differential equation.

2D axisymmetric equations. As mentioned previously, we assume that the drop
shape is 2D axisymmetric. We present below the weak formulation of the model. We
set

X0(ω) = {v ∈ H1(ω); v = 0 on γ0 ∪ γLS ∪ γLG},

Xt(ω) = {v ∈ H1(ω); v = 0 on γ0; v = u0 on γLS ∪ γLG}.

The weak formulation of (3.1)–(3.4) in the 2D axisymmetric case is

(3.5)
{

Find uω ∈ Xt(ω) such that
∀v ∈ X0(ω), aω(uω, v) = 0,

where

aω(u, v) =
∫
ω

εr〈∇u,∇v〉dx,

x = (r, z), and 〈., .〉 is the inner product of R2.
It follows from the Lax–Milgram theorem that state equation (3.5) has only one

solution for uω ∈ Xt(ω).
The shape inverse problem. In its dimensionless form, the drop energy is

(3.6) Eω0(uω) = α

∫
ω

zdx+
∫
γLG

rds+ μ

∫
γLS

rdr − δ

∫
ω

εr|∇uω |2dx,
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where uω is the unique solution of (3.5), α = ρg(L∗)2

σLG
, μ = −cos(θ0) = σLS−σGS

σLG
,

δ = 1
2σLGL∗ , and L∗ is a characteristic length (typically L∗ ≈ 10−4 − 10−3 m).
We set the cost function by

(3.7) j(ω) = Eω0(u
ω).

We denote by D the admissible domain space. (The definition of D is detailed in the
next section.) The shape optimal inverse problem is

(3.8)

{
Find ω� ∈ D such that
j(ω�) = min

(ω;
∫

ω0
rdx=vol/2π)

j(ω).

Let us point out that the variable is not the whole domain ω, but more precisely, the
liquid-gas interface γLG; see Figure 3.1. We assume that the inverse shape problem
(3.8) admits at least one solution. The existence of an optimal shape is not addressed
in the present paper.

The augmented Lagrangian. Problem (3.8) is an optimization problem under
an equality constraint. Thus, classically, we introduce the augmented Lagrangian
Lτ : D × R −→ R, defined by the following (see, e.g., [8]):

(3.9) Lτ (ω, λ) = j(ω) + λc(ω) + τc(ω)2,

where c(ω) is the volume constraint,

(3.10) c(ω) =
∫
ω0

rdx− vol

2π
=
∫
B

rdx −
∫
ω

rdx − vol

2π
,

λ is the Lagrange multiplier, and τ is a penalty parameter.
Then, the shape optimal inverse problem (3.8) is formulated as the saddle-point

problem:

(3.11)

{
Find (ω�, λ�) ∈ D × R such that
Lτ (ω�, λ�) = min

ω
max
λ

Lτ (ω, λ).

We will solve (3.11) using the classical Uzawa algorithm; see, e.g., [8]. This
algorithm uses a gradient-type algorithm (BFGS), which requires us to compute the
shape derivative of the cost function dj

dω (Ω) and the shape derivative of the constraint
dc
dω (Ω). The expressions of these shape derivatives are presented in the next section.

4. Shape derivatives. As mentioned above, we need to compute the shape
derivative of the cost function dj

dω (Ω) and the shape derivative of the constraint dc
dω (Ω).

This is done using the optimal shape design method (see [15], [6], [11]; definitions of [7],
[12] are used). Three approaches are possible: (i) we differentiate the equations and
then we discretize them, thus obtaining the discretized continuous gradient; (ii) we
discretize the equations and then we differentiate them, thus obtaining the discrete
gradient; (iii) we directly differentiate the direct code (typically, using automatic
differentiation). In the present study, we follow approach (i). This requires some extra
mathematical definitions and tools, but this approach is rigorous; it leads to synthetic
expressions of derivatives and it allows us to prove all the differentiabilities required.
These derivatives are discretized in the next section, leading to shape gradients. The
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family of shapes considered is large enough in the sense that it includes those observed
in the experiments.

This section is organized as follows. We define the admissible domain space D
(Lipschitz domains); then we use the classical definition of shape derivatives based
on domain deformations (a method of transport with C1 transformations). We prove
the differentiability of the cost function j and the constraint function c with respect
to the domain ω. Then, by introducing the adjoint state equation (in our case the
adjoint state vanishes), we obtain the differential of j and c (Theorem 4.1). The shape
derivative of the augmented Lagrangian Lτ follows (Corollary 4.2).

4.1. Mathematical framework: Domain variations and shape deriva-
tives. We consider a family of Lipschitz domains. We define the space of admissible
domains and the derivative with respect to the domain in a classical manner. The
domain space is the set of domains homeomorphic to a reference domain. The trans-
formations are C1 homeomorphisms. This regularity is necessary for all transported
integrals to be well defined. The shape derivative of a real valued function is the
derivative of the transported function with respect to the transformation. We refer
to [15], [6], and we follow the definitions and properties presented in [7], [12].

Admissible domain space. Let Ω̂, a bounded open subset of R
2 with a Lipschitz

boundary, be the reference domain Ω̂ = Ω1 ∪ Ω̂2 ∪ Γ̂SG. Ω1 represents the solid part
and Ω̂2 the gas part. We distinguish the variable part of Ω̂ from its fixed part; see
Figure 4.1. We set ∂Ω̂ = Γ̂V ar ∪ ΓFix, where Γ̂V ar = Γ̂LG ∪ Γ̂LS is the variable
boundary and ΓFix is the fixed boundary. We denote by Bint a neighborhood of
Γ̂V ar, Bint large enough; see Figure 4.1.

B
int

F=I   (V=0)

F=I   (V=0)

(Moving Boundary)

(Fixed Boundary)

(Fixed Boundary)

LG

SG

0

ext

r

z

z

2

1

0

Γ

Γ

Γ

Γ

Γ

Ω

ΩΓ
LS

Ω
0

Fig. 4.1. The reference domain Ω̂.

We set the function space

(4.1) F̂ = {F̂ , F̂ bijection of Ω̂ onto F̂ (Ω̂); F̂ ∈ C1( ¯̂Ω,Rd), F̂−1 ∈ C1( ¯̂
F (Ω̂),Rd)}

and its affine subspace F̂0 = {F̂ ∈ F̂ ; F̂ = I in Ω̂\Bint}, where I denotes the identity
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of Rd. Then, we define the admissible domain space D as follows:

(4.2) D = {ω = F̂0(Ω̂); F̂0 ∈ F̂0}.

One knows that if F̂ is close enough to I in F̂0 ((F̂ − I) small enough), then F̂ (Ω̂) is
an open set of R2 with a Lipschitz boundary and F (Γ̂V ar) ⊂ Bint.

Shape derivative of a real valued function. For F̂0 ∈ F̂0, (F̂0−I) small enough, we
define the domain Ω by Ω = F̂0(Ω̂) and ΓV ar = F̂0(Γ̂V ar). We set the homeomorphism
space defined in Ω (see Figure 4.2) as F = {F, F = F̂ ◦ F̂−1

0 , F̂ ∈ F̂}, and its affine
subspace as F0 = {F, F = F̂ ◦ F̂−1

0 , F̂ ∈ F̂0}.
Let F ∈ F0; we define ω = F (Ω) and V ∈ C1(Ω̄,Rd) by V = F − I. We have

V = 0 in Ω̂ \Bint.

Ω Ω ω

Rω

Ω

vv

0

−1

F

F= I+

F F= I+

F

V

V

Fig. 4.2. Change of variables.

For a given cost function j, j : ω ∈ D �→ j(ω) ∈ R, we define the “transported”
cost function j̄ by j̄ : F0 → R : F �→ j̄(F ) = j(F (Ω)) = j(ω). Then, the derivative
with respect to the domain is defined as follows (see, e.g., [15], [7] for more details):

(4.3)
dj

dω
(Ω) · V =

dj̄

dF
(I) · V ∀V ∈ C1(Ω̄,Rd).

4.2. Shape derivatives. We present below the expressions of the exact differ-
entials with respect to the shape ω.

Theorem 4.1. There exists VI , a neighborhood of I in F0, such that
(i) the cost function j : D → R; ω �→ j(ω) = Eω0(uω) belongs to C1 for all

ω = F (Ω), F ∈ VI . Additionally, for all V ∈ C1(Ω̄,R2), we have

(4.4)
dj

dω
(Ω).V =

∂EΩ0

∂ω
(uΩ).V,

with uΩ the solution of the state equation (3.5) posed in Ω and

∂EΩ0

∂ω
(uΩ).V = α

∫
Ω

z ◦ V dx+ α

∫
Ω

zdiv(V ) dx

+
∫

ΓLG

r ◦ V ds+
∫

ΓLG

r divΓV ds

+ μ

∫
ΓLS

r ◦ V dr + μ

∫
ΓLS

r divΓV dr

− δ

∫
Ω

ε (r ◦ V ) |∇uΩ|2 dx− δ

∫
Ω

εr|∇uΩ|2 div(V ) dx

+ δ

∫
Ω

εr < ( TDV +DV )∇uΩ,∇uΩ > dx,

with divΓV = (div(V ) − 〈n, TDV n〉), n the external normal, and x = (r, z).
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(ii) The volume constraint c(ω) belongs to C1 for all ω = F (Ω), F ∈ VI and, for
all V ∈ C1(Ω̄,R2),

(4.5)
dc

dω
(Ω).V = −

∫
Ω

r ◦ V dx−
∫

Ω

rdiv(V )dx.

Proof. The proof follows with three steps: 1. transport of equations; 2. differen-
tiability with respect to ω; 3. use of the adjoint technique leading to the expression
of the exact differential.

Step 1. Transport of equations. As noted previously, we need to transport the
cost function j in order to compute its shape derivative. To this end, we need to
transport all the equations on the reference domain Ω = F−1(ω).

For any u, v ∈ X0(ω), we let

ā(F ; ū, v̄) = aF (Ω)(ū ◦ F−1, v̄ ◦ F−1) = aω(u, v)

=
∫

Ω

ε̄r̄ <T (DF−1 ◦ F )∇ū,T (DF−1 ◦ F )∇v̄ > |detDF |dx̄,

with ū = u ◦ F , v̄ = v ◦ F , x̄ = x ◦ F , and ε̄ = ε ◦ F ; see Figure 4.2.
The mapping v ∈ X0(F (Ω)) �→ v ◦ F ∈ X0(Ω) is an isomorphism for F ∈ F0. In

other respects, the Dirichlet data u0 is constant; hence u0 = u0 ◦F . Then, since state
equation (3.5) has a unique solution uω, the transported state equation

Find ūF ∈ Xt(Ω) : ā(F ; ū, v̄) = 0 ∀v̄ ∈ X0(Ω)

has a unique solution ūF = uω ◦ F .
Similarly, for any u ∈ X0(ω), we let Ē(F ; ū) = EF (Ω0)(ū ◦ F−1) = Eω0(u). We

have j̄(F ) = Ē(F ; ūF ),

j̄(F ) = α

∫
Ω

z̄ |detDF | dx̄

+
∫

ΓLG

r̄ Jac(F ) ds̄+ μ

∫
ΓLS

r̄ Jac(F ) dr̄(4.6)

− δ

∫
Ω

ε̄ r̄ | T (DF−1 ◦ F )∇ūF |2 |detDF | dx̄,

with Jac(F ) = |detDF | ‖ TDF−1.n‖R2 .
Also, we define

c̄(F ) =
∫
B

rdx −
∫

Ω

r̄ |detDF | dx̄− vol

2π
.(4.7)

Step 2. Differentiability with respect to ω. The mapping ā(F ; ū, v̄) is C1 with
respect to (F ; ū). It follows from the implicit function theorem that the transported
state equation defines a C1-mapping F �→ ūF : F0 → Xt(Ω) in a neighborhood VI
of I.

Then, since the mapping Ē is of class C1(F ×X0(Ω)), the cost function j is con-
tinuously differentiable. Also, the constraint function c is continuously differentiable.

Step 3. Expression of the exact differential. By definition, we have dj
dω (Ω) · V =

dj̄
dF (I) · V for all V ∈ C1(Ω̄,R2).
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Then, using the classical adjoint technique, we have

dj̄

dF
(I).V =

∂Ē
∂F

(I;uΩ).V − ∂ā

∂F
(I;uΩ, pΩ).V ∀V ∈ C1(Ω̄,R2),

where uΩ is the solution of the state equation posed in Ω and pΩ ∈ X0(Ω) is the
adjoint state, unique solution of the following adjoint equation:

∂ā

∂u
(I;uΩ, pΩ).v =

∂Ē
∂u

(I;uΩ).v ∀v ∈ X0(Ω).

We have

∂ā

∂u
(I;uΩ, pΩ).v = aΩ(pΩ, v) and

∂Ē
∂u

(I;uΩ).v = −2δaΩ(uΩ, v) = 0 ∀v ∈ X0(Ω).

Hence, pΩ ∈ X0(Ω) and aΩ(pΩ, v) = 0 for all v ∈ X0(Ω). Therefore, pΩ = 0.
Hence,

dj

dω
(Ω).V =

∂Ē
∂F

(I;uΩ).V ∀V ∈ C1(Ω̄,R2).

Using (4.7) and the classical expression of the derivatives of |det(DF )|, (DF−1 ◦ F ),
and (‖ TDF−1.n‖R2) (see, e.g., [15, Chap. IV]), we obtain the result (i).

The result (ii) follows from (4.7) and the expression of the derivative of
|det(DF )|.

Then, we have straightforwardly the following result.
Corollary 4.2. At (λ, τ) given in R × R+, the augmented Lagrangian Lτ is

locally and continuously differentiable with respect to ω. And for all V ∈ C1(Ω̄,R2),

(4.8)
∂Lτ
∂ω

(Ω, λ).V =
dj

dω
(Ω).V + λ

dc

dω
(Ω).V + 2τc(Ω)

dc

dω
(Ω).V,

where dj
dω (Ω).V and dc

dω (Ω).V are defined by (4.4) and (4.5), respectively.

5. Discretization. In this section, we discretize the shape derivative of the
augmented Lagrangian Lτ defined by (4.8); then we define the shape parameters and
obtain the shape gradient. Then, we detail the full optimization process. We follow
[7], [12]; see also [13].

Let us recall that the expression ∂Lτ

∂ω (Ω, λ).V depends on u, the unique solution
of (3.5).

Let (Th) be a regular family of triangulation, where ω = ∪T∈Th
T . We compute

an approximation of u using the classical piecewise linear conforming finite element
method (P1-Lagrange). This finite element approximation is denoted by uh, where
the parameter h denotes a characteristic mesh size.

Discretization of the boundary and the shape parameters. Let Ω̂ be an open set of
reference; typically Ω̂ is a quarter of a disk; see Figure 4.1. The domain of reference
Ω̂ is defined using a parametric function:

sΩ̂(t) =
N−1∑
i=0

P̂i si(t) , t ∈ [0, 1],

where {si(t)}i=0,...,N−1 are piecewise linear functions, si( j
N−1 ) = δij ; δij denotes the

Kronecker symbol, and P̂i = ((P̂r)i, (P̂z)i)T are the control points. We set (P̂z)1 =
(P̂z)0.
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We have Ω = F̂0(Ω̂) with F̂0 ∈ F̂0. Similarly, we define the variable boundary
ΓLG (the unknown of the problem) by

sΩ(t) =
N−1∑
i=0

Pi si(t) , t ∈ [0, 1].

Hence, the boundary ΓLG is defined by N control points Pi, i = 0, . . . , N − 1.
Initially, these points define Γ̂LG as follows (see Figure 5.1):

P̂i = (0, R)T ,

P̂i =
(
R cos

(
(N − 1 − i)π

2(N − 1)

)
, R sin

(
(N − 1 − i)π

2(N − 1)

))T
, i = 2, . . . , N − 1,

P̂1 =
(
R cos

(
(N − 2)π
2(N − 1)

)
/2, R

)T
.

P
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z

0
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Fig. 5.1. Reference domain. Parametrization.

Therefore, during the optimization process, we compute a new domain that re-
quires computing new control points Pi, i = 0, . . . , N − 1.

The shape deformation space. Let us discretize the shape deformation V , V ∈
C1(Ω̄,R2). We have Ω = F̂0(Ω̂) with F̂0 ∈ F̂0. We set V = V̂ ◦ F̂−1

0 . V is defined in
Ω, while V̂ is defined in Ω̂.

We approximate C1( ¯̂Ω,R2) by ŜH , the vectorial space spanned by {V̂i}i=0,...,N−1:

ŜH = Span{V̂i}i=0,...,N−1,

where the set of vectors {V̂i}i=0,...,N−1 is detailed below.
We set H = 1

N−1 . The parameter H denotes a characteristic size of the shape
deformation space.

Then, the deformation field V is approximated by

(5.1) VH =
N−1∑
i=0

ηiVi,

where Vi = V̂i ◦ F̂−1
0 and ηi, i = 0, . . . , N − 1 are real coefficients.
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We have VH = (V̂H ◦ F̂−1
0 ) with

(5.2) V̂H =
N−1∑
i=0

ηiV̂i.

Finally, C1(Ω̄,R2) is approximated by SH = Span{Vi = V̂i ◦ F̂−1
0 }i=0,...,N−1.

The shape deformation basis. We have F̂0 = (I + V̂ ), and V̂ is approximated by
V̂H , which was defined by (5.2).

The basis {V̂i}i=0,...,N−1, is defined in Ω̂ as follows. For i = 0, . . . , N −1, we solve
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(V̂r)i = 0 in Ω̂ ∩Bint,
(V̂r)i = 0 in Ω̂/Bint,
(V̂r)i = 0 on ΓGz ∪ ΓSz,
(V̂r)i = (P̂r)i

||P̂i||
si on Γ̂LG,

(5.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(V̂z)i = 0 in Ω̂ ∩Bint,
(V̂z)i = 0 in Ω̂/Bint,
(V̂z)i = 0 on Γ0 ∪ Γ̂LS ∪ Γ̂SG,
(V̂z)i = (P̂z)i

||P̂i||
si on Γ̂LG,

(5.4)

where V̂i = ((V̂r)i, (V̂z)i)T , P̂i = ((P̂r)i, (P̂z)i)T , and ‖P̂i‖ = [(P̂r)2i + (P̂z)2i ]
1
2 .

Let us note that we could have extended this vector field over the whole domain
by solving a linear elasticity system.

The shape gradient. We approximate V by VH (see (5.1)), and we have

∂Lτ
∂ω

(Ω, λ).V ≈ ∂Lτ
∂ω

(Ω, λ).VH =
N−1∑
i=0

ηi
∂Lτ
∂ω

(Ω, λ).Vi.

Then, the shape gradient denoted by GH is the vector

GH = (GHi )i=0,...,N−1 =
([

∂Lτ
∂ω

(Ω, λ).Vi

])
i=0,...,N−1

=
([

∂Lτ
∂ω

(Ω, λ).(V̂i ◦ F̂−1
0 )

])
i=0,...,N−1

,

where Ω = F̂0(Ω̂).
Finally, we have for all i = 0, . . . , N − 1 (see Corollary 4.2),

(5.5) GHi =
dj

dω
(Ω).(V̂i ◦ F̂−1

0 ) + λ
dc

dω
(Ω).(V̂i ◦ F̂−1

0 ) + 2τc(Ω)
dc

dω
(Ω).(V̂i ◦ F̂−1

0 ).

Variables of optimization. Since Ω = F̂0(Ω̂) = (I + V̂ )(Ω̂) ≈ (I+ V̂H)(Ω̂) with V̂H
defined by (5.2), and V̂i defined by (5.3), (5.4), the variables of optimization are the
N coefficients ηi, i = 0, . . . , N − 1.

6. Optimization process. As mentioned previously, we solve (3.11), an op-
timization problem with constraint, using Uzawa’s algorithm; see, e.g., [8]. This
algorithm requires a descent algorithm which is in the present case BFGS (the quasi
Newton method). This gives the following:
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• Initially, we set η0
i = 0, i = 0, . . . , N − 1; λ0 = 0.

• We compute the volume constraint c(η0).
• While the volume constraint (|c(ηk+1)| > eps1) is not satisfied,

– set λk+1 = λk + ρ c(ηk),
– compute ηk+1

i i = 0, . . . , N −1 such that Lτ (ηk+1, λk+1) < Lτ (ηk, λk+1)
using the BFGS algorithm, and

– compute the volume constraint c(ηk+1).
Classically, we set ρ = τ ; see [8].
The BFGS algorithm is implemented with bounding constraints. The linear search

is done using a dichotomic process.
We stop the BFGS algorithm either if |j(ηk+2)−j(ηk+1)|

j(ηk+1) < eps2 or if ‖(GH)k+2‖ <
eps3.

As usual, each call of the algorithm BFGS implies a few calls to the simulator.
The simulator does the following:
• It computes the new shape and the new mesh defined by

Ω =

(
I +

N−1∑
i=0

ηiV̂i

)
(Ω̂).

• It solves the state equation (3.5) posed in Ω by a P1-Lagrange finite element
method (with or without automatic mesh refinement).

• It computes the augmented Lagrangian Lτ defined by (3.9), with its gradient
GH defined by (5.5), and the volume constraint c defined by (3.10).

The full optimization process is represented in Figure 6.1.

η

Uzawa’s algorithm

If not convergence If convergence OK

k+1(η     , λ      ) k+1

(η   , λ  ) Grad L

(η   , λ  ) kk
L(η   , λ  ) k k

k k

ω*

State equation

Lagrangian

Gradient of Lagrangian

Computation of λk+1

k+1
λ     = λ  + ρ 

k

BFGS algorithm

Computation of η k+1BFGS iterates

Simulator ηC(        )
k+1

L (η , λ  ) k

Initialization

Min

Fig. 6.1. The optimization process.

7. Curvature computation. In the next section, we consider the evaluation
of the droplet curvature, particularly near the contact line. It was shown in [5] that
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the contact angle approaches Young’s angle, independently of the applied electrical
potential value. Observations show that the curvature is not constant. Then, it
would be interesting to see if the present modeling approach allows us to observe such
changes of curvature values near the triple point.

Accurately computing the droplet curvature is a difficult task since its interface is
a piecewise linear curve, and hence is not C2 differentiable. In addition, points defining
this piecewise linear curve result from the full shape optimal design process and hence
may comprise some nonnegligible numerical errors. Thus, we seek to estimate the
curvature of an underlying smooth surface.

Computing a discrete surface curvature is a classical (and difficult) problem. Usu-
ally in the computer aided geometric design context, surfaces are 3D and triangular-
ized, and the objectives are to smooth the mesh and simplify it, but not to quantify
a local variation of curvature; see, e.g., [10].

We are facing the following dilemma. We seek to get rid of numerical errors on
the points defining the curve while we try to detect as accurately as possible a local
significant variation of curvature.

We do not consider a direct computation by a finite difference method since
it is very sensitive to data error. We do not consider a polynomial reconstruction
of the underlying smooth surface and then evaluate its curvature, since this leads
to inaccurate results and unexpected behavior. Following [9], [14], we consider a
local least square approximation and then we evaluate the curvature. In the present
algorithm, we consider a second order local Bezier approximation; see [14]. As the
numerical tests presented below show, this method filters noise reasonably.

7.1. The algorithm. Given N points Xi = (ri, zi)T , i = 1, . . . , N defining the
liquid-gas interface, the basic idea is to approximate these data using a local least
square approximation by a Bezier curve.

The Bezier curve C(t) is given by

C(t) = (r(t), z(t))T =
M∑
j=1

PjB
M−1
j−1 (t) for t ∈ [0, 1],

where Pj = (αj , βj)T ∈ R2 are the control points and {Bmj (t)}0≤j≤M−1 is the classical
Bernstein basis, with Bmj ∈ Pm, Bmj (t) = Cmj (1 − t)m−jtj , Cmj being the binomial
coefficients.

We set M = 3; hence we consider three points of control Pj and second degree
curves.

For an inner pointXi (see Figure 7.1), we compute the least square approximation
of the four points {Xi−2, . . . , Xi+2} by Bezier’s curve as follows. We minimize

J(P1, P2, P3) =
i+2∑
l=i−2

∥∥∥∥∥∥
3∑
j=1

PjB
2
j−1(tl) −Xl

∥∥∥∥∥∥
2

,

where {ti−2 = 0, . . . , ti+2 = 1} is a uniform subdivision of [0, 1]. The unique minimum
is computed by solving the corresponding normal equations.

For the extremal point X1, we consider a Bezier curve approximating the points
Xi for i = 1, . . . , 4. For X2, we consider a Bezier curve approximating the points Xi

for i = 1, . . . , 5.
For the extremal points XN−1 and XN , the principle is similar.
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Fig. 7.1. Inner point Xi. Local least square approximation using Bezier’s curve.

Curvature expression. Once a Bezier curve C(t) = (r(t), z(t))T is computed for
each point Xi, we evaluate the curvature as follows:

κi ≡ κ(ti) =
r′z” − r”z′

(r′2 + z′2)
3
2
(ti),

where (r′, z′) and (r′′, z′′) are computed using de Casteljau’s algorithm, with ti being
the parameter value related to Xi.

Sensitivity to random noise. Since the control points defining the (optimal)
droplet shape result from the full optimization process, they are perturbed by some
nonnegligible numerical errors. Hence, we test the robustness of our algorithm to data
perturbation below.

We set N(r, z) = (r′z” − r”z′) and D(r, z) = (r′2 + z′2)
3
2 ; hence κ(r, z)(t) =

N(r,z)
D(r,z) (t). Let δz be a perturbation on the z-coordinate of data Xi, i = 1, . . . , N ; then
we have

∂κ

∂z
(r, z).δz =

N(r, δz)
D(r, z)

− 3
κ(r, z)

(r′2 + z′2)
z′δz.

This formula expresses the curvature sensitivity to perturbation on z-coordinates.
Noise introduced below is a random perturbation on the z-coordinate of data Xi,
i = 1, . . . , N . It is a normal distribution with mean zero and variance one.

7.2. Numerical tests. The numerical tests presented below are useful for (i) val-
idating the present algorithm on explicit curves knowing their curvature value (the
“exact” curves); and (ii) measuring the computed curvature sensitivity to random
perturbation on data.

To this end, we consider an “oscillating curve” (see Figure 7.2), defined by N
points as follows:

r(s) = (R + εcos(a.s)) cos
(π

2
s
)
, z(s) = (R+ εcos(a.s)) sin

(π
2
s
)
,

with s ∈ [0, 1], s discretized by N points similarly to η and ε = R
10 , a = 10, R = 1.

The exact curvature of the “oscillating circle” is straightforwardly obtained. This
curve presents smooth variations of curvature with changes of sign. If we compare
the curvature values computed by the present algorithm and those computed by the
second order finite difference scheme directly applied to the N data Xi = (ri, zi)T ,
i = 1, . . . , N , then without noise both lead to similar accuracy—the two methods give
a very precise approximation.
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However, in the presence of noise, the direct approximation does not give any
good approximation. On the contrary, the present algorithm, based on a local least
square approximation of the surface by Bezier’s curve, leads to a good approximation
of the curvature value of the nonperturbed curve.

We present in Figure 7.2 the curvature values obtained with the present algorithm
when some noise is introduced. As mentioned above, the noise is defined as a pertur-
bation on the z-coordinate of data Xi, i = 1, . . . , N . Its magnitude is about 0.5%.
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Fig. 7.2. Left: Oscillating curve. Right: Computed curvature value when noise is introduced.

8. Numerical results. The full optimization process described in the previous
section was implemented in C++. Our software, ElectroCap (see [13]), is based on the
public C++ finite element library Rheolef [19] and an in-house BFGS algorithm. The
mesh generator used is Bamg. For each simulator call, an automatic mesh refinement
is used. This mesh refinement is based on the classical a posteriori estimates. We
present in Figure 8.2 a typical mesh with the adaptive mesh in the edge.

Numerical data. The numerical data considered are the following:
• the surface tension coefficients (in N/m): σLS = 2.7 10−2, σLG = 5 10−2;
• the wetting angle at u0 = 0 (in radians): θ0 = π

2 (hence μ = 0);
• the insulator thickness (in m): e = 200 10−6;
• the electrical permitivities: ε1 = 2 × 8.85 10−12 and ε2 = 8.85 10−12;
• the drop volume (in L): vol = 40 10−9.

We assume that the Bond number α is small; i.e., we neglect the gravitational term.
Then, the cost function is (see (3.6), (3.7))

(8.1) j(ω) = jcap(ω) − jelec(ω),

with

jcap(ω) =
∫
γLG

rds and jelec(ω) = δ

∫
ω

εr|∇uω|2 dx,

where jcap(ω) and jelec(ω) are positive cost functions. The numerical parameters are
the following:
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• the penalty parameter: τ = ρ = 10−3;
• the convergence parameter of Uzawa’s algorithm: eps1 = 10−3;
• the convergence parameter of the BFGS algorithm: eps2 = eps3 = 10−3;
• the number of control points: NCP = 50.

The NCP is defined as follows. If we consider the polar coordinates in the plane,
for a droplet of radius R, the N points are equidistributed in θ. Their positions are
indicated in Figure 8.4.

Code validation. All components of the code have been validated—the direct
problem, the transport of the mesh, and the shape gradient.

The computed shape gradient has been compared with values obtained by a finite
difference method using the following approach. For each shape parameter, a finite dif-
ference shape derivative is computed using a domain perturbation of magnitude 10−4.
The order of magnitude of the relative error obtained between the two approaches is
between 10−4 and 10−6, depending on the imposed electrical field value u0.

In order to validate the entire code, we simulate the Lippman approximation by
using the code with u0 = 0 V but changing σLS for each value of u0 using the formula
given by the approximation of the plane capacitor:

σLS(u0) = σLS − ε0ε1
2e

u2
0.

Thus, theoretically, the contact angle should also be given by the Lippman equation.
Numerically we observe a good agreement with the theory. Figure 8.1 shows the value
of the contact angle found numerically (the angle of the last mesh triangle) and the
theoretical value given by the Lippman equation.
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Fig. 8.1. Plane capacitor approximation.

Moreover, we compute the curvature for each value of σLS (which corresponds
to a value of u0). Given a value of u0 and thus a value of σLS , we notice that the
numerically computed curvature remains constant for each point of the drop. We
also obtain for this case a very good agreement with the theory, which contributes to
validating the code.
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Now we compute the drop shape with the initial model, i.e., by considering σLS
as a constant and by changing values of u0.

Drop shape and wetting angle. We present in Figure 8.2 the drop shape (with
mesh) obtained for u0 = 400 V (left) and a zoom of the refined mesh near the edge
(right). As a matter of fact, we use an adaptive mesh refinement near the contact
point based on a posteriori estimates. All meshes contain approximately 4000 elements
and 2000 vertices. For each computation, the volume constraint is satisfied at less
than 0.1%.
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Fig. 8.2. Left: Shape and mesh for u0 = 400 V. Right: Zoom near the drop.

We present the cost function, the augmented Lagrangian, and its gradient as a
function of the iteration number for u0 = 400 V in Figure 8.3. The behavior of the
algorithm for other values of u0 is similar.
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Fig. 8.3. u0 = 400 V. Left. Cost function j versus iterations. Middle. Augmented Lagrangian
Lτ . Right. Gradient of Lτ .
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Fig. 8.4. Droplet surfaces for different u0 values. At right: zoom near the triple point.
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Fig. 8.5. Wetting angle. Computed values and Lippman’s equation predictions. Left. With
NCP = 15. Right. With NCP = 50.

We present in Figure 8.4 the drop shapes obtained in the function of u0.
We present in Figure 8.5 (left and right) the wetting angle values in the function

of u0. In both figures (left and right), we plot the computed values (the angle of
the last mesh triangle) and values predicted by the Lippman equation. On the left,
plotted values are obtained using 15 control points (NCP = 15); on the right, plotted
values are obtained using 50 control points (NCP = 50) (both with similar finite
element meshes).

Let us recall that experimental results correspond to the Lippman equation up
to a critical electrical potential ucr (for the present case, the observed critical value
ucr ≈ 700 V). For u0 > ucr, experimental results show a saturation of the wetting
angle (locking phenomenon); see, e.g., [21]. As mentioned previously, the explanation
of this locking phenomenon is still poorly understood by physicists. For u0 ≈ 1050 V,
the Lippman equation predicts a total spreading of the drop on the substrate (the
wetting angle vanishes).

With the present numerical model and with NCP = 15, we obtain a good agree-
ment with the Lippman equation for u0 < 500 V. For higher u0 values, we do not
model the angle saturation, but we observe that the contact angle is higher than the
predicted value for the plane capacitor approximation.



1496 MONNIER, WITOMSKI, CHOW-WING-BOM, AND SCHEID

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

r

z

 

 

computed drop shape
computed plane capacitor approximation

Fig. 8.6. Computed shape compared to plane capacitor approximation shape for u0 = 800 V.

When increasing the number of control points to NCP = 50, we still obtain a
good agreement with the Lippman equation for u0 < 400 V. As with 15 points, we
notice that the computed values are higher than the predicted values for the plane
capacitor approximation. Moreover, the angle values computed with 50 points are
higher than those obtained for 15 points for u0 > 500 V.

Also, we compare the drop shape obtained to those obtained using the software
but “forcing” the Lippman approximation (i.e., by changing σLS for each u0 value).
In Figure 8.6 the result for a drop at 400 V is presented. We again find that the
wetting angle of the computed shape is higher than the Lippman predicted value.

Let us clarify that we did not manage to increase the NCP because of the well-
known instability of the shape optimal design algorithms. As a matter of fact, shape
optimal design algorithms become unstable when the control point density becomes
similar to the finite element point density.

In summary, with the present model, we do not manage to properly simulate the
locking phenomenon, but we do observe an overestimate of the Lippman predictions;
this overestimate becomes more important when using a higher control point density.

Curvature. We use the algorithm described in the previous section; see also [14].
For all the computations we performed, the droplet shapes obtained had a constant
curvature everywhere but in the vicinity of the triple point. In Figure 8.7, we present
as an example (here u0 = 800 V) the computed curvature at each control point. The
results are presented with 15, 30, and 50 points, respectively.

In Figure 8.8, we present the curvature values for different electrical potential
u0 values with 50 control points (with curvature values corresponding to those in
Figure 8.7, but for different u0 values). In Figure 8.9, we present the gradient of the
solution, i.e., the electric field.

For all computations we performed, the curvatures behave as those shown in
Figure 8.8. Thus, we can make the following three main remarks:

• For the curvature, the results are more accurate with 50 points than with 15
or 30 points. With 15 or 30 points, the behavior of the curvature near the
triple point appears to be less clear than with 50 points. This is due to the
too small number of points near the triple line.
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Fig. 8.7. Curvature values at u0 = 800V for 15, 30, and 50 points, respectively.

0 5 10 15
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

cu
rv

at
ur

e

 

 

300V
500V
600V
800V

Fig. 8.8. Curvature of the drop for several u0 values with 50 control points.
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• For a given potential u0, the curvature remains constant until we approach
the triple line, where the curvature increases. We can see that the curvature
is higher near the triple point than it is further away from it. (See Figure 8.7
for the case at 800 V. For other voltage the curvature has the same behavior;
see Figure 8.8.)

• If we look at the evolution of the curvature for an increasing potential u0, we
notice the following:

– The value of the curvature far from the triple line is constant and de-
creases when u0 increases.

– The curvature near the triple point increases, when u0 increases. The
fact that, with an increasing u0, the curvature far from the triple point
decreases is in accordance with the fact that, globally, the drop should
be a portion of a sphere with an increasing radius as u0 increases. We
note that the curvature increases near the triple line; this is in accordance
with the fact that the contact angle is higher than the Lippman predicted
value.
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Fig. 8.9. External electric field �E = �∇u at u0 = 400 V (zoom around the droplet).

9. Conclusion. We have detailed and implemented a general approach for mod-
eling the electrowetting process. The drop shape is computed as a minimum of the
total energy. Our model is based on the shape optimal design methods. We test our
model and software by including in the model the plane capacitor approximation (i.e.,
using the software with u0 = 0 V and changing the value of σLS for each value of the
potential). We obtain in this case an excellent agreement with the plane capacitor
approximation, which contributes to validating the approach. Then, we compare nu-
merical results obtained classically, that is to say, by changing the value of u0, with
the theoretical values for the plane capacitor approximation. In this case, the com-
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puted shapes and angles are not in agreement with this theory for a voltage higher
than 300 V.

Although we did not properly obtain the locking phenomenon, the drop shape
obtained deviates from the predicted shape as in [16]. Also, we did not manage
to observe that the contact angle remains constant; instead, the computed contact
angle values are higher than those predicted by Lippman’s equation. Moreover, this
overestimate becomes more important when using a higher control point density.

In other respects, we compute the curvature of the droplets. These values are
globally constant except in the vicinity of the contact point where the computed
curvature increases sharply. These results are in accordance with experimental results
obtained in [3] and [5], which noted this increase of the curvature near the triple line.

Finally, in order to properly obtain the locking phenomenon and Young’s angle
at the triple line as in [5], [16], [3], further investigations based on extra singular basis
functions to the finite element spaces are in progress.
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THE RIEMANN PROBLEM FOR A NONISENTROPIC FLUID IN A
NOZZLE WITH DISCONTINUOUS CROSS-SECTIONAL AREA∗

MAI DUC THANH†

Abstract. We present a full investigation of the Riemann problem for a nonisentropic polytropic
fluid in a nozzle with piecewise constant cross-section. First, we introduce the concept of elementary
waves which turn out to make up Riemann solutions. Second, we study a procedure to select
admissible stationary waves relying on the monotone criterion. By projecting all the wave curves in
the (p, u)-plane, we construct Riemann solutions. Existence of Riemann solutions can be obtained
for large initial data. Furthermore, we establish the uniqueness of Riemann solutions in strictly
hyperbolic domains. Our argument can lead to estimate regions where the Riemann problem admits
a unique solution.

Key words. gas dynamics equations, Riemann problem, conservation law, shock wave, source
term, nozzle
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DOI. 10.1137/080724095

1. Introduction. In this paper we provide a full investigation of the Riemann
problem for the evolution of a fluid inside a nozzle with piecewise constant cross-
section. The governing equations are given by

(1.1)

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p(ρ)∂xa,
∂t(aρe) + ∂x(au(ρe+ p)) = 0, x ∈ R, t > 0.

Here, ρ, ε, T, S, and p denote the thermodynamical variables: density, internal energy,
absolute temperature, entropy, and the pressure, respectively; u is the velocity, and
e = ε + u2/2 is the total energy. The function a = a(x) > 0, x ∈ R, is the cross-
sectional area. The expression of the source term on the right-hand side of (1.1) could
be understood in the sense of nonconservative product; see [9, 26]. To begin with, we
supplement the system (1.1) with the trivial equation (see [25, 29])

(1.2) ∂ta = 0, x ∈ R, t > 0.

That step would remove the obstacle of the source term in producing a linearly de-
generate characteristic field. However, the resulting system is not strictly hyperbolic
as characteristic fields coincide on certain surfaces. Therefore we will deal with the
question of constructing Riemann solutions for a nonstrictly hyperbolic system. For
simplicity, we assume that the fluid is polytropic ideal so that the equation of state
is given by

(1.3) p = (γ − 1)ρε, 1 < γ ≤ 5/3.

Nevertheless, our argument can be applied for a more general class of fluids.
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†Department of Mathematics, International University, Quarter 6, Linh Trung Ward, Thu Duc

District, Ho Chi Minh City, Vietnam (mdthanh@hcmiu.edu.vn).

1501



1502 MAI DUC THANH

This paper provides the constructions of all Riemann solutions of the system (1.1)
for nonisentropic fluids in a nozzle with piecewise constant cross-sections for large
initial data under the admissibility criterion on stationary waves. In particular, we
establish the existence for large data and uniqueness in strictly hyperbolic domains.
Moreover, our argument can lead to the estimates of regions where the Riemann
problem admits a unique solution. This result is compatible with the uniqueness for
the Cauchy problem in [16].

Recently, LeFloch and Thanh [27, 28] constructed Riemann solutions for the
model of isentropic flows in a nozzle with variable cross-section and shallow water
equations for arbitrary data. The Riemann problem for (1.1) was also considered by
a different approach by Andrianov and Warnecke [2], where the authors introduced a
new concept of solutions. For earlier work on resonant systems, see also [29, 18, 17, 11].
A careful investigation into a two-fluid model was obtained in [21]. These are typical
examples of systems of balanced laws with source terms. Practically, these source
terms often cause lots of inconveniences in their numerical discretization. The dis-
cretization of source terms therefore plays an important role in numerical approxima-
tions. The subject has been attracting attention of many authors for various classes
of systems of balanced laws with source terms from a single conservation law, shallow
water equations, or in the model of fluid flows in a nozzle with variable cross-section,
to multiphase flow models; see [14, 23, 22, 15, 7, 13, 5, 6, 3, 20, 19, 32, 4, 8, 1, 10,
24, 31, 30] and the references therein. Since the system (1.1) may serve as a simple
example of multiphase flow models, explicit constructions of Riemann solutions for
(1.1) are interesting not only for the study of the Riemann problem itself, but also
for the possibility of using these explicit solutions as references for testing various
numerical schemes for multiphase flows.

The organization of this paper is as follows. In section 2 we provide general
discussions and an argument for the establishment of stationary waves as elementary
waves, and then we define elementary waves and determine all wave curves. Section
3 is devoted to the selection of admissible stationary waves. In section 4 we will
construct Riemann solutions and establish the existence as well as the uniqueness of
Riemann solutions.

2. Basic properties and elementary waves. In this section we recall basic
properties of system (1.1)–(1.2) and draw elementary conclusions for stationary waves
which will be used in the next sections. In particular, we derive formulas for all wave
curves consisting of elementary waves.

2.1. Nonstrict hyperbolicity. To deal with the nonconservativeness of the
system (1.1), we supplement it with the trivial equation (1.2). We therefore have the
following system of balanced laws:

(2.1)

∂t(aρ) + ∂x(aρu) = 0,

∂t(aρu) + ∂x(a(ρu2 + p)) = p∂xa,

∂t(aρe) + ∂x(au(ρe+ p)) = 0,

∂ta = 0, x ∈ R, t > 0.

Let us take (p, S) as two independent thermodynamic variables. Then, the poly-
tropic ideal gas equation of state can be represented by

(2.2) ρ = ρ(p, S) =
(

p

γ − 1
epx
(
S∗ − S

Cv

))1/γ

,
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where Cv = R/(γ − 1) and R is the specific gas constant.
A smooth solution U = U(x, t) = (p(x, t), u(x, t), S(x, t), a(x)) satisfies the fol-

lowing system of conservation laws in nonconservative form:

∂tU +A(U)∂xU = 0,

where

(2.3) A(U) =

⎛
⎜⎜⎜⎜⎜⎝

u
ρ

ρp
0

uρ

aρp
1
ρ

u 0 0

0 0 u 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
.

The characteristic equation is given by

λ(u − λ)
(
(u− λ)2 − 1

ρp

)
= 0.

Thus, we obtain four real eigenvalues

(2.4) λ1(U) = u− c, λ2(U) = u, λ3(U) = u+ c, λ4(U) = 0,

where

c =
1√

ρp(p, S)
, ρp(p, S) =

p
1−γ

γ

γ(γ − 1)
1
γ

exp
(S∗ − S

γCv

)
> 0.

Obviously, we have

λ1(U) < λ2(U) < λ3(U) ∀U.
However, any of λ1(U), λ2(U), λ3(U) can coincide with λ4(U). Consequently, the
system is hyperbolic but not strictly hyperbolic. The corresponding eigenvectors can
be chosen as

r1 =
(
ρ,−

√
ρp(p, S), 0, 0

)T
, r2 = (0, 0, 1, 0)T ,

r3 =
(
ρ,
√
ρp(p, S), 0, 0

)T
, r4 =

(
− 2ρ(p, S)
ρp(p, S)

,
2

ρp(p, S)
, 0, 1

)T
.

Since all the eigenvalues and eigenvectors are independent of the fourth component
a, investigating properties of these quantities can be reduced to the three-dimensional
subspace of the coordinates (p, u, S), which is referred to as the phase domain of
the coordinates (p, u, S). In the (p, u, S)-space, there are three surfaces, denoted by
Σ1,Σ2, and Σ3, on which the system fails to be strictly hyperbolic:

(2.5)

Σ1 = {U = (p, u, S) : λ4(U) = λ1(U)} =
{

(p, u, S) : u =
1√

ρp(p, S)

}

=
{

(p, u, S) : u = γ
1
2 (γ − 1)

1
2γ p

γ−1
2γ exp

(
S∗ − S

2γCv

)}
,

Σ2 = {U = (p, u, S) : λ4(U) = λ2(U)} = {(p, 0, S)},

Σ3 = {U = (p, u, S) : λ4(U) = λ3(U)} =
{

(p, u, S) : u = − 1√
ρp(p, S)

}

=
{

(p, u, S) : u = −γ 1
2 (γ − 1)

1
2γ p

γ−1
2γ exp

(
S∗ − S

2γCv

)}
.
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These surfaces, referred to as strictly hyperbolic boundaries, separate the phase domain
into four subdomains, denoted by G1,G2,G3, and G4, in which the system is strictly
hyperbolic:

(2.6)

G1 = {U = (p, u, S) : λ4(U) < λ1(U)},

G2 = {U = (p, u, S) : λ1(U) < λ4(U) < λ2(U)},

G3 = {U = (p, u, S) : λ2(U) < λ4(U) < λ3(U)},

G4 = {U = (p, u, S) : λ4(U) > λ3(U)}.

Clearly, the 2- and the 4-characteristic fields are linearly degenerate. On the other
hand,

(2.7) −∇λ1(U) · r1(U) = ∇λ3(U) · r3(U) =
γ + 1

2
√
ρp > 0 ∀U,

which implies that the 1- and the 3-characteristic fields are genuinely nonlinear.

2.2. Stationary smooth solutions. A stationary smooth solution U of (1.1)
is a time-independent smooth solution. Thus, the derivative with respect to t in
(1.1) can be omitted. Stationary solutions of the initial value problem for (1.1) are,
therefore, the ones for the following ordinary differential equations:

(2.8)

(aρu)′ = 0,

(a(ρu2 + p))′ = pa′,

(au(ρe+ p))′ = 0,

where (.)′ stands for d(.)/dx.
We will show that the specific entropy is conserved across stationary waves.

Therefore, for those concerning stationary waves, the choices of thermodynamic inde-
pendent variables (ρ, S) or (p, S) are equivalent, since p = p(ρ, S0) implies ρ = ρ(p, S0),
and vice versa. To make calculations simpler, let us, however, choose the thermody-
namic independent variables in this subsection to be (ρ, S). Solutions of (2.8) are
subject to the initial condition

(2.9) (ρ, u, S, a)(x0) = (ρ0, u0, S0, a0).

The specific enthalpy is given by

(2.10) h = ε+ pv,

which satisfies

dh = T dS + v dp.

The following lemma enables us to calculate stationary waves.
Lemma 2.1. For smooth solutions, the system (2.8) is equivalent to

(2.11)

(aρu)′ = 0,(u2

2
+ h(ρ, S)

)′
= 0,

S′ = 0.
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Proof. The first equation of (2.11) can be expressed as

aρu = a0ρ0u0 = C,

where C is a constant. Thus, the second equation can be written as

(C · u+ a · p)′ = p · a′

or

C · u′ + a · p′ = 0.

This yields

(2.12) uu′ +
p′

ρ
= uu′ + p′v = 0, v =

1
ρ
.

Now, provided C �= 0, the third equation of (2.8) can be written as

(2.13) ε′ + uu′ + (pv)′ = 0.

Recall the thermodynamic identity that

TdS = dε+ pdv.

Since we are considering stationary waves, i.e., solutions independent of time, the
thermodynamic identity applied to this kind of wave gives

ε′ = TS′ − pv′.

Substituting this into (2.13), we get

TS′ + p′v + uu′ = 0,

or, from (2.12), it holds that

S′ = 0.

Since S′ = 0, we have

p′v = h′(ρ, S),

and from (2.12), this yields the second line of (2.11). Lemma 2.1 is completely
proved.

2.3. Stationary contact waves. Suppose now we have a discontinuity with
propagation speed λ. Then, the Rankine–Hugoniot relation associated with (1.2)
gives

(2.14) −λ[a] = 0,

where [a] := a+ − a− is the jump of the cross-section a. Thus, (2.14) implies that
there are two possibilities:

(i) either λ = 0: the shock speed vanishes,
(ii) or [a] = 0: the component a remains constant across the shock.
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First, suppose (i) that the component a is discontinuous and, therefore, the shock
speed vanishes. The solution is independent of time, and it is natural to search for a
solution as the limit of a sequence of time-independent smooth solutions, or stationary
solutions of (1.1)–(1.2), which are given by (2.11). The integral curve of (2.11) passing
through each point (ρ0, u0, S0, a0) can be parameterized by ρ, say

ρ �→ (ρ, u(ρ), S0, a(ρ)),

and satisfies

aρu = a0ρ0u0,

u2

2
+ h(ρ, S) =

u2
0

2
+ h(ρ0, S0),

S = S0.

Letting ρ→ ρ1 and setting u1 = u(ρ1), a1 = a(ρ1), we see that the states (ρ0, u0, S0, a0),
(ρ1, u1, S0, a1) satisfy the Rankine–Hugoniot relations

[aρu] = 0,[
u2

2
+ h(ρ, S0)

]
= 0,

[S] = 0.

So

(2.15)

u =
a0ρ0u0

aρ
,

u2

2
+ h(ρ, S0) =

u2
0

2
+ h(ρ0, S0),

S = S0.

Set h0 := h(ρ0, S0); then the relations (2.15) define a curve W4(U0) in the phase
domain. Precisely, W4(U0) is the intersection of the two surfaces defined by the first
and the second equations in (2.15) in the (ρ, u, a)-space (entropy is constant). Since
the mapping ρ �→ p(ρ, S0) is monotone increasing, in the (p, u)-plane this curve can be
parameterized as p �→ u(p), which is monotone decreasing for u0 > 0 and monotone
increasing for u0 < 0.

The system (2.15) defines a function a �→ (ρ = ρ(a;U0), p = p(a;U0), u =
u(a;U0)), where ρ = ρ(a;U0) is determined by

(2.16) Φ(ρ, a;U0) := − 2κγ
γ − 1

ργ+1 +
(
u2

0 +
2κγ
γ − 1

ργ−1
0

)
ρ2 −

(a0u0ρ0

a

)2

= 0,

where

(2.17) κ = A(S0), A(S) = (γ − 1)exp
(S − S∗

Cv

)
,

and then u is given by the first equation of (2.15), S = S0, and p = p(ρ, S0).
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2.4. Shocks, rarefaction waves, and contact discontinuities. Let us now
suppose (ii) that the component a remains constant on both sides of the discontinuity.
Eliminating a from (1.1), we obtain the usual gas dynamics equations

(2.18)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρe) + ∂x(u(ρe+ p)) = 0.

Thus, all elementary waves of the system (2.18) are obtained in a usual way which
can be found in any standard material on gas dynamics equations. In particular, the
reader is referred to [12]. However, it is convenient to brief basic facts of these waves
here.

The Rankine–Hugoniot relations corresponding to (2.18) are given by

(2.19)

− λ[ρ] + [ρu] = 0,

− λ[ρu] + [ρu2 + p(ρ)] = 0,
− λ[ρe] + [u(ρe+ p)] = 0,

where [ρ] = ρ1 − ρ0, [ρu] = ρ1u1 − ρ0u0, etc., and λ is the speed of propagation of the
discontinuity connecting the states U0 and U1.

Then the Hugoniot set issuing from a given state U0 consisting of all states U that
can be connected to U0 by a discontinuity satisfying the Rankine–Hugoniot relations
is determined by

(2.20)

M := ρ0(u0 − λ) = ρ1(u1 − λ),

ρ0(u0 − λ)2 + p0 = ρ1(u1 − λ)2 + p1,(
ρ0

(
ε0 +

(u0 − λ)2

2

)
+ p0

)
=
(
ρ1

(
ε1 +

(u1 − λ)2

2

)
+ p1

)
.

If M = 0, then

(2.21)
u0 = λ = u1,

p0 = p1.

Thus, the discontinuity is exactly the 2-contact discontinuity corresponding to λ =
λ2 = u. When M �= 0, we obtain a 1-shock if M > 0, and a 3-shock if M < 0.

Next, all discontinuities of (2.19) associated with nonlinear characteristic fields
are required to satisfy the Lax shock inequalities

(2.22) λi(U0) > λ(U0, U) > λi(U), i = 1, 3,

where λ(U0, U) is the shock speed of the shock connecting the left-hand state U0 to
the right-hand state U belonging to the Hugoniot set issuing from U0.

For polytropic ideal gas (1.3), the Lax shock inequalities (2.22) yield the following:
(a) For a 1-shock, the Lax shock inequalities are equivalent to

(2.23) ρ1 ≥ ρ0, p1 ≥ p0, S1 ≥ S0, u1 ≤ u0.

(b) For a 3-shock, the Lax shock inequalities are equivalent to

(2.24) ρ1 ≤ ρ0, p1 ≤ p0, S1 ≤ S0, u1 ≥ u0.



1508 MAI DUC THANH

From (2.20) and (2.23), we obtain the first forward shock curve S1(U0) issuing
from U0 consisting of all right-hand states that can be connected to a given left-hand
state U0 as

(2.25)

S1(U0) : v = v1(U0, p) =
v0(μp+ p0)
p+ μp0

, where μ =
γ − 1
γ + 1

,

u = u1(U0, p) = u0 − (p− p0)

√
(1 − μ)v0
p+ μp0

, p ≥ p0.

From (2.20) and (2.24), we also obtain the third backward shock curve S3(U0)
issuing from U0 consisting of all left-hand states that can be connected to a given
right-hand state U0. Then, the inequalities in (2.24) must be reversed. So S3(U0) is
given by

(2.26)

S3(U0) : v = v3(U0, p) =
v0(μp+ p0)
p+ μp0

,

u = u3(U0, p) = u0 + (p− p0)

√
(1 − μ)v0
p+ μp0

, p ≥ p0.

Next, rarefaction waves in genuinely nonlinear characteristic fields corresponding
to λ1 and λ3 are continuous piecewise smooth self-similar solutions of (1.1) of the
form

U(x, t) = V (ξ), ξ = x/t.

Recall that the forward 1-rarefaction curve R1(U0) consisting of all right-hand states
U that can be connected to the left-hand state U0 by a 1-rarefaction wave is given by

(2.27)
R1(U0) : u = u1(U0, p) = u0 −

∫ p

p0

√
ρp(z, S0)
ρ(z, S0)

dz,

= u0 −
2γ1/2

(γ − 1)1−1/2γ
exp
(S0 − S∗

2Cvγ

)
(p(γ−1)/2γ − p

(γ−1)/2γ
0 ).

Similarly, the backward 3-rarefaction curve R3(U0) consisting of all left-hand
states U that can be connected to the right-hand state U0 by a 1-rarefaction wave is
given by

(2.28)
R3(U0) : u = u3(U0, p) = u0 +

∫ p

p0

√
ρp(z, S0)
ρ(z, S0)

dz,

= u0 +
2γ1/2

(γ − 1)1−1/2γ
exp
(S0 − S∗

2Cvγ

)
(p(γ−1)/2γ − p

(γ−1)/2γ
0 ).

The wave curves associated with the genuinely nonlinear characteristic fields are
then defined as

Wi(U0) := Si(U0) ∪Ri(U0), i = 1, 3.

It is not difficult to check that the wave curve W1(U0) projected in (p, u)-plane,
as a function p �→ u, is continuous, monotone decreasing, and the wave curve W3(U0)
projected in (p, u)-plane, as a function p �→ u, is continuous, monotone increasing. In
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conclusion, we obtain the same waves associated with the first, second, and the third
characteristic fields as in the usual gas dynamics equations.

The above arguments allow us to define elementary waves of the system (1.1)
which form Riemann solutions.

Definition 2.2. Elementary waves for the system (3.1) are the following ones:
• Lax shocks, rarefaction waves, and contact discontinuities of the usual gas

dynamics equations corresponding to the case a is constant in (1.1).
• Stationary contacts with zero propagation speed are given by (2.15).

3. Selection of admissible stationary waves. As seen in the previous section,
the density ρ across a stationary wave with a given state U0 is determined as zeros
depending on the parameter a of the function

(3.1) Φ(ρ, a;U0) := − 2κγ
γ − 1

ργ+1 +
(
u2

0 +
2κγ
γ − 1

ργ−1
0

)
ρ2 −

(a0u0ρ0

a

)2

,

where

κ = A(S0), A(S) = (γ − 1)exp
(S − S∗

Cv

)
.

If u0 = 0, then the equation Φ(ρ, a;U0) = 0 gives three roots; therefore there are
three states (ρ0, 0, S0), (0,±

√
(2κγ)/(γ − 1)ρ(γ−1)/2

0 , S0) that can be connected to U0

by a stationary wave. Assume u0 �= 0. First, observe that since we look for zeros of
the function, we just consider those values ρ such that

− 2κγ
γ − 1

ργ+1 +
(
u2

0 +
2κγ
γ − 1

ργ−1
0

)
ρ2 ≥ 0,

which requires

(3.2) ρ ≤ ρ̄(U0) :=
(γ − 1

2κγ
u2

0 + ργ−1
0

) 1
γ−1

.

Thus, we need to investigate the function Φ on the interval [0, ρ̄(U0)] only. We have

dΦ(U0, ρ; a)
dρ

= −2κγ
γ + 1
γ − 1

ργ + 2
(
u2

0 +
2κγ
γ − 1

ργ−1
0

)
ρ

so that

(3.3)

dΦ(ρ; a, U0)
dρ

> 0, ρ < ρmax(U0),

dΦ(U0, ρ; a)
dρ

< 0, ρ > ρmax(U0),

where

(3.4) ρmax(U0) :=
( γ − 1
κγ(γ + 1)

u2
0 +

2
γ + 1

ργ−1
0

) 1
γ−1

.

Moreover,

(3.5) Φ(ρ = 0; a, U0) = Φ(ρ = ρ̄; a, U0) = −
(a0u0ρ0

a

)2

< 0, u0 �= 0.
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From (3.4) and (3.5), we can see that Φ admits a zero if and only if

Φ(ρ = ρmax; a, U0) ≥ 0.

Equivalently

(3.6) a ≥ amin(U0) :=
a0ρ0|u0|

√
κγρ

γ+1
2

max(ρ0, u0)
.

If a > amin(U0), then there are exactly two values ρ∗(U0, a) < ρmax(U0) < ρ∗(U0, a)
such that

Φ(ρ∗(U0, a); a, U0) = Φ(ρ∗(U0, a); a, U0) = 0.

By considering (p, S) as the two independent thermodynamic variables and phase
domain in the (p, u, S, a) space, we have the following lemma.

Lemma 3.1 (stationary waves). There exists a stationary contact from a given
state U0 = (p0, u0, S0, a0) connecting to some state U = (p, u, S = S0, a) if and only
if a ≥ amin(U0). More precisely, we have the following:

(i) If a < amin(U0), there are no stationary contacts.
(ii) If a ≥ amin(U0) along the curve W4(U0), there are exactly two points U∗ :=

(p = p(ρ∗(U0, a), S0), u = a0ρ0u0/(aρ∗(U0, a)), S = S0, a), and U∗ := (p =
p(ρ∗(U0, a), S0), u = a0ρ0u0/(aρ∗(U0, a)), S = S0, a), where ρ∗(U0, a) <
ρmax(U0) < ρ∗(U0, a) satisfying

(3.7) Φ(ρ∗(U0, a); a, U0) = Φ(ρ∗(U0, a); a, U0) = 0.

These two states U∗, U
∗ coincide only if a = amin(U0).

Since the function ρ �→ p(ρ, S0) is monotone, the following lemma can be obtained
directly from Lemma 2.3 [27], which provides some useful properties of the above
quantities. Setting

pmax = p(ρmax, S0), p∗ = p(ρ∗, S0), p∗ = p(ρ∗, S0),

and using notation in Lemma 3.1, we have the following lemma.
Lemma 3.2. Given a state U0 = (p0, u0, S0, a0), we have the following.
(a) It holds that

pmax(U0) < p0, U0 ∈ G2 ∪ G3,

pmax(U0) > p0, U0 ∈ G1 ∪ G4.

(b) The state U∗ = (p = p(ρ∗(U0, a), S0), u = a0ρ0u0/(aρ∗(U0, a)), S = S0, a) ∈
G1 if u0 < 0, and U∗ ∈ G4 if u0 > 0. The state U∗ := (p = p(ρ∗(U0, a), S0), u =
a0ρ0u0/(aρ∗(U0, a)), S = S0, a) ∈ G2 if u0 < 0, and U∗ ∈ G3 if u0 > 0. In addition,
we have the following:

• If a > a0, then

p∗(U0, a) < p0 < p∗(U0, a).

• If a < a0, then

p0 < p∗(U0, a) for U0 ∈ G1 ∪ G4,

p0 > p∗(U0, a) for U0 ∈ G2 ∪ G3.
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(c)

amin(U, a) < a, U ∈ Gi, i = 1, 2, 3, 4,
amin(U, a) = a, U ∈ Σ1 ∪ Σ3,

amin(U, a) = 0, p = 0 or u = 0.

In combining waves, we must know when the order of wave speeds associated with
different characteristic fields changes. Precisely, we want to know when the shock
speeds in the nonlinear characteristic fields equal zero. From (2.20), for polytropic
gas (1.3), we can calculate the shock speeds as

λ = λ(U0, U) =
ρu− ρ0u0

ρ− ρ0

=
ρ(u− u0) + u0(ρ− ρ0)

ρ− ρ0

= u0 − v0
u− u0

v − v0

=

⎧⎨
⎩

u0 − v0
√

p+μp0
(1−μ)v0

for 1 − (forward) shocks,

u0 + v0
√

p+μp0
(1−μ)v0

for 3 − (forward) shocks.

Thus, the 1-shock speed λ = λ̄1(U0, U) from a given left-hand state U0 to a right-hand
state U on the Hugoniot set issuing from U0 vanishes if

u0 > 0,

p = p̃0 :=
(1 − μ)u2

0

v0
− μp0.

Besides, the Lax shock inequalities require that p̃0 > p0. This means

(1 − μ)u2
0

v0
− μp0 > p0

or

u2
0 >

1 + μ

1 − μ
p0v0 = γp0v0 =

1
ρp(p0, S0)

= c2.

Since u0 > 0, this is equivalent to

λ̄1(U0, U) = u0 − c > 0,

which says that U0 ∈ G1. Similarly, the backward 3-shock speed λ̄3(U0, U) from a given
right-hand state U0 to a left-hand state U vanishes if U0 ∈ G4 and p = (1−μ)u2

0
v0

− μp0.
We therefore arrive at the following proposition.

Proposition 3.3. (a) The 1-shock speed λ̄1(U0, U), (for p > p0) may change
sign along the forward 1-shock curve S1(U0). More precisely, we have the following:

(i) If U0 ∈ G2 ∪ G3 ∪ G4, then λ̄1(U0, U) remains negative:

λ̄1(U0, U) < 0, U ∈ S1(U0).



1512 MAI DUC THANH

(ii) If U0 ∈ G1, then λ̄1(U0, U) vanishes once at some point U = Ũ0 ∈ G2 corre-
sponding to a value p = p̃0 = (1−μ)u2

0
v0

−μp0 on the 1-shock curve S1(U0) such
that

(3.8)
λ̄1(U0, Ũ0) = 0,
λ̄1(U0, U) > 0, p ∈ (p0, p̃0),
λ̄1(U0, U) < 0, p ∈ (p̃0,+∞).

(b) The 3-shock speed λ̄3(U0, U) may change sign along the backward 3-shock curve
S3(U0) (p > p0). More precisely,

(i) If U0 ∈ G1 ∪ G2 ∪ G3, then λ̄1(U0, U) remains positive:

λ̄3(U0, U) > 0, U ∈ S3(U0).

(ii) If U0 ∈ G4, then λ̄3(U0, U) vanishes once at some point U = Ũ0 ∈ G3 corre-
sponding to a value p = p̃0 = (1−μ)u2

0
v0

− μp0 on the backward 3-shock curve
S3(U0) such that

(3.9)
λ̄3(U0, Ũ0) = 0,
λ̄3(U0, U) < 0, p ∈ (p0, p̃0),
λ̄3(U0, U) > 0, p ∈ (p̃0,+∞).

As shown in [27], the Riemann problem for (1.1)–(1.2) may admit up to a one-
parameter family of solutions. This phenomenon can be avoided by requiring Riemann
solutions to satisfy a monotone condition on the component a. Motivated by [27], we
impose the following criterion on stationary waves of (1.1).

Admissibility Criterion 3.1. Along the stationary curve in the (ρ, u)-plan
between left- and right-hand states of any stationary wave, the component a obtained
from (2.15) and expressed as a function of ρ has to be monotone in ρ.

Since the specific entropy is constant along stationary curves, the following lemma
can be established as in the case of isentropic gases (see [27]); therefore, we omit the
proof.

Lemma 3.4. Admissibility Criterion 3.1 is equivalent to the statement that any
stationary wave has to remain in the closure of only one domain Gi, i = 1, 2, 3, 4.

Lemma 3.4 implies that if U0 ∈ G1 ∪ G4, then p∗(U0, a) is used, while p∗(U0, a) is
used when U0 ∈ G2 ∪ G3.

4. Existence and uniqueness of the Riemann problem. In this section we
will establish global existence and uniqueness of the Riemann problem for (1.1)–(1.2).
Without loss of generality (by changing coordinates x �→ −x, u �→ −u, if necessary),
we can assume for definitiveness in this section that

aL < aR.

To construct Riemann solutions of (1.1)–(1.2), we project all the wave curves on the
(p, u)-plane. Moreover, we will use the following notation:

(i) Wk(Ui, Uj) (Sk(Ui, Uj), Rk(Ui, Uj)) denotes the kth-wave (kth-shock, kth-
rarefaction wave, respectively) connecting the left-hand state Ui to the right-
hand state Uj .

(ii) Wm(Ui, Uj) ⊕Wn(Uj , Uk) indicates that there is an mth-wave from the left-
hand state Ui to the right-hand state Uj , followed by an nth-wave from the
left-hand state Uj to the right-hand state Uk.
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Fig. 4.1. Riemann solution with structures (4.1) (left) and (4.4) (right).

(iii) Ū denotes the right-hand state resulted by a contact discontinuity from a left-
hand state U associated with the second characteristic field λ2 = u. Observe
that in the (p, u)-plane, U and Ū share the same location.

(iv) Û denotes the right-hand state resulted by a contact discontinuity from a
left-hand state U associated with the fourth characteristic field λ4 = 0.

4.1. Explicit solutions and uniqueness for UL ∈ G1.
Construction N1. This construction holds for UR, belongs to G1 ∪ Σ1, and

belongs to some part of G2. Let U1 be the state obtained by jumping from UL by a
stationary contact from the level aL to the level aR. Whenever W1(U1)∩W3(UR) �= ∅,
there is a solution defined as follows. Let

{U2} = W1(U1) ∩W3(UR).

Then the solution is

(4.1) W4(UL, U1) ⊕W1(U1, U2) ⊕W2(U2, Ū2) ⊕W3(Ū2, UR).

The construction makes sense if λ1(U1, U2) ≥ 0. See Figure 4.1(left).
If W1(U1)∩W3(UR) = ∅, then there is a vacuum. In fact, let {M} = W1(U1)∩{p =

0}, {N} = W3(UR) ∩ {p = 0}. The solution is

(4.2) W4(UL, U1) ⊕W1(U1,M) ⊕W1(M,N) ⊕W3(M,UR).

Construction N2. This construction holds for UR in G2 ∪ G3 ∪ Σ1 ∪ Σ2 and
some part of G1. Consider the wave curve W1(UL). Let ŨL ∈ W1(UL) ∩ G2 be the
state at which the shock speed vanishes, i.e., λ1(UL, ŨL) = 0, in view of Proposition
3.3. Let ŨL = (p̃L, ũL). Then, from any point U = (p, u) ∈ W1(UL), p ≥ p̃L, which
means U is positioned “lower” than ŨL, a stationary wave jumps from U from a = aL
to a = aR to some state Ū using W4(U, Ū). These states Ū form a curve U which
varies along W1(UL) “downward” from ŨL. Precisely, set the “composite” curve

(4.3) Wa
1 (UL) := {Ū : ∃W4(U, Ū) from aL to aR, U = (p, u) ∈ W1(UL), p ≥ p̃L}.

Whenever W3(UR)∩Wa
1 �= ∅, there will be a Riemann solution. In fact, let W3(UR)∩

Wa
1 = {U4} and U3 be the point on W1(UL) that corresponds to the stationary wave

W4(U3, U4) or W4(Ū3, U4). Then, the solution can be

(4.4) S1(UL, U3) ⊕W4(U3, U4) ⊕W2(U4, Ū4) ⊕W3(Ū4, UR)
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if u3 ≥ 0, and

(4.5) S1(UL, U3) ⊕W2(U3, Ū3) ⊕W4(Ū3, U4) ⊕W3(U4, UR)

if u3 < 0 and λ3(U4, UR) ≥ 0. See Figure 4.1(right).
Construction N3. This construction shows a connection between Constructions

N1 and N2. Here, we meet an interesting phenomenon when wave speeds associated
with different characteristic fields coincide. Precisely, there are solutions containing
three waves with the same zero speed. This can be seen as follows. From UL, the
solution jumps by a stationary wave W4(UL, A := ÛL(a)) with an intermediate value
of cross-section a ∈ [aL, aR]. Then, from A, the solution jumps to some state B :=
Ã ∈ G2 using S1(A,B) with λ1(A,B) = 0. Next, the solution jumps from B to some
state C = U(a) := B̂ using a stationary wave W4(B,U(a)) to shift the cross-section
a to aR. It is not difficult to check that the mapping

(4.6) [aL, aR] � a �→ U(a)

is locally Lipschitz with a deterministic Lipschitz constant K on any compact neigh-
borhood of UL. Set

L(UL, aR) = {U(a)|a ∈ [aL, aR]}.

Whenever

W3(UR) ∩ L(UL; aR) �= ∅

there is a solution containing three discontinuities having the same speed zero. Pre-
cisely, the solution begins with a stationary 4-wave from UL to A, followed by a
1-shock with zero speed from A to B, then followed by a stationary 4-wave from B to
U(a), since u(a) > 0. The solution continues with a 2-wave from U(a) to some state
D := Ū(a), and then it arrives at UR using a 3-wave. We therefore have a solution of
the form

(4.7) W4(UL, A) ⊕ S1(A,B) ⊕W4(B,U(a)) ⊕W2(U(a), Ū(a)) ⊕W3(Ū(a), UR).

See Figure 4.2(left).
Construction N4: UR ∈ G4. This construction can be applied for arbitraryUL.

For UR ∈ G4, there is a stationary wave from UR with a = aR to some state U8 ∈ G4

with a = aL. Let U7 be the intersection point of W3(U8) and W1(UL). If U7 ∈ G4,
then there is a Riemann solution of the form

(4.8) S1(UL, U7) ⊕W2(U7, Ū7) ⊕W3(Ū7, U8) ⊕W4(U8, UR).

See Figure 4.2 (right).
Construction N5: This construction conditionally holds for UR ∈ G4.

This construction also holds for W1(UL) ∩ G3 �= ∅. There is some set Δ in G4 so that
if UR belongs to Δ, the Riemann problem may also admit a solution containing three
waves with the same zero speed. Let

{U9} = W1(UL) ∩ {u = 0}, U10 = W1(UL) ∩ Σ3.

The solution can be a 1-shock from UL to some state E ∈ G3, followed by a stationary
wave using p∗ with level a ∈ [aL, aR] that remains in G3 to some point F , then followed
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Fig. 4.2. Riemann solution with structures (4.7) (left) and (4.8) (right).

by a 3-shock with zero speed from F to some point G ∈ G4, and then followed by a
stationary wave from G with level a to UR with level aR. For a varies in [aL, aR],
this procedure forms a set Δ in G4 so that if UR ∈ Δ, then a solution containing
three waves with the same zeros speed exists, as just discussed above. See Figure 4.2
(right).

Thus, we can see from Constructions N4 and N5 that multiple solutions may
exist.

Existence of Riemann problem. It is interesting to see that the curveL(UL, aR)
meets W1(U1) when a = aR, and L(UR, aR) meets Wa

1 (UL) when a = aL. These pat-
terns form a locally Lipschitz continuous curve in the (p, u)-plane. The Riemann
problem admits a solution whenever W3(UR) intersects this curve in Constructions
N1–N3, and U7 ∈ G4 in Construction N4. Denote U∗

L ∈ G3 to be the state in which a
stationary jump from U10 is available. Then, a sufficient condition for the Riemann
problem to possess a solution is the following:

• U∗
L lies below the curve W3(UR), and UR is above Σ3, or UR ∈ G4 and the

configuration (4.5) makes sense. In this case, W3(UR) always intersects the curve
W1(U1)∪L(UL, aR)∪W a

1 (UL) and the corresponding configuration of solutions makes
sense.

• U7 ∈ G4 for UR is below Σ3.
Evidently, the Riemann problem admits a solution for a large domain containing

UL.
Uniqueness of Riemann problem. If the right-hand side UR is chosen so that

only Construction N1 makes sense, then we get the unique solution. Geometrically,
we can see that this can be done if W3(UR) does not meet Wa

1 (UL) ∪ L(UL, aR).
Since the mapping a �→ U(a), a ∈ [aL, aR] in (4.6) is locally Lipschitz, we can choose
|aR − aL| not too large so that L(UL, aR) is not far away from ŨL. An alternative
priori estimate for large |aR−aL| is that W3(UR) lies entirely in G1, and this is the case
if the intersection of this curve with the axis {p = 0} is at a point with nonnegative
velocity. Setting p = 0 in (2.28), we require

uR − 2γ1/2

(γ − 1)1−1/2γ
exp
(SR − S∗

2Cvγ

)
p
(γ−1)/2γ
R ≥ 0

or

(4.9) uR ≥ 2γ1/2

(γ − 1)1−1/2γ
exp
(SR − S∗

2Cvγ

)
p
(γ−1)/2γ
R .
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Therefore, we arrive at the following theorem.
Theorem 4.1 (existence and uniqueness). Given UL ∈ G1, let {U10} = W1(UL)∩

Σ3, and let U∗
L ∈ G3 be the state resulted by a stationary wave from U10 using p∗. The

Riemann problem for (1.1)–(1.2) always has a solution if U∗
L lies below the curve

W3(UR), and UR is above Σ3, or UR ∈ G4 and the configuration (4.5) makes sense.
Moreover, if (4.9) holds, or if |aR−aL| is sufficiently small, then the Riemann problem
for (1.1)–(1.2) has (4.1) or (4.2) as the unique solution.

4.2. Explicit solutions and uniqueness for UL ∈ G2∪G3∪G4∪Σ1∪Σ2∪Σ3.
Construction N6. This construction holds for UR belongs in G1 ∪ Σ1 and

some part of G2. The solution begins with a 1-rarefaction wave R1(ŪL, A), where
{A} = W1(UL) ∩Σ1; followed by a stationary jump W4(A,U1), where U1 ∈ G1, using
p∗ at A. Let {U2} = W1(U1) ∩W3(UR). The solution is then continued by a 1-wave
from U1 to U2, followed by a 2-wave W2(U2, Ū2), and finally followed by a 3-wave
from Ū2 to UR. Thus, the solution is

(4.10) R1(UL, A) ⊕W4(A,U1) ⊕W1(U1, U2) ⊕W2(U2, Ū2) ⊕W3(Ū2, UR).

The construction makes sense if λ1(U1, U2) ≥ 0. This construction is similar to
Construction N1. See Figure 4.3(left).

Construction N7. This construction holds for UR in G2 ∪ G3 ∪ Σ1 ∪ Σ2 and
some part of G1. Let {A} = W1(UL) ∩ Σ1 as in Construction 5, and let B ∈ G2 be
the point resulted by a stationary wave W4(A,B) using p∗. Define the “composite”
curve

Wa
1 (UL) := {Ū : ∃W4(U, Ū) from aL to aR, U = (p, u) ∈ W1(UL), p ≥ p̃A}.

(4.11)

Whenever W3(UR)∩Wa
1 �= ∅, there will be a Riemann solution. In fact, let W3(UR)∩

Wa
1 = {U4} and U3 be the point on W1(UL) that corresponds to the stationary wave

W4(U3, U4) or W4(Ū3, U4). Then, the solution can be

(4.12) W1(UL, U3) ⊕W4(U3, U4) ⊕W2(U4, Ū4) ⊕W3(Ū4, UR)

if u3 ≥ 0, and

(4.13) W1(UL, U3) ⊕W2(U3, Ū3) ⊕W4(Ū3, U4) ⊕W3(U4, UR)
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Fig. 4.4. Riemann solution with structure (4.14).

if u3 < 0 and Uλ3(U4, UR) ≥ 0. This construction is similar to Construction N2.
This construction makes sense whenever U3 ∈ G2 ∪ G3 ∪ ∪Σ1 ∪ Σ2 ∪ Σ3. See Figure
4.3(right).

Construction N8. This construction shows a connection between Construc-
tions N6 and N7. Here, we also meet an interesting phenomenon when wave speeds
associated with different characteristic fields coincide; therefore there are solutions
containing three waves with the same zero speed. This can be seen as follows. Look
at Construction N6; the solution can jump to G2 as far as C := Ũ1 with a 1-shock
with zero speed. Now, instead of jumping from A to U1 using a W4(A,U1) to shift the
level a from aL to aR, the solution can use a stationary wave from A to some state
D ∈ G1 with a shift in a from aL to any value a ∈ [aL, aR], then followed by a 1-shock
S1(D,E) with zero speed, where E ∈ G2, and then followed by another stationary
wave from E to F = F (a) ∈ G2 with a shift in a from a ∈ [aL, aR] to aR. As a
varies continuously on [aL, aR], the set of F (a) forms a curve with F (aL) = B and
F (aR) = C, and we have an arc B̂C ⊂ G2. If G ∈ W3(UR) ∩ B̂C, then the Riemann
solution admits a solution. This is similar to Construction N3. See Figure 4.3(right).

The arc B̂C connects the 1-wave curve W1(U1) in Construction N6 and the com-
posite wave curve Wa

1 (UL) in Construction N7. Therefore, the existence and unique-
ness of the Riemann problem can be argued similarly as in the case UL ∈ G1.

Construction N9. This construction holds for UL ∈ G4 and some part of G3∪Σ3;
UR ∈ G2 ∪ G3; see Figure 4.4.

There are U1 ∈ W3(UR) and U2 ∈ Σ3 that correspond to a stationary jump from
the left-hand state U2 with a = aL to the right-hand state U1 with a = aR. The state
U1 can be defined in one of the following ways:

(i) We use a backward composite wave curve defined by using a 3-wave from UR
to any U ∈ W3(UR) followed by a stationary contact from U to some Û using p∗ in
the backward way. This curve intersects with Σ3 at U2.

(ii) We define a curve going along with Σ3 by taking all the resulting states Û of
stationary contacts jumping from every point of Σ3 using p∗. This curve intersects
W3(UR) at U1.

Whenever W1(UL) ∩W3(U2) �= ∅, there is a solution defined as follows. Let

{U3} = W1(UL) ∩W3(U2).

The solution is then

(4.14) W1(UL, U3) ⊕W2(U3, Ū3) ⊕W3(Ū3, U2) ⊕W4(U2, U1) ⊕W3(U1, UR).
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In fact, this construction makes sense for a larger domain of UR: UR may belong to
G1 provided the shock speed λ3(U1, UR) ≥ 0.

The above constructions list all possible configurations of Riemann solutions. So
we now discuss the existence and uniqueness. Observe that in Construction N7, if
|aR− aL| is small, then the arc B̂C is closed to the point A. Therefore, W3(UR) does
not meet B̂C ∪W1(U1) if |UR−UL|+ |aR− aL| is small. Consequently, the Riemann
problem admits a unique solution of the form (4.12) or (4.13). In Construction N4,
we also have the unique solution if |UR−UL|+ |aR− aL| is small. So we arrive at the
following theorem.

Theorem 4.2 (existence and uniqueness). Given UL ∈ G2∪G3∪G4∪Σ1∪Σ2∪Σ3,
let {U10} = W1(UL) ∩ Σ3, and let U∗

L ∈ G3 be the state resulted by a stationary wave
from U10 using p∗. The Riemann problem for (1.1)–(1.2) always has a solution if U∗

L

lies below the curve W3(UR), and UR is above Σ3, or UR ∈ G4 and the configurations
(4.8) or (4.13) make sense. Moreover, we have the following:

(i) If UL, UR ∈ G2 ∪ G3 and |UR − UL| + |aR − aL| is sufficiently small, then the
Riemann problem for (1.1)–(1.2) has (4.12) or (4.13) as the unique solution.

(ii) If UL, UR ∈ G4 and |UR − UL| + |aR − aL| is sufficiently small, then the
Riemann problem for (1.1)–(1.2) has (4.8) as the unique solution.
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SCATTERING OF SURFACE WATER WAVES BY A FLOATING
ELASTIC PLATE IN TWO DIMENSIONS∗

RUPANWITA GAYEN† AND B. N. MANDAL‡

Abstract. A new method is developed to study the problem of water wave scattering by a
thin elastic plate of arbitrary width floating in deep water assuming linear theory. Using Havelock’s
expansion of water wave potentials, the boundary value problem describing the potentials is reduced
to solving singular integral equations of Carleman type. With the introduction of some integral
operators the problem is further reduced to twelve Fredholm integral equations of second kind with
regular kernels, and the numerical solutions of these integral equations are used to compute the
reflection and transmission coefficients. The numerical estimates for the reflection coefficient are
presented in a number of figures given varying different physical parameters. It is shown that the
present analysis produces known results for the reflection coefficient.

Key words. water waves, scattering, elastic plate, reflection coefficient
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1. Introduction. The problems of water wave scattering by thin elastic plates of
either semi-infinite or of finite width have been investigated by a number of researchers
using a variety of mathematical techniques. The interest behind investigating this
class of problems arises due to their applications in several practical areas. One of
these is associated with understanding the behavior of the waves while interacting with
the sea ice in the Marginal Ice Zone (MIZ) in Antarctica. Examples of such studies
can be found in Fox and Squire (1990), (1994), Meylan and Squire (1994), Squire
et al. (1995), and Williams and Squire (2006). The effect of surface wave interaction
with floating elastic plates is also important in modeling floating breakwaters and
very large floating structures (VLFS) like floating runways, offshore pleasure cities,
floating oil-storage bases, etc. Problems dealing with wave-VLFS interaction have
been considered by Kagemoto, Masataka, and Motohika (1998), Namba and Okhusu
(1999), Kashiwagi (2000), Khapasheva and Korobkin (2002), Okhusu and Namba
(2004), and others. An extensive review of ice-wave interaction problems and related
methods to solve them are given by Squire (2007).

Evans and Davies (1968) derived the explicit solution of the scattering problem
involving a semi-infinite thin elastic plate in finite depth water using the Wiener–Hopf
technique (cf. Noble (1958)); however, no numerical calculation could be carried out
due to the complicated nature of the solution. Later this problem was also attacked
by Balmforth and Craster (1999) and Chung and Fox (2002) using the Wiener–Hopf
technique by incorporating some modifications to determine simpler expressions for
the reflection coefficient. Gol’dshtein and Marchenko (1989) and Tkacheva (2001),
(2003) also employed the Wiener–Hopf technique to study various problems related
to floating elastic plates.

∗Received by the editors March 18, 2007; accepted for publication (in revised form) November 17,
2008; published electronically March 4, 2009. This work was partially supported by a research grant
from DST (SR/S4/MS:263/05)(BNM).

http://www.siam.org/journals/siap/69-6/68558.html
†Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, India

(rupanwita@maths.iitkgp.ernet.in).
‡Corresponding author. Physics and Applied Mathematics Unit, Indian Statistical Institute, 203,

B. T. Road, Kolkata 700 108, India (biren@isical.ac.in).

1520



WATER WAVE SCATTERING 1521

A variety of different techniques can be found in the water wave literature for
studying scattering problems involving two-dimensional models of elastic plates float-
ing on the surface of either finite or infinite depth water. Newman (1994) presented
a methodology for treating the interaction of water waves with arbitrary deformable
bodies. His idea was to represent the displacement of the bodies in terms of sets
of appropriate model functions and orthogonal polynomials. This theory was gener-
alized by Wu, Watanabe, and Utsunomiya (1995) to a single floating elastic plate.
Sahoo, Yip, and Chwang (2001) investigated the interaction of surface waves with a
semi-infinite elastic plate floating on the surface of finite depth water. They used the
method of eigenfunction expansions in the mathematical analysis. A mode matching
principle was used by Meylan and Squire (1993) to find the reflection and transmission
coefficients of ocean waves by a semi-infinite ice floe (thin elastic plate). In another
paper Meylan and Squire (1994) considered a single ice floe of finite width as well as
a pair of ice floes of the same width and the related problem was reduced to solving a
Fredholm integral equation of second kind with logarithmic kernel by the application
of Green’s function technique. The problem of scattering of water waves by multiple
floating plates of variable properties floating on water of uniform finite depth was
considered by Kohout et al. (2007) using the principle of matching of eigenfunction
expansions at the boundaries of the plates. Also they compared their solution with ex-
perimental results. Andrianov and Hermans (2003) and Hermans (2004) considered a
single strip or multiple strips of floating elastic platforms employing integrodifferential
equations along the platforms preceded by application of Green’s integral theorem.
The diffraction of surface waves by a semi-infinite ice sheet modeled as a thin elastic
plate and by a gap of finite width between two semi-infinite elastic plates floating on
water of finite depth were studied by Linton and Chung (2003) and Chung and Linton
(2005), respectively, by the residue calculus technique.

On the other hand, very few papers can be found in the literature involving three-
dimensional models of floating elastic plates, as the computations associated with
these problems require much rigorous effort compared to two-dimensional problems.
Even if the geometry of the plate and the boundary is three-dimensional, for simplicity,
some restrictions are imposed on the shape of the plate and/or the boundary to reduce
the dimension of the problem to two (cf. Porter and Porter (2004)). A fully developed
theory for three-dimensional models can be found in Masson and LeBlond (1989) in
connection with wave propagation through rigid circular ice floes in MIZ. They used
a multiple scattering theory. Meylan, Squire, and Fox (1997) and Meylan and Masson
(2006) studied the wave interaction with flexible ice floes in MIZ for arbitrary floe
geometry. Both papers are based on a linear Boltzmann equation formulation. In
a recent paper Porter and Evans (2007) considered the three-dimensional problem
of scattering of flexural gravity waves through a finite number of cracks of finite
length. The method is based on solving hypersingular integral equations by Galerkin
technique.

Chakrabarti (2000a) solved explicitly the two-dimensional problem of water wave
scattering by a semi-infinite ice-cover floating on the surface of deep water by reducing
the problem to solving a Carleman-type singular integral equation. This technique was
also employed by Chakrabarti (2000b) to study wave scattering by the discontinuity
on the surface of water arising due to the presence of two types of semi-infinite inertial
surfaces. A somewhat similar type of problem wherein a single semi-infinite inertial
surface is present on the surface of deep water was earlier treated by Kanoria, Mandal,
and Chakrabarti (1999) by the Wiener–Hopf technique. They also considered a finite
strip of inertial surface floating on the surface of open water.
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A Carleman singular integral equation is of the following form (cf. Spence (1965),
Varley and Walker (1989)):

(1.1) a(ξ)u(ξ) +
b(ξ)
π

∫
−

∞

0

u(t)
t− ξ

dt = c(ξ), ξ > 0,

where a(ξ), b(ξ), c(ξ) are known rational functions of suitable order and the integral
is in the sense of Cauchy principle value. In order to solve (1.1), an appropriate
sectionally analytic function in terms of the unknown function u(ξ) is introduced.
Then, using Plemelj’s formulae, it is reduced to a Riemann–Hilbert problem which is
solved in the usual manner (cf. Muskhelishvili (1953), Gakhov (1966)).

Gayen, Mandal, and Chakrabarti (2005), (2006) generalized the problems of
Chakrabarti (2000a), (2000b) to solve the problems of water wave scattering by a
finite strip of ice-cover and by a strip of inertial surface floating sandwiched between
another kind of inertial surface. Both boundary value problems were reduced to two
Carleman singular integral equations of the forms

a1(ξ)p1(ξ) +
1
π

∫
−

∞

0

p1(u)
ξ − u

du+
1
π

∫ ∞

0

p2(u)e−ul

ξ + u
du = r1(ξ),(1.2)

a2(ξ)p2(ξ) +
1
π

∫
−

∞

0

p2(u)
ξ − u

du+
1
π

∫ ∞

0

p1(u)e−ul

ξ + u
du = r2(ξ)(1.3)

for determining the unknown functions p1(ξ) and p2(ξ), where l is the width of the
strip and ai(ξ), ri(ξ) (i = 1, 2) are known functions. Due to the presence of the second
integrals in (1.2) and (1.3), it was not possible to reduce the equations to Riemann–
Hilbert problems directly, thereby solving the equations explicitly. This difficulty had
been overcome by assuming the strip width l to be sufficiently large. Then the third
terms on the left-hand sides of (1.2) and (1.3) became exponentially small and the
two equations could be solved approximately by reducing them to Riemann–Hilbert
problems.

Recently Gayen, Mandal, and Chakrabarti (2007) reinvestigated the finite strip
problem considered earlier by Gayen et al. (2006) and solved it for any arbitrary
width of strip. The idea was to introduce some integral operators and, with the help
of these operators, express the solutions of the Carleman singular integral equations
of the forms (1.2) and (1.3) in terms of solutions of four Fredholm integral equations
of the second kind, and then compute the solutions numerically.

Keeping in mind the increasing interest in the study of wave interaction problems
involving a floating plate due to their immense practical applications, our aim in the
present work is to examine the applicability of the aforementioned Carleman singular
integral equation method in solving the physical problem of wave scattering by a thin
elastic plate floating freely on deep water. The physical problem leads to solving
a boundary value problem for a second order partial differential equation involving
fifth order partial derivative in the boundary condition. The occurrence of a fifth
order derivative makes the problem somewhat difficult to handle compared to the
surface strip problem, which involved first order derivative in the boundary condition
(cf. Gayen et al. (2007)). As mentioned earlier, this problem was solved by Gayen
et al. (2005) for elastic plates of large width. However, for practical purposes the
strip width need not always be large. The problem would be more realistic if it
could be solved for arbitrary strip widths, as was considered by Meylan and Squire
(1994). This motivated us to employ the present analysis. The problem is formulated
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in terms of reduced velocity potentials in three different fluid regions, two below
the semi-infinite free surfaces on either side of the floating plate and one below the
finite plate. The conditions of continuity of the velocity potential and velocity across
the vertical lines below the end points of the plate followed by Havelock’s inversion
theorem produce two Carleman-type singular integral equations. We then introduce a
singular and a nonsingular integral operator and, after some algebraic manipulations,
the entire problem is reduced to solving twelve Fredholm integral equations of the
second kind. These are solved numerically by Nystrom’s method, and in terms of these
solutions the unknown functions that satisfy the Carleman singular integral equations
are determined. The reflection and transmission coefficients and the other unknown
constants appearing in the boundary value problem are also computed numerically
for arbitrary strip width. The numerical estimates of the reflection coefficient (|R|)
are represented graphically for large as well as moderate strip widths against the wave
number. |R| is also depicted against the length of the plate for its different thickness,
where the data have been taken to be the same as were used by Meylan and Squire
(1994). We obtain almost identical results as those in Meylan and Squire (1994)
following a completely different method. Also the results for large width completely
agree with those in Gayen et al. (2005). For wider plates, it has been observed that
there is an infinite number of frequencies at which complete transmission takes place
below the plate, resulting in rapid oscillation in the nature of the curve for |R|. This
oscillatory nature reduces noticeably with a decrease in the plate width, and when
the plate is sufficiently small we cannot find any zero of the reflection coefficient.

In solving problems of different branches of applied mathematics and engineering,
Carleman singular integral equations are frequently used. However, to our knowledge
no work prior to that of Chakrabarti (2000b) has been done in the field of linear water
wave theory using this method. He showed in his two successive papers (Chakrabarti
(2000a), (2000b)) how to reduce two particular scattering problems to a single Car-
leman singular integral equation. We generalized his works in our papers Gayen
et al. (2005), (2006) for finite strip problems. Due to the asymptotic nature of the
results, the scheme was not applicable for moderate values of strip width. So we were
in search of a general method which would work for arbitrary strip widths. We first
applied it to a strip of an inertial surface floating between another inertial surface
(cf. Gayen et al. (2007)). There we studied the effect of wave propagation by a fi-
nite strip of inertial surface lying sandwiched between two other semi-infinite inertial
surfaces. The successful implementation of the procedure impelled us to apply it to
solve a more complicated boundary value problem involving higher order derivatives
in the boundary conditions.

2. Mathematical formulation. Cartesian coordinates are chosen in which the
(x, z)-plane corresponds to the undisturbed upper surface and y-axis pointing verti-
cally downwards. We consider the scattering of a normally incident surface wave train
by an elastic plate which occupies the position y = 0, 0 ≤ x ≤ l, −∞ < z < ∞ in
deep water. The plate is composed of an elastic material having Young’s modulus E
and Poisson’s ratio ν and is of very small thickness h0 so that the draft is negligible.
Since the plate is infinitely long along the z-direction, we can consider the problem
to be two-dimensional in (x, y)-coordinates only. We assume that the motion in the
fluid is irrotational, time-harmonic with time dependence e−iσt, σ being the angular
frequency, and that the fluid is inviscid and incompressible. Within the framework of
linearized theory, the mathematical problem can be described by a velocity potential
Φ(x, y; t) = Re{φ(x, y)e−iσt}, where φ(x, y) is a time-independent complex valued
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function. It satisfies the Laplace equation

(2.1)
∂2φ

∂x2
+
∂2φ

∂y2
= 0 in the fluid region;

the free surface condition

(2.2) Kφ+ φy = 0 on y = 0, (−∞ < x < 0)
⋃

(l < x <∞);

the plate condition

(2.3) D
∂5φ

∂4x∂y
+Kφ+ φy = 0 on y = 0, 0 < x < l,

D being proportional to flexural rigidity of the plate and given by D = Eh3
0

12(1−ν2)ρg ,
g being the acceleration due to gravity, and K = σ2

g ; and the bottom condition

(2.4) ∇φ→ 0 as y → ∞.

The conditions of no bending moment and no shearing stress at the two ends of the
plate are

φxxy → 0 as x→ 0+, l− on y = 0,

φxxxy → 0 as x→ 0+, l− on y = 0,(2.5)

and the requirements at infinity are

(2.6) φ→
{

e−Ky+iKx +Re−Ky−iKx as x→ −∞,

T e−Ky+iK(x−l) as x→ ∞,

whereR and T are the unknown amplitudes (complex) of the reflected and transmitted
waves. Determination of these two quantities is the principal concern here.

It may be noticed that the ice-cover condition given in (2.3) is derived under the
assumption that the waves are long compared to the thickness of the ice; i.e., the
inertia term is nearly equal to zero. However, if we don’t make this assumption, then
the boundary condition would have been

D
∂5φ

∂4x∂y
+ (1 − εK)φ+ φy = 0 on y = 0, 0 < x < l.

Unless the frequency of the incident wave is very large, for most of the physical
problems we can take (1− εK) > 0. Now if we divide the above equation by (1− εK),
then it reduces to

D′ ∂5φ

∂4x∂y
+K ′φ+ φy = 0 on y = 0, 0 < x < l,

where (D′,K ′) = (D,K)
1−εK , which has a form similar to (2.3).

In the next section we reduce the above boundary value problem to two Carleman-
type singular integral equations.
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3. Reduction to singular integral equations. We first observe that if we
solve the Laplace equation (2.1) subject to the plate condition (2.3) by the method of
separation of variables, we obtain the following solutions (cf. Chakrabarti, Ahluwalia,
and Manam (2003)):

e−λKy±iλKx, e−λ1Ky±iλ1Kx, e−λ̄1Ky±iλ̄1Kx, e−λ2Ky±iλ2Kx, e−λ̄2Ky±iλ̄2Kx

and {ξ(Dξ4 +1) cos ξy−K sin ξy}e±ξx, ξ ∈ (0,∞), where λK is the real positive root
of the equation

(3.1) Dk5 + k −K = 0,

whose other roots are (λ1K, λ̄1K), (λ2K, λ̄2K) with Re(λ1) > 0, Re(λ2) < 0, Im(λ1, λ2)
> 0.

Thus in the region below the strip, φ(x, y) has the form

(3.2) φ(x, y) = αe−λKy+iλKx + βe−λKy−iλK(x−l) + χ(x, y), 0 < x < l.

Here it may be observed that we have not taken the solutions involving λ2 and
λ̄2 for expressing φ(x, y) in 0 < x < l, as these do not satisfy the infinite bot-
tom condition (2.4). The first two terms in (3.2) represent the propagating waves
with α and β being unknown constants which can be identified with the reflection
and transmission coefficients, respectively, through the points (l, 0) and (0, 0). The
function χ(x, y) is a combination of the solutions e−λ1Ky±iλ1Kx, e−λ̄1Ky±iλ̄1Kx and
{ξ(Dξ4 + 1) cos ξy − K sin ξy}e±ξx, ξ ∈ (0,∞). We introduce a reduced potential
ψ(x, y) defined by φ = ∂2ψ

∂x2 and express this function in the three regions x < 0,
0 < x < l, x > l (y > 0). The basic reason to set φ = ∂2ψ

∂x2 is to ensure the conver-
gence of the various integrals appearing in the mathematical analysis. Working with
ψ ensures avoiding divergent integrals altogether, which is not possible if we work
with φ.

We now employ Havelock’s expansion of water wave potential (cf. Havelock
(1929)) to represent ψ(x, y) as

ψ(x, y) = − 1
K2

e−Ky+iKx − R

K2
e−Ky−iKx +

2
π

∫ ∞

0

A(ξ)
ξ2 +K2

L(ξ, y)eξxdξ, x < 0, y > 0,

(3.3)

ψ(x, y) = − 1
λ2K2

{
αe−λKy+iλKx + βe−λKy−iλK(x−l)

}

− 1
λ2

1K
2

{
A1e−λ1Ky+iλ1Kx +A2e−λ1Ky−iλ1K(x−l)

}

− 1
λ̄2

1K
2

{
A3e−λ̄1Ky+iλ̄1K(x−l) +A4e−λ̄1Ky−iλ̄1Kx

}

+
2
π

∫ ∞

0

B(ξ)eξ(x−l) + C(ξ)e−ξx

P (ξ)
M(ξ, y)dξ, 0 < x < l, y > 0,(3.4)

ψ(x, y) = − T

K2
e−Ky+iK(x−l) +

2
π

∫ ∞

0

G(ξ)
ξ2 +K2

L(ξ, y)e−ξ(x−l)dξ, x > l, y > 0,

(3.5)
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where A1, A2, A3, A4 are unknown constants and A(ξ), B(ξ), C(ξ), and G(ξ) are
unknown functions of ξ and are such that the integrals in (3.3) to (3.5) are convergent,
and

L(ξ, y) = ξ cos ξy −K sin ξy,

M(ξ, y) = Dξ5 cos ξy + L(ξ, y),

and

P (ξ) = ξ2(Dξ4 + 1)2 +K2.

From the representation of the function ψ(x, y) it may be noted that the domain of
the variable ξ is (0,∞), and so whenever ξ appears in the rest of the paper it will be
assumed that ξ > 0.

Before we proceed further, we would like to state the following theorem, known
as Havelock’s inversion theorem (cf. Havelock (1929), Ursell (1947)).

Theorem 3.1. If a function H(t) defined for t > 0 is of class C1(0,∞), is
absolutely integrable over (0,∞), and has the integral representation

H(t) = H0e−Ky +
∫ ∞

0

Ĥ(ξ)L(ξ, t)dξ, t > 0,

then the constant H0 and the function Ĥ are given by

H0 = 2K
∫ ∞

0

H(u)e−Kudu

and

Ĥ(ξ) =
2
π

1
ξ2 +K2

∫ ∞

0

H(u)L(ξ, u)du.

This theorem plays a crucial role in the further development of our method.
After obtaining the expansions of ψ(x, y) given in (3.3)–(3.5) in the open water

region and in the plate covered region, we employ the continuity of ψ and ∂ψ
∂x across

the lines x = 0 and x = l (y > 0). This gives rise to four relations involving the eight
unknown constants and the four unknown functions. To these relations we apply the
above theorem and obtain two pairs of representations for the functions A(ξ) and G(ξ)
(for details see Gayen et al. (2005)). Elimination of A(ξ) and G(ξ) from their dual
representations produces the following Carleman-type singular integral equations for
solving the unknown functions B(ξ) and C(ξ):

(3.6) μ(ξ)B1(ξ) +
1
π

∫
−

∞

0

B1(u)
u− ξ

du− 1
π

∫ ∞

0

C1(u)
u+ ξ

e−uldu = FB(ξ), ξ > 0,

and

(3.7) μ(ξ)C1(ξ) +
1
π

∫
−

∞

0

C1(u)
u− ξ

du− 1
π

∫ ∞

0

B1(u)
u+ ξ

e−uldu = FC(ξ), ξ > 0,

where

(B1(ξ), C1(ξ)) =
DKξ5

P (ξ)
(B(ξ), C(ξ)) ,(3.8)

μ(ξ) =
ξ2(Dξ4 + 1) +K2

DKξ5
(3.9)
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and

FB(ξ) =
λ− 1
2λ2K

{
αeiλKl

ξ − iλK
+

β

ξ + iλK

}
+
λ1 − 1
2λ2

1K

{
A1eiλ1Kl

ξ − iλ1K
+

A2

ξ + iλ1K

}

+
λ̄1 − 1
2λ̄2

1K

{
A3

ξ − iλ̄1K
+
A4e−iλ̄1Kl

ξ + iλ̄1K

}
,(3.10)

FC(ξ) =
λ− 1
2λ2K

{
α

ξ + iλK
+

βeiλKl

ξ − iλK

}
+
λ1 − 1
2λ2

1K

{
A1

ξ + iλ1K
+
A2eiλ1Kl

ξ − iλ1K

}

+
λ̄1 − 1
2λ̄2

1K

{
A3e−iλ̄1Kl

ξ + iλ̄1K
+

A4

ξ − iλ̄1K

}
.(3.11)

Here it may be mentioned that due to the presence of the second integrals involving
exp(−ul) in (3.6) and (3.7), it is not possible to solve them in a straightforward
manner. To get rid of these two terms, Gayen et al. (2005) eliminated them by
assuming the strip width to be sufficiently large and, after employing the technique of
the Riemann–Hilbert problem, solved the two equations by a sort of iteration process.
Here the assumption of largeness of the strip width is not made, and a new method
is introduced which is somewhat similar to Gayen et al. (2007). This is explained in
section 4.

It will be found in what follows that the solutions of the integral equations (3.6)
and (3.7) can be expressed as linear combinations of some known functions multiplied
by six unknown constants α, β,A1, A2, A3, A4. Once these expressions are obtained
they are substituted into the following eight equations for determining the eight un-
known constants R, T, α, β,A1, A2, A3, A4:

1 +R

2
=
α+ βeiλKl

λ2(λ + 1)
+
A1 +A2eiλ1Kl

λ2
1(λ1 + 1)

+
A3e−iλ̄1Kl +A4

λ̄2
1(λ̄1 + 1)

− 2K3

π

∫ ∞

0

B1(ξ)e−ξl + C1(ξ)
ξ2 +K2

dξ,

(3.12)

1−R
2

=
α− βeiλKl

λ(λ+ 1)
+
A1−A2eiλ1Kl

λ1(λ1 + 1)
+
A3e−iλ̄1Kl−A4

λ̄1(λ̄1 + 1)
+

2K2i
π

∫ ∞

0

B1(ξ)e−ξl − C1(ξ)
ξ2 +K2

ξdξ,

(3.13)

T

2
=
αeiλKl + β

λ2(λ+ 1)
+
A1eiλ1Kl +A2

λ2
1(λ1 + 1)

+
A3 +A4e−iλ̄1Kl

λ̄2
1(λ̄1 + 1)

− 2K3

π

∫ ∞

0

B1(ξ) + C1(ξ)e−ξl

ξ2 +K2
dξ,

(3.14)

T

2
=
αeiλKl − β

λ(λ+ 1)
+
A1eiλ1Kl−A2

λ1(λ1 + 1)
+
A3−A4e−iλ̄1Kl

λ̄1(λ̄1 + 1)
+

2K2i
π

∫ ∞

0

B1(ξ) − C1(ξ)e−ξl

ξ2 +K2
ξdξ,

(3.15)

(λK)3(α+ βeiλKl) + (λ1K)3(A1 +A2eiλ1Kl) + (λ̄1K)3(A3e−iλ̄1Kl +A4)

− 2
Dπ

∫ ∞

0

{B1(ξ)e−ξl + C1(ξ)}dξ = 0,(3.16)

(λK)4(α− βeiλKl) + (λ1K)4(A1 −A2eiλ1Kl) + (λ̄1K)4(A3e−iλ̄1Kl −A4)

+
2i
Dπ

∫ ∞

0

{B1(ξ)e−ξl − C1(ξ)}ξdξ = 0,(3.17)
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(λK)3(αeiλKl + β) + (λ1K)3(A1eiλ1Kl +A2) + (λ̄1K)3(A3 +A4e−iλ̄1Kl)

− 2
Dπ

∫ ∞

0

{B1(ξ) + C1(ξ)e−ξl}dξ = 0,(3.18)

(λK)4(αeiλKl − β) + (λ1K)4(A1eiλ1Kl −A2) + (λ̄1K)4(A3 −A4e−iλ̄1Kl)

+
2i
Dπ

∫ ∞

0

{B1(ξ) − C1(ξ)e−ξl}ξdξ = 0.(3.19)

The first four equations, (3.12)–(3.15), are obtained by application of Havelock’s in-
version theorem on the relations derived from the continuity of the functions ψ and
∂ψ
∂x across the lines x = 0 and x = l (y > 0), whereas (3.16)–(3.19) are the consequence
of the conditions (2.4) at the end points of the plate.

4. Solution for arbitrary width of the plate. In this section we solve the
two singular integral equations (3.6) and (3.7) for any plate width. For this we first
introduce a singular integral operator

S : L2(0,∞) → L2(0,∞)

and a nonsingular integral operator

S′ : C∞(0,∞) → C∞(0,∞)

defined by

(4.1) Sf(ξ) = μ(ξ)f(ξ) +
1
π

∫
−

∞

0

f(u)
u− ξ

du

and

(4.2) S′f(ξ) = − 1
π

∫ ∞

0

f(u)e−ul

u+ ξ
du.

Then (3.6) and (3.7) reduce to the following forms:

(4.3) SB1(ξ) + S′C1(ξ) = FB(ξ)

and

(4.4) SC1(ξ) + S′B1(ξ) = FC(ξ).

It may be observed that the analytical form of the inverse operator S−1 of S can be
determined as follows:

Consider the singular integral equation

(4.5) Sf(ξ) = h(ξ).

Assuming that the right-hand side is known, (4.5) can be reduced to a Riemann–
Hilbert problem (see Muskhelishvili (1953, p. 123), Gakhov (1966, p. 148)),

(4.6) (μ(ξ) + i) Λ+(ξ) − (μ(ξ) − i) Λ−(ξ) = h(ξ),

after introducing a sectionally analytic function associated with the unknown function
f(ξ) satisfying (4.5) as

(4.7) Λ(ζ) =
1

2πi

∫ ∞

0

f(u)
u− ζ

du, ζ = ξ + iη.
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Λ(ζ) is defined in the entire complex ζ-plane cut along the real axis from 0 to ∞.
One can solve the Riemann–Hilbert problem given in (4.6) by methods of complex
variable theory (see England (1971), Estrada and Kanwal (2000)). Plemelj’s formulae
corresponding to equation (4.7) are

Λ±(ξ) = ±1
2
f(ξ) +

1
2πi

∫
−

∞

0

f(u)
u− ξ

du

so that

Λ+(ξ) − Λ−(ξ) = f(ξ) and Λ+(ξ) + Λ−(ξ) =
1
πi

∫
−

∞

0

f(u)
u− ξ

du = 2Λ(ξ).

Thus the function f(ξ) is found to be

f(ξ) = S−1h(ξ) = Λ+(ξ) − Λ−(ξ)

=
Λ+

0 (ξ)
μ(ξ) − i

Ŝ
[

h(ξ)
Λ+

0 (ξ)(μ(ξ) + i)

]
,(4.8)

where the operator Ŝ is defined by

(4.9) Ŝg(ξ) = μ(ξ)g(ξ) − 1
π

∫
−

∞

0

g(u)
u− ξ

du

and

(4.10) Λ+
0 (ξ) = lim

η→0+
Λ0(ζ);

Λ0(ζ) is a solution of the homogeneous problem corresponding to the Riemann–Hilbert
problem (4.6) and its explicit form is found to be

(4.11) Λ0(ζ) = exp

⎡
⎣ 1

2πi

∫ ∞

0

log
(
μ(t)−i
μ(t)+i

)
− limt→∞ log

(
μ(t)−i
μ(t)+i

)
t− ζ

dt

⎤
⎦ (ζ /∈ (0,∞)).

It may be noted that the limiting term inside the integral is zero. We now apply the
operator S−1 to (4.3) to obtain B1(ξ) in terms of C1(ξ) as

(4.12) B1(ξ) = S−1 [FB(ξ) − S′C1(ξ)]

and then substitute B1(ξ) into (4.4). This yields

(4.13) SC1(ξ) + S′ [S−1(FB − S′C1)
]
(ξ) = FC(ξ).

Applying the operator S−1 to the above equation, we find

(4.14)
[
I − L2

]
C1(ξ) = r(ξ),

where the operator L = S−1S′ is noncommutative and its analytical form is deter-
mined as

(4.15) Lm(ξ) = − 1
π

Λ+
0 (ξ)

μ(ξ) − i

∫ ∞

0

m(u)e−ul

(u+ ξ)Λ0(−u)
du.
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The explicit derivation of the above expression is outlined in the appendix. The
right-hand side of (4.14) is

(4.16) r(ξ) = S−1
[
FC − S′S−1FB

]
(ξ)

and can be simplified as

(4.17) r(ξ) = αrα(ξ) + βrβ(ξ) +A1rA1(ξ) +A2rA2(ξ) +A3rA3(ξ) +A4rA4(ξ),

where the functions rα(ξ), rβ(ξ), rA1(ξ), rA2 (ξ), rA3(ξ), rA4 (ξ) are given by

rα(ξ) = CαM(ξ)
[

1
Λ0(−iKλ)(ξ + iKλ)

+
eiλKl

Λ0(iKλ)

∫ ∞

0

M1(ξ, u)
u− iKλ

du
]
,(4.18)

rβ(ξ) = CβM(ξ)
[

eiλKl

Λ0(iKλ)(ξ − iKλ)
+

1
Λ0(−iKλ)

∫ ∞

0

M1(ξ, u)
u+ iKλ

du
]
,(4.19)

rA1(ξ) = CA1M(ξ)
[

1
Λ0(−iKλ1)(ξ + iKλ1)

+
eiλ1Kl

Λ0(iKλ1)

∫ ∞

0

M1(ξ, u)
u− iKλ1

du
]
,(4.20)

rA2(ξ) = CA2M(ξ)
[

eiλ1Kl

Λ0(iKλ1)(ξ − iKλ1)
+

1
Λ0(−iKλ1)

∫ ∞

0

M1(ξ, u)
u+ iKλ1

du
]
,(4.21)

rA3(ξ) = CA3M(ξ)

[
e−iλ̄1Kl

Λ0(−iKλ̄1)(ξ + iKλ̄1)
+

1
Λ0(iKλ̄1)

∫ ∞

0

M1(ξ, u)
u− iKλ̄1

du

]
,(4.22)

rA4(ξ) = CA4M(ξ)

[
1

Λ0(iKλ̄1)(ξ − iKλ̄1)
+

e−iλ̄1Kl

Λ0(−iKλ̄1)

∫ ∞

0

M1(ξ, u)
u+ iKλ̄1

du

]
,(4.23)

with

M(ξ) =
Λ+

0 (ξ)
μ(ξ) − i

, M1(ξ, u) =
M(u)e−ul

π(u + ξ)Λ0(−u)
, Cα = Cβ =

λ− 1
2λ2K

,

CA1 = CA2 =
λ1 − 1
2λ2

1K
, CA3 = CA4 =

λ̄1 − 1
2λ̄2

1K
.(4.24)

In order to determine the functions rj(ξ) given in (4.18)–(4.23) we have utilized the
definition of S−1 given in (4.8) together with (4.9). It may be observed that

S−1

(
1

ξ + ξ0

)
=

M(ξ)
(ξ + ξ0)Λ0(−ξ0)

,

where ξ0 is a positive constant.
Equation (4.14) can be regarded as an ordinary integral equation (involving no

singular kernel) for solving C1(ξ). However, since the forcing function r(ξ) is unknown
in the sense that it contains the unknown constants α, β, etc., (4.14) cannot be solved
directly. In order to overcome this difficulty we introduce two new functions, U(ξ)
and V (ξ), in terms of the function C1(ξ) as

(4.25) [I + L]C1(ξ) = U(ξ), [I − L]C1(ξ) = V (ξ)

so that

(4.26) C1(ξ) =
1
2
[U(ξ) + V (ξ)] and LC1(ξ) =

1
2
[U(ξ) − V (ξ)].
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Then (4.14) can be written in terms of either U(ξ) or V (ξ) as

(4.27) [I − L]U(ξ) = r(ξ)

or

(4.28) [I + L]V (ξ) = r(ξ).

Because of (4.17) we may express U(ξ) and V (ξ) as
(4.29)
U(ξ) = [I−L]−1r(ξ) = αuα(ξ)+βuβ(ξ)+A1uA1(ξ)+A2uA2(ξ)+A3uA3(ξ)+A4uA4(ξ)

and
(4.30)
V (ξ) = [I+L]−1r(ξ) = αvα(ξ)+βvβ(ξ)+A1vA1(ξ)+A2vA2(ξ)+A3vA3(ξ)+A4vA4(ξ),

where uj(ξ), vj(ξ) (with subscript j denoting α, β,A1, A2, A3, A4) are unknown func-
tions. These are determined by incorporating the fact that the integral equation
(4.27), along with the relation (4.29), and the integral equation (4.28), along with
the relation (4.30), are satisfied simultaneously if uj(ξ), vj(ξ) satisfy the following
Fredholm integral equations of the second kind:

(4.31) [I − L]uj(ξ) = rj(ξ)

and

(4.32) [I + L]vj(ξ) = rj(ξ),

where the subscript j stands for α, β,A1, A2, A3, A4. The kernels of the equations and
the right-hand sides can be computed from (4.15) and the set of relations (4.18)–(4.23),
respectively. We solve the integral equations (4.31) and (4.32) by Nystrom’s method
to derive the functions uj(ξ), vj(ξ) numerically.

In order to solve (4.31) and (4.32), we first need to simplify the forms of the
operator L and the functions Λ+

0 (ξ), Λ0(−ξ), and M(ξ). The detailed procedure is
given in the appendix.

Now, the solutions B1(ξ) and C1(ξ) of the Carleman integral equations (3.6) and
(3.7) are determined in a straightforward manner as

B1(ξ) = (S−1FB)(ξ) − LC1(ξ) = (S−1FB)(ξ) − 1
2
{U(ξ) − V (ξ)}

(4.33)

= αBα1 (ξ) + βBβ1 (ξ) +A1B
A1
1 (ξ) +A2B

A2
1 (ξ) +A3B

A3
1 (ξ) +A4B

A4
1 (ξ)

and

C1(ξ) =
1
2
{U(ξ) + V (ξ)}

(4.34)

= αCα1 (ξ) + βCβ1 (ξ) +A1C
A1
1 (ξ) +A2C

A2
1 (ξ) +A3C

A3
1 (ξ) +A4C

A4
1 (ξ).

The functions Bj1(ξ), C
j
1(ξ) (the superscript j having obvious meanings) can be com-

puted from the following relations involving the functions uj(ξ) and vj(ξ):
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Bα1 (ξ) =
CαM(ξ)eiλKl

Λ0(iKλ)(ξ − iKλ)
− 1

2
{uα(ξ) − vα(ξ)} ,

Bβ1 (ξ) =
CβM(ξ)

Λ0(−iKλ)(ξ + iKλ)
− 1

2
{uβ(ξ) − vβ(ξ)} ,

BA1
1 (ξ) =

CA1M(ξ)eiλ1Kl

Λ0(iKλ1)(ξ − iKλ1)
− 1

2
{uA1(ξ) − vA1(ξ)} ,

BA2
1 (ξ) =

CA2M(ξ)
Λ0(−iKλ1)(ξ + iKλ1)

− 1
2
{uA2(ξ) − vA2(ξ)} ,

BA3
1 (ξ) =

CA3M(ξ)
Λ0(iKλ̄1)(ξ − iKλ̄1)

− 1
2
{uA3(ξ) − vA3(ξ)} ,

BA4
1 (ξ) =

CA4M(ξ)e−iλ̄1Kl

Λ0(−iKλ̄1)(ξ + iKλ̄1)
− 1

2
{uA3(ξ) − vA3(ξ)} ,(4.35)

and

(4.36) Cj1(ξ) =
1
2
{uj(ξ) + vj(ξ)} .

Thus the functions B1(ξ) and C1(ξ) are now derived as linear combinations of un-
known constants α, β,A1, A2, A3, A4. We then replace B1(ξ) and C1(ξ) appearing in
(3.12)–(3.19) by their forms in (4.35) and (4.36). This yields a set of eight linear
equations for determining the eight unknown constants including R, T . These equa-
tions are solved numerically to compute the numerical estimates for the unknown
constants. In the next section the numerical results for the reflection coefficient for
different parameters are discussed.

5. Numerical results. For numerical computations (except for Figure 1) a
characteristic length L proportional to the wavelength is introduced in order to make
the different parameters nondimensional. Thus KL, l/L, and D/L4 represent dimen-
sionless wave number, plate width, and ice-cover parameter, respectively. Because of
the energy identity |R|2 + |T |2 = 1, it is sufficient to present the graphs of |R| only.

In order to establish the correctness of the numerical results obtained by the
present analysis, we have compared |R| with the results given in Meylan and Squire
(1994). Choosing the same values of various physical quantities such as Young’s
modulus (E = 6 GPa), Poisson’s ratio (ν = 0.3), densities of water (1025 kgm−3)
and ice (922.5 kgm−3), wavelength 100 m, and g = 9.81 ms−2 as given in Meylan and
Squire (1994), |R| is depicted in Figure 1 for different values of thickness of the ice
sheet (h0 = 1m, 2m, 5m) against its width (floe-length in meters). If Figure 1 is
compared with the corresponding figure (Figure 2) of Meylan and Squire (1994), it is
obvious that these are almost identical.

Figure 2 shows |R| for plate width l
L = 10, ice-cover parameter D

L4 = 0.001. Here
we notice that when KL < 0.7, |R| is almost zero, implying that there occurs total
transmission for incident waves with sufficiently smaller frequencies. The continuous
line in this figure is drawn on the basis of our present approach, while the triangles
represent corresponding data in Gayen, Mandal, and Chakrabarti (2005), wherein
the mathematical analysis was based on the assumption of largeness of the plate
width. It is evident that the present results completely match the previous ones,
which establishes the validity of the theory presented in this paper.
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Fig. 1. |R| for different thickness: h0 = 1m (solid curve), 2m (dashed curve), 5m (dash-dot
curve).
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Fig. 2. |R| for plate width l/L = 10, D/L4 = 0.001. Triangles denote data obtained by Gayen,
Mandal, and Chakrabarti (2005). The line denotes |R| computed by the present method.

In Figures 3 and 4 the reflection coefficient is plotted against D
L4 for two different

wave numbers, KL = 2 and KL = 4, taking the strip width l
L = 10. It is observed

that the overall amount of reflection increases with an increase in the wave number.
Also the number of zeros of |R| increases for larger frequency.

The effect of frequency is again compared in Figures 5 and 6 by choosing a larger
strip width, i.e., l

L = 100 for KL = 2, 4. From these two figures it is obvious that
maximum values of |R| as well as number of zeros of |R| increase with increase of
wave number.

Now comparing Figures 3 and 5 or Figures 4 and 6, it is observed that |R| becomes
more oscillatory in nature for a wider strip. A similar feature was observed by Chung
and Linton (2005) and Williams and Squire (2006) for a gap of finite width between
two floating plates where the number of zeros of |R| was found to be greater with
larger gap width.

The effect of the thickness of the plate can be examined by varying the parameter
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Fig. 3. |R| for l/L = 10, KL = 2.
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Fig. 4. |R| for l/L = 10, KL = 4.
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Fig. 5. |R| for l/L = 100, KL = 2.
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Fig. 6. |R| for l/L = 100, KL = 4.
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Fig. 7. |R| for l/L = 5.
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Fig. 8. |R| for D/L4 = 0.1.

D if we assume that Young’s modulus and Poisson’s ratio are kept fixed. This has
been shown in Figure 7 by taking l

L = 5 and D
L4 = 0.1, 0.4, 0.7. The curves in Figure 7

reveal that |R| increases with an increase of D
L4 . Thus for plates with the same elastic

parameters, the amount of reflected wave energy is increased for thicker plates. This
is also evident from Figure 1.

In Figure 8 we have again considered the effect of the plate width on |R| for
fixed value 0.1 of D/L4. Here we have taken moderate plate widths, i.e., l

L = 1, 2, 3.
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Here also |R| increases with an increase in the plate width, but the phenomenon of
multiple reflection does not occur for moderate widths, unlike Figures 3–6, where
the plate width was taken to be sufficiently large. It may also be noticed from Fig-
ures 7 and 8 that total transmission occurs for smaller frequencies, as was found in
Figure 2.

6. Conclusion. In this paper a new method for solving the problem of scattering
of a normally incident wave train by the edges of a thin elastic plate of finite width
has been described. The boundary value problem is first reduced to singular integral
equations of Carleman type and then ultimately to Fredholm integral equations of the
second kind. Mathematically it can be claimed that a technique has been developed to
study a special type of coupled Carleman singular integral equations of the forms (1.2)
and (1.3) wherein the solutions of two complicated singular integral equations have
been derived in terms of solutions of integral equations having sufficiently smooth
kernels. In this connection, it may be mentioned that Meylan and Squire’s (1994)
method appears to be somewhat straightforward compared to the method presented
here since the solution of a single Fredholm integral equation of the second kind
with weakly singular kernel was required. However, the solution method presented
here is also somewhat straightforward, and ultimately it involves solving second kind
Fredholm integral equations with regular kernels. Although our method appears to
be cumbersome due to the occurrence of twelve Fredholm integral equations, these
equations are solved numerically by using Nystrom’s method. A single FORTRAN
subroutine served the purpose for solving all twelve integral equations. Thus the
present method is not really computationally demanding and is perhaps no more
difficult than the previous method where a single integral equation is needed to be
solved.

A wide range of problems can be handled by the technique presented in this paper.
It can be used to investigate wave propagation along strips of floating elastic plates
having different thickness or elastic properties, the edges of which are either disjoint
(free) or welded together. An identical problem was recently considered by Williams
and Squire (2006) using the Wiener–Hopf technique as well as the residue calculus
technique. If there are strips of inertial surface surrounded by strips of elastic plates,
or vice versa, then our method also can be implemented effectively. This is an ideal
situation found in MIZ, where there are continuous sheets of ice and in between them
there is broken ice. The former can be modeled as thin elastic plates, whereas the
latter can be considered as strips of inertial surface.

The problem of scattering of flexural gravity waves by the edges of two semi-
infinite floating elastic plates separated by a finite strip of free surface and present in
water of uniform finite depth was investigated by Chung and Linton (2005) employing
the residue calculus technique, and the limiting case of this, that is, wave scattering
by a narrow crack, was considered by Williams and Squire (2002) and Evans and
Porter (2003) using Green’s function technique and the mode matching principle.
The deep water version of these problems can be studied using the technique of this
paper.

One of the classical problems in the literature of water waves is associated with
water wave scattering by a semi-infinite or a finite dock (see Friedrichs and Lewy
(1948), Holford (1964a), (1964b), Linton (2001), Hermans (2003), Chakrabarti, Man-
dal, and Gayen (2005)). The effect of wave propagation along a finite dock situated
on the surface of deep water with appropriate behaviors at the edges of the dock can
be examined by using the present analysis.
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Appendix. The operator L. Using the definitions of integral operators S′ and
S−1 as given in (4.2), (4.8), and (4.9), we find that

Lm(ξ) = (S−1S′)m(ξ)

=
Λ+

0 (ξ)
μ(ξ) − i

[
μ(ξ)

Λ+
0 (ξ) (μ(ξ) + i)

(
− 1
π

∫ ∞

0

m(u)e−ul

u+ ξ
du
)

+
1
π2

∫ ∞

0

m(u)e−uldu
(∫
−

∞

0

dt
Λ+

0 (t) (μ(t) + i) (t+ u)(t− ξ)

)]
.(A.1)

To evaluate the inner integral in the second term of (A.1), we consider the integral

(A.2)
∫

Γ

dτ
Λ0(τ)(τ + u)(τ − ζ)

, ζ /∈ Γ,

where Λ0(τ) satisfies the homogeneous Riemann–Hilbert problem

(A.3) [μ(ξ) + i] Λ+(ξ) − [μ(ξ) − i] Λ−(ξ) = 0

in the complex τ -plane cut along the positive real axis. The contour Γ is sketched in
Figure 9.

Fig. 9. The contour Γ.

Now the integral in (A.2) can be manipulated as
∫

Γ

dτ
Λ0(τ)(τ + u)(τ − ζ)

=
∫ ∞

0

(
1

Λ+
0 (t)

− 1
Λ−

0 (t)

)
dt

(t+ u)(t− ζ)

= 2i
∫ ∞

0

dt
Λ+

0 (t)(μ(t) + i)(t+ u)(t− ζ)
(A.4)

after using (A.3).
Also from the residue calculus theorem,

(A.5)
∫

Γ

dτ
Λ0(τ)(τ + u)(τ − ζ)

=
2πi
u+ ζ

(
1

Λ0(ζ)
− 1

Λ0(−u)

)
.

Comparison of (A.4) and (A.5) gives

(A.6)
1

u+ ζ

(
1

Λ0(ζ)
− 1

Λ0(−u)

)
=

1
2πi

∫ ∞

0

2idt
Λ+

0 (t)(μ(ξ) + i)(t+ u)(t− ζ)
.
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Applying Plemelj’s formulae to (A.6) the inner integral in the second term on the
right-hand side of (A.1) is evaluated as

∫
−

∞

0

dt
Λ+

0 (t)(μ(t) + i)(t+ u)(t− ξ)
=

π

u+ ξ

(
μ(ξ)

(μ(ξ) + i)Λ+
0 (ξ)

− 1
Λ0(−u)

)
.

The above relation is substituted into (A.1) and the simplified form of the operator
L is determined as

Lm(ξ) = − 1
π

Λ+
0 (ξ)

μ(ξ) − i

∫ ∞

0

m(u)e−ul

(u+ ξ)Λ0(−u)
du.

Evaluation of the functions Λ+
0 (ξ), Λ0(−ξ), and M(ξ). We have

(A.7) Λ0(ζ) = exp

⎡
⎣ 1

2πi

∫ ∞

0

log
[
μ(t)−i
μ(t)+i

]
t− ζ

dt

⎤
⎦ , ζ /∈ (0,∞),

where

(A.8) μ(ξ) ∓ i =
1

Kξ5
(ξ ∓ iK)(ξ ± iKλ)(ξ ± iKλ1)(ξ ± iKλ1)(ξ ± iKλ2)(ξ ± iKλ2).

If we define

Γ0(ζ) = log Λ0(ζ),

then

(A.9) Γ0(ζ) =
1

2πi

∫ ∞

0

log
[
μ(t)−i
μ(t)+i

]
t− ζ

dt

and

(A.10) Γ+
0 (ξ) =

1
2

log
[
μ(ξ) − i
μ(ξ) + i

]
+

1
2πi

∫
−

∞

0

log
[
μ(t)−i
μ(t)+i

]
t− ξ

dt,

so that

(A.11) Λ+
0 (ξ) =

[
μ(ξ) − i
μ(ξ) + i

] 1
2

exp[Y (ξ)]

and

(A.12) M(ξ) =
Λ+

0 (ξ)
μ(ξ) − i

=
1

[1 + μ2(ξ)]
1
2

exp[Y (ξ)]

with

(A.13) Y (ξ) =
1

2πi

∫ ∞

0

log
[
μ(t)−i
μ(t)+i

]
t− ξ

dt.

Also it can be shown that

Λ0(−u) = exp[Y (−u)],



1538 RUPANWITA GAYEN AND B. N. MANDAL

so that

(A.14) [Λ0(−u)]−1 = exp[−Y (−u)].

In the following we proceed to simplify the term exp[Y (ξ)] only.
Let

Y1(ξ) =
1

2πi

∫
−

∞

0

log t−iK
t+iK

t− ξ
dt, Y2(ξ) =

1
2πi

∫
−

∞

0

log t−iKλ
t+iKλ

t− ξ
dt,(A.15)

Y3(ξ) =
1

2πi

∫
−

∞

0

log t−iKλ̄1
t+iKλ1

t− ξ
dt, Y4(ξ) =

1
2πi

∫
−

∞

0

log t−iKλ1
t+iKλ̄1

t− ξ
dt,

Y5(ξ) =
1

2πi

∫
−

∞

0

log t+iKλ2
t−iKλ̄2

t− ξ
dt, Y6(ξ) =

1
2πi

∫
−

∞

0

log t+iKλ̄2
t−iKλ2

t− ξ
dt.

Hence

(A.16) Y (ξ) = Y1(ξ) − Y2(ξ) − Y3(ξ) − Y4(ξ) + Y5(ξ) + Y6(ξ).

In order to simplify the integrals Yj(ξ) (j = 1, 2, . . . , 6), we apply the following result
of Varley and Walker (1989):

V (ξ) =
1

2πi

∫ ∞

0

log t−λ
t+λ

t− ξ
dt

(A.17)

= − sin θ
π

∫
−

ξ
|λ|

0

ln t
t2 − 2t cos θ + 1

dt+
(

1 − θ

2π

)
log

ξ

ξ − λ̄
− θ

2π
log

ξ

ξ − λ
,

where λ = |λ|eiθ.
By virtue of the above result, Yj(ξ)’s (j = 1, 2, . . . , 6) are determined as

Y1(ξ) = − 1
π

∫ K
ξ

0

ln t
1 + t2

dt− iθ1 +
1
4

log
ξ2

ξ2 +K2
,(A.18)

Y2(ξ) = − 1
π

∫ Kλ
ξ

0

ln t
1 + t2

dt− iθ2 +
1
4

log
ξ2

ξ2 + λ2K2
,(A.19)

Y3(ξ) = − sin θ̂3
π

∫ |λ1|
ξ

0

ln t
t2 − 2t cos θ̂3 + 1

dt− θ̂3
2π

log
ξ

ξ −K(ω + iν)

+

(
1 − θ̂3

2π

)
log

ξ

ξ −K(ω − iν)
,(A.20)

Y4(ξ) = − sin θ̂4
π

∫ |λ1|
ξ

0

ln t

t2 − 2t cos θ̂4 + 1
dt− θ̂4

2π
log

ξ

ξ +K(ω − iν)

+

(
1 − θ̂4

2π

)
log

ξ

ξ +K(ω + iν)
,(A.21)

Y5(ξ) = − sin θ̂5
π

∫ |λ2|
ξ

0

ln t

t2 − 2t cos θ̂5 + 1
dt− θ̂5

2π
log

ξ

ξ −K(δ + iγ)

+

(
1 − θ̂5

2π

)
log

ξ

ξ −K(δ − iγ)
,(A.22)
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Y6(ξ) = − sin θ̂6
π

∫ |λ2|
ξ

0

ln t
t2 − 2t cos θ̂6 + 1

dt− θ̂6
2π

log
ξ

ξ +K(δ − iγ)

+

(
1 − θ̂6

2π

)
log

ξ

ξ +K(δ + iγ)
,(A.23)

where

θ1 = tan−1 K

ξ
, θ2 = tan−1 Kλ

ξ
, θ̂3 = tan−1 ν

ω
,

θ̂4 = π − θ̂3, θ̂5 = tan−1 γ

δ
, θ̂6 = π − θ̂5,

λ1 = ν + iω and λ2 = −γ + iδ; ν, ω, γ, δ > 0.
Substituting the explicit forms of Yj(ξ) (j = 1, 2, . . . , 6) into (A.16), we ultimately

find

exp[Y (ξ)] = exp[V12(ξ) − V34(ξ) + V56(ξ)]e−i(θ1−θ2−θ3−θ4+θ5+θ6)

×
∣∣∣∣ξ

2 +K2λ2

ξ2 +K2

∣∣∣∣
1/4 ∣∣(ξ −Kω)2 +K2λ2

∣∣ 12− θ̂3
2π ×

∣∣(ξ +Kω)2 +K2λ2
∣∣ θ̂3
2π

×
∣∣(ξ −Kδ)2 +K2γ2

∣∣− 1
2+

θ̂5
2π
∣∣(ξ +Kδ)2 +K2γ2

∣∣− θ̂5
2π ,(A.24)

where

V12 =
1
π

∫ Kλ
ξ

K
ξ

ln t
1 + t2

dt,

V34 = −2 sin θ̂3
π

∫ |λ1|
ξ

0

(t2 + 1) ln t
(t2 + 1)2 − 4t2 cos2 θ̂3

dt,

V56 = −2 sin θ̂5
π

∫ |λ2|
ξ

0

(t2 + 1) ln t

(t2 + 1)2 − 4t2 cos2 θ̂5
dt,

θ3, θ4 = tan−1 Kν

ξ ∓Kω
, θ5, θ6 = tan−1 Kγ

ξ ∓Kδ
.(A.25)

In deriving (A.23) we have used the following results:

ξ ∓Kω + iKν =
{
(ξ ∓Kω)2 +K2ν2

}1/2
ei(θ3,θ4)

and

ξ ∓Kδ + iKγ =
{
(ξ ∓Kδ)2 +K2γ2

}1/2
ei(θ5,θ6).
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Abstract. In this paper, we study the interactions of elementary waves for the traffic flow model
proposed by Aw and Rascle in [SIAM J. Appl. Math., 60 (2000), pp. 916–938]. The solutions are
obtained constructively when the initial data are three piecewise constant states. In particular, a
new wave SJ in which a shock wave S and a contact discontinuity J coincide with each other is
obtained during the process of interaction. Moreover, by studying the limits of the solutions as the
perturbed parameter ε tends to zero, it can be found that the Riemann solutions are stable for such
perturbations with the initial data.
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1. Introduction. The Aw–Rascle (AR) macroscopic model of traffic flow in the
conservative form [2] is given by

(1.1)

{
ρt + (ρu)x = 0,

(ρ(u+ p(ρ)))t + (ρu(u+ p(ρ)))x = 0,

where ρ, u represent the density and the velocity, respectively; the velocity offset p
takes the form p(ρ) = ργ with γ > 0. The AR model describes a traffic flow model
on a unidirectional roadway. The basic assumptions of the model are the density
ρ(x, t) ≥ 0 and velocity u(x, t) ≥ 0 of cars located at position x at time t.

The AR model was proposed in order to remedy the deficiencies of second order
models of car traffic pointed out by Daganzo [6] and has been independently derived
by Zhang [20]. The derivation of the model from a microscopic follow-the-leader (FL)
model through a scaling limit was also given in [1]. The AR model resolves all the
obvious inconsistencies and explains instabilities in the car traffic flow, especially near
the vacuum, i.e., for very light traffic with few slow drivers [2, 11].

The AR model is one of the main fluid dynamic models for traffic flow and is
appropriate for describing traffic phenomena, such as congestion and stop-and-go
waves [10]. It is now widely used to study the formation and dynamics of traffic jams
and is endowed with desirable stability properties. It is also the basis for the multi-
lane traffic flow model [8, 9], the model for a road network with unidirectional flow
[7, 10], and the hybrid traffic flow model [13].

In [3], the limit behavior was investigated by changing p into εp and taking
p(ρ) = ( 1

ρ − 1
ρ∗ )−γ with the density constraint ρ ≤ ρ∗, where the maximal den-

sity ρ∗ corresponds to a total traffic jam and is assumed to a fixed constant although
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it should depend on the velocity in practice. They discovered that the pressure term
becomes active so as to preserve the constraint ρ ≤ ρ∗ when ρ reaches ρ∗. Recently,
Shen and Sun [15] have considered the limit behavior without the constraint of the
maximal density, i.e., p(ρ) is not singular at ρ = ρ∗. The delta-shock wave was
obtained through perturbing the pressure p(ρ) suitably.

For convenience and conciseness, we replace ρp(ρ) with p(ρ) in (1.1) and take
p(ρ) = ργ for γ > 1; then the AR model can be rewritten in the following form:

(1.2)

{
ρt + (ρu)x = 0,

(ρu+ ργ)t + (ρu2 + ργu)x = 0.

In the above equations, p(ρ) = ργ can be regarded as the traffic pressure term and γ
is analogous with the adiabatic gas constant in gas dynamics.

In this paper, our main purpose is to investigate various possible interactions of
elementary waves for the AR model (1.2). To include all kinds of interactions, it
suffices to consider the AR model (1.2) with the following perturbed initial data:

(1.3) (u, ρ)(x, 0) =

⎧⎨
⎩

(u−, ρ−), −∞ < x < −ε,
(um, ρm), −ε < x < ε,
(u+, ρ+), ε < x < +∞,

where ε > 0 is arbitrarily small. We notice that (1.3) is a local perturbation of the
Riemann data and we still call it a small perturbation here for ε is sufficiently small.

Aw and Rascle have investigated the Riemann problem of (1.1) in detail. With
these results in mind, one would naturally like to study the interactions of elemen-
tary waves because they embody the internal mechanism of the AR model. Another
motivation of this study comes from the fact that small changes in traffic flow will
propagate and lead to the occurrence of wave interaction. Finally, the stability of the
Riemann solutions of (1.2) can be analyzed if we take the initial data (1.3) and then
let ε→ 0.

By definition, a vacuum state is any portion of the (x, t) plane in which ρ = 0.
From [2], we know that the Riemann solutions do involve the vacuum state for certain
Riemann data. In order to cover all the cases completely, we divide our work into two
parts according to the presence of vacuum or not. When the vacuum is not involved,
the problem about the interactions of elementary waves is classical and will not be
addressed here. On the other hand, the AR model suitably explains instabilities
near the vacuum. Therefore, we especially pay attention to the vacuum problem
and consider the interactions of elementary waves in full detail when the vacuum is
involved. Dealing with the vacuum problem, we adopt the idea proposed by Liu and
Smoller [12] when they considered it for the isentropic gas dynamic equations, where
they made a distinction between two vacuum states with different (fake) velocities.

With the method of characteristic analysis, the interactions are widely investi-
gated and the global solutions are completely constructed. Furthermore, we find that
the solutions of the perturbed initial value problem (1.2) and (1.3) converge to the
solutions of the corresponding Riemann problem (1.2) and (2.1) as ε → 0, which
shows the stability of the Riemann solutions for certain perturbations of the initial
data. Especially, when the vacuum is involved, the interesting feature in the solutions
is that a new wave SJ is discovered during the interaction of a contact discontinuity
J and a shock S in a particular situation. Here SJ is the superposition of a contact
discontinuity and a shock. The reason for the generation of the wave SJ is due to the
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fact that the newly formed waves S and J after interaction propagate with the same
speed and coincide with each other.

For basic references on nonlinear hyperbolic systems of conservation laws and the
interactions of elementary waves, we refer the readers to the book of Smoller [17] and
the monograph of Chang and Hsiao [4]. Furthermore, one can see the books written
by Dafermos [5] and Serre [14] for a comprehensive survey. Also see [16, 18] for the
recent work about the interactions of elementary waves.

This paper is organized as follows. In section 2, we restate the Riemann problem
to the AR model (1.2) for readers’ convenience. In section 3, we mainly discuss
the interactions of elementary waves when the vacuum is involved. In section 4, we
consider the stability of the Riemann solutions under the small perturbations and
compare our results with those of Aw and Rascle before our conclusion in section 5.

2. Preliminaries. In this section, we briefly review the Riemann solutions of
(1.2) with the initial data

(2.1) (u, ρ)(x, 0) = (u±, ρ±), ±x > 0,

where u±, ρ± > 0, and the detailed study can be found in [2].
The characteristic roots of system (1.2) are

(2.2) λ1 = u− (γ − 1)ργ−1, λ2 = u;

therefore (1.2) is strictly hyperbolic except for ρ = 0.
The corresponding right characteristic vector of λi(i = 1, 2) is

(2.3) −→r1 = ((1 − γ)ργ−2, 1)T , −→r2 = (0, 1)T .

It is easy to see that ∇λ1 · −→r1 �= 0 for ρ �= 0 and ∇λ2 · −→r2 ≡ 0 in which ∇ denotes the
gradient with respect to (u, ρ); namely, λ1 is genuinely nonlinear for ρ �= 0 and λ2 is
always linearly degenerate. Therefore, the associated waves are rarefaction waves or
shocks for the first family and contact discontinuities for the second family.

The Riemann invariants along the characteristic fields are

(2.4) w = u+ ργ−1, z = u.

Since (1.2) and the Riemann data (2.1) are invariant under stretching of coordi-
nates: (x, t) → (αx, αt) (α is constant), we seek the self-similar solution

(2.5) (u, ρ)(x, t) = (u, ρ)(ξ), ξ = x/t.

Then the Riemann problem is reduced to the boundary value problem of the ordinary
differential equations:

(2.6)

{ −ξρξ + (ρu)ξ = 0,

−ξ(ρu+ ργ)ξ + (ρu2 + ργu)ξ = 0,

with (u, ρ)(±∞) = (u±, ρ±).
For smooth solutions, setting U = (u, ρ)T , (2.6) can then be rewritten as

(2.7) A(U)Uξ = 0,
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where

A(u, ρ) =
(

ρ u− ξ
−ξρ+ 2ρu+ ργ −ξu− γξργ−1 + u2 + γργ−1u

)
.

Besides the constant state solution, it provides a rarefaction wave which is a continuous
solution of (2.7) in the form (u, ρ)(ξ). Then, for a given left state (u−, ρ−), the
rarefaction wave curves in the phase plane, which are the sets of states that can be
connected on the right by a 1-rarefaction wave, are as follows:

(2.8) R(u−, ρ−) :

⎧⎨
⎩

ξ = λ1 = u− (γ − 1)ργ−1,

u− u− = −ργ−1 + ργ−1
− ,

ρ < ρ−, u > u−.

Through differentiating u with respect to ρ in the second equation in (2.8), we get

(2.9) uρ = −(γ − 1)ργ−2, uρρ = −(γ − 1)(γ − 2)ργ−3.

Thus the 1-rarefaction wave curve is convex for 1 < γ < 2 and concave for γ > 2 in
the (u, ρ) plane.

For a bounded discontinuity at ξ = σ, the Rankine–Hugoniot condition holds:

(2.10)

{ −σ[ρ] + [ρu] = 0,

−σ[ρu+ ργ ] + [ρu2 + ργu] = 0,

where [ρ] = ρr − ρl, ρl = ρ(σ − 0), and ρr = ρ(σ + 0), etc.
From the first equation in (2.10), we obtain

(2.11) ρr(ur − σ) = ρl(ul − σ).

Simplifying the second equation in (2.10) and noting (2.11), it yields

(2.12) ρr(ur − σ)(ur + ργ−1
r − ul − ργ−1

l ) = 0.

If ρr(ur−σ) �= 0, we have ur + ργ−1
r = ul+ ργ−1

l , and the Lax entropy conditions
imply that ρl < ρr. So for a given left state (u−, ρ−), the sets of states which can be
connected to (u−, ρ−) by a 1-shock wave on the right are as follows:

(2.13) S(u−, ρ−) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ = u−
ρ−(ργ−1 − ργ−1

− )
ρ− ρ−

,

u− u− = −ργ−1 + ργ−1
− ,

ρ > ρ−, u < u−.

It is noted that the shock curves coincide with the rarefaction curves in the phase
plane, due to the special form of (1.2), which can be written as Yt + (uY )x = 0 [19].

If ρr(ur − σ) = 0, we can conclude that ur = ul = σ except for ρr = 0 or ρl = 0,
which corresponds to a contact discontinuity of the second family. Since λ2 is linearly
degenerate, the sets of states can be connected to a given left state (u−, ρ−) by a
contact discontinuity on the right if and only if

(2.14) J : ξ = u = u−.
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We note that these waves travel at exactly the same speed as the corresponding cars,
which means no information travels faster than the vehicle velocity and the drivers
do not react to the traffic situation behind him.

Through the above analysis, we summarize that the sets of states connected
on the right consist of the 1-rarefaction wave curve R(u−, ρ−), the 1-shock wave
curve S(u−, ρ−), and the 2-contact discontinuity J(u−, ρ−) for a given left state
(u−, ρ−). These curves divide the quarter phase plane (u, ρ ≥ 0) into three regions,
I = {(u, ρ)|u < u−}, II = {(u, ρ)|u− < u < u∗}, and III = {(u, ρ)|u > u∗}, where
u∗ = u−+ργ−1

− (see Figure 2.1). According to the right state (u+, ρ+) in the different
region, one can construct the unique global Riemann solution connecting two constant
states (u±, ρ±).

Obviously, the Riemann solution contains a 1-shock wave, an intermediate non-
vacuum constant state, and a 2-contact discontinuity when (u+, ρ+) ∈ I; it contains
a 1-rarefaction wave, an intermediate nonvacuum constant state, and a 2-contact
discontinuity when (u+, ρ+) ∈ II; it contains a 1-rarefaction wave, an intermediate
vacuum state, and a 2-contact discontinuity when (u+, ρ+) ∈ III.

All of the rarefaction waves R, the shock waves S, and the contact discontinuities
J obtained in solving the Riemann problem are called the elementary waves for the
AR model (1.2).

3. Interactions of elementary waves. We begin by considering the initial
value problem (1.2) with three pieces of constant initial data (1.3). The data (1.3)
is a perturbation of the Riemann initial data (2.1). We face the interesting question
of determining whether the Riemann solutions of (1.2) and (2.1) are the limits of
(uε, ρε)(x, t) as ε → 0, where (uε, ρε)(x, t) are the solutions of (1.2) and (1.3). We
will deal with this problem case by case along with constructing the solutions.

We notice that the Riemann solutions of (1.2) and (2.1) may contain the vacuum,
so in order to cover all the cases, our discussion should be divided into two parts
according to the appearance of vacuum or not. About the interactions of elemen-
tary waves not involving the vacuum, we have four cases according to the different
combinations of elementary waves from (−ε, 0) and (ε, 0) as follows:

1. R+ J and S + J ,
2. S + J and S + J ,
3. S + J and R+ J ,
4. R+ J and R+ J .
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All the above interactions are classical and well known; hence they will not be pursued
here.

In this section, we mainly consider the interactions of elementary waves when at
least one of the Riemann solutions at (−ε, 0) and (ε, 0) involves the vacuum state.
When the Riemann solution contains the vacuum, the AR model (1.2) becomes de-
generate in the vacuum region and the two characteristics coincide. In this work,
we can study this problem in the (u, ρ) plane, i.e., make a distinction between two
vacuum states with different (fake) velocities, like for the method introduced by Liu
and Smoller [12] for compressible gas dynamics.

Also, our discussion is divided into the following five cases according to the dif-
ferent combinations of elementary waves from (−ε, 0) and (ε, 0):

1. R+ V ac+ J and S + J ,
2. R+ V ac+ J and R + J ,
3. R+ V ac+ J and R + V ac+ J ,
4. R+ J and R+ V ac+ J ,
5. S + J and R+ V ac+ J .

Case 3.1. R + V ac+ J and S + J .
In this case, when t is small, the solution of the initial value problem (1.2) and

(1.3) can be expressed briefly as follows (see Figures 3.1 and 3.2):

(u−, ρ−) +R1 + V ac+ J1 + (um, ρm) + S1 + (u2, ρ2) + J2 + (u+, ρ+),

where “+” means “followed by.” This case happens if and only if u± < um and
u∗ = u− + ργ−1

− < um.
In the following figures, we just depict the convex situation, i.e., 1 < γ < 2, for

the reason that the concave situation is similar.
The propagating speed of J1 is τ1 = um, and the propagating speed of S1 is

given by

σ1 = um − ρ2(ρ
γ−1
2 − ργ−1

m )
ρ2 − ρm

;
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thus τ1 > σ1 and the contact discontinuity J1 will overtake the shock wave S1 in finite
time. The intersection (x1, t1) is determined by

(3.1)

⎧⎪⎨
⎪⎩

x1 + ε = umt1,

x1 − ε =
(
um − ρ2(ρ

γ−1
2 − ργ−1

m )
ρ2 − ρm

)
t1.

An easy calculation leads to

(3.2) (x1, t1) =

(
2ε(ρ2 − ρm)um
ρ2(ρ

γ−1
2 − ργ−1

m )
− ε,

2ε(ρ2 − ρm)
ρ2(ρ

γ−1
2 − ργ−1

m )

)
.

It is clear that two elementary waves intersect at a finite time when a new Riemann
problem is formed. At the time t = t1, we again have a Riemann problem with data
(ul, ρl) = (u1, ρ1), (ur, ρr) = (u2, ρ2), which is resolved by a new shock S and a new
contact discontinuity J . Here we notice that at the left-hand side of S is the vacuum
state; thus it is not difficult to see that the propagating speeds of S and J are both
equal to u2; i.e., S and J coincide with each other and form a new wave, which we
denote by SJ .

Now, we turn our attention to the interaction of SJ and R1. It is easy to see
that u2 = u+ and the wave front in R1 propagates with speed u∗. Our claim is that
R1 and SJ cannot intersect if u∗ ≤ u+ (see Figure 3.1), while for u∗ > u+ they must
intersect with each other (see Figure 3.2).

If u∗ > u+, SJ will cancel the vacuum region and then intersect with R1 at the
point (x2, t2), which can be given by

(3.3)

{
x2 + ε = u∗t2 = (u− + ργ−1

− )t2,

x2 − x1 = u2(t2 − t1).

Solving the Riemann problem at (x2, t2), we can see the appearance of a shock
wave S2 and a contact discontinuity J3. Namely, when t > t2, SJ decomposes and the
state (u3, ρ3) lies between S2 and J3. At the same time, the shock wave S2 begins to
penetrate R1 with a varying speed of propagation during the process of penetration;
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that is, the shock S2 : x = x(t) is no longer a straight line at t > t2. The varying
speed of S2 can be determined by

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= u− ρ3(ρ
γ−1
3 − ργ−1)
ρ3 − ρ ,

x+ ε = (u− (γ − 1)ργ−1)t,

u− u− = ργ−1
− − ργ−1,

x(t2) = x2, 0 ≤ ρ < ρ3.

Differentiating the second equation in (3.4) with respect to t, we obtain

(3.5)
dx

dt
= u− (γ − 1)ργ−1 + t

(du
dt

− (γ − 1)2ργ−2dρ

dt

)
.

Combining (3.5) with the first equation in (3.4), it is easy to get

(3.6)
(γ − 1)ργ − γρ3ρ

γ−1 + ργ3
ρ− ρ3

= t
(du
dt

− (γ − 1)2ργ−2dρ

dt

)
.

It follows from the third equation in (3.4) that

(3.7)
du

dt
= −(γ − 1)ργ−2 dρ

dt
.

Substituting (3.7) into (3.6), it yields

(3.8)
dρ

dt
=

(γ − 1)ργ − γρ3ρ
γ−1 + ργ3

(γ − 1)γργ−2(ρ3 − ρ)t
.

Differentiating the first equation in (3.4), in view of (3.7), (3.8), we have

(3.9)
d2x

dt2
=

((γ − 1)ργ − γρ3ρ
γ−1 + ργ3)2

(γ − 1)γργ−2(ρ− ρ3)3t
,

which gives d2x
dt2 < 0 for ρ < ρ3, i.e., S2 decelerates during the process of penetration.

Integrating (3.8) leads to

(3.10) ln
t

t2
=
∫ ρ

0

(γ − 1)γργ−2(ρ3 − ρ)
(γ − 1)ργ − γρ3ργ−1 + ργ3

dρ.

It is clear that t → ∞ as ρ → ρ3. Therefore, S2 cannot penetrate over R1 forever if
ρ3 ≤ ρ−; otherwise S2 will cross the whole of R1 at the finite time

t3 = t2 exp
(∫ ρ−

0

(γ − 1)γργ−2(ρ3 − ρ)
(γ − 1)ργ − γρ3ργ−1 + ργ3

dρ

)
.

Thus we conclude that S2 is able to cross the whole of R1 for ρ3 > ρ− (i.e.,
u+ < u−), whereas it cannot for ρ3 ≤ ρ− (i.e., u+ ≥ u−) and ultimately has x + ε =
(u3 − (γ − 1)ργ−1

3 )t as its asymptote.
In brief, if u+ ≥ u∗, when t > t1, the solution can be expressed as

(u−, ρ−) +R1 + V ac+ SJ + (u2, ρ2) + J2 + (u+, ρ+).
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If u+ < u∗, when t→ ∞, the solution can be expressed as

(u−, ρ−) +R+ (u3, ρ3) + J3 + (u2, ρ2) + J2 + (u+, ρ+) for u+ ≥ u−,

(u−, ρ−) + S + (u3, ρ3) + J3 + (u2, ρ2) + J2 + (u+, ρ+) for u+ < u−.

Case 3.2. R + V ac+ J and R+ J .
In this case, when t is small, the solution of the initial value problem (1.2) and

(1.3) can be expressed briefly as follows (see Figure 3.3):

(u−, ρ−) +R1 + V ac+ J1 + (um, ρm) +R2 + (u2, ρ2) + J2 + (u+, ρ+).

This case occurs when u∗ < um < u+ < u∼ = um + ργ−1
m is satisfied.

Obviously, the contact discontinuity J1 will overtake the rarefaction wave R2, and
they begin to interact with each other at (x1, t1), which satisfies

(3.11)

{
x1 + ε = umt1,

x1 − ε = (um − (γ − 1)ργ−1
m )t1.

This gives

(3.12) (x1, t1) =
(

2εum − ε(γ − 1)ργ−1
m

(γ − 1)ργ−1
m

,
2ε

(γ − 1)ργ−1
m

)
.

Then J1 goes on to penetrate R2, and the contact discontinuity x = x(t) during
the process of penetration is determined by

(3.13)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt

= u,

x− ε = (u − (γ − 1)ργ−1)t,

u− um = ργ−1
m − ργ−1,

x(t1) = x1, ρ2 ≤ ρ ≤ ρm.

Differentiating (3.13) with respect to t along x = x(t), we obtain

(3.14)
d2x

dt2
=
du

dt
,
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(3.15)
dx

dt
= u− (γ − 1)ργ−1 +

(du
dt

− (γ − 1)2ργ−2dρ

dt

)
t,

(3.16)
du

dt
= −(γ − 1)ργ−2 dρ

dt
.

Substituting dx
dt = u into the above expressions, it yields

d2x

dt2
=

(γ − 1)ργ−1

γt
> 0,

which means that the contact discontinuity accelerates during the process of penetra-
tion.

It follows from (3.13) that

dx

dt
=
x− ε

t
+ (γ − 1)ργ−1 =

x− ε

t
+ (γ − 1)

(
ργ−1
m + um − dx

dt

)
.

So (3.13) can be simplified as

(3.17)

⎧⎨
⎩

dx
dt

= x− ε
γt + γ − 1

γ (um + ργ−1
m ),

x(t1) = x1.

By applying the method of variation of constant, we obtain

(3.18) x = ε+ (um + ργ−1
m )t− γ

(2ερm
γ − 1

)1− 1
γ

t
1
γ ,

which, together with

(3.19) x− ε = (u2 − (γ − 1)ργ−1
2 )t,

determines the ending point (x2, t2) of the penetration. A direct calculation leads to

(3.20) (x2, t2) =
(
ε+

2ερmu2

(γ − 1)ργ2
− 2ερm

ρ2
,

2ερm
(γ − 1)ργ2

)
.

It turns out that the contact discontinuity J1 crosses the rarefaction wave R2

completely in finite time and R2 becomes the vacuum state after penetration.
For large time, the solution can be expressed as

(u−, ρ−) +R1 + V ac+ J3 + (u2, ρ2) + J2 + (u+, ρ+).

Case 3.3. R + V ac+ J and R+ V ac+ J .
In this case, when t is small, the solutions of the initial value problems (1.2) and

(1.3) can be expressed briefly as follows (see Figure 3.4):

(u−, ρ−) +R1 + V ac+ J1 + (um, ρm) +R2 + V ac+ J2 + (u+, ρ+).

The occurrence of this case depends on the condition u∗ < um < u∼ < u+.
Indeed, this case is similar to Case 3.2 except that the vacuum states appear

in front of R2 at the beginning. In the same way as before, we can see that the



1552 MEINA SUN

�

�
ρ

u
��

−ε
�

ε x

�

t

©m ©+

©−

J1
J2

�
©−

�

©∗

�
©m

�

©1
�

©∼
�

©2

�
©+

�
�

��

�

�

R1

Vac

J1 R2

Vac

J2

R1

R2

J3

�
�

Vac

�
�
Vac

Fig. 3.4.

�

�
ρ

u
��

−ε
�

ε x

�

t

©m ©+

©−

J1
J2

�

©2

�
©+

�
J2

�
©m

�

©1
�

©∼

�
©−

�

©∗

�
©3

�

�R2

��
R1

J1

�R2

Vac

©1
R1

R2

R3

�
�
Vac

��
Vac J3

�
©∗

�
©3

Fig. 3.5.

propagating speed of J3 tends to u∼ as t → ∞; i.e., J3 has the wave front in R2 as
its asymptote.

As t→ ∞, the time-asymptotic solution can be described as

(u−, ρ−) +R1 + V ac+ J2 + (u+, ρ+).

Case 3.4. R + J and R+ V ac+ J .
In this case, when t is small, the solutions of the initial value problems (1.2) and

(1.3) can be expressed briefly as follows (see Figure 3.5):

(u−, ρ−) +R1 + (u1, ρ1) + J1 + (um, ρm) +R2 + V ac+ J2 + (u+, ρ+).

This case happens when u− < um < u∗ and u+ > u∼ are satisfied.
This case can be discussed similarly to Case 3.3. Moreover, it can be shown that

the vacuum states form ahead of R3 at the time when one of the states in R2 becomes
(u3, ρ3). Then, J3 continues to penetrate R2 and finally disappears in the vacuum as
t→ ∞.

For large time, the solution can be expressed as

(u−, ρ−) +R1 + (u1, ρ1) +R3 + V ac+ J2 + (u+, ρ+).

Case 3.5. S + J and R+ V ac+ J .
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In this case, when t is small, the solutions of the initial value problems (1.2) and
(1.3) can be expressed briefly as follows (see Figure 3.6):

(u−, ρ−) + S1 + (u1, ρ1) + J1 + (um, ρm) +R1 + V ac+ J2 + (u+, ρ+).

The appearance of this case depends on the conditions um < u− and u∼ < u+.
Like for Case 3.4, the interaction of J1 and R1 results in a new contact disconti-

nuity J3 and a new rarefaction wave R2. Similarly, the vacuum states present ahead
of R2 at the time when one of the states in R1 turns to be (u3, ρ3). The propagating
speed of J3 tends to u∼ as t→ ∞; i.e., J3 has the wave front in R1 as its asymptote.

Now we mainly consider the interaction of the shock wave S1 and the rarefaction
wave R2. The propagating speed of S1 is

σ1 = u− −
ρ1(ρ

γ−1
1 − ργ−1

− )
ρ1 − ρ−

,

and the propagating speed of the wave back in R2 is ω2 = u1 − (γ − 1)ργ−1
1 . Noting

u1 − u− = ργ−1
− − ργ−1

1 , it is easy to get

(3.21) σ1 − ω2 =
(γ − 1)ργ1 − γρ−ρ

γ−1
1 + ργ−

ρ1 − ρ−
.

Define x = ρ1
ρ−

> 1 and introduce f(x) = (γ − 1)xγ − γxγ−1 + 1; then one can
easily see that

σ1 − ω2 =
ργ−

ρ1 − ρ−
f(x).

Obviously, we have f ′(x) = (γ − 1)γxγ−2(x − 1) > 0 for x > 1, which gives f(x) >
f(1) = 0 and then σ1 > ω2. Thus S1 will overtakeR2 in finite time and the intersection
(x2, t2) can be calculated by

(3.22)

⎧⎪⎨
⎪⎩

x2 + ε =
(
u− − ρ1(ρ

γ−1
1 − ργ−1

− )
ρ1 − ρ−

)
t2,

x2 − x1 = (u1 − (γ − 1)ργ−1
1 )(t2 − t1),

in which (x1, t1) has the same representation as (3.12).
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Hence, (x2, t2) can be expressed as

(x2, t2) =

(
2ε[ργ−1

1 (ρ1 − ρ−) − ργ
1 (ργ−1

1 − ργ−1
− )]

ργ−1
m [(γ − 1)ργ

1 − γρ−ρ
γ−1
1 + ργ

−]
− ε,

2εργ−1
1 (ρ1 − ρ−)

ργ−1
m [(γ − 1)ργ

1 − γρ−ρ
γ−1
1 + ργ

−]

)
.

When t > t2, S1 begins to penetrate R2, and the shock wave x = x(t) during the
process of penetration satisfies

(3.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= u− − ρ(ργ−1 − ργ−1
− )

ρ− ρ−
,

x− x̂ = (u− (γ − 1)ργ−1)(t− t̂),

u− u1 = ργ−1
1 − ργ−1,

x(t2) = x2, 0 ≤ ρ ≤ ρ1,

in which (x̂, t̂) are the translation points from R1 to R2 and can be calculated by
(3.13), but here ρ3 ≤ ρ ≤ ρm.

Similarly, by differentiating (3.23) with respect to t along x = x(t) and noting
that u− u− = −ργ−1 + ργ−1

− , we finally obtain, for ρ > ρ−,

(3.24)
dρ

dt
= −

(γ − 1)ργ − γρ−ρ
γ−1 + ργ−

(γ − 1)γργ−2(ρ− ρ−)(t− t̂)
< 0,

d2x

dt2
= −

(γ − 1)ργ − γρ−ρ
γ−1 + ργ−

(ρ− ρ−)2
· dρ
dt

=
((γ − 1)ργ − γρ−ρ

γ−1 + ργ−)2

(γ − 1)γργ−2(ρ− ρ−)3(t− t̂)
> 0,(3.25)

which means that the shock wave accelerates during the process of penetration.
Integrating (3.24) yields

(3.26) ln
t− t̂

t2 − t̂
= −

∫ ρ

ρ1

(γ − 1)γργ−2(ρ− ρ−)
(γ − 1)ργ − γρ−ργ−1 + ργ−

dρ,

and we see that t → ∞ as ρ → ρ−. Therefore, S1 cannot penetrate over R2 forever
and the propagating speed of the shock wave will tend to u−− (γ− 1)ργ−1

− as t→ ∞.
In brief, when t→ ∞, the solution can be expressed as

(u−, ρ−) +R+ V ac+ J2 + (u+, ρ+).

Remark 1. The curve passing through (u−, ρ−) is below the one passing through
(um, ρm) if u− + ργ−1

− < um + ργ−1
m (i.e., u∗ < u∼) in the (u, ρ) plane; otherwise the

situation is opposite. Here we select the situation u∗ < u∼ to discuss, and the other
can be dealt with similarly.

4. Stability analysis and comparison. In this section, let us first consider
whether the limits of the perturbed solutions of (1.2) and (1.3) are the corresponding
Riemann solutions of (1.2) and (2.1). It is obviously true when the vacuum is not
involved. On the other hand, if the vacuum is involved, let us take Case 3.1 as an
example to study the limit situations of the above perturbed solutions for details.
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In Case 3.1, it can be easily derived from (3.2) that (x1, t1) → (0, 0) as ε → 0;
thus the three points (−ε, 0), (ε, 0), and (x1, t1) coincide with each other in the limit
situation. If u+ ≥ u∗ > u− (see Figure 3.1), as ε → 0, the intermediate state
(u2, ρ2) disappears while SJ and J2 unify into one contact discontinuity J since SJ
and J2 propagate with the same speed u+. So the structure of the solution tends to
(u−, ρ−)+R+V ac+J+(u+, ρ+) as ε→ 0. Otherwise, if u+ < u∗ (see Figure 3.2), we
can also see that (x2, t2) → (0, 0) as ε→ 0 from (3.3) and the vacuum state disappears
in the limit situation. Furthermore, S2 cannot penetrate over R1 for u− ≤ u+, and the
limit of the perturbed solution is (u−, ρ−) + R+ (u3, ρ3) + J + (u+, ρ+). Otherwise,
S2 is able to penetrate the whole of R1 for u+ < u−, and the limit situation is
(u−, ρ−) + S + (u3, ρ3) + J + (u+, ρ+).

Therefore, in Case 3.1 the Riemann solutions are claimed to be stable for such
perturbations with the Riemann data (2.1). The other cases can be analyzed similarly.
Hence, we can see that the limits of the solutions of the perturbed Riemann problems
(1.2) and (1.3) are exactly the solutions of the corresponding Riemann problems (1.2)
and (2.1), which shows the stability of the Riemann solutions with respect to the
small perturbations of the initial data in this particular situation.

In [2], Aw and Rascle considered the Riemann problem when the left (or right)
state is the vacuum state and they fixed the right (or left) state and slightly perturbed
the left (or right) state so that 0 < ρ− 
 1 (or 0 < ρ+ 
 1). They discovered that
a big oscillation appeared and the solution dramatically changed under their small
perturbations in some cases. Thus, the Riemann solution displays the instability
when one of the Riemann data is near the vacuum under their perturbations. In
[11], Lebacque, Mammer, and Haj-Salem extended properly the fundamental diagram
(equilibrium speed-density relationship) in a suitable fashion to solve the Riemann
problem for all initial conditions and to avoid irregular behavior at the low densities
pointed out by Aw and Rascle.

If we adopt the perturbation such as (1.3), the stability of the Riemann solution
can be obtained under the assumption ρ± > 0 in section 3. Indeed, this stability
can also be arrived at when one of the Riemann data is the vacuum state. Now, in
order to compare with the results in [2], let us reconsider two interesting and typical
examples: the perturbation (iv) of case 5 and the perturbation (vii) of case 4 (both
in [2]).

Case 4.1. Let us first consider the perturbation (iv) of case 5 in [2]. In this
case, the Riemann problem has no traffic on the left: ρ− = 0, and the initial data
on the right satisfies u+ < u− < u� = u+ + ργ−1

+ . According to [2], for ρ− = 0,
the Riemann problem can be connected by a 2-contact discontinuity directly and the
wave of the first family disappears. The shock with the large amplitude presents, and
the Riemann solution is obviously unstable under the perturbation proposed by Aw
and Rascle. But we can see that the Riemann solution is still stable if we take the
perturbation (um, ρm) in the interval (−ε, ε). According to the value of um, we divide
our discussion into the following two subcases.

Subcase 4.1.1. If u+ < um, then J1 emerges from (−ε, 0) and S1 and J2 start
from (ε, 0) (see Figure 4.1). Like in Case 3.1, J1 must overtake S1 in finite time and
they unify into a contact discontinuity J3 with the velocity u+.

Subcase 4.1.2. If u+ > um, then J1 emerges from (−ε, 0) and R1 and J2 emanate
from (ε, 0) (see Figure 4.2). Similarly to Case 3.2, J1 will penetrate R1 completely in
finite time and then be denoted by J3 with the velocity u+, and R1 will become the
vacuum state at the same time.
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Remark 2. If ρ− = 0 and u+ < u−, we can also believe that the Riemann solution
consists of a 1-shock S connecting (u−, 0) and (u+, γ−1

√
u− − u+), followed by a 2-

contact discontinuity J connecting (u+, γ−1
√
u− − u+) and (u+, ρ+). But S and J

propagate at the same speed u+; thus they coalesce into a new wave SJ and the
intermediate state (u+, γ−1

√
u− − u+) disappears in the (x, t) plane. The new wave

SJ has the same properties as J and can also be regarded as J . Otherwise, if ρ− = 0
and u+ > u−, it can also be believed that the Riemann solution consists of a fake
vacuum wave connecting the two vacuum states (u−, 0) and (u+, 0) and then followed
by a contact discontinuity J connecting (u+, 0) and (u+, ρ+).

Case 4.2. Let us now come back to the perturbation (vii) of case 4 in [2]. In this
case, the Riemann data satisfies ρ+ = 0 and u+ < u−. Based on [2], for ρ+ = 0, the
Riemann solution consists only of a rarefaction wave and there is no need to add a
contact discontinuity. If we employ the perturbation in [2], the perturbed solution
is still more dramatically different from the original one in that a (possible large)
shock wave and a large contact discontinuity appear. However, we can see that the
Riemann solution is still stable if we adopt the perturbation (1.3). Our discussion is
also divided into the following two subcases according to the value of um.

Subcase 4.2.1. If u− < um, then R1 and J1 generate from (−ε, 0) and R2 emanates
from (ε, 0). If um ≤ u∗, as in Case 3.4, the vacuum state will form ahead of R3 when
one of the states in R2 becomes (u2, ρ2). J1 penetrates R2 and has x− ε = u∼t as its
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asymptote, which finally disappears at infinity for both sides are the vacuum states
(see Figure 4.3). For the remaining case um > u∗, the conclusion is analogous and
the difference lies in that R3 disappears and the intermediate state between R1 and
J1 becomes the vacuum state.

Subcase 4.2.2. If u− > um, then S1 and J1 generate from (−ε, 0) and R1 emits
from (ε, 0). With the same reasoning as before, J1 penetrates R1 and has the wave
front in R1 as its asymptote; eventually it disappears in the vacuum as t → ∞. For
S1, it cannot penetrate R2 completely and its speed tends to u− − (γ − 1)ργ−1

− in the
end (see Figure 4.4).

Remark 3. If ρ+ = 0 and u+ < u− (or u− < u+ < u∗), we can also believe the
Riemann solution consists of a 1-shock wave S (or a 1-rarefaction wave R) connecting
(u−, ρ−) and (u+,

γ−1
√
u− + ργ−1

− − u+) and then followed by a 2-contact discontinuity

J connecting (u+,
γ−1
√
u− + ργ−1

− − u+) and (u+, 0). Otherwise, if ρ+ = 0 and u+ > u∗,
we can believe that the Riemann solution consists of a 1-rarefaction waveR connecting
(u−, ρ−) and (u∗, 0) and then followed by a fake vacuum wave connecting the two
vacuum states (u∗, 0) and (u+, 0).

By letting ε→ 0, it is easy to see that the Riemann solutions are stable under the
perturbations (1.3) in the above two cases. The other cases in [2] can be treated in the
same way, and the results are also identical with our assertions. It should be pointed
out that the perturbations adopted in this paper are local perturbations, which are
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obviously different from the perturbations proposed by Aw and Rascle. This may be
used to explain the following traffic situation: the perturbation of traffic status in a
small range will come back soon.

5. Conclusion. So far, the discussion for all kinds of interactions has been com-
pleted. We have globally constructed the solutions for the perturbed initial value
problem (1.2) and (1.3). From the above analysis, we can find that the asymptotic
behavior of the perturbed solutions is governed completely by the states (u±, ρ±).
That is, the elementary waves in the time-asymptotic solutions consist of R and J for
u+ > u−, or S and J for u+ < u−. Particularly, for u− < u∗ < u+, the vacuum states
are involved as the intermediate states between R and J in the time-asymptotic solu-
tions. Thus we can draw the conclusion that the Riemann solutions of (1.2) and (2.1)
are stable with respect to the small perturbations of the initial data in this particular
situation.
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Abstract. We consider the steady state concentration of some diffusing substance, subject to a
uniform drift field, past a circular obstacle. We obtain some exact representations of the concentration
profile of the substance exterior to the obstacle. These representations are particularly useful for
studying the solution in ranges of space where the concentration is very small (the “shadow” regions).
We assume then that the drift dominates diffusion and obtain various asymptotic expansions in the
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1. Introduction. A very basic problem in classical mathematical physics is the
study of a diffusing substance drifting past an obstacle. Such problems occur in
many applications, including chromatography, groundwater flow, electrophoresis, and
sedimentation. We will briefly discuss several applications in the paragraphs below.

Perhaps the simplest geometry to consider for such problems is that of a circle
in R2 (or circular cylinder in R3). The problem of steady state linear drift-diffusion
past a circle was analyzed exactly by Philip, Knight, and Waechter in [1], where it
was used to model unsaturated seepage of groundwater past a circular cylindrical
impermeable obstacle such as a rock, tunnel, or for their purposes a subterranean
hole. The air contained in a subterranean hole is at a greater pressure than that
of seeping water originating from the soil’s surface (see [5]). Thus water may enter
subterranean holes only under circumstances that allow water pressure on the surface
of the hole to sufficiently increase. Factors contributing to these circumstances include
the seepage velocity and the size and shape of the hole.

We note that the drift is caused by gravity in this application, which of course
exists throughout the spatial region (including the inside of the circular obstacle).
Capillarity provides the diffusive effects, and αL/2, which we call c, measures the
relative strength of the drift to the diffusion, where L is a characteristic length and α
is the sorptive number from hydrogeology (which measures the capacity of a porous
medium for capillary uptake of a fluid). The concentration of groundwater, which we
call p, is the quantity of interest.

Similar mathematical models were used in connection with the Brazil nut effect
[11], [12], [13]. Here a container of different sized particles subjected to shaking
becomes segregated, with larger particles rising to the top of the container. We
can view the larger nut as the obstacle, the smaller nuts as the diffusing substance,
gravity as the drift, and shaking as diffusion. In [13] qualitative comparisons were
drawn between the Brazil nut problem and the groundwater seepage problem in [1].
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We can also imagine other applications of this model. For example, we can
consider a sea of charged particles subject to a uniform electromagnetic field in the
presence of a fixed circular obstacle. The uniform electromagnetic field causes the
drift, local particle interactions cause the diffusive effects, and the quantity of interest,
p, now gives the concentration of particles. Another physical situation that could
correspond to our model is the concentration of Brownian particles in still air, such
as dust particles, subject to gravity and with the collection of particles modeled as a
continuum.

Considering the original application, the solution obtained in [1] gave the steady
state concentration of groundwater as a Fourier series, with the Fourier coefficients
characterized as infinite series involving the modified Bessel functions Iν(·) and Kν(·).
Due to the complexity of the solution and the resulting numerical difficulties which
are exacerbated when c is large, an asymptotic solution for c � 1 is desirable, and
this is the topic of this paper. The asymptotic solution will also provide qualitative
information about the concentration, such as the manner in which it transitions from
being constant in the far field to being small directly beneath the obstacle.

In [2] we obtained another form of the solution given in [1] and studied various
asymptotic properties. The asymptotic analysis assumes that c is large. We assume
that (i) the drift field is of uniform strength, (ii) the field exists in all of R2 (in-
cluding inside the circular obstacle), (iii) there is a uniform concentration of particles
infinitely far from the obstacle, and (iv) the normal component of the flux of par-
ticles vanishes on the obstacle’s exterior boundary. With these assumptions we can
divide the exterior of the obstacle into an “illuminated region” ({r =

√
x2 + y2 >

1, |y| > 1} ∪ {r > 1, −1 ≤ y ≤ 1, x < 0}) and a complementary “shadow region”
Ωs = {(x, y) | r > 1, −1 < y < 1, x > 0}. We note that this definition excludes the
shadow side of the obstacle, where r ≈ 1 and x > 0. Here we scale the spatial vari-
ables so that the obstacle is inside the unit circle r = 1, and the uniform concentration
at r = ∞ is taken as unity. For large c the concentration inside the illuminated re-
gion will be asymptotically equal to one, while that in the shadow region will be
exponentially small. These definitions of shadow and illuminated regions are useful
qualitatively even for moderate c.

In [2] we gave asymptotic results for the illuminated region and also where the
shadow boundaries (defined by y = ±1, x > 0) meet the obstacle. This corresponds
to (x, y) = (0,±1), and in this range the particle concentration is asymptotically large,
of the order O(c2/3). In this paper we shall obtain detailed asymptotic results in the
shadow region, including the shadow boundaries and the shadow side of the obstacle
(where r ≈ 1 and 0 < x < 1).

In particular we shall obtain the exponentially small concentration profile in the
shadow region, Ωs. Then we will construct “boundary layer” expansions near the
obstacle’s shadow side, where r − 1 = O(c−1) and r − 1 = O(c−2/3). Thus, two
nested layers are needed. In the shadow boundary we will consider the two scales
y − 1 = O(c−1/3) and y − 1 = O(c−1/2). On the latter scale the concentration of
particles is large, of the order O(

√
c), and follows a Gaussian profile in the similarity

variable
√
c(y − 1)/

√
x.

In studying the shadow region asymptotically it proves necessary to have a rep-
resentation that is different from that of the Fourier series in [1] and [2], and we shall
obtain such a representation. It does not seem possible to obtain the shadow region
asymptotics from the Fourier series.

There has been much previous work on related problems, and we do not make any
attempt to survey it here. Some related papers are those of Chapman, Lawry, and
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Ockendon [3] and Cherepanov [4]. In [3] the authors analyzed temperature exterior
to a slit, with a convecting fluid velocity field that avoids the slit. Thus in this case
the field is not a constant drift field as it exists only exterior to the obstacle. The
authors also use conformal mapping to treat more complicated obstacle geometries.
In [4] the author obtained exact solutions for the case of a slit, in terms of Mathieu
and modified Mathieu functions. Other exact solutions for simple geometries were
obtained by Knight and Philip [6] for spherical obstacles and by Philip [7], [8], [9],
[10].

This work assumes that the drift field is constant and exists everywhere in space.
Thus the mathematical model would be appropriate when the drift is due to gravity
or electromagnetic fields, but not for, say, a diffusing substance in a liquid (such as
water) flowing past an obstacle. For the latter the convection field would be some
given potential or viscous flow that would itself satisfy a boundary condition on the
surface of the obstacle.

We mention that the asymptotic structure of drift-diffusion problems for large c
has some similarities to scattering problems in the high frequency limit. However,
there are important differences. For example, the scattering problem for a plane
wave hitting a circle in R2 would have the shadow boundary correspond to the dis-
appearance of the incoming plane wave via a Fresnel integral. But the drift-diffusion
problems in this spatial range have to leading order a Gaussian behavior. A good
survey of exact and asymptotic results for scattering by simple geometries can be
found in [14].

The remainder of the paper is organized as follows. In section 2 we summarize
our results, both exact and asymptotic. The exact results are derived in section 3 and
the asymptotic ones in sections 4–6. Concluding remarks are given in section 7.

2. Summary of results. We let p(x, y) be the concentration of some substance
that undergoes diffusion exterior to the unit circle r =

√
x2 + y2 = 1 and is subject

to a constant drift field in the +x direction. Then the steady state concentration, p,
satisfies the following linear PDE:

(1) pxx + pyy − 2cpx = Δp− 2cpx = 0, r > 1.

Here c > 0 is a parameter measuring the ratio of drift to diffusion. We assume that
the substance cannot penetrate the obstacle, which leads to a boundary condition at
r = 1. The flux vector of the substance is J = (2cp− px,−py). The component of J
normal to the obstacle must vanish, which leads to

(2) (cos θ)px + (sin θ)py − 2c(cos θ)p = pr − 2c cos θp = 0, r = 1.

The other boundary condition we impose is far away from the obstacle. We assume
that the concentration approaches a constant value, which we take to be one; hence

(3) p(x, y) → 1 , r =
√
x2 + y2 → ∞.

For convenience we define q(x, y) via

(4) p(x, y) = 1 + ecxq(x, y).

Upon changing variables in (1)–(3) we see that q satisfies the Helmholtz equation

(5) qxx + qyy = c2q, r > 1,
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with the boundary conditions

(6) (cos θ)qx + (sin θ)qy − c(cos θ)q = 2c(cos θ)e−cx, r = 1,

and

(7) q(x, y) → 0 , r =
√
x2 + y2 → ∞.

In polar coordinates (6) becomes

(8) qr − c(cos θ)q = 2c(cos θ)e−c(cos θ), r = 1.

The problem (1)–(3) was explicitly solved by Philip, Knight, and Waechter [1],
and a different representation of the solution is given in [2], where it was shown that
q in (4) is given by

(9) q(r, θ) = −
∫ ∞

r

ec(cos θ)(r−s)q̃(s, θ)ds,

where

(10) q̃(s, θ) = 2c(cos θ)Q1(s, θ) −Q2(s, θ)

with

Q1(s, θ) =
∞∑

m=−∞

∫ ∞

−∞

Kν(cs)
Kν(c)

I|ν|(c)eiν(θ+(2m+1)π)dν

= 2Re

[ ∞∑
m=−∞

∫ ∞

0

Kν(cs)
Kν(c)

Iν(c)eiν(θ+(2m+1)π)dν

]
(11)

and

(12) Q2(s, θ) =
∞∑

m=−∞

∫ ∞

−∞

ν

Kν(c)
eiν(θ+(2m+1)π)

[
Kν+1(cs)
Kν+1(c)

− Kν−1(cs)
Kν−1(c)

]
dν.

Here K and I are modified Bessel functions.
We give below an alternate form for p, which will prove useful for calculations in

the “shadow region,” Ωs = {(x, y) | r > 1, −1 < y < 1, x > 0}.
Theorem 2.1. The solution p(x, y) to (1)–(3) is given by

p = Im

{∫ ∞

r

ec(cos θ)(2r−s)
∞∑
k=0

−4πcsch(ωkπ)
K̇iωk

(c)Kiωk+1(c)

[
iωk cosh(ωkθ)Kiωk+1(cs)(13)

+ (ωk sin θ sinh(ωkθ) + iωk cos θ cosh(ωkθ) − i sin θ sinh(ωkθ))Kiωk
(cs)

]}
ds.

Here K̇ is used to denote the derivative of K with respect to order, and the ωk are
real positive solutions to Kiωk

(c) = 0, ordered as 0 < ω0 < ω1 < · · · .
Another form of the solution is given by

p = Im

{∫ ∞

−∞

∞∑
k=0

−2πc−1 exp
[
iωkt

]
exp

[
cr (cos θ − cosh t)

]
(cos θ + cosh t) sinh(ωkπ)K̇iωk

(c)Kiωk+1(c)
(14)

×
[
iωk cosh(ωkθ)et + iωk cos θ cosh(ωkθ) + (ωk − i) sin θ sinh(ωkθ)

]
dt

}
.
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While (13) and (14) are exact forms of the solution, their usefulness is still nu-
merically constrained to situations involving moderate values of c, as are the forms
given in [1] and by (4), (9)–(12). Also, their complexity is such that they do not yield
qualitative insights into the solution.

We next give various asymptotic approximations to p(x, y) for c→ ∞. The results
apply in the shadow region with the following scaling:

(A) Shadow region, Ω+
s : r > 1, x > 0, 0 < y < 1.

(B) Intermediate shadow boundary: y − 1 = O(c−1/3),
Inner shadow boundary: y − 1 = O(c−1/2).

(C) Intermediate layer near obstacle: r − 1 = O(c−2/3), 0 < y < 1,
Inner layer near obstacle: r − 1 = O(c−1), 0 < y < 1.

We summarize our results in Theorems 2.2–2.4 below. In view of the symmetry
p(x, y) = p(x,−y) it suffices to consider y ≥ 0.

Theorem 2.2. In the domain Ω+
s , we have

p = c5/6
21/6T (r, θ)

√
π
[
Ai′(r0)

]2 exp
[
c

(
r cos θ + θ − sin−1

(
1
r

)
−
√
r2 − 1

)]

×
(
r2 − 1

)−1/4
exp

[
c1/32−1/3|r0|

(
θ − sin−1

(
1
r

))]
(15)

×
{

1 + c−1/3

[
γ0

(
θ − sin−1

(
1
r

))
− 15γ0√

r2 − 1

]
+O(c−2/3)

}
,

where

(16) T (r, θ) =
1 − r sin θ

r cos θ +
√
r2 − 1

, γ0 =
2−2/3r20

30
,

and r0 = max{z : Ai(z) = 0} = −2.33811 . . . .
If −1 < y < 0, we should replace θ by −θ. If y is small, specifically y = O(c−1)

(thus θ = O(c−1)), we must add the results with θ and −θ.
Theorem 2.3. For the shadow boundary intermediate layer, where y − 1 =

O(c−1/3) and x > 0, we set y − 1 = c−1/3Y with Y = O(1). For Y < 0 we obtain

p = c1/2
2−5/6

√
π

exp
[
−c1/3Y

2

2x

]
exp

[
Y 3

6x3

] ∞∑
k=0

eAkY/x[
Ai′(rk)

]2
×
{
R0(x, Y, k) + c−1/3R1(x, Y, k) + c−2/3R2(x, Y, k) +O(c−1)

}
,(17)

where

R0 = − Y

x3/2
,(18)

R1 =
(
Y

x

)5 1 − x2

8x3/2
+
(
Y

x

)3
Ak

2x3/2
+
(
Y

x

)2 1
x3/2

+
(
Y

x

)
A2
k

2x3/2
+

Ak
x3/2

,(19)

R2 =
(
Y

x

)9 −(x2 − 1)2

128x5/2
+
(
Y

x

)7
Ak(x2 − 1)

16x5/2
+
(
Y

x

)6 6x2 − 5
20x5/2

(20)

+
(
Y

x

)5
A2
k(x

2 − 3)
16x5/2

+
(
Y

x

)4
Ak(11x2 − 27)

24x5/2
+
(
Y

x

)3 4x2 − 11 − 2A2
k

8x5/2

+
(
Y

x

)2 −A2
k(x

2 + 45)
30x5/2

+
(
Y

x

)(
−A4

k

8x5/2
− Ak(16x2 + 30)

15x5/2

)
− A3

k + 1
2x5/2

,
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and Ak = 2−1/3|rk|. The rk are the real negative zeros of the Airy function (thus
Ai(rk) = 0) such that |r0| < |r1| < |r2| < · · · . We can also write (17)–(20) in an
alternate integral form that will apply also for Y > 0. We have

p = c1/22−1/6π−1/2 exp
[
−c1/3Y

2

2x

]
exp

[
Y 3

6x3

]

×
{
F0 + c−1/3F1 + c−2/3F2 +O(c−1)

}
,(21)

where

F0 =
x−1/2

2πi

∫
C

e−zY/x
dz

Ai2(21/3z)
,(22)

F1 =
x1/2

2πi

∫
C

(
Y 4

8x4

)
e−zY/x

dz

Ai2(21/3z)
(23)

− x−3/2

2πi

∫
C

(
Y 4

8x4
+
Y

2x
− z

Y 2

2x2
+ z2 1

2

)
e−zY/x

dz

Ai2(21/3z)
,

F2 =
1

22/3x1/2

∞∑
k=0

eAkY/x[
Ai′(rk)

]2 +
x3/2

2πi

∫
C

(
Y 8

128x8

)
e−zY/x

dz

Ai2(21/3z)
(24)

+
x−1/2

2πi

∫
C

[
−Y 8

64x8
− 19Y 5

80x5
− Y 2

6x2
+ z

(
Y 6

16x6
+
Y 3

3x3
− 1
)

+ z2

(
−Y 4

16x4
+

Y

30x

)]
e−zY/x

dz

Ai2(21/3z)

+
x−5/2

2πi

∫
C

[
Y 8

128x8
+

3Y 5

16x5
+

5Y 2

8x2
+ z

(
−Y 6

16x6
− 3Y 3

4x3
− 1

2

)

+ z2

(
3Y 4

16x4
+

3Y
4x

)
− z3 Y

2

4x2
+ z4 1

8

]
e−zY/x

dz

Ai2(21/3z)
.

The integration contour C is the imaginary axis (z goes from −i∞ to i∞). Ex-
pressions (21)–(24) give a three-term approximation to p for Y < 0 and a two-term
approximation to p− 1 for Y > 0 (here we use only (21)–(23)). However, for Y ≈ 0
a different expansion is needed, which is given below.

For the shadow boundary inner layer, where y− 1 = O(c−1/2), and x > 0, we set
Δ = c1/2 (y − 1) and obtain

(25) p = c1/2p(0) + c1/3p(1/3) + c1/6p(2/3) + p(1) +O(c−1/6),

where

(26) p(0) =
1√
2πx

e−Δ2/(2x),

(27) p(1/3) =
(

Δ
x

)
−2−1/3C1√

2πx
e−Δ2/(2x),
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(28) p(2/3) =
(

Δ2

2x2
− 1

2x

)
2−2/3C2√

2πx
e−Δ2/(2x),

p(1) =
(

Δ3

6x3
− Δ

2x2

)
1 − 2−1C3√

2πx
e−Δ2/(2x)

+ 1 − 2−1/2π−1/2e−Δ2/(2x)

∫ ∞

0

exp
[
− zΔ√

x
− z2

2

]
dz.(29)

The constants Cj above are defined as

(30) Cj =
1

2πi

∫ i∞

−i∞

zj

[Ai(z)]2
dz,

and their approximate numerical values are C0 = 1, C1 ≈ −1.25512, C2 ≈ 1.06458,
C3 ≈ 0.20315.

We note that as Δ → +∞ the expressions in (26)–(28) have Gaussian decay while
p(1) → 1. Thus as we leave the inner shadow boundary we begin to see the uniform
concentration at infinity as given in (3).

Next we give results that apply where the shadow region meets the obstacle’s
boundary. There are again two scales to consider.

Theorem 2.4. For the intermediate layer near the obstacle, where r − 1 =
O(c−2/3), 0 < y < 1, and x > 0, we set η = c2/3(r − 1) and obtain

p = c exp
[
c
(
cos θ + θ − π

2

)
+ c1/32−1/3|r0|

(
θ − π

2

)]
exp

[
c1/3η cos θ

]
(31)

×
{
F (θ)Ai(η̂) + c−1/3

[
−21/3F ′(θ)Ai′(η̂) + γ0

(
θ − π

2

)
F (θ)Ai(η̂)

]
+O(c−2/3)

}
,

where

(32) F (θ) =
2 cos θ[

Ai′(r0)
]2 (1 + sin θ)

and η̂ = 21/3(η − 2−1/3|r0|) = 21/3η + r0.
For the inner layer near the obstacle, where r − 1 = O(c−1), 0 < y < 1, and

x > 0, we set ξ = c(r − 1) and obtain

p = c2/3
24/3 (1 + ξ cos θ)
Ai′(r0) (1 + sin θ)

exp
[
c
(
cos θ+ θ − π

2

)
+ c1/32−1/3|r0|

(
θ − π

2

)]

× exp
[
ξ cos θ

]{
1 + c−1/3 2−2/3

30
r20

(
θ − π

2

)
+O(c−2/3)

}
.(33)

If −1 < y < 0, we should replace θ by −θ. If y is small, specifically y = O(c−1)
(thus θ = O(c−1)), we must add the results with θ and −θ.

3. The exact representation. The main steps in deriving the alternate form
of p given in Theorem 2.1 will be to write the integrals in (11) and (12) as residue
series and explicitly evaluate the m-sums.

First consider (12). To transform the integral into a residue series we recall that
the zeros of Kν(c) all lie on the imaginary axis in the ν-plane, and that Kν(c) =
K−ν(c) for all ν ∈ C. Allowing ν to take on complex values, we see that

Re [iν (θ + (2m+ 1)π)] = −Im(ν) [θ + (2m+ 1)π] ,
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which is negative when m < 0 and Im(ν) < 0, or when m ≥ 0 and Im(ν) > 0 since
|θ| < π. Thus for m < 0 we will close in the lower half-plane, where Im(ν) < 0, and
for m ≥ 0 we will close in the upper half-plane, where Im(ν) > 0. This yields

Q2(s, θ) = −
−1∑

m=−∞

∑
Res

{
2πiν
Kν(c)

eiν(θ+(2m+1)π)

[
Kν+1(cs)
Kν+1(c)

− Kν−1(cs)
Kν−1(c)

]}

+
∞∑
m=0

∑
Res

{
2πiν
Kν(c)

eiν(θ+(2m+1)π)

[
Kν+1(cs)
Kν+1(c)

− Kν−1(cs)
Kν−1(c)

]}
,(34)

where the two inner sums are over all singularities in the lower and upper half-planes,
respectively. Here Res denotes residue. The singularities of (34) are the zeros of Kν

and Kν±1 which are located at iωk and iωk ± 1, k = 0, 1, 2, . . . , in the upper half-
plane and at −iωk and −iωk± 1, k = 0, 1, 2, . . . , in the lower half-plane. We will also
simplify (34) by recognizing

(35)
Kν+1(cs)
Kν+1(c)

− Kν−1(cs)
Kν−1(c)

as the difference between a function and its complex conjugate, for purely imaginary
ν. Evaluating the residues leads to

Q2(s, θ) = − 2πi
∞∑
m=1

∞∑
k=0

{
2ωk

K̇iωk
(c)

eωk[θ+(1−2m)π]Im
[
Kiωk+1(cs)
Kiωk+1(c)

]
(36)

+
Kiωk

(cs)
K̇iωk

(c)
eωk[θ+(1−2m)π]2Re

[
e−i[θ+(1−2m)π] iωk + 1

Kiωk+1(c)

]}

+ 2πi
∞∑
m=0

∞∑
k=0

{
−2ωk
K̇iωk

(c)
e−ωk[θ+(1+2m)π]Im

[
Kiωk+1(cs)
Kiωk+1(c)

]

+
Kiωk

(cs)
K̇iωk

(c)
e−ωk[θ+(1+2m)π]2Re

[
ei[θ+(1+2m)π] −iωk − 1

Kiωk+1(c)

]}
.

The m-sums above are simply geometric series which we can evaluate, and after some
rearrangement (36) becomes

Q2(s, θ) = 2πi
∞∑
k=0

{
−2ωk cosh(ωkθ)

sinh(ωkπ)K̇iωk
(c)

Im
(
Kiωk+1(cs)
Kiωk+1(c)

)

+
Kiωk

(cs)
sinh(ωkπ)K̇iωk

(c)
Re
(
eωkθe−iθ

1 + iωk
Kiωk+1(c)

+ e−ωkθeiθ
1 + iωk
Kiωk+1(c)

)}
.(37)

We will now rewrite the expression inside Re(·), replace Re(·) by Im(i·), and finally
move the rest of the expression inside the Im which we can do since (K̇iωk

(c))−1 and
2πi are purely imaginary; thus their product is real. We obtain

Q2(s, θ) = Im

{ ∞∑
k=0

−4πcsch(ωkπ)
K̇iωk

(c)Kiωk+1(c)

[
iωk cosh(ωkθ)Kiωk+1(cs)(38)

+ (1 + iωk) (cos θ cosh(ωkθ) − i sin θ sinh(ωkθ))Kiωk
(cs)

]}
.
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Now we turn our attention to Q1 given by (11). Similarly to how we approached
Q2, for m ≥ 0 we will rotate the contour by +90◦, to a contour C1, that goes from
ν = 0 to ν = i∞ with indentations to the right of all poles which lie at ν = iωk,
ωk > 0. For m ≤ −1 we rotate by −90◦ to a contour C2, that goes from ν = 0 to
ν = −i∞, again indented to the right of the poles which lie at ν = −iωk, ωk > 0. We
thus obtain

Q1(s, θ) = 2Re

{ ∞∑
m=0

∫
C1

Kν(cs)
Kν(c)

Iν(c) exp
[
iν (θ + (2m+ 1)π)

]
dν

+
∞∑
m=1

∫
C2

Kν(cs)
Kν(c)

Iν(c) exp
[
iν (θ + (1 − 2m)π)

]
dν

}
.(39)

At this point we can evaluate the geometric m-sums since Im(ν) is positive in the
first integral and negative in the second. We also write the integral over C1 as a
singular integral plus the half-residues at the poles (since the poles are traversed
counterclockwise). The integral over C2 is written as a singular integral minus the
half-residues at the poles, and thus

Q1(s, θ) = −2Re
{∫ i∞

0

Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)
dν

−
∫ −i∞

0

Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)
dν + πi

∑
Res

[
Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)

]

+ πi
∑

Res
[
Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)

]}
.(40)

The first residue series above is over all singularities on the negative imaginary axis,
and the second residue series is over all singularities on the positive imaginary axis.
We can simplify (40) by making the change of variables ν = iω in the integrals and
combining the two sums; hence

Q1(s, θ) = −2Re

{∫ ∞

−∞

Kiω(cs)
Kiω(c)

Iiω(c)
−ie−ωθ

2 sinh(ωπ)
dω

+ πi
∑

ν=±iωk

(
Res

[
Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)

])}
.(41)

Next we will explicitly evaluate the singular integral in (41). Using Iν(z) = I−ν(z)−
(2/π) sin(πν)Kν(z) (from [15]) with ν = iω yields

∫ ∞

−∞

Kiω(cs)
Kiω(c)

Iiω(c)
−ie−ωθ

2 sinh(ωπ)
dω(42)

= − 1
2π

∫ ∞

−∞
Kiω(cs)e−ωθdω +

∫ ∞

−∞

Kiω(cs)
Kiω(c)

[I−iω(c) + Iiω(c)]
−ie−ωθdω
4 sinh(ωπ)

.

In the first integral in the right-hand side of (42) we can replace exp(−ωθ) by cosh(ωθ)
and use the identities from [17],

(43)
∫ ∞

0

cos(bx) cosh
(xπ

2

)
Kix(a)dx =

π cos (a sinh(b))
2

,
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(44)
∫ ∞

0

sin(bx) sinh
(xπ

2

)
Kix(a)dx =

π sin (a sinh(b))
2

,

with a = cs, b = i
(
π
2 − θ

)
, to obtain

∫ ∞

−∞

Kiω(cs)
Kiω(c)

Iiω(c)
−ie−ωθ

2 sinh(ωπ)
dω(45)

= −1
2
e−cs cos θ +

∫ ∞

−∞

Kiω(cs)
Kiω(c)

[I−iω(c) + Iiω(c)]
−ie−ωθ

4 sinh(ωπ)
dω.

Now we recall that we are interested in only the real part of (45). Since Kiω(c) is real
for real ω and Iiω(c) + I−iω(c) is real by the reflection principle, the integral in the
right-hand side of (45) is purely imaginary, and (45) thus gives

Re
{∫ ∞

−∞

Kiω(cs)
Kiω(c)

Iiω(c)
−ie−ωθ

2 sinh(ωπ)
dω

}
= −1

2
e−cs cos θ,(46)

which when put back into (41) yields

Q1(s, θ) = e−cs cos θ − Re

{
2πi

∑
ν=±iωk

(
Res

[
Kν(cs)
Kν(c)

Iν(c)
eiνθ

2i sin(νπ)

])}
.(47)

To compute the residues we first use the identity [15]

(48) Iν(c)Kν+1(c) + Iν+1(c)Kν(c) =
1
c

evaluated at ν = iωk to replace Iν with (cKν+1)
−1. Then computing the residues at

ν = iωk and ν = −iωk separately, we obtain

Q1(s, θ) = e−cs cos θ(49)

+ Re

{
πi

c

∞∑
k=0

Kiωk
(cs)

sinh(ωkπ)K̇iωk
(c)

(
e−ωkθ

Kiωk+1(c)
+

eωkθ

Kiωk−1(c)

)}
.

Now, i× (K̇iωk
(c))−1 is real, and thus

Q1(s, θ) = e−cs cos θ +
πi

c

∞∑
k=0

Kiωk
(cs)

sinh(ωkπ)K̇iωk
(c)

Re
(

e−ωkθ

Kiωk+1(c)
+

eωkθ

Kiωk−1(c)

)

= e−cs cos θ +
πi

c

∞∑
k=0

Kiωk
(cs)

sinh(ωkπ)K̇iωk
(c)

Re
(

2 cosh(ωkθ)
Kiωk+1(c)

)

= e−cs cos θ + Re

{
πi

c

∞∑
k=0

2 cosh(ωkθ)Kiωk
(cs)

sinh(ωkπ)K̇iωk
(c)Kiωk+1(c)

}
.(50)

Finally we combine (50), (38), (10), and (9) and use q = (p− 1) exp(−cx) to obtain
(13) in Theorem 2.1.

The expression in (14) follows upon using the integral representation

Kν(z) =
1
2

∫ ∞

−∞
eνte−z cosh tdt(51)
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to evaluate the integral over s as
∫ ∞

r

ec(2r−s) cos θKν(cs)ds =
1
2c

∫ ∞

−∞

eνtecr(cos θ−cosh t)

cos θ + cosh t
dt.(52)

We mention that while (13) and (14) are exact forms of the solution, their use-
fulness is still numerically constrained to situations involving moderate values of c, as
are the forms given in [1] and by (4), (9)–(12).

4. Shadow region asymptotics. We begin the derivation by obtaining an
asymptotic formula for the roots ωk of Kiω(c) = 0. We then use that formula to
obtain the asymptotics for the various modified Bessel functions appearing in (13).
After substituting everything into (13) we drop all but the first term of the k-series
and use Laplace’s method to expand the s-integral. The terms with k ≥ 1 in (13)
lead to exponentially small errors in the shadow region.

To obtain the asymptotics of ωk we first apply the saddle point method to (51).
We set ν = iωk = icβ and obtain the following for 0 < β < 1:

Kicβ(c) ∼
√
π

2c
(
1 − β2

)−1/4
exp

[
−c
(
β sin−1 (β) +

√
1 − β2

)]
.(53)

For β ≈ 1, specifically β = 1+O(c−2/3), (53) becomes invalid. This range corresponds
to two saddles coalescing, and then we need to approximate Kiβc(c) by Airy functions
as follows:

Ki(c+c1/3α)(c) ∼ π

(
2
c

)1/3

exp
[
−π

2

(
c+ c1/3α

)]{
Ai(−21/3α)(54)

+ c−2/3

[
−2α
15

Ai(−21/3α) +
21/3α2

30
Ai′(−21/3α)

]

+ c−4/3

[
21/3

(
− α3

105
+

1
70

)
Ai′(−21/3α) +

(
− α5

1800
+
α2

25

)
Ai(−21/3α)

]}
.

If the right-hand side of (54) is to vanish, we need α ∼ −2−1/3rk so that ωk ∼
c + c1/32−1/3|rk|. To find the next term we expand the Airy functions in (54) near
α = −2−1/3rk and set α − 2−1/3|rk| ∼ c−2/3γk to find that γk = 2−2/3r2k/30. We
then repeat the process with α − 2−1/3|rk| ∼ c−2/3γk + c−4/3βk to find that βk =
(r3k + 10)/700; thus

(55) ωk = c+ c1/32−1/3|rk| + c−1/3 2−2/3r2k
30

+ c−1 r
3
k + 10
700

+O
(
c−5/3

)
.

Now that we have the expansion of ωk we can derive the expansions for the modified
Bessel functions in (13). We use (55) in (51) with z = c and ν = iωk or ν = iωk + 1
and expand the integral by the saddle point method, noting that there are two saddles
near t = iπ/2 and using also the derivatives of the Airy function, in the form

(56) Ai(n)(z) =
1

2πi

∫
C

vnezv−v
3/3dv.

Here the integration contour runs from ∞e−2πi/3 to the origin and then to ∞e2πi/3

(C could also be taken as the imaginary axis in the ν-plane). After some calculation
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we obtain

K̇iωk
(c) = c−2/322/3πiAi′(rk) exp

[
−π

2

(
c+ c−1/3Ak

)]

×
[
1 − c−1/3πγk

2
+ c−2/3

(
π2γ2

k

8
− Ak

5

)
+O

(
c−1
) ]

(57)

and

Kiωk+1(c) ∼ −c−2/322/3πAi′(rk) exp
[
−π

2

(
c+ c−1/3Ak

)]
(58)

×
[
1 − c−1/3πγk

2
+ c−2/3

(
π2γ2

k

8
− 2Ak

15

)
+ c−1

(
−Akγkπ

15
− βkπ

2
− γ3

kπ
3

48

)]
.

Here Ak = 2−1/3|rk|, where rk satisfy Ai(rk) = 0 with 0 > r0 > r1 > r2 > · · · .
Next we consider (51) with z = cs and note that s > r in the s-integral in (13),

and that r > 1 in the shadow region. Then we obtain approximations to Kiωk
(cs)

and Kiωk+1(cs) by again using the saddle point method on (51), but now a single
saddle at t = i sin−1(1/s) (thus |t| < π/2) determines the asymptotic behavior of the
integral(s). After a lengthy calculation we obtain

Kiωk
(cs) = c−1/2

√
π

2
(
s2 − 1

)−1/4
exp

[
− sin−1

(
1
s

)(
c+ c−1/3Ak

)]

× exp
[
−c
√
s2 − 1

]{
1 + c−1/3

[
−A2

k

2 (s2 − 1)1/2
− γk sin−1

(
1
s

)]

+ c−2/3

[
γ2
k

(
sin−1 (1/s)

)2
2

+
A4
k + 4Ak

8 (s2 − 1)
+
γkA

2
k sin−1 (1/s)

2 (s2 − 1)
1
2

]

+ c−1

[
−γ3

k

(
sin−1 (1/s)

)3
6

− Akγk sin−1 (1/s)
5

− A6
k

48 (s2 − 1)3/2

− 5

24 (s2 − 1)3/2
− 1

8 (s2 − 1)1/2
− Akγk

(s2 − 1)1/2
− 5A3

k

12 (s2 − 1)3/2
(59)

−
(
A4
k + 4Ak

)
γk sin−1 (1/s)

8 (s2 − 1)
−
A2
kγ

2
k

(
sin−1 (1/s)

)2
4 (s2 − 1)1/2

]
+O

(
c−4/3

)}

and

Kiωk+1(cs) = c−1/2

√
π

2
(
s2 − 1

)− 1
4 exp

[
− sin−1

(
1
s

)(
c+ c−1/3Ak − i

)]

× exp
[
−c
√
s2 − 1

]{
1 + c−1/3

[
−A2

k

2 (s2 − 1)1/2
− γk sin−1

(
1
s

)]

+ c−2/3

[
γ2
k

(
sin−1 (1/s)

)2
2

+
A4
k + 4Ak

8 (s2 − 1)
+
γkA

2
k sin−1 (1/s)

2 (s2 − 1)1/2
+

iAk√
s2 − 1

]

+ c−1

[
−i
(
A3
k + 1

)
2 (s2 − 1)

− iAkγk sin−1 (1/s)

(s2 − 1)1/2
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−
γ3
k

(
sin−1 (1/s)

)3
6

− Akγk sin−1 (1/s)
5

− A6
k

48 (s2 − 1)3/2

− 5

24 (s2 − 1)3/2
+

3

8 (s2 − 1)1/2
− Akγk

(s2 − 1)1/2
− 5A3

k

12 (s2 − 1)3/2

−
(
A4
k + 4Ak

)
γk sin−1 (1/s)

8 (s2 − 1)
−
A2
kγ

2
k

(
sin−1 (1/s)

)2
4 (s2 − 1)1/2

]
+O

(
c−4/3

)}
.(60)

Computing the reciprocals of (57) and (58) and using these along with (59) and (60)
in (13), we obtain

p = c11/6
∫ ∞

r

ec(cos θ)(2r−s)
∞∑
k=0

exp
[(
θ − sin−1

(
1
s

))(
c+ c1/3Ak

)]

× 21/6 (1 − s sin θ)
√
π
[
Ai′(rk)

]2
s (s2 − 1)1/4

exp
[
−c
√
s2 − 1

]
(61)

×
{

1 + c−1/3

[
γk

(
θ − sin−1

(
1
s

)
− A2

k

2 (s2 − 1)1/2

)]
+O(c−2/3)

}
ds.

We approximate (61) by retaining only the k = 0 term, since it is exponentially larger
(by a factor exp[O(c1/3)]) than the terms with k ≥ 1. The result (15) follows upon
using Laplace’s method to expand the integral. The main contribution comes from
near the lower limit of integration s = r.

5. Shadow boundary asymptotics. For the intermediate shadow boundary
region, where y − 1 = O(c−1/3) and x > 0, we begin similarly to the derivation of
Theorem 2.2. But now we will keep the entire k-series in (13), not just the k = 0 term.
After substituting (59) and (60) and the reciprocals of (57) and (58) into (13) and
determining several terms in the expansion of the resulting s-integral using Laplace’s
method, we are led to

p =
∞∑
k=0

c5/621/6

√
π
[
Ai′(rk)

]2 exp
[
c

(
r cos θ −

√
r2 − 1 + θ − sin−1

(
1
r

))]

×
(
r2 − 1

)−1/4 1 − r sin θ
r cos θ +

√
r2 − 1

exp
[
c1/3Ak

(
θ − sin−1

(
1
r

))]

×
{

1 + c−1/3

[
γk

(
θ − sin−1

(
1
r

))
− A2

k

2
√
r2 − 1

]

+ c−2/3

[
Ak
(
r2 − 1

)−1/2

r cos θ +
√
r2 − 1

+
16Ak
15

+
A4
k + 4Ak

8 (r2 − 1)
+

Ak
1 − r sin θ

+
γ2
k

[
θ − sin−1(1/r)

]2
2

+
γkA

2
k

[
θ − sin−1(1/r)

]
2
√
r2 − 1

]

+ c−1 1
1 − r sin θ

[
Akγk

[
θ − sin−1

(
1
r

)]
− A3

k

2
√
r2 − 1

− 1
r cos θ +

√
r2 − 1

]
+O(c−1)

}
.(62)
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Note that we have written in (62) only a part of the O(c−1) term inside the {·}. This
is the part that contains the factor (1 − r sin θ)−1 = (1 − y)−1, which becomes large
as y → 1.

In the shadow boundary we have 1− r sin θ = 1−y = c−1/3Y and we rewrite (62)
in terms of the variables (x, Y ), also using the expansions

(63)
√
r2 − 1 = x+ c−1/3Y

x
+ c−2/3Y 2x

2 − 1
2x3

+ c−1Y 3 1 − x2

2x5
+O(c−4/3),

(64) θ − sin−1

(
1
r

)
= c−1/3Y

x
− c−2/3 Y

2

2x3
+ c−1Y 3 3 − 2x2

6x5
+O(c−4/3),

(65)
1 − r sin θ

r cos θ +
√
r2 − 1

= −c−1/3 Y

2x
+ c−2/3 Y

2

4x3
+ c−1Y 3x

2 − 2
8x5

+O(c−4/3).

After substituting (63)–(65) into (62) and simplifying, we obtain (17)–(20). But, this
formula is valid only for Y < 0 since the series in (17) will not converge for Y > 0.

To transform (17)–(20) into the integral expressions in (21)–(24) we first observe
that the residues at z = −Ak are

(66)

Res

[
e−zY/x

zn(
Ai(21/3z)

)2
]

z=−Ak

=
2−2/3[

Ai′(rk)
]2 eAkY/x

[
n (−Ak)n−1− (−Ak)n

Y

x

]
,

which we use to obtain the identity

22/3

2πi

∫
C

(
a0 + a1z + a2z

2 + a3z
3 + a4z

4
)
e−zY/x

dz[
Ai(21/3z)

]2

=
∞∑
k=0

eAkY/x[
Ai′(rk)

]2
[
a1 − a0

Y

x
−Ak

(
2a2 − a1

Y

x

)

+ A2
k

(
3a3 − a2

Y

x

)
−A3

k

(
4a4 − a3

Y

x

)
−A4

ka4
Y

x

]
,(67)

where ai ∈ R and the integration contour is the imaginary axis.
Using (67) with a0 = x−1/2 and a1 = a2 = a3 = a4 = 0, we see the equivalence of

the leading terms in (17) and (21) (with (18) and (22)). A similar calculation shows
the equivalence of the second terms in (17) and (21) (with (19) and (23)). In view of
the rapid decay of Ai−2(21/3z) in the imaginary directions (z → ±i∞), the integrals
in (22) and (23) converge for all real Y and give the continuation of the sums in (17)
to the range Y > 0 (y > 1).

We next attempt to write R2 in (20) as a similar integral and show that this is
not quite possible. Since (20) is quartic in the Ak, we would need a fourth order
polynomial in z as in (67). By examining (20) and writing it in the form of the
right-hand side of (67), we would need

(68) a0 =
Y 8

x8

(
x2 − 1

)2
128x5/2

+
Y 5

x5

15 − 19x2

80x5/2
+
Y 2

x2

15 − 4x2

24x5/2
− x1/2

Y
.
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The last x1/2/Y term in (68) is problematic and occurs as a consequence of a “missing”
term in (20). From the derivation of (17)–(20), we see that all terms appearing in
(18)–(20) arise from the Q2 contribution to (13) (cf. (38)). Had we considered only
the Q2 contribution in the derivation of (18)–(20), one other term, −x−1/2, would
also appear in (20). It is absent because it cancels with a contribution from Q1 (the
only other contribution of Q1 to (17)–(20) is the cancellation of the −1 in p − 1).
The part of (20) that arises from Q2 (including the “missing” term, −x−1/2) can be
represented in integral form, using (67) with

(69) a0 =
Y 8

x8

(
x2 − 1

)2
128x5/2

+
Y 5

x5

15 − 19x2

80x5/2
+
Y 2

x2

15 − 4x2

24x5/2
,

(70) a1 =
Y 6

x6

x2 − 1
16x5/2

+
Y 3

x3

4x2 − 9
12x5/2

− 1 + 2x2

2x5/2
,

(71) a2 =
Y 4

x4

3 − x2

16x5/2
+
Y

x

2x2 + 45
60x5/2

,

(72) a3 = −Y
2

x2

1
4x5/2

,

(73) a4 =
1

8x5/2
,

which gives us the integral portion of (24). Adding to it the contribution from Q1

(which is c−2/3x−1/2 times the leading multiplicative factors in (17)) produces (24).
The first two terms in (21) can be extended for Y > 0, and when expanded for

Y → +∞ they match to the asymptotic results for p− 1 in the illuminated region in
[2] when the latter are expanded for y ↓ 1. They also asymptotically match to the
results for p− 1 at the birth of the shadow boundary where x ≈ 0 and y ≈ 1, which
are also given in [2].

To see the appearance of the uniform concentration at infinity (= 1), we need
to consider Y ≈ 0 or, more precisely, y − 1 = O(c−1/2), which corresponds to Y =
O(c−1/6). We thus set y− 1 = c−1/2Δ or Y = c−1/6Δ and examine p− 1 as given by
(4) with (9)–(12). We will examine separately the contributions from Q1 in (11) and
Q2 in (12). We define Q1 and Q2, which are functions of (r, θ) or (x, y), by

Q1 = −2c cos θ
∫ ∞

r

ec(2r−s) cos θQ1(s, θ)ds(74)

and

Q2 =
∫ ∞

r

ec(2r−s) cos θQ2(s, θ)ds(75)

and note that p− 1 is equal to the sum of (74) and (75).
The expansion of Q2 on the Δ-scale can be obtained as a limiting form of the

integral expressions in (22)–(24), to four orders in c−1/6. We begin by noting that
F0 in (22) and F1 in (23) are smooth functions of Y and can be expanded as Y =
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c−1/6Δ → 0 using the Taylor expansion of exp[−zY/x] = exp[−c−1/6Δz/x]. This
leads to

F0 = 2−1/3x−1/2

[
1 − c−1/62−1/3C1

Δ
x

+ c−1/32−2/3C2
Δ2

2x2
− c−1/2C3

Δ3

12x3
+O(c−2/3)

]
(76)

and

F1 = −x−3/2

[
C2

4
+ c−1/62−1/3 Δ (2 − C3)

4x
+O(c−1/3)

]
.(77)

The constants Ci above are defined in (30). The integral portion of (24) (which arose
from Q2) remains O(1) as Y → 0 and will not contribute to (25) until the fifth
order. We now change variables in (21) from Y to Δ and expand the exponential
exp

[
c−1/2Δ3/(6x3)

]
. Using (76) and (77), we thus obtain

Q2 ∼ c1/22−1/6π−1/2 exp
[
−c1/3Y

2

2x

]
exp

[
Y 3

6x3

]{
F0 + c−1/3F1

}

=
c1/2√
2πx

exp
(
−Δ2

2x

){
1 − c−1/6

(
2−1/3C1√

x

)
Δ√
x

+ c−1/3

(
2−2/3C2

2x

)[(
Δ√
x

)2

− 1

]

+ c−1/2

(
2 − C3

12x
√
x

)[(
Δ√
x

)3

− 3
Δ√
x

]
+O(c−2/3)

}
.(78)

We see that the expansion of Q2 involves the Hermite polynomials in the similarity
variable Δ/

√
x.

Next we consider Q1 on the Δ-scale. Substituting (50) into (74) yields

Q1 = −1 + Im

[∫ ∞

r

ec(2r−s) cos θ
∞∑
k=0

4π cos θ cosh(ωkθ)Kiωk
(cs)

sinh(ωkπ)K̇iωk
(c)Kiωk+1(c)

ds

]
.(79)

In the derivation of the shadow region asymptotics we needed to consider only
the k = 0 term of the series. In the shadow boundary intermediate region (cf. (17))
we needed to keep all terms of the series, and this led to the first term in the right-
hand side of (24) for Y < 0. On the Δ-scale, not only will we have to keep all
terms of the k-series, but the terms with k large will actually play a larger role. Our
previous expansions of the modified Bessel functions in (57)–(59) were derived under
the assumption rk = O(1) and break down when rk = O(c1/6), since then the second
terms become of the same order as the first terms. Since rk = O(k2/3) for k → ∞
[15], this occurs when k = O(c1/4), so our previous expansions are valid only for
the k  c1/4 terms of the series. We redo the saddle point analysis used to obtain
(57)–(59), this time considering rk = O(c1/6). This yields to leading order

K̇iωk
(c) ∼ c−2/322/3πiAi′(rk) exp

[
−π

2

(
c+ c1/3Ak + c−1/3γk

)]
,(80)
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Kiωk+1(c) ∼ −c−2/322/3πAi′(rk) exp
[
−π

2

(
c+ c1/3Ak + c−1/3γk

)]
,(81)

and

Kiωk
(cs) ∼ c−1/2

(
s2 − 1

)−1/4
√
π

2
exp

[
−2−5/3

(
s2 − 1

)−1/2 r2k
c1/3

]

× exp
[
−c
√
s2 − 1

]
exp

[
− sin−1

(
1
s

)(
c+ c1/3Ak + c−1/3γk

)]
.(82)

Note that γk = O(c1/3) for rk = O(c1/6). Substituting (80)–(82) into (79) gives

Q1 ∼ −1 +
∫ ∞

r

exp
[
c

(
(2r − s) cos θ −

√
s2 − 1 + θ − sin−1

(
1
s

))]

× c5/621/6 cos θ
√
π (s2 − 1)1/4

∞∑
k=0

{
exp

[
−c1/32−1/3rk

(
θ − sin−1

(
1
s

))]

× exp
[
−r

2
k

4

(
c−1/321/3

(
s2 − 1

)−1/2
)] [

Ai′(rk)
]−2

}
ds.(83)

We now replace the k-series with an integral. To do so, we will utilize an identity
derived in [16],

∫ ∞

0

Ai(τ +M)eNτdτ + 2Re
[∫ ∞

0

Ai(ωτ +M)
Ai(ωτ)

Ai(τ)eωNτdτ
]

= e−MNeN
3/3 −

∞∑
k=0

eNrk
Ai(rk +M)[

Ai′(rk)
]2 ,(84)

where ω = exp [2πi/3]. Note that the series in the right-hand side of (84) converges
only for N > 0, but the integrals in the left-hand side converge for all N . First we
expand the Airy functions for large M using the well-known expansion [15]

Ai(τ +M) ∼ 1
2
√
π
M−1/4 exp

[
−2

3
M3/2

]
exp

[
−τ

√
M − τ2

4
√
M

]
.(85)

For M → ∞ the second integral in (84) will be asymptotically negligible compared to
the first. After replacing the Airy functions with their expansions we use the exact
relationship −MN +N3/3 = −2M3/2/3 +M1/2(N −M1/2)2 + (N −M1/2)3/3 and
make the change of variables τ = 21/4M1/4q in the first integral in (84). We then
cancel the common factors exp

[
−2M3/2/3

]
and rearrange terms to obtain

21/4

2
√
π

∫ ∞

0

exp
[
21/4M1/4

(
N −M1/2

)
q
]
exp

[
− q2

2
√

2

]
dq

− exp
[
M1/2

(
N −M1/2

)2

+
1
3

(
N −M1/2

)3
]

∼ −M
−1/4

2
√
π

∞∑
k=0

exp
[
rk
(
N −M1/2

)]
exp

[
− r2k

4 M
−1/2

]
[
Ai′(rk)

]2 .(86)

This result applies for N, M → ∞ with M1/4
(
N −M1/2

)
= O(1). To apply (86) to

the k-sum in (83), we set M = 2−2/3c2/3
(
s2 − 1

)
and N = 2−1/3c1/3[

(
s2 − 1

)1/2 −
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(
θ − sin−1(1/s)

)
], which yields

∞∑
k=0

exp
[
−rk

(
2−1/3c1/3

) (
θ − sin−1(1/s)

)]
exp

[
−c−1/32−5/3r2k

(
s2 − 1

)−1/2
]

[
Ai′(rk)

]2

∼ c1/625/6√π
(
s2 − 1

)1/4
exp

[
c

2

√
s2 − 1

(
θ − sin−1

(
1
s

))2
]

× exp

[
− c

6

(
θ − sin−1

(
1
s

))3
]
− c1/621/12

(
s2 − 1

)1/4 ∫ ∞

0

exp
[
− q2

2
√

2

]

× exp
[
−c1/22−1/4

(
s2 − 1

)1/4(
θ − sin−1

(
1
s

))
q

]
dq.(87)

After substituting (87) into (83) and asymptotically evaluating the integral over s, we
have

Q1 ∼ −1 +
2r cos θ

r cos θ +
√
r2 − 1

exp
[
c

(
r cos θ −

√
r2 − 1 + θ − sin−1

(
1
r

))]

×
{

exp

[
c

2

√
r2 − 1

(
θ − sin−1

(
1
r

))2

− c

6

(
θ − sin−1

(
1
r

))3
]

(88)

− 21/4

2
√
π

∫ ∞

0

exp
[
−c1/22−1/4

(
r2 − 1

)1/4(
θ − sin−1

(
1
r

))
q − q2

2
√

2

]
dq

}
.

Finally we set Y = c−1/6Δ in (63) and (64) and rewrite (88) in terms of (x,Δ). To
leading order this yields

Q1 ∼ − 21/4

2
√
π

exp
[
−Δ2

2x

] ∫ ∞

0

exp
[
−2−1/4q

Δ√
x
− q2

2
√

2

]
dq.(89)

Substituting (89) and (78) into p = 1 + Q1 + Q2 gives the result in (25)–(29). The
error function in (89) reveals how the concentration p transitions from being small in
the shadow region to being approximately unity in the illuminated region.

6. Shadow part of obstacle boundary. The derivation of the asymptotics for
the nested layers close to the obstacle on the shadow side is similar to the derivation
of the outer shadow region from Theorem 2.2. The main difference is that we will
have to reexamine the expansions of the modified Bessel functions involving s. Our
previous expansions (59) and (60) break down as s→ 1.

For the intermediate layer near the obstacle we again use (51) but make the
change of variables

(90) s = 1 + c−2/3ρ

and approximate the Bessel functions by Airy functions, as

Kiωk
(cs) = c−1/321/3πAi (ρ̂k) exp

[
−π

2

(
c+ c−1/3Ak

)]

×
{

1 − c−1/3πγk
2

+O
(
c−2/3

)}
(91)
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and

Kiωk+1(cs) = c−1/321/3πi exp
[
−π

2

(
c+ c−1/3Ak

)]
(92)

×
{

Ai (ρ̂k) + c−1/3

(
21/3iAi′ (ρ̂k) −

πγk
2

Ai (ρ̂k)
)

+O(c−2/3)

}
,

where ρ̂k = 21/3(ρ − Ak). We use (91), (92) and the reciprocals of (57) and (58) in
(13). Only the k = 0 term in the series contributes, and after simplification we get

p = c4/3
2 (1 − sin θ)[

Ai′(r0)
]2 exp

[
c (2r − 1) (cos θ) +

(
c+ c1/3A0

)(
θ − π

2

)]
(93)

×
∫ ∞

c2/3(r−1)

e−c
1/3ρ cos θAi

[
21/3 (ρ−A0)

]{
1 + c−1/3γ0

(
θ − π

2

)
+O(c−2/3)

}
dρ.

We use Laplace’s method to expand the integral in (93). We set η = c2/3 (r − 1) =
O(1) (thus r− 1 = O(c−2/3)), and then the major contribution comes from the lower
limit ρ = η. Setting u = ρ− η and expanding for u→ 0 gives

p = c4/3exp
[
c (2r − 1) cos θ +

(
c+ c1/3A0

)(
θ − π

2

)
− c1/3η cos θ

]

× 2 (1 − sin θ)[
Ai′(r0)

]2
∫ ∞

0

exp
[
−c1/3u cos θ

]

×
{
Ai
[
21/3 (η − A0)

]
+ 21/3Ai′

[
21/3 (η −A0)

]
u+O(u2)

}

×
[
1 + c−1/3γ0

(
θ − π

2

)
+O(c−2/3)

]
du,(94)

and this leads to (31).
For the inner layer near the obstacle we use (51) with the change of variables

(95) s = 1 + c−1σ

to obtain

Kiωk
(cs) = c−2/322/3πσAi′ (rk) exp

[
−π

2

(
c+ c−1/3Ak

)]

×
{

1 − c−1/3 πγk
2

+O
(
c−2/3

)}
(96)

and

Kiωk+1(cs) = c−2/322/3πi (σ + i)Ai′ (rk) exp
[
−π

2

(
c+ c−1/3Ak

)]

×
{

1 − c−1/3πγk
2

+O
(
c−2/3

)}
.(97)

We use (96), (97) and the reciprocals of (57) and (58) in (13), retain only the k = 0
term, and set ξ = c (r − 1) = O(1) to obtain

p = c2/3
24/3 (1 − sin θ)

Ai′(r0)
exp

[
c (2r − 1) cos θ +

(
c+ c1/3A0

)(
θ − π

2

)]

×
∫ ∞

ξ

σe−σ cos θ
[
1 + c−1/3γ0

(
θ − π

2

)
+O(c−2/3)

]
dσ.(98)

Evaluating the integral leads to (33).
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7. Conclusion. To summarize, we have obtained alternate representations (cf.
(13) and (14)) of the concentration profile of some substance that undergoes drift–
diffusion past a circular obstacle. From the new formulas we obtained detailed asymp-
totic results for the concentration in the shadow region, including the shadow bound-
ary and the shadow side of the obstacle. These asymptotic results do not seem to
be obtainable from the previous forms of the solution in [1] and [2]. They show
that in the shadow region the concentration is exponentially small in c, the param-
eter measuring the ratio of drift to diffusion, with additional factors that vary ex-
ponentially in c1/3 and algebraically in c. The smallness is due mainly to the term
r cos θ+ θ− arcsin(1/r)−

√
r2 − 1 < 0 in the exponent in (15). The concentration re-

mains small if r ≈ 1 (cf. Theorem 2.4) as long as |θ| < π/2. In the shadow boundaries,
where y ≈ ±1 with x > 0, the concentration profile undergoes the transition from
p ≈ 1 to p ≈ 0. This is governed by the two nested layers in Theorem 2.3. For the
coarser spatial scale y − (±1) = O(c−1/3) the transition has already taken place and
the solution involves Airy functions. For the finer spatial scale y − (±1) = O(c−1/2)
the transition from p ≈ 1 to p ≈ 0 occurs via the error function that arises as a
part of the fourth term in the asymptotic expansion. The leading term on this scale
shows (cf. (26)) a Gaussian particle profile and a large O(

√
c) concentration, with the

profile diffusing further with increasing x. For sufficiently large x the shadow region
disappears, as we must have p→ 1 as r → ∞ in any direction.

The structure of the shadow boundary is much different from corresponding scat-
tering problems, where an incoming plane wave disappears in the region Ωs via a
Fresnel integral at the leading asymptotic order.

While exact solutions can be obtained only for simple geometries such as circles or
spheres, we are currently analyzing such problems directly, via singular perturbation
techniques such as geometrical optics and asymptotic matching. Preliminary results
show that Theorems 2.2–2.4 can be obtained, though less rigorously, directly from the
PDE problem (1)–(3). With the direct methods we are also currently investigating
more complex geometries such as ellipses and general convex obstacles.
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NEW CONDITIONS ON THE EXISTENCE AND STABILITY OF
PERIODIC SOLUTION IN LOTKA–VOLTERRA’S POPULATION

SYSTEM∗
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Abstract. In this paper, we revisit the famous periodic Lotka–Volterra competitive system.
Some new and interesting sufficient conditions are obtained to guarantee the existence and global
asymptotic stability of the periodic solution in the Lotka–Volterra competitive system. Our method is
based on Mawhin’s coincidence degree, matrix’s spectral theory, and some new estimation techniques
for the priori bounds of unknown solutions to the equation Lx = λNx. Due to this new method,
our new results are much different from the known results in the previous literature. Finally, some
examples and their simulations show the feasibility of our results.

Key words. global asymptotic stability, Lotka–Volterra system, periodic solution
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1. Introduction. In recent years, the application of theories of functional differ-
ential equations in mathematical ecology has developed rapidly. Various mathematical
models have been proposed in the study of population dynamics, ecology, and epi-
demiology (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]). One of the
famous models for dynamics of population is the Lotka–Volterra system. Due to its
theoretical and practical significance, the Lotka–Volterra systems have been studied
extensively (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34]). A basic model is the two-species competitive
system which takes the form of

(1)
{
ẏ1(t) = y1(t)[b1 − a11y1(t) − a12y2(t)],
ẏ2(t) = y2(t)[b2 − a21y1(t) − a22y2(t)].

Gopalsamy [8] has studied system (1) and obtained that if a11b1 > a12b2, a22b2 >
a21b1, a11 > a21, and a22 > a12, then system (1) has a unique equilibrium which is
globally asymptotically stable.

Then Gopalsamy generalized the results to an n-species competitive system in
[9, 10]. The autonomous n-species competitive model can be represented as follows:

(2) ẏi(t) = yi(t)

⎡
⎣bi −

n∑
j=1

aijyj(t)

⎤
⎦ , i = 1, 2, . . . , n.
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Recently, Xia, Han, and Ding [19] studied systems (1) and (2). By combining
matrix’s spectral theory with the Lyapunov function, some new sufficient conditions
were obtained to guarantee the global asymptotic stability of a unique equilibrium
for the Lotka–Volterra system. Their results generalize and significantly improve the
known results in [8, 9, 10].

However, most of the literature mentioned above requires the coefficients of the
system to be constants. As we know, the variation of the environment plays an
important role in many biological and ecological dynamical systems. In particular,
the effects of a periodically varying environment are important for evolutionary theory
as the selective forces on a system in a fluctuating environment differ from those
in a stable environment. If we consider the effects of the environmental factors,
the assumption of periodicity of parameters is realistic and important (e.g., seasonal
effects of weather, food supplies, mating habits, harvesting, etc.). To incorporate the
varying properties of the parameters into the model, many authors considered the
nonautonomous n-species competitive system (see, e.g., [2, 3, 4, 5, 7, 9, 11])

(3) ẏi(t) = yi(t)

⎡
⎣bi(t) −

n∑
j=1

aij(t)yj(t)

⎤
⎦ , i = 1, 2, . . . , n,

where the coefficients are assumed to be continuous ω-periodic functions, i.e., bi(t +
ω) = bi(t) and aij(t+ω) = aij(t), i, j = 1, 2, . . . , n. For the biological point of view, it
is always assumed that the parameters bi, aij , i, j = 1, 2, . . . , n, are nonnegative and
aii is strictly positive. System (3) is supplemented with the initial condition

(4) yi(t0) = y0
i , y0

i > 0, i = 1, 2, . . . , n.

It is easy to see that for every given positive initial value condition (4), the corre-
sponding solution of (3) remains positive for all t ≥ 0. That is, the positive cones of
Rn are positive invariant with respect to system (3).

To study the existence and global asymptotic stability of periodic solution for
system (3), many approaches are employed, such as Brower fixed point, Lyapunov
function, comparison theorem, Mawhin’s coincidence degree, and so on. In particu-
lar, Mawhin’s coincidence degree theory is a powerful tool to study the existence of
periodic solutions. However, different estimation techniques for the priori bounds of
unknown solutions to the equation Lx = λNx may lead to different results. There
are many papers obtaining the priori bounds by employing the inequality

|x(t)| ≤ |x(t0)| +
∫ ω

0

|ẋ(t)|dt.

For more details, one can refer to [11, 27, 28, 29, 30, 31, 32, 33, 34, 35]. To the best
of our knowledge no author has been concerned with employing the matrix’s spectral
theory to obtain the priori bounds for biological systems so far. For this reason, our
aim is to propose a new methodology to revisit system (3). By combing matrix’s
spectral theory with Mawhin’s coincidence degree theory, we manage to obtain a set
of new and interesting conditions which are much different from the known results in
the literature.

The structure of this paper is as follows. In section 2, some new and interesting
sufficient conditions for the existence of periodic solution of system (3) are obtained.
Section 3 is devoted to examining the stability of this periodic solution. In section 4,



1582 YONGHUI XIA AND MAOAN HAN

some discussions and remarks on the difference between our results and the previous
ones are presented. Finally, some examples and their simulations are given to show
the feasibility of our results.

2. Existence of periodic solutions. In this section, we shall obtain some new
sufficient conditions for the existence of periodic solution of system (3).

For convenience, we introduce some notation, definitions, and lemmas. If f(t) is
a continuous ω-periodic function defined on R, denote

f = min
t∈[0,ω]

|f(t)|, f = max
t∈[0,ω]

|f(t)|, m(f) =
1
ω

∫ ω

0

f(t)dt.

For matrix D = (dij)n×n, DT denotes the transpose of D, and En denotes the identity
matrix of size n. diag(·) represents a diagonal matrix with specified diagonal entries.
A matrix or vector A ≥ 0 means that all entries of A are greater than or equal to
zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B (resp.,
A > B) means that A−B ≥ 0 (resp., A−B > 0). We denote the spectral radius of
the matrix A by ρ(A).

Definition 2.1 (see [34, 35]). Let X,Z be normed real Banach spaces, let
L : DomL ⊂ X → Z be a linear mapping, and let N : X → Z be a continuous
mapping. The mapping L is called a Fredholm mapping of index zero if dimKerL =
codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index zero
and there exist continuous projectors P : X → X and Q : Z → Z such that ImP =
KerL, KerQ = ImL = Im(I −Q), it follows that L|domL ∩ KerP : (I − P )X → ImL
is invertible. We denote the inverse of that map by KP . If Ω is an open bounded
subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded and
KP (I −Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ→ KerL.

Definition 2.2 (see [35]). Let Ω ⊂ Rn be open and bounded, f ∈ C1(Ω, Rn) ∩
C(Ω, Rn), and y ∈ Rn/f(∂Ω ∪Nf ), i.e., y is a regular value of f . Here, Nf = {x ∈
Ω : Jf (x) = 0}, the critical set of f , and Jf is the Jacobian of f at x. Then the degree
deg{f,Ω, y} is defined by

deg{f,Ω, y} =
∑

x∈f−1(y)

sgnJf (x)

with the agreement that
∑
φ = 0. For more details about degree theory, the reader is

referred to [35].
Lemma 2.1 (continuation theorem [34]). Let Ω ⊂ X be an open and bounded

set. Let L be a Fredholm mapping of index zero, and let N be L-compact on Ω (i.e.,
QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact). Assume the following:

(i) For each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, Lx 
= λNx.
(ii) For each x ∈ ∂Ω ∩ KerL, QNx 
= 0 and deg{JQN, Ω ∩ KerL, 0} 
= 0.

Then Lx = Nx has at least one solution in Ω ∩ DomL.
Definition 2.3 (see [25, 42]). A real n × n matrix A = (aij) is said to be an

M -matrix if aij ≤ 0, i, j = 1, 2, . . . , n, i 
= j, and A−1 ≥ 0.
Lemma 2.2 (see [25, 26]). Let A ≥ 0 be an n×n matrix and let ρ(A) < 1. Then

(En −A)−1 ≥ 0, where En denotes the identity matrix of size n.
Lemma 2.3 (see [20, 29]). Assume that

m(bi) >
n∑

j=1,j �=i
m(aij)

m(bj)
m(ajj)

, i = 1, 2, . . . , n.
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Then the system of algebraic equations

n∑
j=1

m(aij)uj = m(bi), i = 1, 2, . . . , n,

has a unique solution (u∗1, u
∗
2, . . . , u

∗
n)
T ∈ Rn+ with u∗i > 0.

In what follows, we shall introduce some function spaces and their norms, which
are valid throughout this paper. Denote

X = {x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ C1(R,Rn)|x(t + ω) = x(t) for all t ∈ R},

Z = {x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ C(R,Rn)|x(t+ ω) = x(t) for all t ∈ R}.

The norms are given by

|xi(t)|0 = max
t∈[0,ω]

|xi(t)|, |xi(t)|1 = |xi(t)|0 + |ẋi(t)|0, i = 1, 2, . . . , n,

‖x(t)‖0 = max
1≤i≤n

{|xi(t)|0}, ‖x(t)‖1 = ‖x(t)‖0 + ‖ẋ(t)‖0 = max
1≤i≤n

{|xi(t)|1}.

Obviously, X and Z, respectively endowed with the norms ‖ ·‖1 and ‖ ·‖0, are Banach
spaces.

Theorem 2.1. Assume that the following conditions hold:

(H1) m(bi) >
n∑

j=1,j �=i
m(aij)

m(bj)
m(ajj)

, i = 1, 2, . . . , n;

(H2) ρ(K) < 1, where K = (Γij)n×n and Γij =
{

0, i = j,
aija

−1
jj , i 
= j.

Then system (3) has at least one positive ω-periodic solution.
Proof. Note that every solution y(t) = (y1(t), y2(t), . . . , yn(t))T of system (3)

with the initial value condition (4) is positive. Make the change of variables

(5) xi(t) = ln yi(t), i = 1, 2, . . . , n.

Then system (3) can be rewritten as

(6) ẋi(t) = bi(t) −
n∑
j=1

aij(t)exj(t), i = 1, 2, . . . , n.

Obviously, system (3) has at least one ω-periodic solution which is equivalent so that
system (6) has at least one ω-periodic solution. To prove Theorem 2.1, our main tasks
are to construct the operators (i.e., L, N , P , and Q) appearing in Lemma 2.1 and to
find an appropriate open set Ω satisfying conditions (i), (ii) in Lemma 2.1. To this
end, we proceed with three steps.

Step 1. In this step, we intend to construct the operators appearing in Lemma
2.1 and verify that they satisfy the conditions of Lemma 2.1. For any x(t) ∈ X , in
view of the periodicity, it is easy to check that

Δi(x, t) = bi(t) −
n∑
j=1

aij(t)exj(t) ∈ Z.
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Now we define the operators L : DomL ⊂ X → Z and N : X → Z as follows:

X � x(t) → (Lx)(t) =
dx(t)

dt
∈ Z,

X � x(t) → (Nx)(t) =
(
(Nx)1(t), (Nx)2(t), . . . , (Nx)n(t)

)T ∈ Z,

where

(Nx)i(t) = Δi(x, t), i = 1, 2, . . . , n.

Define, respectively, the projectors P : X → X and Q : Z → Z by

Px(t) =
1
ω

∫ ω

0

x(t)dt, Qz(t) =
1
ω

∫ ω

0

z(t)dt, x ∈ X, z ∈ Z.

It is obvious that the domain of L in X is actually the whole space, and

KerL = {x(t) ∈ X |Lx(t) = 0, i.e., ẋ(t) = 0} = Rn,

ImL =
{
z(t) ∈ Z|

∫ ω

0

z(t)dt = 0
}

is closed in Z.

Moreover, P,Q are continuous operators such that

ImP = Rn = KerL, ImL = KerQ = Im(I −Q),

and

dimKerL = codimImL = n < +∞.

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L) KP : ImL→ DomL ∩ KerP exists, which is given by

KP (y) =
∫ t

0

y(s)ds− 1
ω

∫ ω

0

∫ t

0

y(s)dsdt.

Then QN : X → Z and KP (I −Q)N : X → X are defined by

QNx =
(

1
ω

∫ ω

0

Δ1(x, t)dt,
1
ω

∫ ω

0

Δ2(x, t)dt, . . . ,
1
ω

∫ ω

0

Δn(x, t)dt
)T

,

(7) KP (I −Q)Nx = (Ψ1(x, t),Ψ2(x, t), . . . ,Ψn(x, t))T ,

where

Ψk(x, t) =
∫ t

0

Δk(x, u)du − 1
ω

∫ ω

0

∫ t

0

Δk(x, u)dudt−
( t
ω
− 1

2

) ∫ ω

0

Δk(x, u)du,

k = 1, 2, . . . , n.

Clearly, QN and KP (I −Q)N are continuous. Now we turn to the fact that for any
open bounded set Ω ⊂ X , denoted by

Ω = {x(t) ∈ X
∣∣ |xi(t)|1 = |xi(t)|0 + |ẋi(t)|0 < hi},
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the mapping N is L-compact on Ω. Here, the constants hi are independent of the
choice of x(t). In view of Definition 2.1, to show the above fact, it suffices to show
that QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact. We first arrive at

|(QNx)i|0 =
∣∣∣∣ 1ω
∫ ω

0

Δi(x, t)dt
∣∣∣∣
0

≤ |Δi(x, t)|0 := Mi for all x ∈ Ω,

which implies that QN(Ω) is bounded in the space (Z, ‖ · ‖0). Second, we shall show
that

(
KP (I − Q)Nx

)
(Ω) is relatively compact in the space (X, ‖ · ‖1). In fact, it

follows from (7) that

(8) (KP (I −Q)Nx)′ = (Ψ′
1(x, t),Ψ

′
2(x, t), . . . ,Ψ

′
n(x, t))

T ,

where ′ = d/dt and

Ψ′
k(x, t) = Δk(x, t) −

1
ω

∫ ω

0

Δk(x, u)du, k = 1, 2, . . . , n.

This, combined with (7), gives

|
(
KP (I −Q)Nx

)
i
(t)|1 = |

(
KP (I −Q)Nx

)
i
(t)|0 + |

(
KP (I −Q)Nx

)′
i
(t)|0

≤ Miω + 1
2Miω + 1

2Miω +Mi +Mi = 2(ω + 1)Mi,

which implies that KP (I −Q)N(Ω) is bound in the space (X, ‖ · ‖1).
On the other hand, we prove that

(
KP (I −Q)Nx

)
(Ω) is equicontinuous. In view

of the uniform continuity of bi and aij , for any ε > 0, there exists δ1 > 0 such that
for any t, s ∈ R, provided that |t− s| < δ1, we have

(9) |bi(t) − bi(s)| < ε, |aij(t) − aij(s)| < ε.

Since any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Ω is equicontinuous, for the same ε, there
exists 0 < δ2 ≤ δ1 such that for any t, s ∈ R, provided that |t− s| < δ2, we have

(10) |xi(t) − xi(s)|0 < ε.

It follows from (9) and (10) that

|Δi(x(t), t) − Δi(x(s), s)|0
≤ |bi(t) − bi(s)|0 +

n∑
j=1

|aij(t)exj(t) − aij(s)exj(s)|0

≤ |bi(t) − bi(s)| +
n∑
j=1

|aij(t)|0|exj(t) − exj(s)|0 +
n∑
j=1

|aij(t) − aij(s)|0|exj(s)|0

< ε+
n∑
j=1

aije
hj |xi(t) − xi(s)|0 +

n∑
j=1

ehjε

< ε+
n∑
j=1

aije
hjε+

n∑
j=1

ehjε

=
[
1 +

n∑
j=1

(1 + aij)ehj

]
ε.

Thus, it follows from (8) that

(11)

|
(
KP (I −Q)Nx

)′
i
(t) −

(
KP (I −Q)Nx

)′
i
(s)|0

= |Δi(x(t), t) − Δi(x(s), s)|0
<

[
1 +

n∑
j=1

(1 + aij)ehj

]
ε.
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On the other hand, the mean value theorem together with (8) gives

(12)
|
(
KP (I −Q)Nx

)
i
(t) −

(
KP (I −Q)Nx

)
i
(s)|0

= ‖
(
KP (I −Q)Nx

)′
i
(ξ)‖0|t− s| ≤ 2Mi|t− s|,

where ξ lies between t and s. Taking δ = min{ ε
2Mi

, δ2}, it follows from (11) and (12)
that |t− s| < δ implies

|
(
KP (I −Q)Nx

)
i
(t) −

(
KP (I −Q)Nx

)
i
(s)|1

= |
(
KP (I −Q)Nx

)
i
(t) −

(
KP (I −Q)Nx

)
i
(s)|0

+|
(
KP (I −Q)Nx

)′
i
(t) −

(
KP (I −Q)Nx

)′
i
(s)|0

<

[
1 +

n∑
j=1

(1 + aij)ehj

]
ε+ 2Miδ

<

[
1 +

n∑
j=1

(1 + aij)ehj

]
ε+ ε := M̃ε,

which implies that
(
KP (I −Q)Nx

)
(Ω) is equicontinuous.

Therefore, by the generalized Arzela–Ascoli theorem, we have that
(
KP (I −

Q)Nx
)
(Ω) is relatively compact in the space (X, ‖ · ‖1). The proof of this step is

complete.
Step 2. In this step, we are in a position to search for an appropriate open bounded

subset Ω satisfying condition (i) of Lemma 2.1. Specifically, our aim is to search for
an appropriate hi defined by Ω in Step 1 such that Ω satisfies condition (i) of Lemma
2.1. To this end, assume that x(t) ∈ X is a solution of the equation Lx = λNx for
each λ ∈ (0, 1); that is,

(13) ẋi(t) = λ

[
bi(t) −

n∑
j=1

aij(t)exj(t)

]
, i = 1, 2, . . . , n.

Since x(t) ∈ X , each xi(t), i = 1, 2, . . . , n, as components of x(t), is continuously
differentiable and ω-periodic. In view of continuity and periodicity, there exists ti ∈
[0, ω] such that xi(ti) = maxt∈[0,ω] |xi(t)|, i = 1, 2, . . . , n. Accordingly, ẋi(ti) = 0, and
we arrive at

bi(ti) −
n∑
j=1

aij(ti)exj(ti) = 0, i = 1, 2, . . . , n.

That is,

aii(ti)exi(ti) = bi(ti) −
n∑

j=1,j �=i
aij(ti)exj(ti), i = 1, 2, . . . , n.

Noticing that xj(tj) = maxt∈[0,ω] |xj(t)| implies xj(ti) ≤ xj(tj), it follows that

(14)
aiie

xi(ti) ≤
∣∣aii(ti)exi(ti)

∣∣ =
∣∣∣bi(ti) −

n∑
j=1,j �=i

aij(ti)exj(ti)
∣∣∣

≤ bi +
n∑

j=1,j �=i
aije

xj(ti) ≤ bi +
n∑

j=1,j �=i
aije

xj(tj).
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Letting aiie
xi(ti) = zi(ti), it follows from (14) that

zi(ti) ≤ bi +
n∑

j=1,j �=i
aija

−1
jj zj(tj)

or

zi(ti) −
n∑

j=1,j �=i
aija

−1
jj zj(tj) ≤ bi,

which implies

(15)

⎛
⎜⎜⎝

1 −a−1
22 a12 . . . −a−1

nna1n

−a−1
11 a21 1 . . . −a−1

nna2n

. . . . . . . . . . . .
−a−1

11 an1 −a−1
22 an2 . . . 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z1(t1)
z2(t2)
. . .

zn(tn)

⎞
⎟⎟⎠ ≤

⎛
⎜⎜⎝

b1
b2
. . .

bn

⎞
⎟⎟⎠ .

Set D = (D1, D2, . . . , Dn)T = (b1, b2, . . . , bn)T . It follows from (15) that

(16) (E −K)
(
z1(t1), z2(t2), . . . , zn(tn)

)T ≤ D.

In view of ρ(K) < 1 and Lemma 2.2, (En −K)−1 ≥ 0. Let

(17) H = (h̃1, h̃2, . . . , h̃n)T := (E −K)−1D ≥ 0.

Then it follows from (16) and (17) that

(18)
(
z1(t1), z2(t2), . . . , zn(tn)

)T ≤ H, or zi(ti) ≤ h̃i, i = 1, 2, . . . , n,

which implies

|xi(t)|0 = max
t∈[0,ω]

|xi(t)| = xi(ti) ≤ ln
h̃i
aii
, i = 1, 2, . . . , n.

On the other hand, it follows from (17) that

(E −K)H = D, or H = KH +D, that is,(19)

h̃i =
n∑
j=1

Γij h̃j +Di, i = 1, 2, . . . , n.

Estimating (13), by using (18) and (19), we have

(20)

|ẋi(t)|0 = λ
∣∣∣bi(t) − n∑

j=1

aij(t)exj(t)
∣∣∣
0

≤ bi +
n∑
j=1

aij |exj(t)|0 = bi +
n∑
j=1

aije
xj(tj)

≤ bi +
n∑
j=1

aija
−1
jj zj(tj)

= bi +
n∑

j=1,j �=i
aija

−1
jj zj(tj) + zi(ti)

≤ Di +
n∑
j=1

Γij h̃j + h̃i

≤ h̃i + h̃i = 2h̃i.
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We can choose a large enough real number (d > 1) such that

ln
dh̃i
aii

> ln
h̃i
aii

+ 2h̃i.

Set hi = ln dh̃i

aii
. Then for any solution of Lx = λNx, we have |xi(t)|1 = |xi(t)|0 +

|ẋi(t)|0 ≤ ln h̃i

aii
+ 2h̃i < hi for all i = 1, 2, . . . , n. Obviously, hi are independent of λ

and the choice of x(t). Consequently, taking hi = ln dh̃i

aii
, the open subset Ω satisfies

that Lx 
= λNx for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, i.e., the open subset Ω satisfies
the assumption (i) of Lemma 2.1.

Step 3. In what follows, we verify that for the given open bounded set Ω obtained
in Step 2, the assumption (ii) of Lemma 2.1 also holds. That is, for each x ∈ ∂Ω∩KerL,
QNx 
= 0, and deg{JQN, Ω ∩ KerL, 0} 
= 0.

Take x ∈ ∂Ω ∩ KerL. Then, in view of KerL = Rn, x is a constant vector in Rn,
denoted by x = (x1, x2, . . . , xn)T and with the property

(21) |xi| = |xi|0 = |xi|1 = hi = ln
dh̃i
aii

> ln
h̃i
aii

+ 2h̃i for all i = 1, 2, . . . , n.

Operate x by QN , and we obtain that for i = 1, 2, . . . , n,

(QNx)i = m(bi) −
n∑
j=1

m(aij)exj , i = 1, 2, . . . , n.

We claim that |(QNx)i| > 0 for i = 1, 2, . . . , n. If this is not valid, suppose that there
exists a certain k ∈ {1, 2, . . . , n} such that |(QNx)k| = 0, i.e.,

m(bk) −
n∑
j=1

m(akj)exj = 0 or m(akk)exk = m(bk) −
n∑

j=1,j �=k
m(akj)exj .

Letting m(akk)exk = yk, we have

(22) yk = m(bk) −
n∑

j=1,j �=k

m(akj)
m(ajj)

yj .

In view of (21), we get
(23)

|yi| = |yi|0 = |yi|1 = m(aii)ehi = m(aii)e
ln

dh̃i
aii = m(aii)

dh̃i
aii

for all i = 1, 2, . . . , n.
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Note that f ≤ m(f) ≤ f . It follows from (22), (23), and (19) that

dh̃k ≤ m(akk)
dh̃k
akk

= |yk| =

∣∣∣∣∣∣m(bk) −
n∑

j=1,j �=k

m(akj)
m(ajj)

yj

∣∣∣∣∣∣
≤

n∑
j=1,j �=k

m(akj)
m(ajj)

|yj | + bk

≤
n∑

j=1,j �=k

m(akj)
m(ajj)

m(ajj)
dh̃j
ajj

+ bk

≤
n∑

j=1,j �=k
akja

−1
jj dh̃j +Dk

< d

n∑
j=1,j �=k

akja
−1
jj h̃j + dDk

< d

[ n∑
j=1,j �=k

Γkj h̃j +Dk

]

= dh̃k,

which is a contradiction. Therefore, for any x ∈ ∂Ω ∩ KerL, |(QNx)i| > 0 for all
i = 1, 2, . . . , n. That is, (QNx) 
= 0 for x ∈ ∂Ω ∩ KerL.

Next, we show that the topological degree is nonzero. In fact, it follows from (H1)
and Lemma 2.3 that the algebraic equation

n∑
j=1

m(aij)uj = m(bi), i = 1, 2, . . . , n,

has a unique solution u∗ = (u∗1, u
∗
2, . . . , u

∗
n)T ∈ Rn+ with u∗i > 0. Obviously, the

algebraic equation

(24)
n∑
j=1

m(aij)evj = m(bi), i = 1, 2, . . . , n,

has a unique solution v∗ = (v∗1 , v
∗
2 , . . . , v

∗
n)
T ∈ Rn. Now we further claim that the

unique solution v∗ ∈ Ω ∩ KerL. Indeed, if this is not the case, suppose that

(25) |v∗i | = |v∗i |0 = |v∗i |1 = hi = ln
dh̃i
aii

> ln
h̃i
aii

+ 2h̃i for all i = 1, 2, . . . , n.

Letting m(aii)evi = ui, we have

(26) ui = m(bi) −
n∑

j=1,j �=i

m(aij)
m(ajj)

uj .

By using (25), (26), and (19), a similar argument in the above leads to

dh̃i ≤ m(aii)
dh̃i
aii

= |ui| =

∣∣∣∣∣∣m(bi) −
n∑

j=1,j �=i

m(aij)
m(ajj)

uj

∣∣∣∣∣∣
< d

⎡
⎣ n∑
j=1,j �=k

Γij h̃j +Di

⎤
⎦ = dh̃i,
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which is a contradiction. Therefore, for any v∗ ∈ Ω ∩KerL, in view of Definition 2.2,
it is easy to see that

deg{ JQN,Ω ∩ KerL, 0} = sign
[
(−1)ndet[m(aij)] exp

{
n∑
i=1

v∗j

}]

= 0,

where deg(·) is the Brouwer degree and J is the identity mapping since ImQ = KerL.
We have shown that the open subset Ω ⊂ X satisfies all the assumptions of

Lemma 2.1. Hence, by Lemma 2.1, system (6) has at least one positive ω-periodic
solution in DomL∩Ω. By (5), system (3) has at least one positive ω-periodic solution.
This completes the proof of Theorem 2.1.

3. Globally asymptotic stability. Under the assumption of Theorem 2.1,
we know that system (3) has at least one positive ω-periodic solution, denoted by
y∗(t) =

(
y∗1(t), . . . , y∗n(t)

)T . The aim of this section is to derive a set of sufficient con-
ditions which guarantee the existence and global asymptotic stability of the positive
ω-periodic solution y∗(t).

Before the formal analysis, we recall some facts which will be used in the proof.
Definition 3.1. Let y∗(t) =

(
y∗1(t), . . . , y∗n(t)

)T be the ω-periodic solution of (3)

and let y(t) =
(
y1(t), . . . , yn(t)

)T be any positive solution of (3). We say y∗(t) is
globally asymptotically stable if the following conditions hold:

(i) y∗(t) is Lyapunov stable;
(ii) y∗(t) is globally attractive in the sense that limt→+∞[yi(t)− y∗i (t)] = 0 for all

i = 1, 2, . . . , n.
Lemma 3.1 (see [22, 24, 30]). Let f be a nonnegative function defined on [0,+∞]

such that f is integrable on [0,+∞] and is uniformly continuous on [0,+∞]. Then
limt→+∞ f(t) = 0.

Lemma 3.2 (see [25, 26, 42, 43]). Let K = (Γij)n×n be a matrix with nonpositive
off-diagonal elements. K is an M -matrix if and only if there exists a positive diagonal
matrix ξ = diag(ξ1, ξ2, . . . , ξn) such that

ξiaii >
∑
j �=i

ξjaij , i = 1, 2, . . . , n.

Theorem 3.1. Assume that all the assumptions in Theorem 2.1 hold. Then sys-
tem (3) has a unique positive ω-periodic solution y∗(t) which is globally asymptotically
stable.

Proof. Let y(t) =
(
y1(t), . . . , yn(t)

)T be any positive solution of system (3). Set

(27) Yi(t) = ln yi(t), Y ∗
i (t) = ln y∗i (t).

Then, it follows from (27) and (3) that

(28) D+ [|Yi(t) − Y ∗
i (t)|] ≤ −aii(t)|yi(t) − y∗i (t)| +

n∑
j=1,j �=i

aij(t)|yj(t) − y∗j (t)|.

It is easy to see that ρ(KT ) = ρ(K) < 1. Thus, in view of Lemma 2.2 and Definition
2.3, (E −KT ) is an M -matrix, where E denotes an identity matrix of size n. There-
fore, by Lemma 3.2, there exists a diagonal matrix ξ = diag(ξ1, . . . , ξn) with positive
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diagonal elements such that the product (E − KT )ξ is strictly diagonally dominant
with positive diagonal entries, namely,

(29) ξiΓii >
n∑

j=1,j �=i
ξjΓji or ξiaii −

n∑
j=1,j �=i

ξjaji > 0, i = 1, . . . , n.

Now, we define a Lyapunov function V (t) as follows:

(30) V (t) =
n∑
i=1

ξi|Yi(t) − Y ∗
i (t)|, t ≥ t0.

Let Zi(t) = |yi(t) − y∗i (t)|. Calculating the upper right derivative of V (t), it follows
from (30) and (28) that

(31)

D+V (t) ≤
n∑
i=1

ξi

⎧⎨
⎩−aii(t)|yi(t) − y∗i (t)| +

n∑
j �=i,j=1

aij(t)|yj(t) − y∗j (t)|

⎫⎬
⎭

= −
n∑
i=1

ξiaii(t)Zi(t) +
n∑
i=1

n∑
j �=i,j=1

ξjaji(t)Zi(t)

= −
n∑
i=1

⎧⎨
⎩ξiaii(t) −

n∑
j �=ij=1

ξjaji(t)

⎫⎬
⎭Zi(t)

≤ −c
n∑
i=1

Zi(t) ≤ 0, t ≥ t0,

where c = max1�i�n supt∈[0,ω]{ξiaii(t) −
∑n

j=1,j �=i ξjaji(t)} > 0. It follows from (31)
that D+V (t) ≤ 0. Obviously, the zero solution of (3) is Lyapunov stable. On the
other hand, integrating (31) over [t0, t] leads to

V (t) − V (t0) � −c
∫ t

t0

n∑
i=1

Zi(s)ds, t � 0,

or

V (t) + c

∫ t

t0

n∑
i=1

|yi(s) − y∗i (s)|ds � V (t0) < +∞, t � t0.

Noting that V (t) � 0, it follows that

(32)
∫ t

t0

n∑
i=1

|yi(s) − y∗i (s)|ds � V (t0)
c

< +∞, t � t0.

Therefore, by Lemma 3.1, it is not difficult to conclude that

lim
t→+∞

|yi(t) − y∗i (t)| = 0.

From Definition 3.1, Theorem 3.1 follows.
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4. Corollaries, remarks, and conclusions. In order to illustrate some fea-
tures of our main results, we will present some corollaries and remarks in this section.

From the proofs of Theorems 2.1 and 3.1, a direct corollary follows immediately.
Corollary 4.1. In addition to (H1), suppose further that E − K or E − KT

is an M -matrix. Then system (3) has a unique positive ω-periodic solution which is
globally asymptotically stable.

Now recall that for a given matrix K, its spectral radius ρ(K) is equal to the
minimum of all matrix norms of K, i.e., for any matrix norm ‖ · ‖, ρ(K) ≤ ‖K‖.
Therefore, we have the following corollary.

Corollary 4.2. In addition to (H1), suppose further that there exist positive
constants ξi, i = 1, 2, . . . , n such that one of the following conditions holds:

(1) max
1≤j≤n

[a−1
jj ξ

−1
j

∑n
i=1,i�=j ξiaij ] < 1, or, equivalently, ajj >

∑n
i=1,i�=j aij for all

j = 1, 2, . . . , n.
(2)

∑n
i=1

∑n
j=1(ξ

−1
i ξjΓij)2 < 1, where

Γij =
{

0, i = j,
a−1
jj aij , i 
= j.

(3) max
1≤i≤n

[a−1
ii ξ

−1
i

∑n
j=1,j �=i ξjaji] < 1, or, equivalently, aii >

∑n
j=1,j �=i aji for all

i = 1, 2, . . . , n.
Then system (3) has a unique positive ω-periodic solution which is globally asymptot-
ically stable.

Proof. For any matrix norm ‖·‖ and any nonsingular matrix S, ‖K‖S = ‖S−1KS‖
also defines a matrix norm. Let D = diag(ξ1, ξ2, . . . , ξn). Then the conditions (1)
and (2) correspond to the column norms and Frobenius norm of matrix DKD−1,
respectively. Condition (3) corresponds to the row norms of DKTD−1, and note that
ρ(DKTD−1) = ρ(DKD−1). Corollary 4.2 follows immediately.

Remark 4.1. Taking ξi = 1, i = 1, 2, . . . , n, condition (1) reduces to the main
results in Gopalsamy [9, 10]. Therefore, the previous results in [9, 10] are special
cases of our results. In the next section, an example will be given to show that our
results can be applied to that example while those of [9, 10] cannot be applied.

Now apply our results to the classical two-species Lotka–Volterra competition
system which has been studied extensively in [3, 11, 20, 21, 22, 23]:

(33)
{
ẏ1(t) = y1(t)[b1(t) − a11(t)y1(t) − a12(t)y2(t)],
ẏ2(t) = y2(t)[b2(t) − a21(t)y1(t) − a22(t)y2(t)].

Corollary 4.3. Assume that the following conditions hold:
(a) m(a11)m(b1) > m(a12)m(b2), m(a22)m(b2) > m(a21)m(b1);
(b) ρ(K̃) < 1, where

K̃ =
(

0 a−1
22 a12

a−1
11 a21 0

)
.

Then system (33) has a unique positive ω-periodic solution which is globally
asymptotically stable.

Remark 4.2. By way of comparing our results, we first recall some previously
known results in the literature [3, 11, 20, 21, 22, 23].

Theorem A. Assume that the following condition holds:
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(I) m(a11)m(b1) > m(a12)m(b2) exp{[m(b2) + m(|b2|)]ω} and m(a22)m(b2) >
m(a21)m(b1) exp{[m(b1) +m(|b1|)]ω}.

Then system (33) has at least one positive ω-periodic solution.
Theorem B. In addition to (I), further assume that
(II) a11 > a21 and a22 > a12.
Then system (33) has a unique positive ω-periodic solution which is globally

asymptotically stable.
We remark that conditions (a) and (b) in Corollary 4.3 are completely different

from (I) and (II) in Theorems A and B. More specifically, it seems that we need con-
dition (b) to guarantee the existence of a periodic solution, but actually, to guarantee
the existence and global asymptotic stability of a unique periodic solution, conditions
(a) and (b) in Corollary 4.3 are much weaker than (I) in Theorem A and (II) in
Theorem B. It is in this sense that Corollary 4.3 generalizes and improves Theorems
A and B. Therefore, our results are much different from the known results and thus
essentially new.

Remark 4.3. The results in Gopalsamy [8, 20] require a11 > a21 and a22 > a12.
That is, it is required that a−1

11 a21 < 1 and a−1
22 a12 < 1. We note that those conditions

imply ρ(K̃) < 1, where

K̃ =
(

0 a−1
22 a12

a−1
11 a21 0

)
.

However, a−1
11 a21 < 1 and a−1

22 a12 < 1 cannot be inferred by ρ(K̃) < 1. That is to say,
there is a case: ρ(K̃) < 1, but a−1

11 a21 and a−1
22 a12 may be bigger than 1. An example

in the next section shows this fact. Therefore, our results also significantly improve
the results in [8, 20].

Conclusions. (1) In this paper, we revisit the famous n-species Lotka–Volterra
competitive system in a periodic environment. A set of new sufficient conditions
are obtained to guarantee the existence and global asymptotic stability of a periodic
solution in the multiple-species competition system. Our results are essentially new
and much different from some previously known results. Moreover, applying our
results to some special systems, we obtain some new criteria which generalize and
improve the previously known results such as [3, 8, 9, 11, 20, 21, 22, 23].

(2) The main purpose of this paper is to propose a new methodology to study the
Lotka–Volterra competitive system. The approaches used in this paper are based on
Mawhin’s coincidence degree, Lyapunov function, and matrix theory and its spectral
theory. Mawhin’s coincidence degree theory is extensively used to study the existence
of periodic solutions. Note that different estimation techniques for the priori bounds
of unknown solutions to the equation Lx = λNx may lead to different results. There
are many papers obtaining the priori bounds by employing the inequality |x(t)| ≤
|x(t0)| +

∫ ω
0 |ẋ(t)|dt (see, e.g., [11, 27, 28, 29, 30, 31, 32, 33, 34, 35]). To the best

of our knowledge, no study has employed the matrix’s spectral theory to obtain the
priori bounds for biological systems so far. It is the first time that this new estimation
technique for the priori bounds is employed to study global asymptotic stability and
existence of periodic solution for the population dynamics. The method is much
different from those in the previous references [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27,
28, 29, 30, 31, 32, 33, 34, 35]. Due to this new method, our results are essentially new
and very interesting.
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5. Examples. In this section, some examples and their simulations are presented
to illustrate the feasibility and effectiveness of our results.

Example 1.Consider the two-species competitive system

(34)
{
ẋ1(t) = x1(t)[4 − (3 + sin t)x1(t) − 1

4 (1 + cos t)x2(t)],
ẋ2(t) = x2(t)[8 − (2 + sin t)x1(t) − (3 − cos t)x2(t)].

Corresponding to system (33), we have a11 = a22 = 2, b1 = 4, b2 = 8, a12 = 1
2 , a21 = 3.

We see that a11 = 2 < a21 = 3. This cannot meet the requirement a11 > a21 and
a22 > a12 of the theorem in Gopalsamy [8]. Thus, the results obtained in [8] cannot
be applied to this case.

However, it is not difficult to show that our results can be easily applied to system
(34). In fact, on one hand, it is easy to check that system (34) satisfies condition (a)
in Corollary 4.2. On the other hand, simple computation leads to

K̃ =
(

0 1
2 × 1

2
1
2 × 3 0

)
=
(

0 1
4

3
2 0

)

and ρ(K̃) =
√

6
4 < 1. Thus, by Corollary 4.2, system (34) has a unique positive equi-

librium (8
5 ,

8
5 ), which is globally asymptotically stable. Figure 1 shows the asymptotic

behavior of system (34).

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
Asymptotic behavior of the two−species periodic competitive system

t

y

x1(t)
x2(t)

Fig. 1. Asymptotic behavior of system (34) with initial values (x1(0), x2(0)) = (0.2, 0.1),
(0.6, 0.3), (1, 0.5), (1.5, 0.7), (2, 0.8), (2.5, 1.2), respectively, t ∈ [0, 35].

Example 2.Consider the three-species competitive system
(35)⎧⎨
⎩

ẋ1(t) = x1(t)[4 − (3 + sin t)x1(t) − 1
4 (1 + cos t)x2(t) − 1

5 (1 + sin t)x3(t)],
ẋ2(t) = x2(t)[4 − 1

4 (1 − sin t)x1(t) − (3 + sin t)x2(t)],
ẋ3(t) = x3(t)[10 − (2 − sin t)x1(t) − 1

4 (1 + sin t)x2(t) − (3 + cos t)x3(t)].

Corresponding to system (3), we have a11 = a22 = a33 = 2, b1 = b2 = 4, b3 = 10, a12 =
1
2 , a13 = 2

5 , a21 = 1
2 , a23 = 0, a31 = 3, a32 = 1

2 . We see that a11 = 2 < a21 + a31 = 7
2 .

This cannot meet the requirement ajj >
∑3

i=1,i�=j aij for i = 1, 2, 3 of the theorem in
[9, 10]. Thus, the results obtained in [4, 9, 10] cannot be applied to this case.

However, it is not difficult to show that our results can be easily applied to system
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(35). In fact, simple computation leads to

K =

⎛
⎜⎝

0 a−1
22 a12 a−1

33 a13

a−1
11 a21 0 0

a−1
11 a31 a−1

22 a32 0

⎞
⎟⎠ =

⎛
⎜⎝

0 1
2 × 1

2
1
2 × 2

5
1
2 × 1

2 0 0
1
2 × 3 1

2 × 1
2 0

⎞
⎟⎠ =

⎛
⎜⎝

0 1
4

1
5

1
4 0 0
3
2

1
4 0

⎞
⎟⎠ .

Hence, by using mathematica, we get

ρ(K) = max eigenvalues[K] = 0.633982 < 1.

Thus, by Theorem 3.1, system (35) has a unique positive equilibrium which is globally
asymptotically stable. Figure 2 shows the asymptotic behavior of system (35).

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
Asymptotic behavior of three−species periodic system

t

x

x1(t)

Fig. 2. Asymptotic behavior of system (35) with initial values (x1(0), x2(0), y1(0)) =
(0.1, 0.1, 0.1), (0.3, 0.3, 0.3), (0.7, 0.7, 0.7), (1, 1, 1), (1.5, 1.5, 1.5), (2, 2, 2), respectively, t ∈ [0, 35].

Remark 5.1. In this example, one can observe that though the spectral ρ(K) < 1,
the matrix norms (including the row norm, the column norm, and the Frobenius
norm) of matrix K are all bigger than 1. For instance, the column norm

‖K‖1 = max
1≤j≤3

⎧⎨
⎩a−1

jj

3∑
i=1,i�=j

aij

⎫⎬
⎭ = 0 +

3
2

+
1
4
> 1.

This fact implies that our results are more general than those in [8, 9, 10].
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BOUNDS FOR THE EFFECTIVE STRESS OF CLASSICAL AND
STRAIN GRADIENT PLASTIC COMPOSITES∗

VIET HA HOANG†

Abstract. Given an average strain, rigorous bounds are established for the stress in a deforma-
tion of a plastic composite material, which follows a power law. The deformation theory of strain
gradient plasticity, which introduces an internal material length scale, is used. It falls into the clas-
sical deformation theory of elasto-plasticity when this length scale equals zero. The method employs
the idea by Milton and Serkov [J. Mech. Phys. Solids, 48 (2000), pp. 1259–1324] and other tech-
niques for bounding effective energy. We derive two stress bounds which closely relate to the Reuss
lower bound and the Hashin–Shtrikman upper bound for the energy. We then study numerically
the dependence on the internal length scale of the magnitude of the stress and the region in the
stress space determined by these two bounds in which the macro stress must lie. The results confirm
the prediction made by Fleck and Willis [J. Mech. Phys. Solids, 52 (2004), pp. 1855–1888] for the
macroscopic uniaxial response by differentiating their energy bounds.

Key words. stress bounds, plastic composites, strain gradient, compensated compactness,
null-Lagrangian
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1. Introduction. For nonlinear composite materials, a correct bound for the
constitutive relation (e.g., a bound for the average stress in terms of the average
strain) may not be induced from an energy bound: Differentiating an energy bound
with respect to the average strain may not give a bound for the average stress. A
separate technique for bounding the constitutive relations needs to be developed.
Milton and Serkov [8] propose an approach for bounding the current in nonlinear
conducting composites. They present it as an extension of earlier works on bounding
the yield surface of plastic composites (Kohn and Little [5] and Nesi et al. [10])
which are applications of the compensated compactness due to Tartar [20, 21] and
Murat and Tartar [9] and also the translation method of Lurie and Cherkaev [6, 7]
and Murat and Tartar [9]. The key idea is to use a functional of the current j(x)
and the electric field e(x) which equals 0 in the admissible range of (j, e) and equals
infinity elsewhere, and to employ a translated function Q(j, e) such that Q(j(x), e(x))
is quasiconvex. For simplicity, they use Q = j.e which is a null Lagrangian, but
predict that better bounds may be obtained by using other functions. The method is
further developed for nonlinear elastic composites by Talbot and Willis [19], using a
homogeneous comparison linear material, and by Peigney [11].

In this paper, we study bounds for the effective stress of a power law plastic
composite under a uniform boundary strain. We use the strain gradient plasticity
theory of Fleck and Willis [3] which introduces an internal material length scale. This
is a modification of the phenomenological constitutive law by Fleck and Hutchinson
[2]. It reduces to classical deformation theory of elasto-plasticity when the internal
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length scale is 0; thus this work holds for classical plasticity. We cannot apply directly
the techniques of [8] and [19] as the stress is not a function of the strain. It depends
nonlinearly on the plastic strain and its derivatives. The approach we develop is an
adaptation of that of Milton and Serkov [8], and the ideas for bounding the effective
energy of nonlinear composites.

In the next section, we introduce the strain gradient plasticity theory. A bound
that resembles the Reuss bound for the energy is deduced in section 3, which gives
a lower bound for the stress magnitude. This lower bound, indeed, can be deduced
by differentiating the Reuss lower bound for the effective energy in Fleck and Willis
[3]. A stress bound which closely relates to the Hashin–Shtrikman upper bound is
found in section 4. For the stress magnitude, deep in the plastic range, it gives a
bound which can be obtained by differentiating the Hashin–Shtrikman upper energy
bound in [3]. This is expected as deep in the plastic range, the upper energy bound
in [3] follows a power law, and given that the exact effective energy also follows
a power law, the energy bound in effect gives a bound for the reference strength.
However, for smaller total strain, the energy upper bound does not follow a power
law; differentiating the energy bound does not give a rigorous bound for the magnitude
of the stress. Our results provide rigorous stress bounds for the whole range of the
total strain. We present some numerical results in section 5. They show that the
Hashin–Shtrikman type bound for the magnitude of the stress increases with the
material length scale. This is in agreement with the prediction Fleck and Willis [3]
made by differentiating the upper energy bound. Deep in the plastic regime, the
upper bound for the magnitude of the stress follows a power law, which is also in
agreement with [3]. For a specific boundary strain, our bounds give a particular
region in the stress space in which the stress tensor lies. We give and analyze some
examples for a couple of particular boundary strains, which show that the region for
a larger material length scale contains the region for smaller ones. This agrees with
the previously mentioned fact that bounds for the stress magnitude increase with the
material length scale. The paper ends with a short concluding section 6 in which the
main results are summarized.

Before Fleck and Willis [3], bounds and estimates for the overall properties of
plastic composites had been studied in several works. A number of them, e.g., Ponte
Castañeda [12], Ponte Castañeda and De Botton [13], and Suquet [17], study conven-
tional plastic materials where bounds and estimates for the effective energy density,
and thus for the yield strength, are deduced. Extending these works, composites,
whose components are under the effect of strain gradient which introduces internal
length scales, are considered in Smyshlyaev and Fleck [14, 15, 16]. The present paper
complements these works by contributing rigorous bounds for the effective stress.

2. Strain gradient energy. We consider a plastic composite material whose
energy functional follows the strain gradient deformation theory of Fleck and Willis
[3], which modifies the original theory of Fleck and Hutchinson [2]. We assume that
the material is incompressible and is elastically homogeneous. The energy density
function is defined as

U(εij , εPij , ε
P
ij,k) = μ(εij − εPij)(εij − εPij) + V (εPij , ε

P
ij,k),

where the potential V = V (EP ); EP is the effective plastic strain measure defined by

EP =

√
2
3
(εPijε

P
ij + l2εPij,kε

P
ij,k)

1/2.
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The underlying idea is that εPijε
P
ij provides a measure of the density of the statistically

stored dislocations while εPij,kε
P
ij,k provides a measure of the geometrically necessary

dislocations. The original theory of Fleck and Hutchinson [2] contains three material
scales l1, l2, and l3. Here following [3], we consider a simplified version which contains
a single scale l. The material is a composite so that the potential V depends on the
position x and is rapidly oscillating. We restrict our attention to the case of power
law components; i.e., the potential V has the form

V (x, εPij , ε
P
ij,k) =

Σ(x)e0
N + 1

(EP
e0

)N+1

,(2.1)

where Σ(x) is the reference strength, and 0 < N < 1. The strain εij is defined as
usual as

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

In this setting, the displacement ui and the plastic strain εPij are treated as dependent
variables on equal footing. Assuming that an affine displacement ui = ε̄ijxj (ε̄ is a
constant tensor) is prescribed on the boundary of a domain Ω ∈ R3 which has unit
volume, the deformation minimizes the energy functional

Ψ(ui, εPij) =
∫

Ω

U(εij , εPij , ε
P
ij,k)dx.(2.2)

We introduce the conjugate variables

σij =
∂U

∂εij
= 2μ(εij − εPij),

sij =
∂U

∂εPij
= −2μ(εij − εPij) +

∂V

∂εPij
,(2.3)

τijk =
∂U

∂εPij,k
=

∂V

∂εPij,k
.

Setting to zero the first variation of (2.2), we get the equilibrium equations

σij,j = p,i,

σij + τijk,k =
∂V

∂εPij
,(2.4)

τijknk = 0,

where p is a pressure field whose presence is due to the incompressibility. From this
we have

τijk,k = sij ,(2.5)

and

σij =
∂V

∂εPij
−
( ∂V

∂εPij,k

)
,k
.(2.6)

As the constitutive materials are incompressible, εii = εPii = 0. The phases are
assumed to be perfectly bonded together so that there is no energy built up on the
surface between different components as considered in, e.g., Gudmundson [4] and
Aifantis and Willis [1]. Throughout, 〈.〉 denotes the mean value of a function in Ω;
we denote σ̄ = 〈σ〉, ε̄ = 〈ε〉, and ε̄P = 〈εP 〉. As usual, repeated indices indicate
summation.
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3. Reuss-type bound for the stress. In this section, we adopt the approach
by Milton and Serkov [8] to find a Reuss-type bound for the stress, using the null
Lagrangian σ : ε. However, unlike the situations in [8], [19], and [11], here we need to
take into account both the strain fields ε and εP , and the stress σ is a complicated
nonlinear function of εP and its derivatives. For a constant tensor λ, it is not possible
to deal with supε{λ : ε− σ : ε/2} as in [8]. We, instead, work with

F (λ) = sup
{∫

Ω

(
λ : εP − 1

2
σ : εP

)
dx

}
,

where the supremum is taken with respect to all the tensor fields εP (x) and σ(x) that
satisfy conditions (2.6), (2.3c), and (2.4c). From these conditions

∫
Ω

σijε
P
ijdx =

∫
Ω

∂V

∂εPij
εPijdx+

∫
Ω

∂V

∂εPij,k
εPij,kdx

=
∫

Ω

Σ(x)e−N0

(2
3

)N+1
2

(εP : εP + l2∇εP : ∇εP )
N+1

2 dx.(3.1)

Therefore

F (λ) ≤ sup
εP

{∫
Ω

(
λ : εP − Σ(x)e−N0

2

(2
3

)N+1
2

(εP : εP + l2∇εP : ∇εP )
N+1

2

)
dx

}
,

(3.2)

where the supremum is taken over all the tensor fields εPij(x). Since

λ : εP − Σ(x)e−N0

2

(2
3

)N+1
2

(εP : εP + l2∇εP : ∇εP )
N+1

2

≤ sup
εP

{
λ : εP − Σ(x)e−N0

2

(2
3
εP : εP

)N+1
2
}

= Ne021/N (Σ(x))−1/N
(2

3

)−N+1
2N

(N + 1)−
N+1

N (λ : λ)
N+1
2N ,

we have

F (λ) ≤ Ne021/N 〈Σ−1/N 〉
(2

3

)−N+1
2N

(N + 1)−
N+1

N (λ : λ)
N+1
2N .

From ∫
Ω

(λ : εP − 1
2
σ : εP )dx− F (λ) ≤ 0,

we deduce ∫
Ω

(λ : ε− 1
2
σ : ε)dx− F (λ) ≤

∫
Ω

(λ(ε− εP ) − 1
2
σ : (ε− εP ))dx

=
∫

Ω

( 1
2μ
λ : σ − 1

4μ
σ : σ

)
dx.

Hence

λ : ε̄− 1
2
σ̄ : ε̄− F (λ) ≤ 1

2μ
λ : σ̄ − 1

4μ
σ̄ : σ̄
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(from the Cauchy–Schwarz inequality,
∫
Ω
σ : σdx ≥ σ̄ : σ̄). Thus

λ :
(
ε̄− σ̄

2μ

)
−Ne021/N 〈Σ−1/N 〉

(2
3

)−N+1
2N

(N +1)−
N+1

N (λ : λ)
N+1
2N ≤ 1

2
σ̄ :
(
ε̄− σ̄

2μ

)
.

Optimizing over the field λ, the optimal value of the left-hand side is obtained when

λ : (ε̄− σ̄

2μ
) = e021/N 〈Σ−1/N 〉

(2
3

)−N+1
2N

(N + 1)
−1
N (λ : λ)

N+1
2N .

We then obtain the bound

((
ε̄− σ̄

2μ

)
:
(
ε̄− σ̄

2μ

)) 1+N
2
(

2
3

)N+1
2

e−N0 〈Σ−1/N 〉−N ≤ σ̄ :
(
ε̄− σ̄

2μ

)
.(3.3)

From

ε̄− σ̄

2μ
= ε̄P ,

the bound can be written as

(ε̄P : ε̄P )
1+N

2

(2
3

)N+1
2
e−N0 〈Σ−1/N 〉−N ≤ σ̄ : ε̄P .

Using the Cauchy–Schwarz inequality for the right-hand side

σ̄ : ε̄P ≤ (σ̄ : σ̄)1/2(ε̄P : ε̄P )1/2,(3.4)

we deduce the following bound for ‖σ̄‖

‖ε̄P‖N
(2

3

)N+1
2
e−N0 〈Σ−1/N 〉−N ≤ ‖σ̄‖.

This can be obtained by differentiating the Reuss bound for the effective energy (3.25)
of Fleck and Willis [3] with respect to ε̄Pij ; i.e., the left-hand side of the above equals

(
∂VR
∂ε̄Pij

.
∂VR
∂ε̄Pij

)1/2

,

where VR(ε̄Pij) is the Fleck and Willis’s Reuss bound and ε̄P stands for εP0 in Fleck
and Willis’s notations.

4. Hashin–Shtrikman-type bound for the stress. We now deduce a Hashin–
Shtrikman-type bound for the constitutive relation. The idea follows closely those for
bounding the effective energy of a nonlinear composite and those of Milton–Serkov
[8] and Talbot and Willis [19]. We use the null Lagrangian σ : ε. As in the previous
section, it is necessary to manipulate the quantity

∫
Ω
σ : εPdx. We will write this in

terms of σ, s, and τ rather than εP and ∇εP ; the reason will be given later. From
(2.3a,b) and (3.1),

∫
Ω

σ : εPdx = e0

(2
3

)−N+1
2N

∫
Ω

Σ(x)−1/N
(
(σ + s) : (σ + s) +

1
l2
τ : τ

)N+1
2N

dx.(4.1)
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The expression under the integral on the right-hand side is nonlinear; thus following
the well-known procedure for bounding nonlinear composites (see, for example, [3]
among many other references), we choose a “linear comparison” quantity

b(x)
(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
.

Indeed, in the unrealistic case of linear components, i.e., N = 1,∫
Ω

σ : εPdx =
∫

Ω

b(x)
(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
dx,

where b(x) = (3/2)e0Σ(x)−1. We then choose a homogeneous comparison material;
i.e., we compare this quantity to b0((σ+ s) : (σ+ s) + τ : τ/l2) where b0 ≤ b(x). This
again follows the usual procedure for bounding the effective energy, and for bounding
the constitutive relation of Talbot and Willis [19].

For each tensor β, we define

F (β) = sup
ρ
{β : ρ+ (b0 − b(x))(ρ : ρ)}

=
β : β

4(b(x) − b0)
.

For ρ = σ + s,

β : (σ + s) + (b0 − b(x))((σ + s) : (σ + s)) − β : β
4(b(x) − b0)

≤ 0,

so

β : (σ + s) + (b0 − b(x))
(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
− β : β

4(b(x) − b0)
≤ 0.

From this

β : (σ + s) + (b0 − b(x))
(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
− β : β

4(b(x) − b0)
+

1
4μ
σ : σ − 1

2
σ : (ε− εP ) ≤ 0.

Taking the integral over Ω,

−1
2
σ̄ : ε̄+

∫
Ω

(
1
4μ
σ : σ + β : (σ + s) + b0

(
(σ + s) : (σ + s) +

1
l2
τ : τ

)

− β : β
4(b(x) − b0)

)
dx +

∫
Ω

(
1
2
σ : εP − b(x)

(
(σ + s) : (σ + s) +

1
l2
τ : τ

))
dx ≤ 0.

(4.2)
Let K be the set of triplets of tensors (σ, s, τ) that satisfy σij,j = p,i for a scalar
function p(x), τijknk = 0 on ∂Ω and τijk,k = sij . We proceed by taking the infimum
of the left-hand side of (4.2) with respect to (σ, s, τ) ∈ K. From (4.1),∫

Ω

1
2
σ : εP − b(x)

(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
dx

≥
∫

Ω

inf
Z

{(
1
2
e0

(
2
3

)−N+1
2N

(Σ(x))−1/NZ(N+1)/(2N) − b(x)Z

)}
dx,(4.3)



1604 VIET HA HOANG

where Z is a scalar quantity. Computing the infimum, we get

inf
{σ,s,τ}∈K

∫
Ω

1
2
σ : εP − b(x)

(
(σ + s) : (σ + s) +

1
l2
τ : τ

)
dx

≥ −1 −N

2N

(1 +N

2N

)N+1
N−1

2
2N

1−N e
2N

N−1
0

(2
3

) 1+N
1−N

∫
Ω

Σ(x)
2

1−N b(x)
1+N
1−N dx.

Inequality (4.3) bears some resemblance to the procedure for bounding the effective
energy of a nonlinear composite initiated by Ponte-Castañeda [12]. Note that it is
not possible to obtain a finite infimum if we use (3.1) instead of (4.1) and a linear
comparison material.

Now we find

inf
{σ,s,τ}∈K

∫
Ω

(
1
4μ
σ : σ + β : (σ + s) + b0

(
(σ + s) : (σ + s) +

1
l2
τ : τ

))
dx.

Taking a variation with respect to σ, we find that for all stress tensors σ′ with zero
mean that satisfy (2.4a) and σ′

ii = 0, we have
∫ (

β +
1
2μ
σ + 2b0(σ + s)

)
: σ′dx = 0.(4.4)

Substituting sij = τijk,k and taking a variation of τ , for all fields τ ′ such that τ ′ijknk =
0 on ∂Ω, we have∫

Ω

(
−βij,k − 2b0(τijl,lk + σij,k) +

2b0
l2
τijk

)
τ ′ijkdx = 0.(4.5)

Equation (4.4) implies that

βij +
1
2μ
σij + 2b0(σij + sij) =

1
2
(vi,j + vj,i),(4.6)

vi,i = 0

for a vector field v(x) ∈ R
3 with an affine boundary displacement, i.e., vi = ēijxj on

the boundary ∂Ω; so from (2.4a)

vi,jj − (4b0 + 1/μ)p,i = 2βij,j + 4b0sij,j ,(4.7)

the constant tensor ē satisfies

ēij = 〈βij〉 +
σ̄ij
2μ

+ 2b0σ̄ij .(4.8)

Choosing τ ′ijk(x) = θij,k(x) where θ satisfies the condition θij,knk = 0 on ∂Ω, we get
∫

Ω

(
βij,k + 2b0(τijl,lk + σij,k) −

2b0
l2
τijk

)
, k

θij

+
∫
∂Ω

(βij,k + 2b0(τijl,lk + σij,k) −
2b0
l2
τijk

)
nkθijdS = 0.

As θ(x) can be chosen arbitrarily, we deduce that
(
βij,k + 2b0(τijl,lk + σij,k) −

2b0
l2
τijk

)
, k

= 0,
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and (
βij,k + 2b0(τijl,lk + σij,k) −

2b0
l2
τijk

)
nk = 0

on ∂Ω. From these

βij,kk + 2b0(sij,kk + σij,kk) −
2b0
l2
sij = 0,(4.9)

with the boundary condition
(
βij,k + 2b0(σij,k + sij,k)

)
nk = 0.

Using σ′ = σ − σ̄ and τ ′ = τ in (4.4) and (4.5), we deduce that

inf
{σ,s,τ}∈K

∫
Ω

(
1
4μ
σ : σ + β : (σ + s) + b0

(
(σ + s) : (σ + s) +

1
l2
τ : τ

))
dx

=
1
2

∫
β : (σ + s)dx+

1
2
〈β〉 : σ̄ +

1
4μ
σ̄ : σ̄ + b0σ̄ : σ̄.

We then deduce the following bound for the stress:
∫

Ω

(
1
2
β : (σ + s) − β : β

4(b(x) − b0)

)
dx+

1
2
〈β〉 : σ̄ +

1
4μ
σ̄ : σ̄ + b0σ̄ : σ̄ − 1

2
σ̄ : ε̄

− 1 −N

2N

(1 +N

2N

)N+1
N−1

2
2N

1−N e
2N

N−1
0

(2
3

) 1+N
1−N

∫
Ω

Σ(x)
2

1−N b(x)
1+N
1−N dx ≤ 0.(4.10)

Solving (4.7) and (4.9), we find that σ and s depend on β linearly. In particular, there
are fourth-order tensors Mijkl(x) and Nijkl(x) such that

σ(x)− σ̄ =
∫
Mijkl(x−x′)(β(x′)−〈β〉)dx′, s(x) =

∫
Nijkl(x−x′)(β(x′)−〈β〉)dx′,

the integral being taken over the infinite domain due to the small correlation of the
phases. We deduce this in Appendix A. Optimizing (4.10) by taking the supremum
of ∫ (

1
2
β : (σ + s) − β : β

4(b(x) − b0)

)
dx +

1
2
〈β〉 : σ̄,(4.11)

with respect to β, at the value of β that the supremum is attained, the bound becomes

1
2
〈β〉 : σ̄ +

1
4μ
σ̄ : σ̄ + b0σ̄ : σ̄ − 1

2
σ̄ : ε̄

−1 −N

2N

(1 +N

2N

)N+1
N−1

2
2N

1−N e
2N

N−1
0

(2
3

) 1+N
1−N

∫
Ω

Σ(x)
2

1−N b(x)
1+N
1−N dx ≤ 0.(4.12)

We now restrict our consideration to an M phase composite. Let χr(x) be the indi-
cator of phase r. The probability that a point x is in phase r is pr so that the volume
fraction of phase r is pr. The probability that two points x and x′ are in phases r
and s, respectively, is 〈χr(x)χs(x′)〉 = prs(x, x′). The composite is assumed to be
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statistically homogeneous isotropic so that prs(x, x′) = prs(x − x′) = prs(|x − x′|).
The function b(x) is constant in each phase, i.e.,

b(x) =
M∑
r=1

brχr(x).

We also restrict the field β(x) to the form

β(x) =
M∑
r=1

βrχr(x).

The expression (4.11) that we need to maximize has the form

1
2

∫
(M+N)ijkl(x)

(
M∑

r,s=1

βrijβ
s
klprs(x)−βrijβsklprps

)
dx+

M∑
s=1

psβ
s
ij σ̄ij−

M∑
s=1

βsijβ
s
ij

4(bs − b0)
ps.

Taking a variation with respect to β, we deduce that the best value of β satisfies the
equation

M∑
r,s=1

β′s
ijβ

r
kl

∫
(M+N)ijkl(x)(prs(x)−prps)dx+

( M∑
s=1

psβ
′s
ij

)
σ̄ij−

M∑
s=1

βsijβ
′s
ij

2(bs − b0)
ps = 0

for all β′s for s = 1, . . . ,M so that

M∑
r=1

βrkl

∫
(M +N)ijkl(x)(prs(x) − prps)dx + psσ̄ij −

βsijps

2(bs − b0)
= 0.

Restricting to a two-phase isotropic material, there is a function h(x) = h(|x|) such
that

p11(x) − p1p1 = p22(x) − p2p2 = −(p12(x) − p1p2) = −(p21(x) − p1p2) = p1p2h(r),

where r = |x|. Defining the fourth-order tensor

Aijkl =
∫

(M +N)ijkl(x)h(x)dx,

the equations for β then become

Aijkl(βskl − 〈βkl〉) + σ̄ij −
βsij

2(bs − b0)
= 0.

To determine the left-hand side of (4.12), we need to compute 〈β〉. In Hill’s notation,
A = (0, 2μA). The equations for β are written as

(0, 2μA)(βs − 〈β〉) + σ̄ − βs

2(bs − b0)
= 0,

which gives

βs =
2(bs − b0)

4μA(bs − b0) − 1

(
(0, 2μA)〈β〉 − σ̄

)
.
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From this we get

〈β〉 =
∑2
s=1 ps2(bs − b0)/(4μA(bs − b0) − 1)

4μA
∑2
s=1 ps(bs − b0)/(4μA(bs − b0) − 1) − 1

σ̄.

Letting b0 = b1 and b2 = γb0 where γ > 1,

〈β〉 =
2p2b0(γ − 1)

1 − 4p1μAb0(γ − 1)
σ̄.

We now maximize the left-hand side of (4.12) with respect to b0 and γ to get

sup
b0

sup
γ≥1

{
p2b0(γ − 1)

1 − 4p1μAb0(γ − 1)
σ̄ : σ̄ +

1
4μ
σ̄ : σ̄ + b0σ̄ : σ̄ − 1

2
σ̄ : ε̄

− 1 −N

2N

(1 +N

2N

)N+1
N−1

( 2
e0

) 2N
1−N

(2
3

) 1+N
1−N

b
1+N
1−N

0

(
Σ

2
1−N

1 p1 + γ
1+N
1−N Σ

2
1−N

2 p2

)}
≤ 0.

(4.13)

A bound for the modulus of the stress can then be found from

sup
b0

sup
γ≥1

{
p2b0(γ − 1)

1 − 4p1μAb0(γ − 1)
‖σ‖2 +

1
4μ

‖σ‖2 + b0‖σ‖2 − 1
2
‖σ‖‖ε̄‖

− 1 −N

2N

(1 +N

2N

)N+1
N−1

( 2
e0

) 2N
1−N

(2
3

) 1+N
1−N

b
1+N
1−N

0

(
Σ

2
1−N

1 p1 + γ
1+N
1−N Σ

2
1−N

2 p2

)}
≤ 0.

(4.14)

In Appendix B, we show that when the function h(r) = e−r/a,

μA =
3

20b0
1

(l/a+ (1 + 4μb0)1/2)2
+

1
10b0

1
(l/a+ 1)2

− 1
4b0

.

The quantity a represents the correlation length scale for the microstructure. When
|x − x′| >> a, prs(x, x′) ≈ pr(x)ps(x′). Since we use a linear comparison material
whose strength reference is of the order 1/b0, deep in the plastic range, we expect
that the inverse of the optimal b0 is of the order of the secant modulus which is much
less than μ, i.e., μb0 >> 1. Therefore, only the last two terms in the expression of μA
have significant contribution; μA is approximated as

μA =
1

10b0
1

(l/a+ 1)2
− 1

4b0
.

We then take the maximum of the sum of the terms involving b0 in (4.13)

5γ(l/a+ 1)2 − 2p1(γ − 1)
(p2 + γp1)5(l/a+ 1)2 − 2p1(γ − 1)

b0σ̄ : σ̄

− 1 −N

2N

(1 +N

2N

)N+1
N−1

( 2
e0

) 2N
1−N

(2
3

) 1+N
1−N

b
1+N
1−N

0

(
Σ

2
1−N

1 p1 + γ
1+N
1−N Σ

2
1−N

2 p2

)

with respect to b0. The approximated bound is

Σ+e0

(2
3

)− 1+N
2N

(σ̄ : σ̄)
1+N
2N − σ̄ : (ε̄− σ̄

2μ
) ≤ 0,(4.15)
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where

Σ+ = max
γ≥1

{( 5γ(l/a+ 1)2 − 2p1(γ − 1)
(p2 + γp1)5(l/a+ 1)2 − 2p1(γ − 1)

) 1+N
2N
(
p1Σ

2
1−N

1 +p2γ
1+N
1−N Σ

2
1−N

2

)N−1
2N

}
.

Using the Cauchy–Schwarz inequality, a bound for ‖σ̄‖ can be found from

Σ+e0

(2
3

)− 1+N
2N ‖σ̄‖

1+N
N − ‖σ̄‖‖ε̄‖ +

1
2μ

‖σ̄‖2 ≤ 0.(4.16)

Regarding

ε̄− σ̄

2μ
= ε̄P ,

and using the Cauchy–Schwarz inequality, we get the bound for the modulus of the
stress

‖σ‖ ≤ (Σ+)−Ne−N0

(2
3

) 1+N
2 ‖ε̄P ‖N .(4.17)

This bound can be obtained by differentiating the energy upper bound U+ in (5.12)
of [3] with respect to ε̄P (ε̄P here stands for εP0 in [3]) when we disregard the elastic
part; i.e., it equals

∂U+

∂ε̄Pij

∂U+

∂ε̄Pij
.

5. Numerical results. We study the effect of the length scale l on the stress
bounds found in the previous sections. By differentiating the Hashin–Shtrikman upper
bound for the energy, in the case of macroscopic uniaxial response, Fleck and Willis
[3] show that when the material length scale l increases, the stress increases. This
is confirmed from our bound (4.14) for the magnitude ‖σ̄‖ of the stress. In Figure
5.1, we plot on the log-log axes the magnitude of the stress ‖σ̄‖ versus the magnitude
of the strain ‖ε̄‖ for the example where N = 0.3, p1 = 0.3, p2 = 0.7, Σ1 = 0.03,
Σ2 = 0.01, e0 = 1, μ = 1 for the values 0.01, 0.1, and 1 of l/a. It is clear that
the stress bound increases with increasing l/a. An additional feature that manifests
from this plot is that when the total strain magnitude ‖ε̄‖ exceeds 0.015, the plots
asymptote straight lines; i.e., the stress-strain relation follows a power law. This is
consistent with (4.17), where we made the approximation (4.15) of the stress bound.
(Note that deep in the plastic range, the magnitude of ε̄P approximates ‖ε̄‖.)

Similar features are shown in Figure 5.2 for the same parameters except that
N = 0.1. In the range plotted, since N is now smaller, we see that for small ‖ε̄‖, the
bounds for different values of l/a are almost the same. The elastic strain dominates
in this range so the material scale l has no effect.

Figure 5.3 shows that the approximated formula (4.16) gives about the same
bound for the magnitude of the stress when the magnitude of the strain exceeds
about 0.015. The dashed line is the stress versus strain curve found from the (4.16)
where the solid line is the exact bound (4.14). When the total stress is smaller
than 0.01, (4.16) may not adequately represent (4.14). The parameters we use are
N = 0.3, p1 = 0.3, p2 = 0.7,Σ1 = 0.03,Σ2 = 0.01, l/a = 0.1, e0 = 1, μ = 1.

Keeping the same parameters except that N = 0.1, Figure 5.4 shows the exact
Hashin–Shtrikman bound (4.14) and the approximated bound (4.16) for the magni-
tude of the stress in the log-log axis. We see that the two bounds are almost the same
for small strain. This is because of the dominance of the elastic strain.
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Fig. 5.1. The stress bound increases with l/a.
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Fig. 5.2. The stress versus the strain for the exact Hashin–Shtrikman bounds (N = 0.1).

Given the boundary strain ε̄, (3.3) and (4.13) give a region in the stress space
where the effective stress tensor should lie for all the microstructures. In Figure 5.5,
we plot the area restricted by the bounds (3.3) and (4.13) for the two-dimensional
stress space σ̄ = (σ1, σ2). The two-dimensional strain ε̄ = (ε1, ε2) is ε1 = 0.001 and
ε2 = 0.0005. This corresponds to the small stress magnitude area in Figure 5.3. Other
parameters are N = 0.3, l/a = 0.1, p1 = 0.3, p2 = 0.7, Σ1 = 0.03, Σ2 = 0.01, e0 = 1,
μ = 1.

Figure 5.6 shows the area of the stress for ε1 = 0.08 and ε2 = 0.04. The stress
magnitude is in the larger end in Figure 5.3. Other parameters are kept the same.
The area bounded by (3.3) seems to blow up as the magnitude of σ̄ is now much
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Fig. 5.3. Stress versus strain for the exact and approximated Hashin–Shtrikman-type bounds.
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Fig. 5.4. Stress versus strain for the exact and approximated Hashin–Shtrikman bounds (N =
0.1).

smaller than the magnitude of ε̄. The bound (3.3) now behaves like the linear bound

(ε̄ : ε̄)
1+N

2

(2
3

)N+1
2
e−N0 〈Σ−1/N 〉−N ≤ σ̄ : ε̄;

this is shown in Figure 5.7.
The bound (3.3) is insensitive to l/a. As shown in Figure 5.1, the bound for ‖σ‖

increases as l/a increases. We predict that given a boundary strain ε̄, the area in the
stress space that bounds σ̄ gets larger with increasing l/a. This is shown in Figure
5.8 for ε̄ = (ε1, ε2) where ε1 = 0.001 and ε2 = 0.0005. Other parameters are as for
Figure 5.6. The area for l/a = 0.1 is strictly contained inside the area for l/a = 1.

For the same parameters, Figure 5.9 presents the bound for the stress σ̄ = (σ1, σ2)
given that ε̄ = (0.001, 0.0005). The dashed line shows the bound given by the ap-
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Fig. 5.6. The stress bounds (3.3) and (4.13) in the two-dimensional space for ε̄ = (0.08, 0.04).

proximated stress bound (4.15). It is clear that in the small stress magnitude range,
(4.15) does not give a good approximation to the exact bound. However, for large
stress magnitude, (4.15) gives an excellent approximation. This is shown in Figure
5.10 for ε̄ = (0.08, 0.04).

6. Conclusions. We established bounds for the average stress in terms of the
average strain for an elasto-plastic composite whose components follow the strain
gradient theory of Fleck and Willis [3]. We confirmed rigorously the prediction by
[3] on the dependence of the average stress on the internal length scale, made by
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formally differentiating their energy bounds. Our results provide stress bounds for
all the range of the plastic strain. Deep in the plastic regime, they coincide with the
formal approximations by Fleck and Willis [3]. Given an average strain, the bounds
obtained here provide a specific region in the stress space in which the average stress
must lie, which is not available from the energy bounds. Our method is a combination
of the known bounding approaches for composite materials. It is a modification of
the elegant techniques for bounding the constitutive relations by Milton and Serkov
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Fig. 5.10. Exact and approximated bounds for ε̄ = (0.08, 0.04).

[8] and Talbot and Willis [19]. It also follows the ideas developed for the “nonlinear
Hashin–Shtrikman” bounds by Talbot and Willis [18], and Ponte-Castañeda [12].

Appendix A. In this appendix, we solve the equations (4.7) and (4.9). Let
Gip(x, x′) be the Green function satisfying

∂2Gip(x, x′)
∂xj∂xj

+ δipδ(x− x′) = P,i,
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subjecting to the incompressible condition ∂Gip(x, x′)/∂xi = 0 with the homogeneous
boundary condition. The solution v for (4.7) can be written as

vi(x′) = ēijxj +
∫

Ω

∂Gki(x, x′)
∂xl

(2βkl(x) + 4b0skl(x))dx.

Since ∫
Ω

∂Gki(x, x′)
∂xl

dx = 0,

we can write v as

vi(x′) = ēijxj +
∫

Ω

∂Gki(x, x′)
∂xl

(2βkl(x) + 4b0skl(x) − 2〈βkl〉)dx.

Let

eij(x′) =
1
2
(vi,j(x′) + vj,i(x′)).

Differentiating both sides and taking the symmetrization, we get

eij(x′) = ēij +
∫

Ω

Γijkl(x, x′)(2βkl(x) + 4b0skl(x) − 2〈βkl〉)dx(A.1)

where the fourth-order tensor Γ is defined as

Γijkl(x, x′) =
∂2Gki(x, x′)
∂xl∂x′j

symm (i, j)(k, l).

Assuming that the correlation length is small, following [3], we can substitute Γ by
its infinite body form, which depends only on x− x′; i.e., Γ(x, x′) = Γ(x− x′). Then
from (4.6) and (4.8), we have

βij +
1
2μ
σij + 2b0(σij + sij) = 〈βij〉 +

σ̄ij
2μ

+ 2b0σ̄ij

+
∫

Γijkl(x− x′)(2βkl(x) + 4b0skl(x) − 2〈βkl〉)dx.(A.2)

Note that the integral now can be approximated by an integral over the infinite
domain.

To solve (4.9), we consider the function g(x, x′) that satisfies the equation

∇2
xg(x, x

′) − 1
l2
g(x, x′) + δ(x− x′) = 0,

with the Neumann boundary condition. The solution of (4.9) can be writen as

sij(x′) + σij(x′) +
βij(x′)

2b0
=

1
l2

∫
Ω

g(x, x′)
(
σij(x) +

βij(x)
2b0

)
dx.

Since (1/l2)
∫
Ω g(x, x

′)dx = 1, we can write this as

sij(x′)+σij(x′)+
βij(x′)

2b0
=

1
l2

∫
Ω

g(x, x′)
(
σij(x)+

βij(x)
2b0

− σ̄ij−
〈βij〉
2b0

)
+ σ̄ij+

〈βij〉
2b0

.
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In the asymptotic limit, we can substitute g(x, x′) by its infinite body form g(x− x′).
The equation then becomes

sij(x′) + σij(x′) +
βij(x′)

2b0

=
1
l2

∫
Ω

g(x− x′)
(
σij(x) +

βij(x)
2b0

− σ̄ij −
〈βij〉
2b0

)
+ σ̄ij +

〈βij〉
2b0

.(A.3)

We now need to solve (A.2) and (A.3) for σ and s. Taking the Fourier transform

f̂(ξ) =
∫
eiξ.xf(x)dx,

we then have

β̂ij +
σ̂ij
2μ

+ 2b0(σ̂ij + ŝij) = 〈̂β〉ij +
ˆ̄σij
2μ

+ 2b0 ˆ̄σij

+ Γ̂ijkl(2β̂kl + 4b0ŝkl − 2〈̂β〉kl),

and

σ̂ij + ŝij +
β̂ij
2b0

=
1
l2
ĝ

(
σ̂ij +

β̂ij
2b0

− ˆ̄σij −
〈̂β〉ij
2b0

)
+ ˆ̄σij +

〈̂β〉ij
2b0

.

Rearranging these equations we have

σ̂ − ˆ̄σ =
2μ(2Γ̂ − I)
1 + 4b0μ

(β̂ − 〈̂β〉) +
4μb0(2Γ̂ − I)

1 + 4b0μ
ŝ,

and

σ̂ − ˆ̄σ =
−1
2b0

(β̂ − 〈̂β〉) − l2

l2 − ĝ
ŝ,

where

Iijkl =
1
2

(
δikδjl + δilδjk −

2
3
δijδkl

)

is the incompressible identity tensor. From this
(

2μ(2Γ̂ − I)
1 + 4b0μ

+
I

2b0

)
(β̂ − 〈̂β〉) +

(
4μb0(2Γ̂ − I)

1 + 4μb0
+

l2I

l2 − ĝ

)
ŝ = 0.(A.4)

On using Γ̂(2Γ̂ − I) = 0,

Γ̂ŝ = − l
2 − ĝ

2b0l2
Γ̂(β̂ − 〈̂β〉).

Substituting this into (A.4), we get

8μb0ĝΓ̂ + l2I

2b0l2(1 + 4μb0)
(β̂ − 〈̂β〉) +

l2 + 4μb0ĝ
(l2 − ĝ)(1 + 4μb0)

ŝ = 0.
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From this we find

ŝ =
−(8μb0ĝΓ̂ + l2I)(l2 − ĝ)

2b0l2(l2 + 4μb0ĝ)
(β̂ − 〈̂β〉),(A.5)

and

σ̂ − ˆ̄σ =
2μĝ(2Γ̂ − I)
l2 + 4μb0ĝ

(β̂ − 〈̂β〉),(A.6)

which we denote as

ŝ = N̂(β̂ − 〈̂β〉),

and

σ̂ = M̂(β̂ − 〈̂β〉).

The values of Γ̂ and ĝ are

ĝ(ξ) =
l2

1 + l2|ξ|2 , Γ̂ijkl(ξ) =
δikξjξl
|ξ|2 − ξiξjξkξl

|ξ|4 .

Appendix B. We now compute the value of μA. We have

10μA = Aijij =
∫

(M +N)ijij(x)h(x)dx.

From (A.5) and (A.6),

(M̂ + N̂)ijij =
2μĝ2(2Γ̂ijij − Iijij )
l2(l2 + 4μb0ĝ)

+
ĝIijij
2b0l2

− Iijij
2b0

.

Since Γ̂ijij = 1 and Iijij = 5,

(M̂ + N̂)ijij =
3

2b0
1

l2|ξ|2 + 1 + 4μb0
+

1
b0(l2|ξ|2 + 1)

− 5
2b0

.

We then apply the same procedure as in [3].
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EFFECTIVE EQUATIONS FOR LOCALIZATION AND SHEAR
BAND FORMATION∗

THEODOROS KATSAOUNIS† AND ATHANASIOS E. TZAVARAS‡

Abstract. We develop a quantitative criterion determining the onset of localization and shear
band formation at high strain-rate deformations of metals. We introduce an asymptotic procedure
motivated by the theory of relaxation and the Chapman–Enskog expansion and derive an effective
equation for the evolution of the strain rate, consisting of a second order nonlinear diffusion regu-
larized by fourth order effects and with parameters determined by the degree of thermal softening,
strain hardening, and strain-rate sensitivity. The nonlinear diffusion equation changes type across
a threshold in the parameter space from forward parabolic to backward parabolic, what highlights
the stable and unstable parameter regimes. The fourth order effects play a regularizing role in the
unstable region of the parameter range.

Key words. shear band, localization, thermoviscoplasticity, Chapman–Enskog expansion

AMS subject classifications. 74C20, 74H40, 35K65, 35Q72
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1. Introduction. One striking instance of material instability is observed in the
course of deformations of metals at high strain rates. It appears as an instability in
shear and leads to regions of intensely concentrated shear strain, called shear bands.
Since shear bands are often precursors to rupture, their study has attracted attention
in the mechanics literature (e.g., [1, 7, 8, 13, 14, 17, 22, 24, 25]).

In experimental investigations of high strain-rate deformations of steels, observa-
tions of shear bands are typically associated with strain softening response—past a
critical strain—of the measured stress-strain curve [8]. It was recognized by Zener and
Hollomon [27] that the effect of the deformation speed is twofold: First, an increase in
the deformation speed changes the deformation conditions from isothermal to nearly
adiabatic. Second, strain rate has an effect per se and needs to be included in the
constitutive modeling.

Under isothermal conditions, metals, in general, strain harden and exhibit a stable
response. As the deformation speed increases, the heat produced by the plastic work
causes an increase in the temperature. For certain metals, the tendency for thermal
softening may outweigh the tendency for strain hardening and deliver net softening. A
destabilizing feedback mechanism is then induced, which operates as follows (see [8]):
Nonuniformities in the strain rate result in nonuniform heating. Since the material
is softer at the hotter spots and harder at the colder spots, if heat diffusion is too
weak to equalize the temperatures, the initial nonuniformities in the strain rate are, in
turn, amplified. This mechanism tends to localize the total deformation into narrow
regions. On the other hand, there is opposition to this process by “viscous effects”
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induced by strain-rate sensitivity. The outcome of the competition depends mainly on
the relative weights of thermal softening, strain hardening, and strain-rate sensitivity,
as well as the loading circumstances.

This qualitative scenario is widely accepted as the mechanism of shear band for-
mation. However, despite several attempts, a quantitative explanation of the phe-
nomenon of shear bands is presently lacking. Moreover, the above picture is some-
what imprecise in terms of what determines (or rules out) the onset of localization.
It is this aspect of the problem that we attempt to address in the present work. We
use the model

(1.1)
vt =

1
r
σx,

θt = κθxx + σγt,

γt = vx,

where r, κ are nondimensional constants and the stress is given by an empirical power
law in the normalized form

(1.2) σ = θ−αγmγnt ,

appropriate for the flow rule of a viscoplastic material exhibiting thermal softening,
strain hardening, and strain-rate sensitivity. The model and its relevance to the
problem of shear band formation is explained in section 2.

There is extensive literature on the problem, including experimental [7, 14], me-
chanics and linearized analysis (e.g. [8, 1, 13, 17, 24, 25] and references therein),
numerical [26, 11], as well as nonlinear analysis [9, 18, 19, 20, 4, 3] and asymptotic
analysis studies [10, 12, 25]. With regard to the analysis of the shear band formation
process, analytical results account for either the case where the forcing is effected by
a boundary force [20, 22] causing a shear band at the boundary or in situations where
the initial data involve a localization in shear (or in the temperature) and the subse-
quent evolution leads to an intensification process to a fully developed band [3, 23].
It is indicated by numerical evidence in [24] and the analysis in [20, 3] that a collapse
of the stress-diffusion mechanisms is associated with the development of the bands.
There is a class of special solutions to (1.1) describing uniform shearing

(1.3)

vs = x,

γs = t+ γ0,

θs =
[
θ1+α0 +

1 + α

m+ 1

[
(t+ γ0)m+1 − γm+1

0

]] 1
1+α

,

σs = θ−αs (t)(t+ γ0)m,

and much of the analysis on (1.1) has centered on the issue of their stability. The form
of (1.3) suggests the change of variables (3.3) that transforms the stability problem
into the study of the asymptotic behavior for the reaction–diffusion-type system (3.4);
see section 3. In the special case of a fluid with temperature-dependent viscosity
(m = 0) the kinematic equation decouples from the remaining equations, and the
problem reduces to the study of the simplified model (4.1)–(4.2). This simpler system
is indeed the one that has been analyzed in most detail both analytically [3, 9, 18] but
also in numerical investigations [26, 11]. Its rescaled variant (4.4) admits invariant
rectangles in the parameter range q = −α + n > 0 but misses this property in the
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range q = −α+ n < 0. It is this dichotomy that provides a quantitative threshold to
stability, as shown in section 4: In the parameter range q > 0 the invariant rectangles
yield asymptotic stability of the uniform shearing solution; cf. Theorem 4.1. By
contrast, in the complementary region q < 0 moderate perturbations of the uniform
solutions can lead to instability and formation of shear bands; cf. Theorem 4.2.

The analysis on invariant domains of section 4 suggests a connection of the present
problem with the theory of relaxation systems (e.g., [5]) that turns out to be instru-
mental for understanding the onset of localization. This connection is studied in detail
in section 5 and motivates the derivation of an effective equation for the onset of lo-
calization in section 6. We outline the result in the following: Let T be a parameter
describing a time-scale, and consider a change of variables of the form

(1.4) θ(x, t) = (t+ 1)
m+1
α+1 ΘT

(
x,
s(t)
T

)
, vx(x, t) = V Tx

(
x,
s(t)
T

)
,

where s(t) is an appropriate rescaling of time (in fact, see (6.1) for the full trans-
formation). The new functions (UT ,ΘT ,ΓT ,ΣT ), with UT = V Tx satisfy the system
(6.3). It is clear that if (UT ,ΘT ,ΓT ,ΣT ) stabilizes as T → ∞, then its limiting profile
will describe the asymptotic form of (vx, θ, γ) as t→ ∞. This reduces the problem of
studying the asymptotic behavior into the problem of identifying the large T behavior
of (6.3), which lies within the realm of relaxation theory. Using a technique analogous
to the Chapman–Enskog expansion (e.g., [5]), we show in section 6 that UT = V Tx
satisfies for T >> 1 and r = O(T ) the effective equation

(1.5) ∂sU = ∂xx

(
c Up +

λc2

T
(βs+ 1)Up−1∂xxU

p

)
,

within order O( 1
T 2 ) and with parameters p = q

1+α = −α+m+n
1+α , β = m+1

1+α , c = β
α

1+α ,
and the coefficient of the fourth order term

λ =
α(1 +m+ n) −m(m+ 1)

(m+ 1)(1 + α)
.

We note that (1.5) changes type from forward parabolic when q = −α + m + n > 0
to backward parabolic when q = −α + m + n < 0, what captures the parameter
regime associated with the onset of localization. We also note that in the region of
instability q < 0, the coefficient λ > 0, and the fourth order term has a regularizing
effect. Numerical comparisons between the effective equation (1.5) and the system
(6.3) are performed in section 6 and indicate good agreement between the effective
and the actual problem.

2. The nature of shear band formation.

2.1. Description of the model. As shear bands appear and propagate as one-
dimensional structures (up to interaction times), most investigations have focused on
one-dimensional, simple shearing deformations. In a Cartesian coordinate system an
infinite plate, located between the planes x = 0 and x = d, is subjected to simple shear.
The thermomechanical process is described (upon neglecting the normal stresses) by
the list of variables: Velocity in the shearing direction v(x, t), shear strain γ(x, t),
temperature θ(x, t), heat flux Q(x, t), and shear stress σ(x, t). They are connected
through the balance of linear momentum

(2.1) ρvt = σx,
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the kinematic compatibility relation

(2.2) γt = vx,

and the balance of energy equation

(2.3) cρθt = Qx + βσγt,

where ρ is the reference density, c is the specific heat, and β is the portion of plastic
work converted to heat. The upper plate is subjected to a prescribed constant velocity
V , while the lower plate is held at rest: v(0, t) = 0, v(d, t) = V . It is further assumed
that the plates are thermally insulated: θx(0, t) = 0, θx(d, t) = 0. Thermal insulation
is appropriate for the analysis of shear band formation, since heat transfer at positions
distant from the bands via radiation is negligible at sufficiently short loading times.

For the heat flux we will use either the adiabatic assumption Q = 0 or a Fourier
law Q = kθx, with the thermal diffusivity parameter k. Imposing adiabatic conditions
projects the belief that, at high strain rates, heat diffusion operates at a slower time-
scale than the one required for the development of a shear band. It appears a plausible
assumption for the shear band initiation process but not necessarily for the evolution
of a developed band, due to the high temperature differences involved.

For the shear stress we set

(2.4) σ = f(θ, γ, γt),

where f is a smooth function, with f(θ, γ, 0) = 0 and fp(θ, γ, p) > 0 for p �= 0. In terms
of classification, the resulting model belongs to the framework of one-dimensional ther-
moviscoelasticity and is compatible with the requirements imposed by the Clausius–
Duhem inequality.

It is instructive to interpret (2.4) in the context of a constitutive theory for thermal
elastic-viscoplastic materials. In this context, it is assumed that the shear strain γ is
decomposed, additively, into elastic and plastic components: γ = γe+γp. The elastic
component γe satisfies linear elasticity with shear modulus Ge, that is, γe = 1

Ge
σ.

The evolution of the plastic component is dictated by a plastic flow rule:

(2.5) γpt = g(θ, γp, σ) or σ = f(θ, γp, γpt ),

where g is an increasing function in the variable σ and f(θ, γ, ·) is the inverse function
of g(θ, γ, ·). In summary,

(2.6)

1
Ge

σ + γp = γ,

1
Ge

σt + g(θ, γp, σ) = vx.

Note that (2.4) can be obtained from the constitutive theory (2.6) in the limit as the
elastic shear modulus Ge → ∞. Accordingly, γ should then be interpreted as the
plastic strain and (2.4) as an inverted plastic flow rule.

Viewing (2.4) as a plastic flow rule suggests the following terminology: The ma-
terial exhibits thermal softening at state variables (θ, γ, p), where fθ(θ, γ, p) < 0,
strain hardening at state variables where fγ(θ, γ, p) > 0 , and strain softening when
fγ(θ, γ, p) < 0. The amounts of the slopes of f in the directions θ, γ, and p measure
the degree of thermal softening, strain hardening (or softening), and strain-rate sen-
sitivity, respectively. The difficulty of performing high strain-rate experiments causes
uncertainty as to the specific form of the constitutive relation (2.4). Examples that
have been extensively used are the power law or the Arrhenius law outlined later.
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2.2. Nondimensionalization. To turn the system into a dimensionless form
we introduce the following nondimensional variables:

(2.7) x̂ =
x

d
, t̂ = tγ̇0, v̂ =

v

V
, θ̂ =

θ

τ0/ρc
, σ̂ =

σ

τ0
,

where we introduce a nominal stress τ0 to be appropriately selected later, a nominal
temperature θ0 = τ0

ρc , and a nominal strain rate γ̇0 = V
d .

With these choices we obtain the nondimensional system

(2.8)

v̂t̂ =
1
r
σ̂x̂,

θ̂t̂ = κθ̂x̂x̂ + βσ̂ v̂x̂,

γ̂t̂ = v̂x̂,

where the nondimensional numbers are

(2.9) r =
ρV 2

τ0
, κ =

k

ρcV d
,

while β is nondimensional by its very nature. The number r is a ratio of inertial
to viscoplastic stresses and depends on the choice of the normalizing stress τ0. The
constitutive law (2.4) turns to the nondimensional form

σ̂ = f̂(θ̂, γ̂, γ̂t̂) =
1
τ0
f

(
τ0
ρc
θ̂, γ̂, γ̇0γ̂t̂

)
.

The freedom in the choice of τ0 is useful in normalizing the form of f̂ .

2.3. Power laws. In the experimental literature on shear bands at high strain-
rates there is extensive use of constitutive laws in the form of power laws (e.g., [15],
[14])

(2.10) σ = G

(
θ

θr

)−α (
γ

γr

)m (
γt
γ̇r

)n
= G0 θ

−αγmγnt .

Here, α,m, n denote the thermal softening, strain hardening, and strain-rate sen-
sitivity parameters, respectively, G is a material constant, and θr, γr, γ̇r are some
reference values for temperature, strain, and strain rate, respectively. Specifically,
γr � 0.01 is the strain at yield in a quasi-static simple shear test at a nominal strain
rate γ̇ = 10−4/s for most steels. There is no unique choice for the other reference
values, but the simplest choices are γ̇r = 103/s, θr = 300K. This corresponds to the
nominal strain rate and ambient temperature of the usual torsional experiment. In
(2.10) θ and θr are measured in Kelvin. This power law model has been used exten-
sively to model steels that exhibit shear bands [15], [14] and is entirely empirical, but
it allows considerable flexibility in fitting experimental data over an extended range.
According to experimental data for most steels we have α = O(10−1), m = O(10−2),
and n = O(10−2).

The freedom in the choice of the nominal stress τ0 is useful to simplify the form
of f̂ . For (2.10), if we select τ0 such that

1
τ0
G

(
τ0
ρc

θr

)−α (
1
γr

)m (
γ̇0

γ̇r

)n
= 1,

it yields the nondimensional form σ̂ = θ̂−αγ̂mγ̂nt .
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2.4. The mathematical model. We collect the nondimensional form of the
equations, dropping the hats, in the form

(2.11)

vt =
1
r
σx,

θt = κθxx + σγt,

γt = vx,

σ = f(θ, γ, γt),

where r, κ are given by (2.9) and we have taken the (not so important) constant
β = 1. For the stress, we use the empirical power law, which, for the appropriate
choice of τ0, takes the normalized form

(2.12) σ = θ−αγmγnt .

The parameters α > 0, m and n > 0 serve as measures of the degree of thermal soft-
ening, strain hardening (or softening), and strain-rate sensitivity. Another commonly
used constitutive relation is the Arrhenius law

(2.13) σ = e−αθγnt .

In the form (2.13) the Arrhenius law does not exhibit any strain hardening, and
the parameters α and n measure the degree of thermal softening and strain-rate
sensitivity, respectively. The boundary conditions are prescribed velocities at the
ends of the plates, in the nondimensional form

(2.14) v(0, t) = 0, v(1, t) = 1, t ≥ 0,

and thermal insulation at the two ends

(2.15) θx(0, t) = 0, θx(1, t) = 0, t ≥ 0.

We impose initial conditions

(2.16) v(x, 0) = v0(x), θ(x, 0) = θ0(x) > 0, γ(x, 0) = γ0(x) > 0, x ∈ [0, 1].

For the initial data, we take v0x > 0, in which case a maximum principle shows that
γt = vx > 0 at all times, and thus all powers are well defined.

2.5. Isothermal versus adiabatic deformations. To illustrate the effect of
thermal softening on spatially uniform deformations, the isothermal and adiabatic
cases are contrasted. Consider a deformation where the plate is subjected to steady
shearing, with boundary velocities v = 0 at x = 0 and v = 1 at x = 1.

(i) In an isothermal deformation the temperature is kept constant, say θ0, by
appropriately removing the produced heat due to the plastic work. The “measured”
stress-strain response in this idealized situation coincides with the σ− γ graph of the
function σ = f(θ0, γ, 1). The slope of the graph is measured by fγ(θ0, γ, 1), and, for
a strain-hardening material, the graph σ − γ is monotonically increasing.

(ii) The situation in an adiabatic deformation is understood by studying a special
class of solutions describing uniform shearing. These are

vs(x, t) = x,

γs(x, t) = γs(t) = t+ γ0,

θs(x, t) = θs(t),
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where

dθs
dt

= f(θs, t+ γ0, 1),

θs(0) = θ0,

and γ0, θ0 are positive constants, standing for the initial values of the strain and
temperature. The resulting stress is given by the graph of the function

σs(t) = f(θs(t), t+ γ0, γ̇0),

which may be interpreted as stress versus time but also as stress versus (average)
strain. This effective stress-strain curve coincides with the σs − t graph, and the
material exhibits effective hardening in the increasing parts of the graph and effective
softening in the decreasing parts. The slope is determined by the sign of the quantity
fθ f + fγ , when this sign is negative, the combined effect of strain hardening and
thermal softening delivers net softening. For instance, for a strain-hardening (m > 0)
power law (2.12), the uniform shearing solution reads

(2.17)

γs(t) = t+ γ0,

θs(t) =
[
θ1+α0 +

1 + α

m+ 1

[
(t+ γ0)m+1 − γm+1

0

]] 1
1+α

,

σs(t) = θ−αs (t)(t + γ0)m,

and a simple computation yields

dσs
dt

= θs(t)−2α−1γs(t)2m
[
−α+m

m+ 1
+

m

(t+ γ0)m+1

[
θ1+α0 − 1 + α

m+ 1
γm+1
0

]]
.

For parameter values ranging in the region m > α, the graph σs(t)-t is increasing,
and the material exhibits net hardening. By contrast, for parameter values ranging
in the region m < α, σs(t) may initially increase but eventually decreases with t. In
this range, the combined effect of thermal softening and strain-hardening results to
net softening, and it is precisely this effect that is considered as a necessary (though
not sufficient) cause of the shear band formation process.

2.6. Strain softening versus strain-rate sensitivity. It is generally main-
tained that strain softening has a destabilizing influence, tending to amplify small
nonuniformities. To illustrate the nature of the instability, consider the model

(2.18)
vt = τ(γ)x,
γt = vx,

with τ ′(u) < 0. This model describes isothermal motions of a strain-softening, in-
elastic material. The system (2.18) is elliptic in the t-direction, and the initial value
problem is ill-posed. The uniform shearing solution

v̂ = x, γ̂ = t+ γ0,

γ0 constant, is still a special class of solutions to this problem.
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By contrast, strain-rate dependence tends to diffuse nonuniformities in the strain-
rate and/or the stress, and it may hinder or even altogether suppress instability. That
is confirmed, for example, by considering the system

(2.19)
vt = (τ(γ)vnx )x,
γt = vx,

with τ(u) > 0 and τ ′(u) < 0. This system is a parabolic regularization of the elliptic
problem (2.18), and it is precisely the competition between an ill-posed equation and
a regularizing effect that is hidden behind the shear band formation problem. If one
considers the linearization of the uniform shear solution

(2.20) v = x+ V̂ , γ = t+ γ0 + Γ̂,

we see that the linearized problem from (V̂ , Γ̂) reads

(2.21)
V̂t = nτ(t+ γ0)V̂xx + τ ′(t+ γ0)Γ̂x,

Γ̂t = V̂x.

The form of the linearized problem is a parabolic regularization of an elliptic initial
value problem and indicates that strain-rate sensitivity provides a stabilizing effect to
the destabilizing mechanism of strain softening.

To quantify the role of the various effects—thermal softening, strain-hardening,
strain-rate sensitivity, and heat diffusion—at the level of the linearized problem, Moli-
nari and Clifton [17] suggest the notion that the uniform shearing solution is stable if
the perturbation of the uniform shearing solution grows slower than the basic solution
(2.17) and is unstable if the perturbation grows faster than the solution (2.17). It
has been conjectured in [17], based on linearized analysis of such “relative perturba-
tions” and some additional plausibility arguments, that, for power laws, the uniform
shearing solution is stable in the parameter range q = m + n − α > 0 and unstable
in the complementary region q = m+ n− α < 0. The relative perturbation analysis
is not straightforward to rigorously justify, as it requires stability analysis for nonau-
tonomous systems. Nevertheless, the linearized analysis was carried out for (2.21)
using maximum principles (see [22]), and, in this case, the conjecture was verified.

Nonlinear analysis has been more efficient for providing stability results and val-
idating the above criterion in various special cases [9, 18, 19, 21]. A complete under-
standing for the full model exists only in the case of stress boundary conditions which
are energetically fairly demanding: it is shown in [20] that unstable response and
formation of shear bands occurs in certain parameter regimes and that the process of
shear band formation is concurrent with a collapse of the stress diffusion mechanisms
of the material. The case of velocity boundary conditions is energetically more be-
nign and closer to the experimental setup. For this case, the only available instability
results concern a temperature-dependent Newtonian fluid [3] (or a strain softening
rate-sensitive solid [22]) and indicate that a large perturbation of the temperature (or
the strain) can lead to localization and formation of bands at large times. However,
a precise quantification of the onset of localization is at present unavailable and will
be pursued in later sections of this work.

2.7. Effect of thermal diffusion. Although the early deformation can with no
considerable error be regarded as adiabatic, when localization sets in and temperature
gradients across a band become very large, thermal diffusion effects can no longer be
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regarded as negligible. The morphology of a fully formed band in the late stages
of deformation is thus influenced by heat conduction balancing the heat production
from plastic work. In [26], an extensive numerical treatment of fully developed shear
bands, Walter noticed that, due to heat conduction, the strain rate essentially becomes
independent of time in late stages of deformation, even though the temperature and
stress continue to evolve. We refer to [16, 10, 12] for studies of the effect of heat
conduction in a variety of models.

3. Adiabatic shear. We consider now the adiabatic form (κ = 0) of the nondi-
mensional system (2.11) with a power law stress

(3.1)

vt =
1
r
σx,

θt = σγt,

γt = vx,

σ = θ−αγmγnt .

In this section we outline various formulations of the problem that are useful in what
follows.

Stress formulation. There is a reformulation of the problem (3.1), in the form
of a reaction-diffusion system, that has been quite instructive in the development of
shear band theory (see [20]). Suppose that σ, θ, γ are considered the independent
variables. A simple but lengthy computation shows that they satisfy the reaction-
diffusion system

(3.2)

σt =
n

r
θ−

α
n γ

m
n σ

n−1
n σxx +

(
−ασ

θ
+
m

γ

)
θ

α
n γ−

m
n σ

n+1
n ,

γt = θ
α
n γ−

m
n σ

1
n ,

θt = θ
α
n γ−

m
n σ

n+1
n .

Conversely, given a solution (σ, θ, γ) of (3.2), if we define vx by

vx = θ
α
n γ−

m
n σ

1
n ,

then (v, θ, γ) satisfies (3.1).

Time rescaling. Motivated by the form of the uniform shearing solutions (2.17),
one may introduce a rescaling of the dependent variables and time in the following
form:

(3.3)
θ(x, t) = (t+ 1)

m+1
α+1 Θ(x, τ(t)), γ(x, t) = (t+ 1)Γ(x, τ(t)),

σ(x, t) = (t+ 1)
m−α
α+1 Σ(x, τ(t)), v(x, t) = V (x, τ(t)), τ = ln(1 + t).

In the new variables (V,Θ,Γ,Σ) the system (3.1) becomes

(3.4)

Vτ =
1
r
e

m+1
1+α τ Σx,

Γτ = Vx − Γ,

Θτ = ΣVx −
m+ 1
1 + α

Θ,

Σ = Θ−αΓmV nx .
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Accordingly, the system (3.2) takes the form

(3.5)

Στ =
n

r
e

m+1
1+α τΘ−α

n Γ
m
n Σ

n−1
n Σxx

+
(
−αΣ

Θ
+
m

Γ

)
Θ

α
n Γ−m

n Σ
n+1

n + Σ
α−m

1 + α
,

Γτ = Θ
α
n Γ−m

n Σ
1
n − Γ,

Θτ = Θ
α
n Γ−m

n Σ
n+1

n − m+ 1
1 + α

Θ.

Various properties of (3.5) will be noted in forthcoming sections. To understand its
usefulness, note that the rescaled variants of the uniform shearing solutions (2.17),
given by

θs(t) = (t+ 1)
m+1
α+1 Θs(τ(t)), γs(t) = (t+ 1)Γs(τ(t)), σs(t) = (t+ 1)

m−α
α+1 Σs(τ(t)),

have the long-time behavior

(3.6)
Θs(τ) →

(
1 + α

1 +m

) 1
1+α

, Γs(τ) → 1,

Σs(τ) →
(

1 + α

1 +m

)− α
1+α

, Σ
1
n
s Θ

α
n
s Γ−m

n
s → 1,

as τ → ∞ independently of the values of the initial constants θ0, γ0.

4. Non-Newtonian fluids with temperature-dependent viscosity. Vari-
ous simplified models have been used in the mathematical and mechanics literature
of shear band formation. One example is models that neglect thermal softening like
(2.19). Another class neglects the effect of strain hardening (m = 0) in which case the
kinematic compatibility equation decouples, and the system consists of two equations.
In the adiabatic case (κ = 0), the resulting model reads

(4.1)
vt =

1
r
σx,

θt = σ vx,

with the power law

(4.2) σ = θ−αvnx ,

and may be viewed as describing a non-Newtonian fluid with temperature-dependent
viscosity. The problem is set in [0, 1] with velocity boundary conditions (2.14), and
the objective is to examine the stability of uniform shearing flows (2.17). In this
context, the question becomes whether the destabilizing effect of the decreasing and
spatially nonhomogeneous viscosity is sufficiently powerful to overcome the stabilizing
influence of momentum diffusion and induce localization of shear. We introduce the
change of variables

(4.3)
θ(x, t) = (t+ 1)

1
α+1 Θ(x, τ(t)), σ(x, t) = (t+ 1)−

α
α+1 Σ(x, τ(t)),

v(x, t) = V (x, τ(t)), τ = ln(1 + t),
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(analogous to (3.3)) and obtain the rescaled system

(4.4)
Στ =

n

r
e

1
1+α τΘ−α

n Σ
n−1

n Σxx +
(
−αΘ

α
n−1Σ

n+1
n +

α

1 + α

)
Σ,

Θτ =
(

Θ
α
n−1 Σ

n+1
n − 1

1 + α

)
Θ.

(V,Θ,Σ) also satisfy the equations

Σ = Θ−αV nx ,(4.5)

Vτ =
1
r
e

1
1+α τΣx.(4.6)

The rescaled variants of the uniform shearing solution (2.17) enjoy the asymptotic
behavior

Θs(τ) → (1 + α)
1

1+α ,

Σs(τ) → (1 + α)−
α

1+α ,

Σ
1
n
s Θ

α
n
s → 1 as τ → ∞.

In this section we discuss the stability properties of the uniform shearing solutions in
the model (4.4).

4.1. Equilibria and orbits. Consider the reaction part of the system (4.4), i.e.,
the associated system of ordinary differential equations

(4.7)
Στ = −αΣ

(
Θ

α
n−1Σ

n+1
n − 1

1 + α

)
,

Θτ = Θ
(

Θ
α
n−1 Σ

n+1
n − 1

1 + α

)
.

We observe that

Στ
Σ

+ α
Θτ

Θ
= 0 ⇐⇒ ∂τ

(
Σ

Θ−α

)
= 0,

which implies that Σ Θα is constant along the orbits of (4.7). The equilibria of (4.7)
are located on the curve

(4.8) Σ =
(

1
1 + α

) n
n+1

Θ
n−α
n+1 .

The curve of equilibria changes monotonicity depending on the sign of

(4.9) q = −α+ n;

it is increasing for q > 0 and decreasing for q < 0. In Figure 4.1 the orbits of the
system (4.7) along with the curve (4.8) are presented in the case q > 0 as well as for
the case q < 0. The point

(4.10) (Θm,Σm) = ((1 + α)
1

1+α , (1 + α)−
α

1+α ),

see Figure 4.1, corresponds to the asymptotic state of uniform shear in the rescaled
variables. When the uniform shearing solution (3.6) is asymptotically stable, then
trajectories of the system (4.4) should approach the point (Θm,Σm) as τ → ∞.
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Θ

Σ
-α + n > 0

(Θm , Σm)

Σ = c2 Θ ⎯ α

Σ = c1 Θ ⎯ α

Σ = knα Θ(n-α) / (n+1)

Θ
Σ

Σ = c1 Θ ⎯ α

Σ = c2 Θ ⎯ α

(Θm , Σm)

-α + n < 0

Σ = knα Θ(n-α) / (n+1)

Fig. 4.1. Orbits of ODE system (4.7), knα =
(

1
α+1

) n
n+1

.

4.2. Invariant regions, the stable regime. In the case q = −α+ n > 0, any
rectangle

[Θ−,Θ+] × [Σ−,Σ+], with (Θ−,Σ−), (Θ+,Σ+) equilibria,

is invariant under the flow of (4.7). The theory of invariant regions for parabolic
systems [6] then implies that such rectangles are also invariant under the flow of the
reaction-diffusion system (4.4). For initial data taking values in one of the invariant
rectangles

Θ− < Θ0(x) < Θ+,

Σ− < Σ0(x) < Σ+,

the solutions of (4.4) satisfy

(4.11)

Θ− < Θ(x, τ) < Θ+,

Σ− < Σ(x, τ) < Σ+,

Σ
1
n
−Θ

α
n
− < Vx(x, τ) = Σ

1
n (x, τ)Θ

α
n (x, τ) < Σ

1
n
+Θ

α
n
+ .

The reader should note that the invariant regions property is lost in the complemen-
tary region q < 0, and no rectangle of the form [Θ−,Θ+]×[Σ−,Σ+] is invariant for the
reaction system (4.7). The bounds (4.11) yield time-dependent estimates for solutions
of (4.1), (4.2):

(4.12)

Θ−(t+ 1)
1

1+α < θ(x, t) < Θ+t+ 1)
1

1+α ,

Σ−(t+ 1)
−α
1+α < σ(x, t) < Σ+(t+ 1)

−α
1+α ,

Σ
1
n
−Θ

α
n
− < vx(x, t) < Σ

1
n
+Θ

α
n
+ .

These are used to show that the uniform shear solution is asymptotically stable.
Theorem 4.1. Let q = −α+n > 0, and consider a solution (v, θ) of (4.1), (4.2),

with initial data θ0(x) > 0 and σ0(x) > 0. Then (v, θ) is defined for all times and has



1630 THEODOROS KATSAOUNIS AND ATHANASIOS E. TZAVARAS

the asymptotic behavior

vx(x, t) = 1 +O
(
(t+ 1)−

n−α
n(1+α)

)
,(4.13)

θ(x, t) = Θm(t+ 1)
1

1+α

(
1 + O

(
(t+ 1)−

n−α
n(1+α)

))
,(4.14)

σ(x, t) = Σm(t+ 1)
−α
1+α

(
1 +O

(
(t+ 1)−

n−α
n(1+α)

))
,(4.15)

as t→ ∞, where (Θm,Σm) are given in (4.10).
Theorem 4.1 was proved in [9, 18] using detailed energy estimates to derive the

time-dependent bounds (4.12). These estimations are considerably simplified using
the invariant regions presented above. The remainder of the asymptotic stability proof
is presented in the appendix.

4.3. The unstable regime. The stability of the uniform shearing solution in
the complementary region q = −α+ n < 0 is at present unknown. In fact, it is even
unknown whether solutions exist globally in time or, in contrast, blow up in finite
time. Numerical investigations indicate development of shear bands in this regime.
In addition, there are two theoretical results that are also backing this direction. First,
consider initial data θ0(x), v0(x) such that

v0(x) = x,(4.16)

θ0(x) =

{
θ̄ x �∈ Iδ,

U(x) x ∈ Iδ,
(4.17)

where θ̄ is a constant, Iδ = (y− δ, y+ δ) is a (small) interval centered around a given
point y ∈ (0, 1), and U(x) is the initial temperature profile in Iδ and is selected so
that θ0 is smooth.

Theorem 4.2. Let q < 0 and (v, θ) be a solution of (4.1), (4.2) with initial data
(4.16), (4.17). If U(y) is selected sufficiently large, then either the solution blows up
in finite time,

lim sup
t→T∗

sup
x∈[0,1]

θ(x, t) → ∞ for some T ∗ <∞,

or else T ∗ = ∞ and (v, θ) has the asymptotic behavior

(4.18) v(x, t) =

⎧⎨
⎩

0 +O
(
(t+ 1)−

1
n+1

)
x < y − δ,

1 +O
(
(t+ 1)−

1
n+1

)
y + δ < x,

and θ(x, t) approaches a limiting temperature profile for x �∈ Iδ as t→ ∞.
Theorem 4.2 was proved in [3] for the case of a Newtonian fluid (n = 1). We extend

this result for non-Newtonian temperature-dependent flows. The proof is provided in
the appendix, and it yields a quantitative criterion for a size of an initial temperature
perturbation U(x) that suffices to induce instability. The reader can check that even
a moderate perturbation will suffice, but an arbitrarily small perturbation of the
uniform temperature is excluded. The question remains, what is the basic mechanism
that induces this instability? This question is answered at the level of the full system
(3.1) in the following two sections, of course, including the special case (4.1), (4.2).
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5. The long-time response of adiabatic shear as a relaxation limit. Our
next goal is to derive an effective equation describing the long-time behavior of the
system (3.1) by using convenient scaling limits. This is done in three steps: First, we
consider the system (3.5) or the equivalent form (3.4) and point out certain analogies
with the structure of relaxation systems (like equilibrium manifolds, moment equa-
tions). Then we consider a modified version of the system (3.4) and show how to
introduce a scaled limit that describes the long-time response and how to compute
the effective response by a process analogous to the Chapman–Enskog expansion.
The analysis applies to the modified system (see (5.9)) which shares the same general
structure as (3.5) but also has an important difference. Then in section 6, we con-
sider the original system (3.5) and modify the change of variables (3.3), keeping in
mind that we calculate perturbed profiles of time-dependent solutions. An analogous
procedure then leads to the effective equation describing the long-time response of
(3.1).

5.1. Some analogies to the theory of relaxation systems. We first point
out certain analogies between (3.4) and the theory of relaxation processes. Consider
a solution (Σ,Θ,Γ) of (3.5), and note that it satisfies the identity

(5.1)
Στ
Σ

−m
Γτ
Γ

+ α
Θτ

Θ
=
n

r
e

m+1
1+α τΘ−α

n Γ
m
n Σ− 1

n Σxx,

that is, U = (Σ Θα Γ−m)
1
n satisfies a conservation law

(5.2) ∂τU =
1
r
e

m+1
1+α τ Σxx.

Equation (5.2) is precisely the first equation in (3.4), and it may be interpreted as a
conservation law for the quantity U = Vx that arises as a moment equation for the
reaction-diffusion system (3.5). The reaction system associated to (3.5) is

(5.3)

Στ = −αΣ
(

Σ
Θ

Θ
α
n Γ−m

n Σ
1
n − m+ 1

1 + α

)
+mΣ

(
1
Γ

Θ
α
n Γ−m

n Σ
1
n − 1

)
,

Γτ = Γ
(

1
Γ

Θ
α
n Γ−m

n Σ
1
n − 1

)
,

Θτ = Θ
(

Σ
Θ

Θ
α
n Γ−m

n Σ
1
n − m+ 1

1 + α

)
.

For the initial data, we assume that Γ0(x) > 0, Θ0(x) > 0, Σ0(x) > 0, and they
depend parametrically on x.

Equilibria. The equilibria of (5.3) are the solutions of the algebraic system

1
Γ

Θ
α
n Γ−m

n Σ
1
n − 1 = 0,

Σ
Θ

Θ
α
n Γ−m

n Σ
1
n − m+ 1

1 + α
= 0

or equivalently,

(5.4)
ΣΓ
Θ

=
m+ 1
1 + α

, Σ = Θ−α Γm+n.
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The equilibria form a one-parameter family, determined in terms of a parameter U ∈
R+, by the equations

(5.5)

Γ = U,

Θ =
(

1 + α

m+ 1

) 1
1+α

U
m+n+1

1+α ,

Σ =
(

1 + α

m+ 1

)− α
1+α

U
−α+m+n

1+α .

Orbits. Although the system (5.3) is complex in appearance, its orbits are easily
computed due to the property that solutions of (5.3) satisfy the conservation law

Στ
Σ

−m
Γτ
Γ

+ α
Θτ

Θ
= 0 ⇐⇒ ∂τ

(
Σ Θα Γ−m) = 0.

The quantity Σ Θα Γ−m thus remains constant along an orbit,

(5.6) Σ Θα Γ−m = Un = constant in time,

with the value of U = Vx determined by the values of the initial data. As a result of
(5.6), Γ satisfies the differential equation

Γτ
Γ

=
U

Γ
− 1.

Since U is constant in time and the initial data Γ0(x) > 0 are positive, Γ(x, τ) remains
bounded above and below by positive bounds depending on U(x) and Γ0(x) and that

Γ → U as τ → ∞.

Furthermore, concerning the dynamics of the system of differential equations (5.3),
we have

∂τ

(
Σ Γ
Θ

)
=

Σ Γ
Θ

(
Στ
Σ

+
Γτ
Γ

− Θτ

Θ

)
=

Σ Γ
Θ

Θ
α
n Γ−m

n Σ
1
n

(
m+ 1

Γ
− (α + 1)

Σ
Θ

)

= −(α+ 1)
(

Σ Γ
Θ

)
U

Γ

(
ΣΓ
Θ

− m+ 1
1 + α

)
.

This implies
∣∣∣Σ Γ

Θ − m+1
1+α

∣∣∣ is a decreasing function of τ and

(5.7)
Σ Γ
Θ

− m+ 1
1 + α

→ 0 as τ → ∞.

Finally, the identity

∂τ

(
Σ

1
n Θ

α
n Γ−m+n

n

)
(
Σ

1
n Θ

α
n Γ−m+n

n

) =
1
n

Στ
Σ

+
α

n

Θτ

Θ
− m+ n

n

Γτ
Γ

= −
(
Σ

1
n Θ

α
n Γ−m+n

n − 1
)

implies that Φ(τ) = Σ
1
n Θ

α
n Γ−m+n

n satisfies the ordinary differential equation

∂τΦ = −Φ (Φ − 1) ,
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Γ
Θ

Σ

(a)

Γ

Θ

Σ

(b)

Fig. 5.1. Two views of the flow of the ODE system (5.3) in the stable case: −α+m+ n > 0.

and thus Φ(τ) → 1 as τ → ∞, that is,

(5.8) Σ Θα Γ−(m+n) → 1 as τ → ∞.

We conclude that the orbits of the differential system (5.3) approach the line of
equilibria (5.5). Each orbit lies entirely on the surface (5.6), and the specific value of
the parameter U is selected by the initial data. Unlike the system with two equations,
strong numerical evidence (Figure 5.1) indicates that the system of three equations
does not have invariant regions. In particular, Figure 5.1 shows the flow of the vector
field generated by (5.3). Notice in the upper-left corner and/or in the lower-right
corner of Figure 5.1(a), there are orbits always exiting the box. One can notice the
same type of behavior in the bottom and/or the top part of Figure 5.1(b); there are
orbits that are no longer confined in a box around the equilibrium manifold.

5.2. Effective equation for a simplified system. Our ultimate goal is to give
an effective equation describing the long-time response of the system (3.1). We will
present an argument that leads to such an effective equation in the following section.
In preparation, we consider a simplified problem that accounts for the main structure
of (3.4), by studying a variant where the time dependence of the diffusion term is
frozen,

(5.9)

Vτ =
1
r
Σx,

Γτ = Vx − Γ,

Θτ = ΣVx −
m+ 1
1 + α

Θ,

Σ = Θ−α ΓmV nx .

For this modified system, we calculate an effective equation in an asymptotic limit
motivated by the theory of relaxation approximations. To this end, set U = Vx in
(5.9), and consider a rescaling of time in the form

(5.10)
U(x, τ) = ŪT

(
x,
τ

T

)
, Θ(x, τ) = Θ̄T

(
x,
τ

T

)
,

Γ(x, τ) = Γ̄T
(
x,
τ

T

)
, Σ(x, τ) = Σ̄T

(
x,
τ

T

)
, s =

τ

T
.
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Then, (ŪT , Θ̄T , Γ̄T , Σ̄T ) satisfies the system of equations

(5.11)

Us =
T

r
Σxx,

Γs = T (U − Γ),

Θs = T

(
ΣU − m+ 1

1 + α
Θ
)
,

Σ = Θ−α ΓmUn,

where in (5.11) we dropped the bars to simplify notations. Given a family of solutions
of (5.11), we may use the relations

lim
T→∞

U(x, T s) = lim
T→∞

ŪT (x, s)

in order to calculate the long-time behavior of solutions of (5.9). Therefore, it suffices
to calculate the effective response in the limit T → ∞ of solutions to (5.11). This goal
can be achieved by using the procedure of the Chapman–Enskog expansion (e.g., [5]),
familiar from the kinetic theory of gases. In order for the conservation law (5.11)1 to
provide a nontrivial effective response, we will consider the limit T → ∞, r → ∞ such
that T

r < ∞ (and for simplicity will take T
r = 1). Consider the ansatz for solutions

of (5.11):

(5.12)
ŪT = U0 +

1
T
U1 +O

(
1
T 2

)
, Γ̄T = Γ0 +

1
T

Γ1 +O

(
1
T 2

)
,

Θ̄T = Θ0 +
1
T

Θ1 +O

(
1
T 2

)
, Σ̄T = Σ0 +

1
T

Σ1 +O

(
1
T 2

)
.

Upon introducing the expansions into (5.11) and expanding in orders of T , keeping
in mind that r = T → ∞, we obtain consecutively

∂s

(
U0 +

1
T
U1 + · · ·

)
= ∂xx

(
Σ0 +

1
T

Σ1 + · · ·
)
,(5.13)

∂s

(
Γ0 +

1
T

Γ1 + · · ·
)

= T (U0 − Γ0) + (U1 − Γ1) + · · · ,(5.14)

∂s

(
Θ0 +

1
T

Θ1 + · · ·
)

= T

(
Σ0U0 −

m+ 1
1 + α

Θ0

)
(5.15)

+
(

Σ1U0 + Σ0U1 −
m+ 1
1 + α

Θ1

)
+ · · · ,(5.16)

and finally

(5.17)

Σ0 +
1
T

Σ1 + · · ·

=
(

Θ0 +
1
T

Θ1 + · · ·
)−α(

Γ0 +
1
T

Γ1 + · · ·
)m(

U0 +
1
T
U1 + · · ·

)n

= Θ−α
0 Γm0 U

n
0

(
1 +

1
T

(
−αΘ1

Θ0
+m

Γ1

Γ0
+ n

U1

U0

)
+ · · ·

)
.
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Collecting terms of the same order together, we obtain for the 0th order perturbations
the equations

(5.18)

U0 = Γ0,

Σ0U0 =
m+ 1
1 + α

Θ0,

Σ0 = Θ−α
0 Γm0 U

n
0 ,

while for the 1st order perturbations, we deduce the equations

(5.19)

U1 − Γ1 = ∂sΓ0,

Σ1U0 + Σ0U1 −
m+ 1
1 + α

Θ1 = ∂sΘ0,(
−αΘ1

Θ0
+m

Γ1

Γ0
+ n

U1

U0

)
Σ0 = Σ1,

∂sU1 = ∂xxΣ1.

Solving (5.18) we obtain that all 0th order terms can be expressed in terms of the
conserved quantity U0:

(5.20)

Γ0 = U0,

Σ0 =
(m+ 1

1 + α

) α
1+α

U
−α+m+n

1+α

0 ,

Θ0 =
(
m+ 1
1 + α

)− 1
1+α

U
1+m+n

1+α

0 ,

∂sU0 = ∂xxΣ0.

Note that U0 is the conserved quantity and that such structure is typical in the
theory of relaxation. In addition, we may obtain an evolution equation governing the
behavior of the 0th order approximation in closed form as

(5.21) ∂sU0 = ∂xx

((
m+ 1
1 + α

) α
1+α

U
−α+m+n

1+α

0

)
.

The nature of (5.21) changes, depending on the sign of

q = −α+m+ n

from forward parabolic when q > 0 to backward parabolic when q < 0. For the
parameters ranging in the region q < 0, (5.21) is ill-posed, and one needs to derive
the next order of the asymptotics. This is accomplished by solving (5.19) for the 1st
order approximants (Γ1,Θ1,Σ1) and using the expressions (5.20). We then obtain

(5.22)

Γ1 = U1 − ∂sU0,

Σ1

Σ0
=

−α+m+ n

1 + α

U1

U0
− m

1 + α

∂sU0

U0
+

α

1 + α

∂sΘ0

Σ0U0
,

Θ1

Θ0
=

1 +m+ n

1 + α

U1

U0
− m

1 + α

∂sU0

U0
− 1

1 + α

∂sΘ0

Σ0U0
.
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The corrected form—up to order O( 1
T 2 )—of the effective equation is now easily cal-

culated, using (5.20) and (5.22), leads to the equation

∂s

(
U0 +

1
T
U1 +O

(
1
T 2

))
= ∂xx

(
Σ0 +

1
T

Σ1 +O

(
1
T 2

))

= ∂xx

[(
m+ 1
1 + α

) α
1+α

U
−α+m+n

1+α

0

)

+
1
T

Σ0

(
−α+m+ n

1 + α

U1

U0
− m

1 + α

∂sU0

U0
+

α

1 + α

∂sΘ0

Σ0U0

)
+O

(
1
T 2

)]

= ∂xx

[(
m+ 1
1 + α

) α
1+α

U
−α+m+n

1+α

0

(
1 +

−α+m+ n

1 + α

U1

U0

1
T

+O

(
1
T 2

))

+
1
T

Σ0

(
− m

1 + α

∂sU0

U0
+

α

1 + α

∂sΘ0

Σ0U0

)
+O

(
1
T 2

)]
.(5.23)

The last objective is to obtain an equation for U that, up to 2nd order, will agree
with (5.23). To this end, observe that the first term in the right side of (5.23) satisfies

I1 =
(
m+ 1
1 + α

) α
1+α

U
−α+m+n

1+α +O

(
1
T 2

)
,

while the second term may be reexpressed using (5.20) and (5.21) as

I2 = Σ0

(
− m

1 + α

∂sU0

U0
+

α

1 + α

∂sΘ0

Σ0U0

)
= Σ0

α(1 +m+ n) −m(m+ 1)
(m+ 1)(1 + α)

∂sU0

U0

=
α(1 +m+ n) −m(m+ 1)

(m+ 1)(1 + α)

(
m+ 1
1 + α

) 2α
1+α

U
−α+m+n

1+α −1

0 ∂xx
(
U

−α+m+n
1+α

0

)
.

The effective equation is thus, up to order O( 1
T 2 ),

(5.24) ∂sU = ∂xx

(
c Up +

λc2

T
Up−1∂xxU

p

)
,

where

p =
−α+m+ n

1 + α
, c =

(
m+ 1
1 + α

) α
1+α

, λ =
α(1 +m+ n) −m(m+ 1)

(m+ 1)(1 + α)
.

We thus see that the 2nd order approximation acquires an additional effect comprising
of a nonlinear fourth order term. When q = −α+m+n > 0, this term is a perturbation
of a forward parabolic equation. As the forward parabolic term has a stabilizing
response, the fourth order term is a small perturbation, and the sign of λ has no
effect on the stability properties. By contrast, in the region q < 0, the first term
provides backward parabolic response, and any stabilization is due only to the fourth
order term. Note that

λ =
(α−m− n) + n(1 + α) + (α−m)m

(m+ 1)(1 + α)
,
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and thus when q = −α + m + n < 0, it is λ > 0. The uniform shear solution
corresponds to U = 1, and, for this reason, we write U = 1 + u and compute the
linearized equation for the perturbation u. This reads

(5.25) ∂su = c p ∂xxu+
λc2

T
p ∂xxxxu.

The Fourier transform of (5.25) satisfies

∂sû =
(
−c p ξ2 +

λc2

T
p ξ4

)
û,

and thus when q < 0, the low frequencies will grow, but the high frequency modes
still decay. Hence, for λ > 0, the linearized equation (5.25) is well posed.

6. Effective response at the onset of localization. We now consider the
system (3.1) and will calculate an effective equation for its time response. We consider
a modified time-rescaling of the form

(6.1)
θ(x, t) = (t+ 1)

m+1
α+1 Θ

(
x,
s(t)
T

)
, γ(x, t) = (t+ 1)Γ

(
x,
s(t)
T

)
,

σ(x, t) = (t+ 1)
m−α
α+1 Σ

(
x,
s(t)
T

)
, vx(x, t) = Vx

(
x,
s(t)
T

)
,

where T is a parameter representing a change of time-unit and s(t) : [0,∞) → [0,∞)
is to be selected as a monotone increasing, surjective map that represents a change of
time-scale. This should be compared to (3.3) that has been used before. Introducing
this transformation to (3.1), we obtain the equations

∂sVx =
T

r

1
ṡ
(t+ 1)

m−α
1+α Σxx,

(t+ 1)
ṡ

T
Θs = ΣVx −

m+ 1
1 + α

Θ,

(t+ 1)
ṡ

T
Γs = Vx − Γ,

Σ = Θ−αΓmV nx .

We select s(t) so that

(6.2) ṡ = (t+ 1)
m−α
1+α ,

that is,

s(t) =
1
β

[
(t+ 1)β − 1

]
⇐⇒ t(s) =

(
1 + βs

) 1
β − 1,

where β = m+1
1+α . We are interested in the limit T → ∞, r → ∞ so that T

r = O(1),
and, for simplicity, we will take T = r. The choice r = O(T ) is done for the following
reasons: (i) it is expected that the inertial terms play an important role in the shear
band formation process, (ii) we wish to retain both terms of the momentum equation
at O(1) as T → ∞ (see also Remark 6.1). With these identifications, we deduce that
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the scaled functions ΘT , ΣT , UT = V Tx , and ΓT satisfy

(6.3)

∂sU = Σxx,
1
T

(βs+ 1)Θs = ΣU − m+ 1
1 + α

Θ,

1
T

(βs+ 1)Γs = U − Γ,

Σ = Θ−αΓmUn.

If in the limit T → ∞ the functions (UT ,ΓT ,ΘT ,ΣT ) → (U0,Γ0,Θ0,Σ0), then the
limiting (U0,Γ0,Θ0,Σ0) lies in the “quilibrium” manifold

(6.4)

Σ0U0 = βΘ0,

U0 = Γ0,

Σ0 = Θ−α
0 Γm0 U

n
0

and satisfies the conservation law

(6.5) ∂sU0 = ∂xxΣ0.

The latter can be expressed into closed form and leads to an effective equation for the
long-time response, in the form

(6.6)
Σ0 = β

α
1+αU

−α+m+n
1+α

0 ,

∂sU0 = ∂xx

(
β

α
1+αU

−α+m+n
1+α

0

)
.

Observe that U0 describes the limiting dynamics of vx as can be seen by taking the
change of variable formula

(6.7) vx(x, t(τT )) = UT (x, τ)

to the limit as the unit-scale T → ∞. Equation (6.6) changes type from forward
parabolic for q > 0 to backward parabolic for q < 0, where q = −α+m+ n.

Remark 6.1. In order to preserve the moment equation at O(1) in the limit
T → ∞, we have used the parameter r, by assuming r = O(T ). The same effect
can be achieved by using a different scaling: One could alternatively scale the x-
variable in the parabolic scaling x → x√

T
and retain r = O(1). This scaling would

again preserve the equation ∂sU = ∂xxΣ and lead to the same system (6.3) with a
coefficient r = O(1). In return, (6.7) would be replaced by

vx

(
y
√
T , t(τT )

)
= UT (y, τ),

which indicates that the limit T → ∞ would proceed along parabolic rays.
Finally, we perform the Chapman–Enskog procedure to calculate the next term

of the correction. This is entirely analogous to the procedure outlined in section 5.2,
and the details are omitted. To this end, the ansatz (5.12) is introduced into (6.3);
collecting terms of the same order together, we obtain (6.4), (6.5) at the 0th order
(leading to (6.6)) and obtain at the 1st order the equations

(βs+ 1)∂sΘ0 = Σ0U1 + Σ1U0 − βΘ1,

(βs+ 1)∂sΓ0 = U1 − Γ1,

Σ1 = Σ0

(
−αΘ1

Θ0
+m

Γ1

Γ0
+ n

U1

U0

)
,
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together with

(6.8) ∂sU1 = ∂xxΣ1.

Solving the former equations yields

Γ1

U0
=
U1

U0
− (βs+ 1)

∂sU0

U0
,

Σ1

Σ0
=

−α+m+ n

1 + α

U1

U0
− m

1 + α
(βs+ 1)

∂sU0

U0
+

α

1 + α
(βs+ 1)

∂sΘ0

Σ0U0
,

Θ1

Θ0
=

1 +m+ n

1 + α

U1

U0
− m

1 + α
(βs+ 1)

∂sU0

U0
− 1

1 + α
(βs+ 1)

∂sΘ0

Σ0U0
.

We next introduce the values of U0, U1, Σ0, Σ1 into the equation

(6.9) ∂s

(
U0 +

1
T
U1 +O

(
1
T 2

))
= ∂xx

(
Σ0 +

1
T

Σ1 +O

(
1
T 2

))

and regroup the terms following section 5.2 to deduce that UT satisfies up to order
O
(

1
T 2

)
the equation

(6.10) ∂sU = ∂xx

(
c Up +

λc2

T
(βs+ 1)Up−1∂xxU

p

)
,

where

p =
−α+m+ n

1 + α
, β =

m+ 1
1 + α

, c = β
α

1+α , λ =
α(1 +m+ n) −m(m+ 1)

(m+ 1)(1 + α)
.

When q < 0, the second order term is backward parabolic and has a destabilizing
role, at the same time λ > 0 and the fourth order term offers a stabilizing influence.

System versus effective equation: Numerical comparison. Next, we com-
pare numerically the solution of system (6.3) with (6.10). The effective equation
(6.10) is a highly nonlinear fourth order equation whose behavior depends drastically
on the sign of p. In the stable case p > 0, (6.10) is a forward parabolic equation
and a fourth order correction term whose sign depends on the parameter λ. In the
stable case, the fourth order term does not have a definite sign, since the parameter λ
can be either positive or negative but nevertheless without any essential effect on the
qualitative behavior of the effective equation. We compare numerically the solution of
the system (6.3) and (6.10) for T = 1000 at various time instances. We use a standard
finite element method for the spatial discretization, coupled with Newton’s method
for linearization, while the Crank–Nicolson method is used for time stepping. In this
case we expect the solution U = Vx to converge as t → ∞ to the uniform shearing
solution (2.17). In Figure 6.1 we see an excellent agreement of the two solutions,
especially as t grows.

In the unstable case p < 0, the behavior of the effective equation (6.10) changes
drastically. The leading second order term has a negative sign, thus the effective
equation changes to an unstable backward parabolic type. On the other hand, the
parameter λ in the unstable case is positive, thus the fourth order term provides a
stabilizing effect. The balance of these two mechanisms is a delicate issue theoretically
as well as numerically. In general, the numerical solution of linear or nonlinear fourth
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1
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t = 7.5E-03

t = 2.5E-02

t = 0.1

Fig. 6.1. Comparison in the parameter range p > 0 of system (6.3) (solid line) versus effective
equation (6.9)(dashed line) for T = 1000.

order equations is not a trivial task. Special numerical techniques have to be applied to
capture correctly the behavior of the underlying phenomena. These issues go beyond
the scope of the present article and will be the subject of a future work. Detailed
numerical results on the behavior of systems (2.11) and the companion system with
Fourier heat conduction can be found in [2].

Appendix A. We present in this appendix the proofs of Theorems 4.1 and 4.2.
Let (v, θ, σ) be a smooth solution of (4.1), (4.2), and (V,Θ,Σ) the rescaled functions
defined in (4.3) and satisfying (4.4), (4.5), and (4.6).

Proof of Theorem 4.1. In the range q = −α+ n > 0, the system (4.4) is endowed
with invariant regions, and (Θ,Σ) and Vx satisfy the bounds (4.11). In what follows,
C stands for a generic constant that is independent of time.

Set g(τ) = 1
r e

1
1+α τ . Using (4.6), we obtain the identity ∂τ

(
1

2g2V
2
τ

)
= 1

gΣxτVτ .
Integrating by parts over [0, 1] and using (4.4)1, (4.6), and (2.14), we obtain

d

dτ

1
2

∫ 1

0

1
g2
V 2
τ dx+

∫ 1

0

nΘ−α
n Σ

n−1
n

1
g
V 2
xτ dx

=
∫ 1

0

α
1
g

(
Θ

α
n−1Σ

n+1
n − 1

1 + α

)
ΣVxτ dx.

Next use of the bounds (4.11) and the Poincarè inequality to obtain

d

dτ

∫ 1

0

1
g2
V 2
τ dx+ g(τ)

1
C

∫ 1

0

1
g2
V 2
τ dx ≤ C

g(τ)
.

In turn, Gronwall’s inequality implies

(A.1)
∫ 1

0

V 2
τ (x, τ)dx ≤ C,
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and, by (4.6),

(A.2)
∫ 1

0

|Σx|dx ≤
(

1
g2

∫ 1

0

V 2
τ dx

) 1
2

≤ Ce−
1

1+ατ .

From (4.4) we obtain the identity

∂τ

(
e

n−α
n(1+α) τ

(
Θ1−α

n

)
x

)
=
n− α

n
e

n−α
n(1+α) τ

(
Σ

n+1
n

)
x
,

which using (4.11) and (A.2) leads to using (4.11) and (A.2):

(A.3)
∫ 1

0

|Θx|dx ≤ Ce−
n−α

n(1+α) τ .

Moreover, starting from (4.5) we obtain Vxx = 1
nΣ

1
n−1Θ

α
n Σx + α

nΘ
α
n−1ΘxΣ

1
n , which

is used, in conjunction with (A.2) and (A.3), to deduce

(A.4) |Vx(x, τ) − 1| ≤
∫ 1

0

|Vxx| dx = O
(
e−

n−α
n(1+α) τ

)
.

Finally, from (4.4)2, (4.5), and (A.4), we obtain

∂τ

(
eτ

1
1 + α

Θ1+α

)
= eτV n+1

x = eτ
(
1 +O

(
e−

n−α
n(1+α) τ

))n+1

,

which implies

Θ = (1 + α)
1

1+α +O
(
e−

n−α
n(1+α) τ

)
,(A.5)

Σ = Θ−αV nx = (1 + α)−
α

1+α +O
(
e−

n−α
n(1+α) τ

)
.(A.6)

The estimates (A.4), (A.5), and (A.6) together with (4.3) yield the asymptotic be-
haviors stated in Theorem 4.1.

Proof of Theorem 4.2. Let q = −α+ n < 0, consider initial data satisfying (4.16)
and (4.17), and let (v, θ, σ) be a smooth solution of (4.1), (4.2) defined on a maximal
interval of existence [0, T	). The stress σ satisfies the boundary value problem for the
parabolic equation

(A.7)
σt =

n

r
θ−

α
n σ

n−1
n σxx − αθ

α
n−1 σ2+ 1

n ,

σx(0, t) = σx(1, t) = 0.

By the maximum principle, σ(x, t) > 0. Let S(t) be the solution of the initial value
problem

(A.8)

⎧⎨
⎩
dS

dt
= −αθ0

α
n−1S2+ 1

n ,

S(0) = S0 = supx∈[0,1] σ0(x),

where θ0 = infx∈[0,1] θ0(x). S is given by the formula

S(t) =
(
S
−n+1

n
0 + α

n+ 1
n

θ0
α
n−1 t

)− n
n+1

.
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For α
n > 1, S is a supersolution of (A.7), and thus

(A.9) 0 < σ(x, t) ≤ O
(
(t+ 1)−

n
n+1
)
, x ∈ [0, 1], 0 < t < T∗.

We multiply (4.1)1 by σ
1
n−1vt, integrate over [0, 1] by parts, and use (4.1)2 to obtain

n

2

∫ 1

0

θ−
α
n v2

xdx+
∫ t

0

∫ 1

0

σ
1−n

n v2
t dxdt+

α

2

∫ t

0

∫ 1

0

θ−
α
n−1−αvn+3

x dx

=
n

2

∫ 1

0

θ0(x)−
α
n v0x(x)2dx = I0.

Next, we employ the calculus inequality

f2(x) −
(

1 +
1
r

)
f2(y) ≤ (1 + r) (f(x) − f(y))2 ≤ (1 + r)

∫ 1

0

f2
xdξ

and put f = σ
n+1
2n in order to obtain (for r = 2, say)

σ
n+1

n (x, t) − 3
2
σ

n+1
n (y, t) ≤ 3

(n+ 1
2n

)2
∫ 1

0

σ
1−n

n v2
t dx.

Let now the data be as in (4.16), (4.17). In the region α
n > 1, the identity

∂tθ
−
(

α
n−1

)
= −

(α
n
− 1
)
σ

n+1
n ,

taken at two distinct points x and y, gives

θ−
(

α
n−1

)
(x, t) − 3

2
θ−( α

n−1)(y, t) =
(
θ
−(α

n−1)
0 (x) − 3

2
θ
−( α

n−1)
0 (y)

)

−
(α
n
− 1
)∫ t

0

(
σ

n+1
n (x, τ) − 3

2
σ

n+1
n (y, τ)

)
dτ

≥ θ
−
(

α
n−1

)
0 (x) − 3

2
θ
−
(

α
n−1

)
0 (y) − C(α, n)I0

= m(x, y),(A.10)

where C(α, n) is an explicit positive constant. Suppose now that the solution θ does
not blow up. Then θ(x, t) can be estimated outside the band Iδ by the bound (A.10).
The latter is, of course, meaningful only when m(x, y) > 0. This can be achieved
provided the value θ0(y) = U(y) in (4.17) is sufficiently large and the base state θ̄
suitably chosen.

Once x, y are selected so that m(x, y) > 0, (A.10) provides a bound for the
temperature

θ(x, t) ≤M x �∈ Iδ, 0 < t <∞.

Since θ is increasing, it converges to a limiting profile for x �∈ Iδ. Inside the band θ
might increase indefinitely. In addition, (A.9) and (4.2) imply

vx(x, t) = O
(
(t+ 1)−

1
n+1

)
, x �∈ Iδ, 0 < t <∞,

in turn giving (4.18).
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A NONAUTONOMOUS JUVENILE-ADULT MODEL:
WELL-POSEDNESS AND LONG-TIME BEHAVIOR
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Abstract. A nonautonomous nonlinear continuous juvenile-adult model where juveniles and
adults depend on different resources is developed. It is assumed that juveniles are structured by
age, while adults are structured by size. Existence-uniqueness results are proved using the mono-
tone method based on a comparison principle established in this paper. Conditions on the model
parameters that lead to extinction or persistence of the population are obtained via the upper-lower
solution technique.
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tinction, uniform persistence
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1. Introduction. Amphibians have a biphasic lifestyle where juveniles (tad-
poles) live in water while adults (frogs) live on land. For many amphibians tadpoles
are herbivorous, while adults are carnivorous. Thus, juveniles and adults depend on
different resources, and no resource competition takes place between them. In [2, 7, 9],
we developed and analyzed discrete-time discrete-stage models that describe the dy-
namics of such populations. A particular amphibian example that motivated these
theoretical studies is the green tree frog (Hyla cinerea) which we have been monitor-
ing since 2004 [26]. Similar discrete-time discrete-stage models have been formulated
and studied in [14, 31]. These models have been applied to two amphibian species,
Bufo boreas and Ambystoma macrodactylum. Elasticity analysis was used to deter-
mine the most influential stage survival rate on amphibian declines, a problem which
was extensively discussed in [16, 29].

In this paper, we extend our modeling efforts and develop a nonautonomous
continuous age-size–structured model which describes the dynamics of a population
composed of juveniles and adults who depend on different resources. In our setting
below we assume that juveniles are structured by age (e.g., for the green tree frogs
it requires 5–6 weeks for a juvenile to metamorphose into an adult [21, 22, 28]). We
assume that adults are structured by size, since fertility and mortality depend on the
size of the adult (see, e.g., [33] for the green tree frogs). Furthermore, we assume
that the vital parameters are time-dependent functions due to the seasonality of such
populations.

Well-posedness and long-time behavior of continuous nonlinear autonomous age-
size–structured population models have been investigated in many articles (e.g., see
[5, 6, 11, 12, 13, 18, 19, 23, 27, 32] and the references cited therein). Structured
juvenile-adult models with time-independent parameters have also been developed
and studied in the literature. For example, in [15] a juvenile-adult model was de-
veloped with both juvenile and adult populations being age-structured. Therein, the
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authors tackled the question of whether juvenile versus adult intraspecific competition
is stabilizing or destabilizing. It was shown that suppressed adult fertility due to juve-
nile competition is destabilizing in that equilibrium levels are lowered and equilibrium
resilience is weakened. However, the effect of increased juvenile mortality due to adult
competition is complicated in that equilibrium levels are lowered but the resilience
can be weakened or strengthened. In [20] a nonlinear size-structured juvenile-adult
model was developed, and the linearized dynamical behavior of stationary solutions
was analyzed using semigroup theory.

As is discussed in [14], the growth, reproduction, and mortality rates of many
biological populations are subject to regular (time) fluctuations, which is the case
for amphibians. Thus, in this paper we study the existence-uniqueness and long-
time behavior of solutions to a nonautonomous nonlinear structured juvenile-adult
model. Our arguments are different from those used in the above-mentioned articles
and are based on a novel definition of upper and lower solutions, the establishment
of a comparison principle, and the construction of monotone approximations. This
comparison principle extends those developed in [10, 24, 25] to a system of nonlocal
nonlinear first order hyperbolic equations. However, its establishment is distinct from
those in [10, 24, 25], but is in the spirit of the one we developed in [4] for a size-
structured model.

Other traditional approaches, including the employment of the method of char-
acteristics to convert the problem to a system of delay integral equations and then
apply the fixed point theory (e.g., [11]), may perhaps work for establishing existence-
uniqueness results. However, we are unaware of abstract results for nonautonomous
delay systems such as those developed in [17] for the autonomous counterpart, which
can be used for investigating the long-time behavior of solutions to the model pre-
sented here.

The paper is organized as follows. In section 2 we introduce the model. In section
3 we give the definition of upper and lower solutions and establish a comparison
principle. In section 4 we develop monotone sequences and prove their convergence to
the unique solution of the model. In section 5 we investigate the asymptotic behavior
of the model. Finally, concluding remarks are given in section 6.

2. The juvenile-adult model. Let J(a, t) and A(x, t) denote the densities of
juveniles of age a and adults of size x, respectively, at time t. Thus,

∫ a2

a1
J(a, t)da

denotes the number of juveniles in the age interval (a1, a2) at time t. We denote by
amax the age at which juveniles (tadpoles) metamorphose into adults (frogs) of mini-
mum size xmin, and xmax denotes the maximum size of adults. Hence,

∫ x2

x1
A(x, t)dx

denotes the number of adults in the size interval (x1, x2) at time t. We assume that
juveniles live in an environment with abundant resources and thus do not compete,
while adults live in an environment with limiting resources and thus competition be-
tween them takes place. Consider the following system of partial differential equations
which describe the dynamics of interacting juveniles and adults:

Jt(a, t) + Ja(a, t) + ν(a, t)J(a, t) = 0, 0 < a < amax, 0 < t < T,
At(x, t) + (g(x, t)A(x, t))x + μ(x, t, ϕ(t))A(x, t) = 0, xmin < x < xmax, 0 < t < T,

J(0, t) =
∫ xmax

xmin

β(x, t, ϕ(t))A(x, t)dx, 0 < t < T,

g(xmin, t)A(xmin, t) = J(amax, t), 0 < t < T,
J(a, 0) = J0(a), 0 ≤ a ≤ amax,
A(x, 0) = A0(x), xmin ≤ x ≤ xmax,

(2.1)
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where ϕ(t) =
∫ xmax

xmin
A(x, t)dx is the total population of adults. The parameters ν and

μ are mortality rates for juveniles and adults, respectively. The functions g and β are
the growth and reproduction rates, respectively, for adults. Since amphibians breed
seasonally, the birth rate β typically depends on t and is positive during the breeding
season and zero otherwise (see, e.g., [7, 9]).

Throughout the discussion, for convenience we denote ∂μ
∂ϕ and ∂β

∂ϕ by μϕ and βϕ,
respectively. We assume that the parameters in (2.1) satisfy the following assump-
tions:

(A1) g ∈ C1([xmin, xmax]× [0, T ]). Furthermore, g(x, t) > 0 for (x, t) ∈ [xmin, xmax)
×[0, T ] and g(xmax, t) = 0 for t ∈ [0, T ].

(A2) ν ∈ L∞((0, amax) × (0, T )) is nonnegative.
(A3) μ(·, ·, ϕ) ∈ L∞((xmin, xmax)×(0, T )) and for (x, t, ϕ) ∈ (xmin, xmax)×(0, T )×

[0,∞), μ(x, t, ϕ) is nonnegative. Furthermore, μ is continuously differentiable
with respect to ϕ with μϕ ≥ 0.

(A4) β(·, ·, ϕ) ∈ L∞((xmin, xmax)×(0, T )) and for (x, t, ϕ) ∈ (xmin, xmax)×(0, T )×
[0,∞), β(x, t, ϕ) is nonnegative. Furthermore, β is continuously differentiable
with respect to ϕ with βϕ ≤ 0.

(A5) J0 ∈ L∞(0, amax) is nonnegative.
(A6) A0 ∈ L∞(xmin, xmax) is nonnegative.

3. Comparison principle. We first introduce the definition of the solution of
problem (2.1) via the method of characteristics. For the first equation in (2.1), the
characteristic curves can be easily obtained. For the second equation in (2.1), the
characteristic curves are given by

⎧⎪⎨
⎪⎩

d

ds
t(s) = 1,

d

ds
x(s) = g(x(s), t(s)).

(3.1)

Under assumption (A1), equation (3.1) has a unique solution for any initial point
(x(s0), t(s0)). Parameterizing the characteristic curves with the variable t, a charac-
teristic curve passing through (x̂, t̂) is given by (X(t; x̂, t̂), t), where X satisfies

d

dt
X(t; x̂, t̂) = g(X(t; x̂, t̂), t)

and X(t̂; x̂, t̂) = x̂. By (A1), the function X is strictly increasing, and therefore
a unique inverse function Γ(x; x̂, t̂) exists. Let G(x) = Γ(x;xmin, 0); then (x,G(x))
represents the characteristic curve passing through (xmin, 0), and this curve divides
the (x, t)-plane into two parts. Hence, we can define the solution of problem (2.1) as
follows:

J(a, t) = J0(a− t) exp
(
−
∫ t

0

ν(a− t+ τ, τ)dτ
)

if t ≤ a,(3.2)

J(a, t) =
∫ xmax

xmin

β(x, t− a, ϕ(t− a))A(x, t − a)dx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a,
(3.3)
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A(x, t) = A0(X(0;x, t)) exp
{
−
∫ t

0

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕ(τ))]dτ
}

if t ≤ G(x),
(3.4)

A(x, t)

=
J(amax,Γ(xmin;x, t))
g(xmin,Γ(xmin;x, t))

exp

{
−
∫ t

Γ(xmin;x,t)

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕ(τ))]dτ

}

if t > G(x).
(3.5)

We then introduce the definition of a pair of coupled upper and lower solutions
of problem (2.1).

Definition 3.1. A pair of functions (J(a, t), A(x, t)) and (J(a, t), A(x, t)) are
called an upper solution and a lower solution, respectively, of (2.1) if the following
statements hold:

(i) J, J ∈ L∞((0, amax) × (0, T )) and A,A ∈ L∞((xmin, xmax) × (0, T )).
(ii)

J(a, t) ≥ J0(a− t) exp
(
−
∫ t

0

ν(a− t+ τ, τ)dτ
)

if t ≤ a.(3.6)

J(a, t) ≥
∫ xmax

xmin

β(x, t− a, ϕ(t− a))A(x, t− a)dx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a.
(3.7)

(iii) A(x, 0) ≥ A0(x) ≥ A(x, 0) a.e. in (xmin, xmax). For each t ∈ (0, T ) and every
nonnegative ξ ∈ C1([xmin, xmax] × [0, T ]),∫ xmax

xmin

A(x, t)ξ(x, t)dx ≥
∫ xmax

xmin

A(x, 0)ξ(x, 0)dx+
∫ t

0

J(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]A(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕ(τ))A(x, τ)ξ(x, τ)dxdτ.

(3.8)

(J,A) satisfies (3.6)–(3.8), respectively, by replacing “ ≥ ” with “ ≤ ” and by in-
terchanging J with J , A with A, and ϕ with ϕ, where ϕ(t) =

∫ xmax

xmin
A(x, t)dx and

ϕ(t) =
∫ xmax

xmin
A(x, t)dx.

Remark 3.2. Inequality (3.8), which is used only for the establishment of the
comparison principle, is motivated by an alternative definition of a weak solution of
the second equation in (2.1) given by∫ xmax

xmin

A(x, t)ξ(x, t)dx =
∫ xmax

xmin

A(x, 0)ξ(x, 0)dx+
∫ t

0

J(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]A(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕ(τ))A(x, τ)ξ(x, τ)dxdτ

(3.9)
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for each t ∈ (0, T ) and every ξ ∈ C1([xmin, xmax] × [0, T ]) . The solution (3.9) is
derived by formally multiplying the second equation of (2.1) by a test function ξ and
integrating by parts (cf. [1, 8]).

Remark 3.3. For the linear problem

At(x, t) + (g(x, t)A(x, t))x + μ(x, t)A(x, t) = 0, xmin < x < xmax, 0 < t < T,

g(xmin, t)A(xmin, t) = h(t), 0 < t < T,

A(x, 0) = A0(x), xmin ≤ x ≤ xmax,
(3.10)
the solution satisfies both the mild form given by (3.4)–(3.5) and the weak form
given by (3.9) with J(amax, t) replaced by h(t). Moreover, the two sequences that
we construct in section 4 and apply the comparison principle to are linear and of the
form (3.10).

Based on such a definition, we can establish the following comparison result.
Theorem 3.4. Suppose that (A1)–(A6) hold. Let (J,A) and (J,A) be a non-

negative upper solution and a nonnegative lower solution, respectively, of (2.1). Then
J ≥ J a.e. in (0, amax) × (0, T0) and A ≥ A a.e. in (xmin, xmax) × (0, T0)), where
T0 = min{T, amax}.

Proof. Let K = J − J and B = A−A. In view of (3.6), K(a, t) ≤ 0 for t ≤ a. In
particular, K(amax, t) ≤ 0. Furthermore, B satisfies

B(x, 0) = A(x, 0) −A(x, 0) ≤ 0 a.e. in (xmin, xmax)(3.11)

and ∫ xmax

xmin

B(x, t)ξ(x, t)dx ≤
∫ xmax

xmin

B(x, 0)ξ(x, 0)dx +
∫ t

0

K(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]B(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕ(τ))B(x, τ)ξ(x, τ)dxdτ

+
∫ t

0

∫ xmax

xmin

ξ(x, τ)C1(x, τ)
∫ xmax

xmin

B(y, τ)dydxdτ,

(3.12)

where C1(x, t) = A(x, t)μϕ(x, t, θ1(t)) with θ1(t) between ϕ(t) and ϕ(t).
Let ξ(x, t) = eλtζ(x, t), where ζ ∈ C1([xmin, xmax]× [0, T0]) and λ (> 0) is chosen

so that λ− μ(x, t, ϕ(t)) ≥ 0 on (xmin, xmax) × (0, T0). Then we find

eλt
∫ xmax

xmin

B(x, t)ζ(x, t)dx ≤
∫ xmax

xmin

B(x, 0)ζ(x, 0)dx +
∫ t

0

eλτK(amax, τ)ζ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

eλτ [ζτ (x, τ) + g(x, τ)ζx(x, τ)]B(x, τ)dxdτ

+
∫ t

0

∫ xmax

xmin

eλτ [λ− μ(x, τ, ϕ(τ))]B(x, τ)ζ(x, τ)dxdτ

+
∫ t

0

∫ xmax

xmin

eλτ ζ(x, τ)C1(x, τ)
∫ xmax

xmin

B(y, τ)dydxdτ.

(3.13)
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We now set up a backward problem as follows:

ζτ + gζx = 0, xmin < x < xmax, 0 < τ < t,

ζ(xmax, τ) = 0, 0 < τ < t,

ζ(x, t) = χ(x), xmin < x < xmax.

Here χ ∈ C∞
0 (xmin, xmax) with 0 ≤ χ ≤ 1. The above problem can be solved by the

method of characteristics, and the solution satisfies 0 ≤ ζ(x, t) ≤ 1 on [xmin, xmax] ×
[0, T0]. Since B(x, 0) ≤ 0 and K(amax, t) ≤ 0, we find

eλt
∫ xmax

xmin

B(x, t)χ(x)dx ≤
∫ t

0

∫ xmax

xmin

eλτ [λ− μ(x, τ, ϕ(τ))]B(x, τ)ζ(x, τ)dxdτ

+
∫ t

0

∫ xmax

xmin

eλτ ζ(x, τ)C1(x, τ)
∫ xmax

xmin

B(y, τ)dydxdτ.

(3.14)

Therefore, we have
∫ xmax

xmin

B(x, t)χ(x)dx ≤ c1

∫ t

0

∫ xmax

xmin

B+(x, τ)dxdτ,(3.15)

where

c1 = sup
(x,t)∈[xmin,xmax]×[0,T0]

[
λ− μ(x, t, ϕ(t)) +

∫ xmax

xmin

C1(x, t)dx
]

and B+(x, t) = max{0, B(x, t)}.
Since this inequality holds for every χ, we can now choose a sequence {χn} on

(xmin, xmax) converging a.e. to

χ(x) =
{

1 if B(x, t) > 0,
0 otherwise.

Consequently, we find
∫ xmax

xmin

B+(x, t)dx ≤ c1

∫ t

0

∫ xmax

xmin

B+(x, τ)dxdτ,

which by Gronwall’s inequality leads to
∫ xmax

xmin

B+(x, t)dx = 0,

i.e., B(x, t) ≤ 0. Then it follows from (3.7) that for t > a

K(a, t) ≤
∫ xmax

xmin

β(x, t − a, ϕ(t− a))B(x, t− a)dx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

−
∫ xmax

xmin

D(x, t− a)
∫ xmax

xmin

B(y, t− a)dydx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

≤ 0,
(3.16)
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whereD(x, t) = A(x, t)βϕ(x, t, θ2(t)) with θ2(t) between ϕ(t) and ϕ(t). This completes
the proof.

Based on the definition (3.2)–(3.5), we can also establish the following uniqueness
result.

Theorem 3.5. Let (J(a, t), A(x, t)) be a nonnegative solution of problem (2.1)
for 0 ≤ t ≤ T0. Then (J,A) is unique.

Proof. Suppose that (J1(a, t), A1(x, t)) and (J2(a, t), A2(x, t)) are two nonnegative
solutions of (2.1). Clearly, J1(a, t) = J2(a, t) for t ≤ a. By (3.4) we have

A1(x, t) −A2(x, t) = A0(X(0;x, t)) exp
(
−
∫ t

0

gx(X(τ ;x, t), τ)dτ − θ3(x, t)
)

×
∫ t

0

C2(x, τ)
∫ xmax

xmin

[A1(x, τ) −A2(x, τ)]dxdτ,

where θ3(x, t) is between
∫ t
0 μ(X(τ ;x, t), τ, ϕ1(τ))dτ and

∫ t
0 μ(X(τ ;x, t), τ, ϕ2(τ))dτ

with ϕ1(τ) =
∫ xmax

xmin
A1(x, τ)dx and ϕ2(τ) =

∫ xmax

xmin
A2(x, τ)dx, and C2(x, τ) =

μϕ(X(τ ; x, t), τ, θ4(τ)) with θ4(τ) between ϕ1(τ) and ϕ2(τ). Thus, for t ≤ G(x)

|A1(x, t) −A2(x, t)| ≤ c2

∫ t

0

∫ xmax

xmin

|A1(x, τ) −A2(x, τ)|dxdτ.(3.17)

On the other hand, since J1(amax,Γ(xmin;x, t)) = J2(amax,Γ(xmin;x, t)), by (3.5)
we have

A1(x, t) −A2(x, t)

=
J(amax,Γ(xmin;x, t))
g(xmin,Γ(xmin;x, t))

exp

(
−
∫ t

Γ(xmin;x,t)

gx(X(τ ;x, t), τ)dτ − θ5(x, t)

)

×
∫ t

Γ(xmin;x,t)

C3(x, τ)
∫ xmax

xmin

[A1(x, τ) −A2(x, τ)]dxdτ,

where θ5(x, t) is between
∫ t
Γ(xmin;x,t) μ(X(τ ;x, t), τ, ϕ1(τ))dτ and

∫ t
Γ(xmin;x,t) μ(X(τ ;

x, t), τ, ϕ2(τ))dτ , and C3(x, τ) = μϕ(X(τ ;x, t), τ, θ6(τ)) with θ6(τ) between ϕ1(τ)
and ϕ2(τ). Thus, for t > G(x)

|A1(x, t) −A2(x, t)| ≤ c3

∫ t

Γ(xmin;x,t)

∫ xmax

xmin

|A1(x, τ) −A2(x, τ)|dxdτ

≤ c3

∫ t

0

∫ xmax

xmin

|A1(x, τ) −A2(x, τ)|dxdτ.
(3.18)

A combination of (3.16) and (3.17) then yields that for any (x, t) ∈ [xmin, xmax]×[0, T0]

|A1(x, t) −A2(x, t)| ≤ c4

∫ t

0

∫ xmax

xmin

|A1(x, τ) −A2(x, τ)|dxdτ.(3.19)

Integration of (3.19) over (xmin, xmax) gives

∫ xmax

xmin

|A1(x, t) −A2(x, t)|dx ≤ c4(xmax − xmin)
∫ t

0

∫ xmax

xmin

|A1(x, τ) −A2(x, τ)|dxdτ,
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which by Gronwall’s inequality implies

∫ xmax

xmin

|A1(x, t) −A2(x, t)|dx = 0.

Thus, by (3.19) we have A1(x, t) = A2(x, t) for (x, t) ∈ [xmin, xmax] × [0, T0]. Conse-
quently, taking note of (3.3), J1(a, t) = J2(a, t) for a < t ≤ T0.

4. Monotone sequences and existence of the solution. We begin with the
introduction of a pair of nonnegative lower and upper solutions of problem (2.1). Let
J0(a, t) = 0 and A0(x, t) = 0. For 0 ≤ t ≤ T0 (≡ amax), we set

J
0

t (a, t) + J
0

a(a, t) + ν(a, t)J
0
(a, t) = 0, 0 < a < amax, 0 < t < T0,

A
0

t (x, t) + (g(x, t)A
0
(x, t))x + μ(x, t, 0)A

0
(x, t) = 0, xmin < x < xmax, 0 < t < T0,

J
0
(0, t) =

∫ xmax

xmin

β(x, t, 0)A
0
(x, t)dx, 0 < t < T0,

g(xmin, t)A
0
(xmin, t) = J

0
(amax, t), 0 < t < T0,

J
0
(a, 0) = J0(a), 0 ≤ a ≤ amax,

A
0
(x, 0) = A0(x), xmin ≤ x ≤ xmax.

(4.1)
Clearly, by the method of characteristics, J

0
and A

0
satisfy

J
0
(a, t) = J0(a− t) exp

(
−
∫ t

0

ν(a− t+ τ, τ)dτ
)

if t ≤ a,(4.2)

J
0
(a, t) =

∫ xmax

xmin

β(x, t − a, 0)A
0
(x, t− a)dx exp

(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a,
(4.3)

A
0
(x, t) = A0(X(0;x, t)) exp

{
−
∫ t

0

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, 0)]dτ
}

if t ≤ G(x),
(4.4)

A
0
(x, t)

=
J

0
(amax,Γ(xmin;x, t))

g(xmin,Γ(xmin;x, t))
exp

{
−
∫ t

Γ(xmin;x,t)

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, 0)]dτ

}

if t > G(x).
(4.5)
The above representations are uncoupled, since A

0
(x, t) in (4.5) is constructed from

J
0
(a, t) in (4.2), and then J

0
(a, t) in (4.3) is obtained from (4.4) and (4.5). Therefore,
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A
0

satisfies
∫ xmax

xmin

A
0
(x, t)ξ(x, t)dx =

∫ xmax

xmin

A
0
(x, 0)ξ(x, 0)dx +

∫ t

0

J
0
(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]A
0
(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, 0)A
0
(x, τ)ξ(x, τ)dxdτ

for each t ∈ (0, T ) and every ξ ∈ C1([xmin, xmax]×[0, T ]), since J
0
(amax, t) is explicitly

obtained from (4.2) (cf. [8]).
Thus, it easily follows that (J0, A0) and (J

0
, A

0
) are a pair of lower and upper

solutions of (2.1) for 0 ≤ t ≤ T0.
We then define two sequences {Jk, Ak}∞k=0 and {Jk, Ak}∞k=0 as follows: For k =

1, 2, . . . ,

Jkt (a, t) + Jka(a, t) + ν(a, t)Jk(a, t) = 0, 0 < a < amax, 0 < t < T0,

Akt (x, t) + (g(x, t)Ak(x, t))x

+μ(x, t, ϕk−1(t))Ak(x, t) = 0, xmin < x < xmax, 0 < t < T0,

Jk(0, t) =
∫ xmax

xmin

β(x, t, ϕk−1(t))Ak(x, t)dx, 0 < t < T0,

g(xmin, t)Ak(xmin, t) = Jk(amax, t), 0 < t < T0,

Jk(a, 0) = J0(a), 0 ≤ a ≤ amax,

Ak(x, 0) = A0(x), xmin ≤ x ≤ xmax,

(4.6)

where ϕk−1(t) =
∫ xmax

xmin
A
k−1

(x, t)dx and

J
k

t (a, t) + J
k

a(a, t) + ν(a, t)J
k
(a, t) = 0, 0 < a < amax, 0 < t < T0,

A
k

t (x, t) + (g(x, t)A
k
(x, t))x

+μ(x, t, ϕk−1(t))A
k
(x, t) = 0, xmin < x < xmax, 0 < t < T0,

J
k
(0, t) =

∫ xmax

xmin

β(x, t, ϕk−1(t))A
k
(x, t)dx, 0 < t < T0,

g(xmin, t)A
k
(xmin, t) = J

k
(amax, t), 0 < t < T0,

J
k
(a, 0) = J0(a), 0 ≤ a ≤ amax,

A
k
(x, 0) = A0(x), xmin ≤ x ≤ xmax,

(4.7)

where ϕk−1(t) =
∫ xmax

xmin
Ak−1(x, t)dx. Using the method of characteristics, solutions

to the above problems can be found explicitly as follows:

Jk(a, t) = J0(a− t) exp
(
−
∫ t

0

ν(a− t+ τ, τ)dτ
)

if t ≤ a,(4.8)
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Jk(a, t) =
∫ xmax

xmin

β(x, t− a, ϕk−1(t− a))Ak(x, t− a)dx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a,
(4.9)

Ak(x, t) = A0(X(0;x, t)) exp
{
−
∫ t

0

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕk−1(τ))]dτ
}

if t ≤ G(x),
(4.10)

Ak(x, t) =
Jk(amax,Γ(xmin;x, t))
g(xmin,Γ(xmin;x, t))

× exp

{
−
∫ t

Γ(xmin;x,t)

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕk−1(τ))]dτ

}

if t > G(x).
(4.11)
And Ak also satisfies

∫ xmax

xmin

Ak(x, t)ξ(x, t)dx =
∫ xmax

xmin

Ak(x, 0)ξ(x, 0)dx +
∫ t

0

Jk(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]Ak(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕk−1(t))Ak(x, τ)ξ(x, τ)dxdτ

(4.12)

for each t ∈ (0, T ) and every ξ ∈ C1([xmin, xmax] × [0, T ]).

A representation similar to (4.8)–(4.12) can be obtained for the solution (J
k
, A

k
)

by interchanging Jk with J
k
, Ak with A

k
, and ϕk−1 with ϕk−1.

Remark 4.1. By discretizing (4.8)–(4.11) and the corresponding equations for
(J
k
, A

k
), one can derive a numerical scheme for solving problem (2.1).

Clearly, J0 ≤ J1 and A0 ≤ A1. Meanwhile, J
1

= J
0

for t ≤ a, which im-
plies A

1
= A

0
. Thus, J

1
= J

0
for t > a. Moreover, since −μ(x, t, ϕ0(t)) ≥

−μ(x, t, ϕ1(t)), A
1
(x, t) satisfies the following: for each t ∈ (0, T0) and every non-

negative ξ ∈ C1([xmin, xmax] × [0, T0],

∫ xmax

xmin

A
1
(x, t)ξ(x, t)dx ≥

∫ xmax

xmin

A
1
(x, 0)ξ(x, 0)dx +

∫ t

0

J
1
(amax, τ)ξ(xmin, τ)dτ

+
∫ t

0

∫ xmax

xmin

[ξτ (x, τ) + g(x, τ)ξx(x, τ)]A
1
(x, τ)dxdτ

−
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕ1(τ))A
1
(x, τ)ξ(x, τ)dxdτ.

(4.13)

On the other hand, since −μ(x, t, ϕ0(t)) = −μ(x, t, ϕ1(t)), A1(x, t) satisfies (4.13) with
“ ≥ ” replaced by “ ≤, ” J1

by J1, and ϕ1 by ϕ1. Furthermore, since β(x, t, ϕ0(t)) ≥
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β(x, t, ϕ1(t)), J
1
(a, t) satisfies

J
1
(a, t) ≥

∫ xmax

xmin

β(x, t − a, ϕ1(t− a))A
1
(x, t− a)dx exp

(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a,
(4.14)
and since β(x, t, ϕ0(t)) = β(x, t, ϕ1(t)), J1(a, t) satisfies (4.14) with “ ≥ ” replaced by
“ ≤, ” A1

by A1, and ϕ1 by ϕ1. Therefore, (J1, A1) and (J
1
, A

1
) are a lower solution

and an upper solution, respectively, and hence J1 ≤ J
1
, A1 ≤ A

1
.

Assume that for some k > 1, (Jk, Ak) and (J
k
, A

k
) are a lower solution and an

upper solution, respectively, of problem (2.1). By similar reasoning, we can show that
Jk ≤ Jk+1 ≤ J

k+1 ≤ J
k
, Ak ≤ Ak+1 ≤ A

k+1 ≤ A
k
, and that (Jk+1, Ak+1) and

(J
k+1

, A
k+1

) are also a lower solution and an upper solution, respectively, of (2.1).
Thus, by induction, we obtain two monotone sequences that satisfy

J0 ≤ J1 ≤ · · · ≤ Jk ≤ J
k ≤ · · · ≤ J

1 ≤ J
0

a.e. in [0, amax] × [0, T0],

A0 ≤ A1 ≤ · · · ≤ Ak ≤ A
k ≤ · · · ≤ A

1 ≤ A
0

a.e. in [xmin, xmax] × [0, T0]

for each k = 0, 1, 2, . . . . Hence, it follows from the monotonicity of the sequences
{Jk, Ak} and {Jk, Ak} that there exist functions (J,A) and (J,A) such that Jk → J

and J
k → J pointwise in (0, amax) × (0, T0), and Ak → A and A

k → A pointwise in
(xmin, xmax) × (0, T0). Clearly J ≤ J and A ≤ A a.e.

Upon establishing the monotonicity of our sequences, we can prove the following
convergence result.

Theorem 4.2. Suppose that (A1)–(A6) hold. Then {Jk, Ak}∞k=0 and {Jk, Ak}∞k=0

converge to the unique solution (J,A) of problem (2.1) in L∞((0, amax) × (0, T0)) ×
L∞((xmin, xmax) × (0, T0)).

Proof. Since the monotone sequences are bounded by (J0, A0) and (J
0
, A

0
), from

the pointwise convergence of the sequence, the solution representation for (Jk, Ak)
given in (4.8)–(4.11), and the solution representation for (J

k
, A

k
), we find that {Jk,

Ak}∞k=0 converges to (J,A) and {Jk, Ak}∞k=0 converges to (J,A) monotonically. Here,
(J,A) satisfies

J(a, t) = J0(a− t) exp
(
−
∫ t

0

ν(a− t+ τ, τ)dτ
)

if t ≤ a,(4.15)

J(a, t) =
∫ xmax

xmin

β(x, t− a, ϕ(t− a))A(x, t− a)dx exp
(
−
∫ t

t−a
ν(a− t+ τ, τ)dτ

)

if t > a,
(4.16)

A(x, t) = A0(X(0;x, t)) exp
{
−
∫ t

0

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕ(τ))]dτ
}

if t ≤ G(x),
(4.17)
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A(x, t)

=
J(amax,Γ(xmin;x, t))
g(xmin,Γ(xmin;x, t))

exp

{
−
∫ t

Γ(xmin;x,t)

[gx(X(τ ;x, t), τ) + μ(X(τ ;x, t), τ, ϕ(τ))]dτ

}

if t > G(x),
(4.18)
and (J,A) satisfies (4.15)–(4.18) by interchanging J with J , A with A, and ϕ with ϕ.

We now show that (J,A) = (J,A). In view of (4.15)–(4.18), it suffices to show
that A = A. To this end, let B = A− A. Since A ≥ A, B(x, t) ≥ 0 and B(x, 0) = 0.
Taking note of the fact that J(amax, t) = J(amax, t) and choosing ξ(x, t) ≡ 1, we have
that

∫ xmax

xmin

B(x, t)dx = −
∫ t

0

∫ xmax

xmin

μ(x, τ, ϕ(τ))B(x, τ)dxdτ

+
∫ t

0

∫ xmax

xmin

C4(x, τ)
∫ xmax

xmin

B(y, τ)dydxdτ

≤ c5

∫ t

0

∫ xmax

xmin

B(x, τ)dxdτ,

where C4(x, t) = A(x, t)μϕ(x, t, θ7(t)) with θ7(t) between ϕ(t) and ϕ(t), and c5 =
supt∈[0,T0]

∫ xmax

xmin
C4(x, t)dx. Thus, it follows from Gronwall’s inequality that B(x, t) =

0, i.e., A = A. Defining the common limit by (J,A), we find that (J,A) satisfies (3.2)–
(3.5).

By subtracting (3.2)–(3.5) from (4.8)–(4.11), respectively, and using the pointwise
convergence established above, we can show that ‖Jk − J‖∞, ‖Ak − A‖∞ → 0 as
k → ∞. Similarly, we can show that ‖Jk − J‖∞, ‖Ak −A‖∞ → 0 as k → ∞. Hence,
the proof is complete.

From the aforementioned process, we also have the following comparison result.
Corollary 4.3. Suppose that hypotheses (A1)–(A6) hold. Furthermore, sup-

pose that (J,A) and (J,A) are a nonnegative lower solution and a nonnegative upper
solution, respectively, of (2.1). Then the solution (J,A) of (2.1) satisfies

J(a, t) ≤ J(a, t) ≤ J(a, t) a.e. in (0, amax) × (0, T0),

A(x, t) ≤ A(x, t) ≤ A(x, t) a.e. in (xmin, xmax) × (0, T0).

Furthermore, since T0 ≡ amax, viewing (J(a, T0), A(x, T0)) as a new initial condi-
tion, we can easily extend the above-mentioned arguments to the interval 0 ≤ t ≤ T
for any T > 0. Thus we have the following global existence result.

Theorem 4.4. The solution (J,A) of problem (2.1) exists for 0 ≤ t <∞.
Remark 4.5. Corollary 4.3 plays a crucial role in understanding the long-time

behavior of the model solution. In particular, if one constructs a suitable upper
and/or lower solution, one is able to conclude whether the population goes extinct
or survives. An important feature of this comparison approach is that it can handle
time-dependent vital rates (see next section).

5. Population extinction and persistence. In this section we study the long-
time behavior of the solution of problem (2.1). In particular, we establish conditions
on the parameters in (2.1) under which the population becomes extinct or survives
in infinite time. Our asymptotic analysis is different from all other investigations of
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structured population models and relies on the comparison principle developed here
and the construction of suitable pairs of lower and upper solutions. We first present
the extinction result. To this end, we impose the following additional assumptions on
the parameters:

(A7) There exists a positive constant δ such that

ν(a, t) ≥ δ for (a, t) ∈ [0, amax] × [0,∞), g(xmin, t) ≥ δ for t ∈ [0,∞),

and

gx(x, t) + μ(x, t, 0) ≥ δ for (x, t) ∈ [xmin, xmax] × [0,∞).

(A8) 1
inft∈[0,∞) g(xmin,t)

exp
(
−
∫ amax

0
inft∈[0,∞) ν(q, t)dq

)
< 1.

(A9)
∫ xmax

xmin
supt∈[0,∞) β(x, t, 0) exp

(
−
∫ x
xmin

inft∈[0,∞)

[gx(p,t)+μ(p,t,0)
g(p,t)

]
dp
)
dx < 1.

Remark 5.1. If the parameters are time-independent, then (A8)–(A9) reduce to

1
g(xmin)

exp
(
−
∫ amax

0

ν(q)dq
)
< 1,

g(xmin)
∫ xmax

xmin

β(x, 0)
g(x)

exp
(
−
∫ x

xmin

μ(p, 0)
g(p)

dp

)
dx < 1.

Clearly, these conditions imply that the inherent net reproduction number of the
model (2.1) is

R0 = exp
(
−
∫ amax

0

ν(q)dq
)∫ xmax

xmin

β(x, 0)
g(x)

exp
(
−
∫ x

xmin

μ(p, 0)
g(p)

dp

)
dx < 1.(5.1)

Theorem 5.2. Suppose that hypotheses (A7)–(A9) hold. Then the solution (J,A)
of problem (2.1) tends to zero uniformly in (a, x) ∈ [0, amax]× [xmin, xmax] as t→ ∞.

Proof. Let J(a, t) = 0 and A(x, t) = 0. We then introduce J(a, t) = MJ (a)e−σt

and A(x, t) = MA(x)e−σt, where M,σ are positive constants to be determined, and
J ,A are continuously differentiable functions with J (0) = 1,A(xmin) = 1.

Clearly, (J,A) is a lower solution. In order to ensure that (J,A) is an upper
solution, it suffices to require the following:

−σJ + J ′ + ν(a, t)J ≥ 0 for a ∈ (0, amax),(5.2)

−σA + gx(x, t)A + g(x, t)A′ + μ(x, t, 0)A ≥ 0 for x ∈ (xmin, xmax),(5.3)

1 ≥
∫ xmax

xmin

β(x, t, 0)A(x)dx and g(xmin, t) ≥ J (amax) for t ∈ [0,∞),(5.4)

MJ (a) ≥ J0(a) for a ∈ [0, amax] and MA(x) ≥ A0(x) for x ∈ [xmin, xmax].(5.5)

In view of (A7), we choose σ ≤ δ and let J ,A satisfy

J ′ +
(

inf
t∈[0,∞)

ν(a, t) − σ

)
J = 0 for a ∈ (0, amax),
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A′ + inf
t∈[0,∞)

(
gx(x, t) + μ(x, t, 0) − σ

g(x, t)

)
A = 0 for x ∈ (xmin, xmax).

The solutions of the above equations are given by

J (a) = exp
(
−
∫ a

0

(
inf

t∈[0,∞)
ν(q, t) − σ

)
dq

)
,

A(x) = exp
(
−
∫ x

xmin

inf
t∈[0,∞)

(
gx(p, t) + μ(p, t, 0) − σ

g(p, t)

)
dp

)
,

and (5.2), (5.3) are valid. By virtue of (A8), we then choose σ so small that (5.4)
holds. Finally, we choose M large enough such that

MJ (amax) ≥ sup
[0,amax]

J0(a) and MA(xmax) ≥ sup
[xmin,xmax]

A0(x).

Hence, by Corollary 4.3, we have

0 ≤ lim
t→∞

J(a, t) ≤ lim
t→∞

MJ (a)e−σt ≤ lim
t→∞

Me−σt = 0

and

0 ≤ lim
t→∞

A(x, t) ≤ lim
t→∞

MA(x)e−σt ≤ lim
t→∞

Me−σt = 0.

We now present the persistence result. For this purpose, we assume the following
condition:
(A10) There exist positive values ϕ0 and N such that

sup
[xmin,xmax]×[0,∞)×[ϕ0,∞)

[β(x, t, ϕ) − μ(x, t, ϕ)] = −N < 0.

We show that the total population of adults is uniformly bounded.
Lemma 5.3. There exists a positive value ϕ∗ such that 0 ≤ ϕ(t) ≤ ϕ∗ for

0 ≤ t <∞.
Proof. Let ψ(t) =

∫ amax

0 J(a, t)da. Integrating (2.1)1 and (2.1)2 with respect to a
and x, respectively, and making use of (2.1)3 and (2.1)4, we obtain

(ψ(t) + ϕ(t))′ =
∫ xmax

xmin

[β(x, t, ϕ(t)) − μ(x, t, ϕ(t))]A(x, t)dx

−
∫ amax

0

ν(a, t)J(a, t)da.
(5.6)

If there is a t0 such that ϕ(t0) > ϕ0, then from (5.6) we have

ψ′(t0) + ϕ′(t0) ≤ −Nϕ0,

and it follows that either after a finite time t1 ϕ(t) ≤ ϕ0 or for t0 ≤ t < ∞, ϕ(t) ≤
ψ(t0) + ϕ(t0).

We then impose the following additional assumptions on the parameters:
(A11) gx(x, t) + μ(x, t, ϕ∗) > 0 for (x, t) ∈ [xmin, xmax] × [0,∞).
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(A12) 1
supt∈[0,∞) g(xmin,t)

exp
(
−
∫ amax

0
supt∈[0,∞) ν(q, t)dq

)
≥ 1.

(A13)
∫ xmax

xmin
inft∈[0,∞) β(x, t, ϕ∗) exp

(
−
∫ x
xmin

supt∈[0,∞)

[ gx(p,t)+μ(p,t,ϕ∗)
g(p,t)

]
dp
)
dx ≥ 1.

Remark 5.4. If the model parameters do not depend on t, then assumptions
(A12)–(A13) imply that R0 > 1 with R0 given in (5.1).

Theorem 5.5. Suppose that hypotheses (A10)–(A13) hold and J0(a) > 0 for
a ∈ [0, amax], A0(x) > 0 for x ∈ [xmin, xmax]. Then the solution of problem (2.1) is
uniformly persistent.

Proof. We first introduce two new parameters μ̃(·, ·, ϕ), β̃(·, ·, ϕ) ∈ L∞((xmin, xmax)
×(0, T )) that are nonnegative, continuously differentiable in ϕ, with μ̃ϕ ≥ 0, β̃ϕ ≤ 0,
and satisfy for every (x, t) ∈ [xmin, xmax] × [0,∞)

μ̃(x, t, ϕ(t)) =
{
μ(x, t, ϕ(t)) if ϕ(t) ≤ ϕ∗ − ε,
μ(x, t, ϕ∗) if ϕ(t) ≥ ϕ∗ + ε

and

β̃(x, t, ϕ(t)) =
{
β(x, t, ϕ(t)) if ϕ(t) ≤ ϕ∗ − ε,
β(x, t, ϕ∗) if ϕ(t) ≥ ϕ∗ + ε,

where ε is a small positive constant. Clearly, the solution of (2.1) is the limit (as
ε → 0) to the solution of (2.1*), which is (2.1) with μ and β replaced with μ̃ and β̃,
respectively. From now on, we focus on problem (2.1*).

Set J(a, t) = mK(a), A(x, t) = mB(x) and J(a, t) = Me−ρaeγt, A(x, t) =
Me−η(x−xmin)eγt, where m,M, ρ, η, γ are positive constants to be determined and
K,B are continuously differentiable functions with K(0) = 1,B(xmin) = 1.

If J,A and J,A are coupled lower and upper solutions of (2.1*), they satisfy the
following:

K′ + ν(a, t)K ≤ 0 for a ∈ (0, amax),(5.7)

gx(x, t)B + g(x, t)B′ + μ̃(x, t,∞)B ≤ 0 for (x, t) ∈ (xmin, xmax) × (0,∞),(5.8)

1 ≤
∫ xmax

xmin

β̃(x, t,∞)B(x)dx and g(xmin, t) ≤ K(amax) for t ∈ [0,∞),(5.9)

mK(a) ≤ J0(a) for a ∈ [0, amax] and mB(x) ≤ A0(x) for x ∈ [xmin, xmax],(5.10)

γ − ρ+ ν(a, t) ≥ 0 for (a, t) ∈ (0, amax) × (0,∞),(5.11)

γ + gx(x, t) − ηg(x, t) + μ̃(x, t, 0) ≥ 0 for (x, t) ∈ (xmin, xmax) × (0,∞),(5.12)

1 ≥
∫ xmax

xmin

β̃(x, t, 0)e−η(x−xmin)dx and g(xmin, t) ≥ e−ρamax for t ∈ [0,∞),(5.13)

Me−ρa ≥ J0(a) for a ∈ [0, amax] and Me−η(x−xmin) ≥ A0(x) for x ∈ [xmin, xmax].
(5.14)



CONTINUOUS JUVENILE-ADULT MODEL 1659

We first set up two equations for K and B, respectively:

K′ + sup
t∈[0,∞)

ν(a, t)K = 0 for a ∈ (0, amax)

and

B′ + sup
t∈[0,∞)

(
gx(x, t) + μ̃(x, t,∞)

g(x, t)

)
B = 0 for x ∈ (xmin, xmax).

Solving these equations, we obtain

K(a) = exp

(
−
∫ a

0

sup
t∈[0,∞)

ν(q, t)dq

)
,

B(x) = exp

(
−
∫ x

xmin

sup
t∈[0,∞)

(
gx(p, t) + μ̃(p, t,∞)

g(p, t)

)
dp

)
,

and taking (A12), (A13) into account, we find that (5.7)–(5.9) hold. We then choose
m small enough such that

m ≤ inf
[0,amax]

J0(a) and m ≤ inf
[xmin,xmax]

A0(x).

We now turn to J,A. We first choose ρ = max{0,− ln(inft∈[0,∞) g(xmin, t))/amax}
and η = sup[xmin,xmax]×[0,∞) β̃(x, t, 0) such that (5.13) is valid. We then choose γ so
large that (5.11) and (5.12) hold. Finally, we choose M large enough such that

Me−ρamax ≥ sup
[0,amax]

J0(a) and Me−η(xmax−xmin) ≥ sup
[xmin,xmax]

A0(x).

Hence, by Corollary 4.3, we have

m exp

(
−
∫ amax

0

sup
t∈[0,∞)

ν(q, t)dq

)
≤ J(a, t) for (a, t) ∈ [0, amax] × [0,∞)

and

m exp

(
−
∫ xmax

xmin

sup
t∈[0,∞)

(
gx(p, t) + μ̃(p, t,∞)

g(p, t)

)
dp

)
≤ A(x, t)

for (x, t) ∈ [xmin, xmax] × [0,∞).

Since limε→0 μ̃(x, t, ϕ) = μ(x, t, ϕ) for ϕ ≤ ϕ∗, letting ε → 0, the proof is now com-
plete. .

6. Concluding remarks. In this paper we have developed a new method for
studying the long-time behavior of a nonautonomous age-size–structured model. The
key idea in this method is the establishment of a comparison principle and the con-
struction of a suitable pair of upper and lower solutions. Although comparison prin-
ciples for local hyperbolic partial differential equations have been known for a long
time [24], the first such principle for a nonlocal and linear size-structured model de-
scribing the evolution of a single population was developed by the authors in [3] and
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later extended to a nonlinear size-structured model in [4]. Here, we extend these
comparison principles to a nonlinear nonautonomous juvenile-adult model, and, most
importantly, we show for the first time that such a method can be used to provide
conditions on the vital rates (which are related to the net reproduction number of
the model (2.1) that result in population extinction or in uniform persistence of the
population).

It is our hope that this method will present another approach for understanding
the long-time behavior of such (complex) autonomous or nonautonomous models.
Indeed, our current efforts are focused on the careful construction of upper and lower
solutions that result in convergence of solutions to an equilibrium for the case of
time-independent parameters (autonomous) or even for the case of asymptotically
autonomous models [30].

Acknowledgment. The authors thank the referees for their constructive com-
ments and helpful suggestions.
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DETECTING INCLUSIONS IN ELECTRICAL IMPEDANCE
TOMOGRAPHY WITHOUT REFERENCE MEASUREMENTS∗
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Abstract. We develop a new variant of the factorization method that can be used to detect
inclusions in electrical impedance tomography from either absolute current-to-voltage measurements
at a single, nonzero frequency or from frequency-difference measurements. This eliminates the need
for numerically simulated reference measurements at an inclusion-free body and thus greatly improves
the method’s robustness against forward modeling errors, e.g., in the assumed body’s shape.
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1. Introduction. In electrical impedance tomography (EIT), we inject a time-
harmonic current of I mA at a fixed angular frequency ω into an imaging subject
using a pair of surface electrodes attached to its boundary. Then the induced time-
harmonic electrical potential is dictated by the complex conductivity distribution σω

of the subject, the applied current, and the shape of the subject, where the real and
imaginary part of the complex conductivity, �(σω) and �(σ

ω

ω ), are the real conduc-
tivity and the permittivity at the angular frequency ω, respectively. In EIT, we use
measured boundary voltages generated by multiple injection currents to reconstruct
an image of σω inside the subject. It is well known that these boundary measurements
are very insensitive and highly nonlinear to any local change of conductivity values
away from the measuring points. Hence, the reconstructed image quality in terms of
accuracy would be affected sensitively by unavoidable errors including the modeling
errors and measurement noises.

Understanding the limited capabilities of static EIT imaging under realistic en-
vironments, numerous recent studies in EIT focus on the detection of conductivity
anomalies instead of (e.g., cross-sectional) conductivity imaging; cf., e.g., [17, 21,
27, 28, 2, 9, 1, 20, 8, 15], the references therein, and the works connected with the
factorization method cited further below.

Let us briefly explain the anomaly detection problem in EIT. Let the imaging
object occupy a two- or three-dimensional region B with its smooth boundary ∂B,
and let anomalies occupy a region Ω inside a background domain B of constant con-
ductivity. We furthermore assume that the conductivity is isotropic. To distinguish
the conductivity of the anomaly Ω and the surrounding homogeneous domain B \ Ω,
we denote the conductivity distribution at ω = 0 by

σ(x) = σ0 + σΩ(x)χΩ(x),
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where χΩ is the characteristic function of Ω and σ is a positive and bounded function
in B. The inverse problem is to identify Ω from several pairs of Neumann-to-Dirichlet
data

(gj ,Λ(gj)) ∈ L2
�(∂B) × L2

�(∂B), j = 1, . . . , L,

where L2
�(∂B) = {φ ∈ L2(∂B) :

∫
∂B φ dx = 0}. Here, Λ(g) = u|∂B and u is the

H1(B)-solution for the Neumann boundary value problem:

∇ · (σ∇u) =0 in B,

σ
∂u

∂ν
|∂B = g,

∫
∂B

u dx = 0,

where ν is the unit outward normal vector to the boundary ∂B.
One of the most successful EIT-methods for locating multiple anomalies would

be the factorization method introduced by Kirsch [24] for inverse scattering problems
and generalized to EIT-problems by Brühl and Hanke in [5, 4]; see also the recent
book of Kirsch and Grinberg [26], the work of Kirsch [25] on the complex conductivity
case, and [6, 14, 18, 11, 16, 19, 30, 13, 29] for further extensions of the method in
the context of EIT. The factorization method is based on a characterization using the
range of the difference between the Neumann-to-Dirichlet (NtD) map in the presence
of anomalies and that in the absence of anomalies: z ∈ Ω if and only if Φz|∂B is in
the range of the operator |Λ−Λ0|1/2, where Λ0 is the NtD map corresponding to the
reference homogeneous conductivity σ(x) = σ0 and Φz(x) is the solution of

ΔxΦz(x) = d · ∇xδz(x) in B,
∂

∂ν
Φz |∂Ω = 0, and

∫
∂B

Φz(x) dx = 0,

where d is any unit vector and δz is the Dirac delta function at z.
For the practical application of the factorization method for static EIT systems,

the requirement of the reference NtD data Λ0 is a drawback. While, in practice, a
rough approximation of the NtD map Λ can be obtained from the current-to-voltage
data, the corresponding current-to-voltage data for the reference NtD map Λ0 in the
absence of anomalies is usually not available.

Hence, one uses numerically simulated data corresponding to Λ0 by solving the
forward problem ∇· (σ0∇u) = 0 in B with mimicked Neumann data representing the
injection current in the EIT system. Noting that the simulated Dirichlet data is mainly
depending on the geometry of ∂B and the Neumann data, instead of the conductivity
σ0 (which acts merely as a scaling factor), the requirement of the reference NtD
data Λ0 makes the factorization method very sensitive to forward modeling errors
including the boundary geometry error and electrodes position uncertainty (related
to the mimicked Neumann data), since its image reconstruction problem is ill-posed.
Hence, it is desirable to eliminate the requirement of the reference NtD data Λ0.

In this work, we adopt the frequency-difference EIT system [31, 32] to obtain
a subsidiary NtD data Λω at a fixed angular frequency ω taken from the range of
1kHz ≤ ω

2π ≤ 500kHz. Λω(g) is the Dirichlet data of the complex potential uω which
satisfies

∇ · (σω∇uω) = 0 in B, σω
∂

∂ν
uω|∂B = g, and

∫
∂B

uω dx = 0.

Our aim is to substitute Λω for Λ0 in the conventional factorization method and
use an interrelation between Λ and Λω to locate the anomalies Ω. However, due to
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�{σω} �= 0, the operator Λω is not self-adjoint and Λ−Λω is neither semipositive nor
seminegative.

In this work, we show that, for an arbitrary fixed nonzero frequency ω, both, the
imaginary part of σω0 Λω and the real part of the normalized difference σ0Λ − σω0 Λω
(or actually any other normalized difference of measurements taken at two different
frequencies), provide a constructive way of locating Ω, where σω0 is the background
complex conductivity at the angular frequency ω. To our knowledge this is the first
characterization result that works without reference measurements. We numerically
demonstrate that the proposed new variant of the factorization method locates suc-
cessfully the region Ω with a reasonable accuracy in the presence of boundary geometry
errors and measurement noise. We also describe a heuristic approach to estimate an
unknown background conductivity from the measured data and numerically test it on
a homogeneous, as well as on a slightly inhomogeneous, background.

In section 2 we formulate and prove our main results. In section 3 we test our
method numerically, compare its sensitivity to body shape errors with the conven-
tional factorization method, and describe a heuristic approach to estimate an unknown
background conductivity. Section 4 contains some concluding remarks.

2. Characterization of an inclusion without reference data. Let B ⊂ Rn,
n ≥ 2, be a smoothly bounded domain describing the investigated body. Let ω > 0
be an arbitrary fixed frequency and denote by σω the body’s complex conductivity
at some fixed nonzero frequency ω > 0. We assume that �(σω) ∈ L∞

+ (B; R) and
�(σω) ∈ L∞(B; R), where �(·) and �(·) denote the real and imaginary part, the
subscript “+” indicates functions with positive (essential) infima, and throughout this
work all function spaces consist of complex valued functions if not stated otherwise.

A time-harmonic current with (complex) amplitude g ∈ L2
�(∂B) and frequency ω

that is applied to the body’s surface gives rise to an electric potential uω ∈ H1(B)
that satisfies

(2.1) ∇ · (σω∇uω) = 0 in B and σω∂νuω|∂B = g,

where L2
�(∂B) is the subspace of L2(∂B)-functions with vanishing integral mean, ν is

the outer normal on ∂B.
It is a well-known consequence of the Lax–Milgram theorem (cf., e.g., [7, Chap-

ter VI, §3, Theorem 7]) that there exists a solution of (2.1) and that this solution is
uniquely determined up to addition of a constant function. We denote the quotient
space of H1(B) modulo constant functions by H1

� (B). The trace operator v 
→ v|∂B
canonically extends to H1

� (B) → L2(∂B)/C, where we identify the latter space with
L2
�(∂B) by appropriately fixing the ground level.

The inverse problem of frequency-dependent EIT is the problem of determining
(properties of) σω from measuring one or several pairs of Neumann and Dirichlet
boundary values (uω|∂B, σω∂νuω|∂B). Mathematically, the knowledge of all such pairs
is equivalent to knowing the Neumann-to-Dirichlet operator

Λω : L2
�(∂B) → L2

�(∂B), g 
→ uω|∂B,

where uω solves (2.1). It is easily checked that Λω is linear and compact.

2.1. The main results. In this work, we assume that the conductivity of the
body is constant outside one or several inclusions, i.e.,

σω(x) = σω0 + σωΩ(x)χΩ(x),
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where Ω is some open (possibly disconnected) set with smooth boundary and con-
nected complement, Ω ⊂ B, and σω0 ∈ C, σωΩ ∈ L∞(Ω) are such that �(σω) ∈
L∞

+ (B; R).
We will show that the inclusion Ω can be determined from the Neumann-to-

Dirichlet operator Λω using the same singular dipole potentials that were introduced
for the factorization method by Brühl and Hanke in [5, 4]. For an arbitrary direction
d ∈ Rn, |d| = 1, and every point z ∈ B, let Φz be the solution of

ΔxΦz(x) = d · ∇xδz(x) in B

with homogeneous Neumann boundary values ∂νΦz(x)|∂B = 0 and vanishing integral
mean on ∂B.

Theorem 2.1. Assume that either

(2.2) �
(
σωΩ
σω0

)
∈ L∞

+ (Ω; R) or −�
(
σωΩ
σω0

)
∈ L∞

+ (Ω; R).

Then

z ∈ Ω if and only if Φz |∂B ∈ R
(
|� (σω0 Λω)|1/2

)
,

where the imaginary part of a bounded linear operator A ∈ L(H) on a complex Hilbert
space H is defined by �(A) := 1

2i (A−A∗), and R(A) denotes the range of A.
We also show a complementary result for the real part of frequency-difference

data. Let 0 ≤ τ �= ω be another fixed frequency (possibly being zero) for which the
body’s complex conductivity is στ , with �(στ ) ∈ L∞

+ (B; R). We assume that στ is
also constant outside the same inclusion Ω, i.e., στ = στ0 + στΩ(x)χΩ(x) with στ0 ∈ C.
Measurements at the frequency τ are described by the NtD operator Λτ which is
defined analogously to Λω.

Theorem 2.2. If either

�
(
στ
Ω
στ
0

)
−�

(
σω
Ω
σω
0

)
−

�
(
σω
Ω
σω
0

)2

�
(
σω

σω
0

) ∈ L∞
+ (Ω; R),(2.3)

or

�
(
σω
Ω
σω
0

)
−�

(
στ
Ω
στ
0

)
−

�
(
στ
Ω
στ
0

)2

�
(
στ

στ
0

) ∈ L∞
+ (Ω; R),(2.4)

then

z ∈ Ω if and only if Φz|∂B ∈ R
(
|� (σω0 Λω − στ0Λτ )|1/2

)
,

where the real part of a bounded linear operator A ∈ L(H) on a complex Hilbert space
H is defined by �(A) := 1

2 (A+A∗).
Before we prove these two theorems in the next subsection, let us comment on

their relevance. In contrast to the conventional factorization method where the mea-
sured NtD data is compared to reference data that is usually not available by experi-
ment (with the disadvantages described in the introduction), both theorems use only
experimentally available NtD measurements. Our theorems require NtD data either
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at just one (nonzero) frequency, which is then compared to its own adjoint (Theo-
rem 2.1) or NtD data measured at two different frequencies (possibly one being zero),
which are then compared to each other (Theorem 2.2). In particular, this means that
we can replace unavailable reference measurements in the conventional factorization
methods by experimentally available measurements at an arbitrary nonzero frequency,
which strongly reduces the methods sensitivity to boundary geometry errors as we will
demonstrate numerically in section 3. In practice, one may have access to measure-
ments at more than two frequencies. This redundancy can surely be used to further
increase the performance or robustness of our method, but we have not studied this
question in detail.

The assumptions (2.2)–(2.4) are arguably not very intuitive. For the practically
relevant model case that the real conductivity κ = �(σω) and the permittivity ε =
�(σ

ω

ω ) are not frequency-dependent, they can be restated as follows.
Remark 2.3. Let

στ (x) = κ(x) + iτε(x), κ(x) = κ0 + κΩ(x)χΩ(x),

σω(x) = κ(x) + iωε(x), ε(x) = ε0 + εΩ(x)χΩ(x),

with κ0, ε0 ∈ R, κΩ, εΩ ∈ L∞(Ω; R). Then

�
(
σωΩ
σω0

)
=

ω

κ2
0 + ω2ε20

(κ0εΩ − κΩε0),

�
(
στΩ
στ0

)
−�

(
σωΩ
σω0

)
−

�
(
σω
Ω
σω
0

)2

�
(
σω

σω
0

) =
(κ0εΩ − κΩε0)(τ2κε0 − ω2κ0ε)

(κ2
0 + τ2ε20)(κ0κ+ ω2ε0ε)

,

and the same identities hold with ω and τ interchanged. Hence, (2.2) is equivalent to

(2.5) κ0εΩ − κΩε0 ∈ L∞
+ (Ω; R) or κΩε0 − κ0εΩ ∈ L∞

+ (Ω; R).

If ω is sufficiently larger than τ , then (2.5) is also equivalent to the disjunction of (2.3)
and (2.4). For τ = 0, every ω > 0 is sufficiently large.

In particular, our method can identify inclusions where only the real conductivity
or only the permittivity differs from the background, and this deviance is of the same
sign in all inclusions. However, there exist combinations where a jump κΩ in the real
conductivity and a jump εΩ in the permittivity cancel each other out, in the sense
that

κ0εΩ − κΩε0 = 0.

Inclusions with this property cannot be detected by our method. In fact, they are com-
pletely invisible to weighted frequency-difference measurements, as one easily checks
that in this case

� (σω0 Λω) = 0 and � (σω0 Λω − στ0Λτ ) = 0.

There is also another drawback in our method compared to the original factor-
ization method. The original method also works in the case of an inhomogeneous
(but known) background medium, which only requires the replacement of the singu-
lar dipole potentials Φz by the corresponding dipole potentials in the inhomogeneous
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background. For our method this is not sufficient, since we also need the constant
background conductivities to form the weighted differences of the NtD data. Hence,
up to now, our method can only be applied to a homogeneous (constant) background
medium. We believe, however, that our results cover the most relevant case in prac-
tice, where no accurate information about the background is available (except of being
“almost constant”), and we describe in subsection 3.3 a heuristic approach how even
an unknown background value can be estimated from the measured data. Our numer-
ical results indicate that this approach still yields reasonable results if the unknown
background is slightly inhomogeneous.

2.2. Proof of the main results. We start with some notations. The inner
product on a complex Hilbert space H is denoted by (·, ·) and the pairing on H and its
antidual H ′ is denoted by 〈·, ·〉H′×H . Both are ordered in the way that they are linear
in the first and antilinear in their second argument. For an operator A ∈ L(H1, H2)
acting between Hilbert spaces H1 and H2, we rigorously distinguish between the dual
operator A′ ∈ L(H ′

2, H
′
1) and the adjoint operator A∗ ∈ L(H2, H1).

Analogously to the definition of H1
� (B), we denote by H1

� (B \ Ω), H1
� (Ω), and

H
1/2
� (∂Ω) the quotient spaces of H1(B \ Ω), H1(Ω), and of the the trace space

H1/2(∂Ω) modulo locally constant functions. (Thus, for disconnected Ω a multidi-
mensional space is factored out.) The antidual of H1/2

� (∂Ω) is denoted by H−1/2
� (∂Ω),

and we identify L2
�(∂B) with its antidual.

We will prove both results using a factorization of the difference of σω0 Λω and the
reference NtD operator Λ0 corresponding to a constant conductivity equal to one, i.e.,

Λ0 : L2
�(∂B) → L2

�(∂B), g 
→ u0|∂B,

where u solves

Δu0 = 0 in B and ∂νu0|∂B = g.

It is well known and easily checked that Λ0 is linear, compact, and self-adjoint. Let
us stress again that we only require measurements at one arbitrary fixed frequency
ω > 0 (for Theorem 2.1), or at two arbitrary, but different, fixed frequencies ω > 0,
τ ≥ 0 (for Theorem 2.2). Λ0 merely serves as an auxiliary operator that will cancel
out later in our proof. Unlike other applications of the factorization method, Λ0 does
not have to correspond to real measurements.

For the factorization we also introduce the operator

L : H−1/2
� (∂Ω) → L2

�(∂B), ψ 
→ w|∂B ,

where w ∈ H1
� (B \ Ω) solves

Δw = 0, ∂νw|∂B = 0, ∂νw
+|∂Ω = −ψ,

with ν being the normal on ∂Ω oriented into B \Ω and we denote by the superscripts
“+”, resp., “−” that the trace is taken from B \Ω and Ω, respectively. We also define

F0 : H1/2
� (∂Ω) → H

−1/2
� (∂Ω), F0φ = ∂νv

+
0 |∂Ω,

Fω : H1/2
� (∂Ω) → H

−1/2
� (∂Ω), Fωφ = ∂νv

+
ω |∂Ω,
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where v0, vω ∈ H1
� (B \ ∂Ω) solve

Δv0 = 0 in B \ ∂Ω, ∇ · σ
ω

σω0
∇vω = 0 in B \ ∂Ω,

∂νv0|∂B = 0, ∂νvω|∂B = 0,

[v0]∂Ω = φ, [vω ]∂Ω = φ,

[∂νv0]∂Ω = 0,
[
σω

σω0
∂νvω

]
∂Ω

= 0,

with [·] denoting the difference of the trace taken from B \ Ω minus the trace taken
from Ω. (Note that one easily checks that F0 and Fω are indeed well defined on these
spaces.)

For the case of frequency-difference data, we also define Fτ analogously to Fω .
For the sake of readability we formulate the next two lemmas only for the frequency
ω, though they just as well hold for τ .

Lemma 2.4. The difference of the Neumann-to-Dirichlet operators can be factor-
ized into

Λ0 − σω0 Λω = L(F0 − Fω)L′.

Proof. We proceed similarly to [10]. For given g ∈ H
− 1

2� (∂B) let w̃ ∈ H1
� (B \ Ω)

solve

Δw̃ = 0 in B \ Ω and ∂νw̃ =

{
0 on ∂Ω,
g on ∂B.

Let ψ ∈ H
− 1

2� (∂Ω) and w ∈ H1
� (B \Ω) be the function from the definition of Lψ.

Then

〈ψ,L′g〉 = 〈g, Lψ〉 = 〈∂νw̃|∂B, w|∂B〉 =
∫
B\Ω

∇w̃ · ∇w dx =
〈
−∂νw+|∂Ω, w̃

+|∂Ω

〉

=
〈
ψ, w̃+|∂Ω

〉
,

and thus L′g = w̃+|∂Ω.
Now let v0, vω ∈ H1

� (B\∂Ω) be the solutions from the definition of F0w̃
+|∂Ω, resp.,

Fωw̃
+|∂Ω. We define u0, uω ∈ H1

� (B \ ∂Ω) by setting u0 = −v0, resp., uω = −vω on
Ω and u0 = w̃ − v0, resp., uω = w̃ − vω on B \ Ω. Then u0,

1
σω
0
uω ∈ H1

� (B) and they
solve the equations in the definitions of Λ0g and Λωg. Thus,

(Λ0 − σω0 Λω)g = (u0 − uω)|∂B = −(v0 − vω)|∂B.

Since Δ(v0 − vω) = 0 in B \ Ω and ∂ν(v0 − vω)|∂B = 0, we also have

L(∂ν(v+
0 − v+

ω )|∂Ω) = −(v0 − vω)|∂B ,

and thus

(Λ0 − σω0 Λω)g = L(∂ν(v+
0 − v+

ω )|∂Ω) = L(F0 − Fω)w̃+|∂Ω = L(F0 − Fω)L′g.
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Lemma 2.5. For given φ ∈ H
1/2
� (∂Ω) let v0, vω ∈ H1

� (B \ ∂Ω) be the solutions
in the definition of F0, Fω and let vφ ∈ H1(B \ ∂Ω) be such that v+

φ |∂Ω = φ and
vφ|Ω = 0. Set ṽ0 := v0 − vφ and ṽω := vω − vφ. Then

〈(F0 − Fω)φ, φ〉 =
∫
B

|∇ṽ0|2 dx−
∫
B

σω

σω0
|∇ṽω |2 dx.

Furthermore, there exists a constant cω > 0 such that
∫

Ω

|∇ṽω |2 dx =
∫

Ω

|∇vω |2 dx ≥ cω ‖φ‖2 for all φ ∈ H
1/2
� (∂Ω).

Proof. One easily checks that the functions ṽ0, ṽω ∈ H1
� (B) solve

∫
B

∇ṽ0 · ∇w dx = −
∫
B\Ω

∇vφ · ∇w dx,(2.6)

∫
B

σω

σω0
∇ṽω · ∇w dx = −

∫
B\Ω

∇vφ · ∇w dx(2.7)

for all w ∈ H1
� (B). Thus, we obtain

〈(F0 − Fω)φ, φ〉 =
〈
∂νv

+
0 |∂Ω, φ

〉
−
〈
∂νv

+
ω |∂Ω, φ

〉

=
∫
B\Ω

∇vω · ∇vφ dx−
∫
B\Ω

∇v0 · ∇vφ dx

=
∫
B\Ω

∇ṽω · ∇vφ dx−
∫
B\Ω

∇ṽ0 · ∇vφ dx

=
∫
B

|∇ṽ0|2 dx−
∫
B

(
σω

σω0

)
|∇ṽω|2 dx.

To prove the second assertion we first note that the Neumann boundary values

Fωφ = ∂νv
+
ω |∂Ω =

σω

σω0
∂νv

−
ω |∂Ω

depend continuously on vω|Ω = ṽω|Ω ∈ H1
� (Ω), so that there exists c′ω > 0 such that

∫
Ω

|∇ṽω|2 dx =
∫

Ω

|∇vω |2 dx ≥ c′ω ‖Fωφ‖2 for all φ ∈ H
1/2
� (∂Ω).

Thus, it only remains to show that Fω is bijective. Its injectivity is obvious and
its surjectivity is shown as in the proof of [10, Lemma 3.3] by checking that a right
inverse of Fω is given by −λω

B\Ω − λωΩ, where λωΩ and λω
B\Ω are the NtD operators on

the inclusion Ω, resp., on its complement B \ Ω.
Lemma 2.6. The assumptions of Theorem 2.1 imply that there exist c, C > 0

such that

(2.8) c‖L′g‖2 ≤ (|� (σω0 Λω)| g, g) ≤ C ‖L′g‖2.
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For the case of frequency-difference data, the assumptions of Theorem 2.2 imply
that there exist c′, C′ > 0 such that

(2.9) c′‖L′g‖2 ≤ (|� (σω0 Λω − στ0Λτ )| g, g) ≤ C′‖L′g‖2.

Proof. For every g ∈ L2
�(∂B), φ := L′g, let ṽω , vφ be the functions defined in

Lemma 2.5. Noting that Λ0 = Λ′
0 and F0 = F ′

0, we obtain from Lemmas 2.4 and 2.5
that

(� (σω0 Λω) g, g) = 〈� (Fω)L′g, L′g〉

=
1
2i

(
〈(Fω − F0)φ, φ〉 − 〈(Fω − F0)φ, φ〉

)

= −
∫
B

�
(
σω

σω0

)
|∇ṽω|2 dx = −

∫
Ω

�
(
σωΩ
σω0

)
|∇ṽω |2 dx.

Hence, |� (σω0 Λω)| is either � (σω0 Λω) or −� (σω0 Λω), the lower bound in assertion (2.8)
follows from Lemma 2.5, and the upper bound follows from the the continuity of Fω .

To prove the second assertion for the case of frequency-difference data, let ṽτ be
defined analogously to ṽω. We now proceed similar to Ide et al. [20, Lemma 2.6]; cf.
also the similar arguments in Kang, Seo, and Sheen [23] and Kirsch [25]. Using (2.7)
and its analog for the frequency τ , we derive

0 ≤
∫
B

�
(
στ

στ
0

) ∣∣∣∣∣∣∇ṽτ −
σω

σω
0

�
(
στ

στ
0

)∇ṽω
∣∣∣∣∣∣
2

dx

=
∫
B

�
(
στ

στ
0

)
|∇ṽτ |2 dx− 2�

(∫
B

σω

σω0
∇ṽω · ∇ṽτ dx

)
+
∫
B

∣∣∣σω

σω
0

∣∣∣2
�
(
στ

στ
0

) |∇ṽω|2 dx

= −
∫
B

�
(
στ

στ
0

)
|∇ṽτ |2 dx+

∫
B

∣∣∣σω

σω
0

∣∣∣2
�
(
στ

στ
0

) |∇ṽω |2 dx.

Thus, it follows from Lemmas 2.4 and 2.5 that

(� (σω0 Λω − στ0Λτ ) g, g)

=
∫
B

�
(
σω

σω
0

)
|∇ṽω|2 dx−

∫
B

�
(
στ

στ
0

)
|∇ṽτ |2 dx

≥
∫
B

⎛
⎜⎝�

(
σω

σω
0

)
−

∣∣∣σω

σω
0

∣∣∣2
�
(
στ

στ
0

)
⎞
⎟⎠ |∇ṽω|2 dx

=
∫

Ω

�
(
σω

σω
0

)

�
(
στ

στ
0

)
⎛
⎜⎝�

(
στ
Ω
στ
0

)
−�

(
σω
Ω
σω
0

)
−

�
(
σω
Ω
σω
0

)2

�
(
σω

σω
0

)
⎞
⎟⎠ |∇ṽω |2 dx.
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Using �
(
σω

σω
0

)
,�
(
στ

στ
0

)
∈ L∞

+ (B), and assumption (2.3), we obtain a c′′ > 0 with

(� (σω0 Λω − στ0Λτ ) g, g) ≥ c′′
∫

Ω

|∇ṽω |2 dx.

An analog equation follows from interchanging ω and τ and using assumption (2.4).
Hence, if either (2.3) or (2.4) holds, then |� (σω0 Λω − στ0Λτ )| is either � (σω0 Λω − στ0Λτ )
or � (στ0Λτ − σω0 Λω), and in both cases the lower bound in assertion (2.9) follows
from Lemma 2.5. The upper bound in assertion (2.9) follows from the factorization
in Lemma 2.4 and the continuity of Fω and Fτ .

We also need two known lemmas from previous applications of the factorization
method. The first one relates the range of an operator to the norm of its dual or
adjoint and the second one shows that the inclusion Ω can be determined from R(L).

Lemma 2.7. Let Hi, i = 1, 2, be two Hilbert spaces with norms ‖ · ‖ i, X be a
third Hilbert space, and Ai ∈ L(X,Hi).

If ‖A1x‖1 ≤ ‖A2x‖2 for all x ∈ X, then R(A∗
1) ⊆ R(A∗

2) and R(A′
1) ⊆ R(A′

2).
Proof. This follows from the so-called “14th important property of Banach spaces”

in Bourbaki [3]; cf. also [10, Lemma 3.4, Cor. 3.5] for an elementary proof for real
spaces that holds as well in this complex case.

Lemma 2.8. Φz|∂B ∈ R(L) if and only if z ∈ Ω.
Proof. This has been proven by Brühl in [4, Lemma 3.5].
We can now prove our main theorems.
Proof of Theorems 2.1 and 2.2. Using Lemma 2.7, it follows from Lemma 2.6 that

R
(
|� (αωΛω)|1/2

)
= R(L), resp., R

(
|� (σω0 Λω − στ0Λτ )|1/2

)
= R(L).

Hence, the assertions follow from Lemma 2.8.

3. Numerical examples. We tested our method numerically and compared it
to the conventional factorization method for static (zero frequency) electrical im-
pedance tomography using exact and inexact reference measurements. B is the
two-dimensional unit-disk. The inclusions are two circles centered in (0.4, 0.2) and
(−0.6, 0) with radii 0.3 and 0.2. For the complex conductivity at a nonzero frequency
ω, we use the values of the first example from Jain et al. in [22]. The background
conductivity is σω0 := 0.3 + 0.1i and inside the inclusions Ω we set this value to
σω|Ω := 0.1 + 0.1i, i.e., σωΩ := −0.2. To compare our method with the original fac-
torization method we use τ = 0 as the second frequency and set the imaginary part
of the conductivity to zero for that case, i.e., σ0 := 0.3 and σΩ := −0.2. (Consistent
with the introduction we omit the index τ for the zero frequency case.) Then

σωΩ
σω0

= −0.6 + 0.2i and
σΩ

σ0
= −2

3
,

so that the assumptions of both Theorems 2.1 and 2.2 are fulfilled. (This also follows
from Remark 2.3 as τ = 0 and only the conductivity differs in the inclusions.)

On ∂B we apply
{

1√
π

sin(nφ),
1√
π

cos(nφ)
∣∣∣ n = 1, . . . , 128

}

as input currents, where (r, φ) denotes the polar coordinates with respect to the origin.
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We use the notation Λω for the NtD operator at the frequency ω and Λ for the
corresponding operator at zero frequency (both for the setting with the inclusion Ω).
For the original factorization method we also need the reference operator at zero fre-
quency without inclusion Λ0, i.e., the one corresponding to constant real conductivity
σ0 = 0.3 throughout B. Accordingly, we denote the corresponding potentials by u,
uω and u0.

We calculate these potentials separately using the commercial finite element soft-
ware Comsol and expand their boundary values in the aforementioned trigonometric
basis, which gives us discrete approximations Λ̃ω, Λ̃, Λ̃0 ∈ C

256×256. Consistent with
our theoretical results in section 2 we describe the applied currents as continuous
functions (the so-called continuum model of EIT) and do not study more realistic
electrode models in our numerical examples. Also note that we do not directly calcu-
late the difference Λ̃−Λ̃0 as in [13] or �(σω0 Λ̃ω), resp., �(σ0Λ̃−σω0 Λ̃ω) in an analogous
manner. Though such a direct calculation of the differences leads to a higher precision
in the simulated forward data, we refrained from it in order to be able to simulate
independent measurement and shape errors on each of the measurement operators.

The range criteria

z ∈ Ω if and only if Φz|∂B ∈ R
(
A1/2

)

with A = |�(σω0 Λω)| (see Theorem 2.1), A = |�(σ0Λ − σω0 Λω)| (see Theorem 2.2) or
A = |Λ−Λ0| (the conventional factorization method, see Brühl [4, Theorem 3.1]) are
implemented as in [13]. For the reader’s convenience we repeat the description here.
Let

Avk = λkvk, k ∈ N,

be the spectral decomposition of the operator A, which is in all three cases com-
pact, self-adjoint, injective, and positive. {vk} ⊂ L2

�(∂B) is an orthonormal basis of
eigenfunctions with eigenvalues {λk} ⊂ R (sorted in decreasing order). The Picard
criterion yields that

Φz|∂B ∈ R(A1/2)

if and only if

f(z) :=
1

‖Φz|∂B‖2
L2(∂B)

∞∑
k=1

|(Φz |∂B, vk)L2(∂B)|2

λk
<∞.

Using a singular value decomposition of the discrete approximation Ã ∈ C256×256

(Ã = |�(σω0 Λ̃ω)|, Ã = |�(σ0Λ̃ − σω0 Λ̃ω)|, or Ã = |Λ̃ − Λ̃0|),

Ãṽk = λ̃kũk, Ã∗ũk = λ̃kṽk, k = 1, . . . , 128,

with nonnegative {λ̃k} ⊂ R (sorted in decreasing order) and orthonormal bases
{ũk}, {ṽk} ⊂ C256, we approximate the function f(z) by

f̃(z) :=
m∑
k=1

|Φ̃∗
z ṽk|2

λ̃k

/ m∑
k=1

|Φ̃∗
z ṽk|2,
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where Φ̃z ∈ C256 contains the Fourier coefficients of Φz|∂B , which for the two-
dimensional unit circle can be written as (cf., e.g., Brühl [4]),

Φz(x) =
1
π

(z − x) · d
|z − x|2 for all x ∈ ∂B.

m is the number of singular values that are reasonable approximations λ̃k ≈ λk. To
estimate m we plot the (normalized) singular values (λ̃k)k in a semilogarithmic scale;
cf. the left column of Figure 3.1, where this is done for our three different choices for
A. Typically, the eigenvalues show an exponential decay that stops rather abruptly
due to the presence of errors in our simulated data. In our experiments we manually
pick the level where this stop occurs (marked by a dashed line in our eigenvalue plots)
and use only the singular values (λ̃k)k above this level.

To obtain a numerical criterion telling whether a point z belongs to the unknown
inclusion Ω or not, one now has to decide if the infinite sum f(z) attains the value
∞ by using the approximate value f̃(z), which is always finite. Thus, a threshold
C∞ > 0 is needed to distinguish points with large values f̃(z) ≥ C∞ from those with
small values f̃(z) < C∞. A reconstruction of Ω is then obtained by evaluating f̃(z) on
a grid of points {zn} ⊂ B and saying that all points with f̃(zn) < C∞ belong to the
inclusion. Choosing different threshold values C∞ corresponds to choosing different
level contours of f̃(z) or, equivalently, of a monotone function of f̃(z).

In our numerical experiments, we plot the indicator function

(3.1) Ind(z) :=
(
log (1 + f̃(z))

)−1

on an equidistant grid {zn} ⊂ B, as well as the contour of f̃ that fits best to the
true boundary of the inclusion ∂Ω. Note that we choose this optimal contour line in
order to compare optimal results for our method with optimal results for the original
method. In practice, the choice of a contour line of f̃ has to be done on a heuristic
basis or using additional information, e.g., about the size of the inclusion.

3.1. Detecting inclusions without reference measurements. Figure 3.1
shows the reconstructions that we obtain for A = |�(σω0 Λω)| (top row), A = |�(σ0Λ−
σω0 Λω)| (middle row), and A = |Λ − Λ0| (bottom row). The left column shows the
(normalized) singular values of A and the trust level marked by a dashed line, the
middle column shows the indicator function, and the right column shows the optimal
contour line of it (chosen with knowledge of the true inclusions). The true boundary
of the inclusions ∂Ω is plotted with a dashed line in the middle and right columns.

The reconstructions are of similar good quality. For this case of exact simulated
data it does not seem to matter whether only measurements at a single nonzero
frequency are being used (top row), nonzero frequency measurements are combined
with zero frequency measurements (middle row), or zero frequency measurements are
combined with reference measurements (bottom row).

In addition to using unperturbed simulated measurements, we also tested the
method after adding 0.1% relative noise to the measurement matrix Λ̃ω, resp., Λ̃.
More precisely, we generate an error matrix E of the same size as the measurements
with uniformly distributed real and imaginary parts of the entries between −1 and 1.
E is then scaled to the noise level with respect to its spectral norm and added to the
respective measurement operator. (Of course, different errors are added to Λ̃ω and
Λ̃.) We also compare this with the results obtained with the original factorization
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Fig. 3.1. Numerical results for exact data: singular values (left column), indicator function
(middle column), and its optimal contour (right column, chosen with knowledge of the true inclu-
sions) for (a) single-frequency data, (b) frequency-difference data, and (c) static data compared with
reference data.

method, i.e., using Λ̃ − Λ̃0, where we take the noisy version of Λ̃ but not of Λ̃0. The
corresponding reconstructions are shown in Figure 3.2, which is organized in the same
way as Figure 3.1.

The reconstructions using A = |�(σω0 Λω)| in the top row andA = |�(σ0Λ−σω0 Λω)|
in the middle row seem to be more effected by the noise than those using A = |Λ−Λ0|
in the bottom row. This can be explained by the fact that all three choices for
A contain differences of the measurement operators Λω, Λ, or Λ0, which are much
smaller than the measurement operators itself. Thus, the noise on the measurement
operators is amplified in these differences. In our example we have that

‖�(σω0 Λ̃ω)‖ ≈ 0.06‖σω0 Λ̃ω‖ ,

‖�(σ0Λ̃ − σω0 Λ̃ω)‖ ≈ 0.03‖σ0Λ̃‖ ≈ 0.03‖σ0Λ̃‖ ,

‖Λ̃ − Λ̃0‖ ≈ 0.14‖Λ̃‖ ≈ 0.16‖Λ̃0‖ ,

so that the noise amplification is highest in the middle row and lowest in the bottom
row, which fits well to the different quality of the reconstruction. Note that this
amount of noise amplification depends on the inclusions’ contrast to the background
conductivity and, though we have not thoroughly investigated this question, different
numerical examples did not indicate that one choice of A is generally more robust to
noise than another.
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Fig. 3.2. Numerical reconstructions for data containing 0.1% relative noise: singular values
(left column), indicator function (middle column), and its optimal contour (right column, chosen
with knowledge of the true inclusions) for (a) single-frequency data, (b) frequency-difference data,
and (c) static data compared with reference data.

3.2. Sensitivity to body shape errors. We also compared our method to
the conventional factorization method in a setting where there are some boundary
geometry errors between the computational domain of the forward model and that
of the true body. To that end we replaced B by an ellipse with halfaxes 1 + δ and
1/(1+ δ) in the calculation of the forward data. Everything else remained unchanged
to simulate the case where this ellipse is wrongly assumed to be the unit circle.

We used δ = 5% and show in the first row of Figure 3.3 the reconstruction obtained
from A = |�(σω0 Λω)| and in the second row those obtained with A = |�(σ0Λ−σω0 Λω)|.
As we explained in the introduction, for the conventional factorization method, using
A = |Λ−Λ0|, the effect of body shape errors strongly depends on whether the reference
operator Λ0 is experimentally obtainable or numerically simulated (resp., in easy cases,
calculated analytically). In the first case, Λ0 correctly corresponds to measurements
at an ellipse (which the body really is), while in the latter case, it corresponds to a
circle (which we wrongly assume the body to be). The resulting reconstructions are
shown in the third and forth row of Figure 3.3.

As we expected, systematic body shape errors have a greater effect on the recon-
structions when the measurement operators belong to a different geometry, as is the
case for the conventional factorization method with simulated reference data, shown
in the bottom row. However, also using only measurements at a single, nonzero fre-
quency, i.e., A = |�(σω0 Λω)| in the top row, seems to be similarly effected. If two
different kinds of measurements are taken at the same body, the reconstructions im-
prove. It does not seem to matter much whether these two are measurements at a
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Fig. 3.3. Numerical reconstructions for data containing δ = 5% body shape errors: singular
values (left column), indicator function (middle column), and its optimal contour (right column,
chosen with knowledge of the true inclusions) for (a) single-frequency data, (b) frequency-difference
data, (c) static data compared with reference data for the correct body shape, and (d) static data
compared with reference data for the assumed (incorrect) body shape.

nonzero and at zero frequency (A = |�(σ0Λ − σω0 Λω)| in the second row) or zero
frequency measurements with and without inclusion (A = |Λ− Λ0| in the third row).

Figure 3.4, which is organized in the same way as Figure 3.3, shows the recon-
structions that we obtained for an ellipse with halfaxes 1+δ and 1/(1+δ) for δ = 10%.
Even for this rather large amount of errors in the estimated body shape the recon-
structions are quite reasonable if frequency-difference measurements (second row) or
the conventional factorization method is used with reference measurements belonging
to the exact (elliptical) body shape (third row). If measurements at only a single,
nonzero frequency are used (top row), the reconstruction gets highly blurred. The
conventional method with reference measurements that are simulated for the assumed
(incorrect) body shape (bottom row) performs even worse and leads to strong arti-
facts.

The results numerically verify that our new variant of the factorization method
with frequency-difference data is much more robust against body shape errors than
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Fig. 3.4. Numerical reconstructions for data containing δ = 10% body shape errors: singular
values (left column), indicator function (middle column), and its optimal contour (right column,
chosen with knowledge of the true inclusions) for (a) single-frequency data, (b) frequency-difference
data, (c) static data compared with reference data for the correct body shape, and (d) static data
compared with reference data for the assumed (incorrect) body shape.

using the conventional method with simulated (or analytically calculated) reference
data. Actually, the reconstructions using frequency-difference data seem to be of
equally good quality and robustness as those that one would obtain with correct
reference measurements (which are usually not available in practice).

3.3. Unknown background conductivity. Though our new variant of the fac-
torization method works without reference measurements, it still requires the knowl-
edge of the constant conductivity value of the background. We now describe a heuristic
approach with which the algorithm can also be applied to an unknown background
conductivity.

Roughly speaking, we expect that fast spatial variations in the applied currents
on ∂B lead to higher electric currents close to ∂B, while the electric effect of slowly
spatially varying currents penetrates deeper into B (see [12] for a detailed study of
how to create potentials with localized electrical energy). We also expect that the
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eigenfunctions of our compact measurement operators Λω, resp., Λ, are functions
containing increasingly high oscillations. Thus, the eigenvalues will mostly depend on
the conductivity close to ∂B, i.e., the background conductivity, σω0 , resp., σ0.

The multiplication of Λω with the background value σω0 can be regarded as a
simple change of units that sets this background conductivity value to the real value
1. Thus, we expect the eigenvalues of σω0 Λω to mostly lie close to the real axis, and
so the eigenvalues of Λω will lie close to a straight line through the origin whose angle
with the real axis is minus the phase of σω0 .

To determine the range of |�(σω0 Λω)|1/2, it suffices to estimate this phase of σω0 .
We do this by choosing the median α of the set{

−
�(λ̃ωj )

�(λ̃ωj )
: j = 1, 2, . . .

}

using all available eigenvalues λ̃ωj of Λ̃ω. Instead of A = |�(σω0 Λω)| we then use
A = |�((1 + αi)Λω)| in our algorithm.

To estimate the range of |�(σ0Λ−σω0 Λω)|1/2 we proceed analogously and estimate
the quotient of σω0 and σ0 by the median β of the set{

λ̃j

λ̃ωj
: j = 1, 2, . . .

}

using all available eigenvalues λ̃ωj of Λ̃ω and λ̃j of Λ̃. Then we use A = |�(Λ − βΛω)|
in our algorithm.

Figure 3.5 shows the reconstructions that we obtained with this approach for
our numerical example. The columns are organized as in Figures 3.1–3.4. The
first two rows show the reconstructions obtained with A = |�((1 + αi)Λω)| and
A = |�(Λ − βΛω)| and the last two rows show the according reconstructions after
adding 0.1% of relative noise as in subsection 3.1. The reconstructions show almost
no visual difference to those obtained with the exact background conductivity values
in subsection 3.1.

Though this is not covered by the theory presented in section 2, it seems plausible
that the above approach can also be applied to cases where the unknown background
is slightly inhomogeneous. In our final example we test this numerically for the factor-
ization method with frequency-difference data. We multiply the complex background
conductivity used in the previous examples with the slightly oscillating function

1 + 0.05 cos(4πx) sin(8πy).

In order to retain the conductivity jump only in the real part, we also multiply the
imaginary part of the conductivity inside the inclusions with this function. Figure 3.6
shows the resulting real part (left picture) and the imaginary part (right picture) of
σω. As in the previous examples, we assume that the static conductivity σ has the
same real part as σω and that it has zero imaginary part.

We also added δ = 5% body shape error as in subsection 3.2 and 0.05% relative
noise as in subsection 3.1. Figure 3.7 shows the reconstruction that we obtain from
using frequency-difference data A = |�(Λ − βΛω)|, where the constant β ∈ C is
estimated from the data as explained above.

The reconstruction are comparable to those obtained with knowledge of the exact
body shape, known constant background, and 0.1% relative noise in subsection 3.1.
This suggests that the method can indeed be applied to the practically relevant case of
an unknown inhomogeneous background that is only known to be “almost constant.”



DETECTING INCLUSIONS WITHOUT REFERENCE DATA 1679

a)

50 100 150 200 250

10
−15

10
−10

10
−5

10
0

b)

50 100 150 200 250

10
−15

10
−10

10
−5

10
0

c)

50 100 150 200 250

10
−15

10
−10

10
−5

10
0

d)

50 100 150 200 250

10
−15

10
−10

10
−5

10
0

Fig. 3.5. Numerical reconstructions for an unknown, but constant, background conductiv-
ity: singular values (left column), indicator function (middle column), and its optimal contour
(right column, chosen with knowledge of the true inclusions) for (a) exact single-frequency data,
(b) exact frequency-difference data, (c) single-frequency data containing 0.1% relative noise, and
(d) frequency-difference data containing 0.1% relative noise.
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Fig. 3.6. Real and imaginary part of the conductivity describing inclusions in a slightly inho-
mogeneous background.
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Fig. 3.7. Numerical reconstructions for an unknown, slightly inhomogeneous background con-
ductivity using frequency-difference data containing δ = 5% body shape errors and 0.05% relative
noise: singular values (left column), indicator function (middle column), and its optimal contour
(right column, chosen with knowledge of the true inclusions).

4. Conclusions. We have developed a new variant of the factorization method
that can be used on single-frequency and on frequency-difference measurements in
electrical impedance tomography and that does not require reference measurements
at an inclusion-free body, which are usually not available in practice. Our new variant
with single-frequency measurements delivers comparable results to using the conven-
tional method with simulated reference data and thus eliminates one of the main
computational efforts in applying the method. An even greater advantage is achieved
by using frequency-difference measurements. Not only do we save the computational
effort of simulating reference measurements, but our new results show the same per-
formance in the presence of body shape errors that one would otherwise obtain from
reference measurements at the correct (unknown) body shape. This greatly improves
the stability of the method with respect to such unavoidable systematic errors, so
that the application of the method in frequency-difference EIT systems seems very
promising.
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